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Frequency map analysis is a numerical method based on Fourier techniques which provides a 
clear representation of the global dynamics of many multi-dimensional systems, and which is 
particularly useful for systems of 3 degrees of freedom and more. The frequency dependence with 
time also allows refined estimates of the diffusion of the orbits. Here are presented the theoretical 
foundation of the method, and some applications to the Advanced Light· Source, demonstrating 
how frequency map analysis can be used to understand the limits of the dynamic aperture under 
various lattice conditions and predict more favorable working points. 
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1 FREQUENCY MAPS 

According to the KAM theorem 5•1•14, in the phase space of a sufficiently close to 
integrable conservative system, many invariant tori will persist. Trajectories start
ing on one of these tori remain on it thereafter, executing quasiperiodic motion 
with a fixed frequency vector depending only on the torus. The family of tori is pa
rameterized over a Cantor set of frequency vectors, while in the gaps of the Cantor 
set chaotic behavior can occur. These slightly deformed tori are fixed structures of 
the system. It is possible numerically to find them, to straighten them out, and to 
interpolate between them to form an action-angle coordinate system in which reg
ular (quasiperiodic) motion appears uniformly circular, and weakly chaotic motion 
stands out as a slight departure 19• 

The frequency analysis method 3•6•7•10•11•12 also relies on a fixed feature of the 
model system, but one which is simpler to compute; namely, the frequency vectors 
associated with each of the invariant tori. Although the frequencies are strictly 
speaking only defined and fixed on these tori, the frequency analysis algorithm 
will numerically compute over a finite time span a frequency vector for any initial 



J. LASKAR AND D. ROBIN 

condition. On the KAM tori, this frequency vector will be a very accurate approx
imation of the actual frequencies, while in the chaotic regions, it will provide a 
natural interpolation between these fixed frequencies. 

Let us consider a n-DOF Hamiltonian system close to integrable in the form 
H(I, B) = H0 (I) + t:H1(I, B) where H is real analytic for (I, B) E B" x ']['", where 
B" is a domain ofiR" and T" is then-dimensional torus. Fort:= 0, the Hamiltonian 
reduces to H0 (J) and is integrable. The equations of motion are then 

. 8Ho(I) 
B i = = v; (I) ; j = 1, ... , n , 

81; 
(1) 

which gives in the complex variables z; = Ij exp i B;; z; (t) = z;oeiv;t, where z;o = 
z;(O). The motion in phase space takes place on tori, products of true circles with 
constant radii I; = lzi(O)l, which are described at constant velocity v;(I). If the 
system is nondegenerate, that is if 

det ( 
8~~) ) = det ( 

82 
:;2(I) ) :f 0 (2) 

the frequency map F : B" -+ IR"; (I) -+ (v) ·is a diffeomorphism on its 
image 0, and the tori are as well described by the action variables (/) E Bn or in 
an equivalent manner by the frequency vector (v) En (in the case of an isoenerget
ically nondegenerate system2, one will consider the frequency map m."-1 

--+ m.n- 1
, 

(Ii)i=l,n-1 --+ (vdvn)i=l,n- 1). For a nondegenerate system (or for an isoenerget
ically nondegenerate system), when € is nonzero, the KAM theorem2 still asserts 
that for sufficiently small values of € , there exists a Cantor set Oc of values of (v), 
satisfying a Diophantine condition of the form 

K.c 
l(k, v)l > jkjm (3) 

for which the perturbed system still possess smooth invariant tori with linear flow 
(the KAM tori). Moreover, according to P&chel18, there exists a diffeomorphism 

(4) 

which is analytical with respect to cp and coo in v and on Tn X n£ transforms the 
Hamiltonian equations into : il; = 0; !{.>; = Vj • For frequency vectors. (v) in 
Oc, the solution lies on a torus and is given in complex form by its Fourier series 

z;(t) = z;oeiv;t + L am(v)ei<m,.,>t (5) 
m 

where the coefficients am(v) depend smoothly on the frequencies (v). If we fix 
B E 'I"', to some value 0 = B0 , we obtain a frequency map on Bn defined as 

(6) 

2 

! 
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where P2 is the projection on 0 (p2(¢, v) = v). It should be noted that for suffi
ciently small t:, the torsion condition (2) ensures that the frequency map F90 is a 
diffeomorphism. The frequency map analysis consists to obtain directly, in a nu
merical manner, a natural frequency map F, defined on a whole domain Bn, which 
coincide, up to numerical accuracy, with Fe0 (Eq. 6) on the set of the KAM tori. 
The frequency map F is obtained by searching for quasiperiodic approximations of 
the solutions, over a finite time span, in the form of a finite number of terms 

N 

Zj(t) = Zjoeiv;t + L amkei<mk,v>t . (7) 
k=l 

Once the quasiperiodic approximation (7) is obtained, the construction of the 
frequency map can be made and the study of the global dynamics of the system (1) 
will then be possible in a very effective manner by the analysis of the regularity of 
this frequency map 3•

6
•
7

•
10

•11•12. 

Let A be the subset of Bn of the values of (I) such that (I, 80 ) belongs to a 
KAM torus of dimension n. In this case, we can assume that, up to the numerical 
accuracy of our numerical procedure, the rotation vector (v) is the true rotation 
vector of the considered torus. We thus assume that on A, FT is a very good 
approximation of the frequency map Fe0 defined in (6) and the restriction of the 
frequency map FT to A will have thus the following properties : a) If (I) E A, 
then FT((I), ·) is constant on IR; b) For any given r, the map Ff :A -+ IRn 
(I) -+ FT((I), r) is regular in some sense, as it coincides on A with the restriction 
to A of a smooth diffeomorphism. 

The criterion (b) ensures that when the frequency map is not regular, the corre
sponding KAM tori are destroyed. In case of a two degrees of freedom Hamiltonian, 
we can even obtain a more precise criterion. Indeed, in this case, and under some 
condition of non-degeneracy, the frequency map FT : lR -+ IR should be mono
tonic. As soon as this is not verified for two values of the action like variables 
Iro and I{0 , we can conclude to the destruction of invariant KAM tori in all the 
corresponding interval of frequencies [FT(I10), FT(I{0 )] 10•7 • 

2 NUMERICAL ANALYSIS OF THE FREQUENCIES (NAFF) 

The frequency map analysis relies heavily on the observation that when a quasiperi
odic function f(t) in the complex domain cr.: is given numerically, it is possible to 
recover a quasiperiodic approximation of f(t) in a very precise way over a finite 
time span [-T, 11, several orders of magnitude more precisely than what is given 
by simple Fourier series. Indeed, when one computes the Fourier series of f(t) over 
the finite interval [-T, 11, one assumes that f(t) is periodic of period 2T, which 
is obviously not true. We make here a different hypothesis, which is dictated by 
the knowledge of the regular dynamics of our system, and we search for quasiperi
odic approximations. We briefly describe here the numerical algorithm (NAFF), 

3 
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FIGURE 1: Ideal ALS lattice 

which is effectively used for the determination of these quasiperiodic approxima
tions required by the frequency map analysis. More details can be found in G,1o_ 

Let 
f(t) = eivtt + L c.ikei(k,v)t; ak E<C (8) 

ke2Z" -(1,o, ... ,o) 

be a KAM quasiperiodic solution of an Hamiltonian system in Bn x '.['n, where the 
frequency vector (v) satisfies a Diophantine condition (3). The frequency analysis 
algorithm NAFF will provide an approximation f'(t) = 2::~= 1 akeiw~t of f(t) from 

. its numerical knowledge over a finite time span [-T, T] . The frequencies wk and 
complex amplitudes ak are found with an iterative scheme. To determine the first 
frequency w!, one searches for the maximum amplitude of <P( u) = (f(t), eiut} where 
the scalar product (f(t), g(t)} is defined by 

1 JT (f(t),g(t)} =- f(t)g(t)x(t)dt , 
2T -T 

{9) 

and where x(t) is a weight function, that is, a positive and even function with 
1/2T J~T x(t)dt = 1. In all our computations, we used the Hanning window filter, 

that is x1(t) = 1 + cos(ri/T) . Once the first periodic term eiw~t is found, its 
complex amplitude a~ is obtained by orthogonal projection, and the process is 

, started again on the remaining part of the function ft(t) = f(t) -a~ eiw~t. It is 
also necessary to orthogonalize the set of functions (eiw~t)~:, when projecting f 
iteratively on these ei"'~ t. For a KAM solution, the frequency analysis algorithm 

4 

'·' 

J 
G 



APPLICATION OF FREQUENCY MAP ANALYSIS TO THE ALS 

allows a very accurate determination of the frequencies over the time span [-T, T], 
several orders of magnitude better than with simple FFTs. This was rigorously 
established by a general theorem? which can be stated as following for a weight 
function of the form 

2P(p1)2 
Xp(t) = (

2
p)! (1 +cos 7rt)P (10) 

Proposition. 1. For a KAM solution f(t) of the form {11}, and using the weight 
function x(t) = Xp(t), the application of the frequency analysis algorithm over the 
time span [-T,T], as described above, provides a determination v[ ofthefrequency 
v1 with a precision v1 - v[ having the asymptotic expression for T -+ +oo 

T (-1)P+17r2P(p!)2 lR(ak) ( 1) 
v1 - v1 = 2P+ 2 L 2P+l cos(QkT) + o 2P+2 

ApT k Qk T 

with 
2 (7("2 

p 1 ) 
Ap = - 7r2 6 - L k2 

k=l 

(11) 

(12) 

In particular, the use of a Hanning data window (p = 1) ensures that for a KAM 
solution, the accuracy of determining the main frequencies will be proportional to 
1jT4 , instead of 1/T2 without the Hanning window (p = 0), while for an ordi
nary FFT method, this accuracy will only be proportional to 1/T. The frequency 
analysis will then easily allow recovery of the frequency vector ( v1 , v2 , ... , Vn). It 
should also be stressed that a lot of understanding can already be gained from the 
examination of the quasiperiodic approximation of the solutions, expressed as (8) 
7,16. It is also clear that one can investigate the improvements which could result 
from using larger values of p or other weight functions. 

The frequency map can also be used to analyze in a very precise way the diffusion 
of the orbits in the frequency space 7•8•4• In this case, the initial condition in action 
(I) is also fixed, and the frequency vector (v) is evaluated over the time interval 
[r, T + T] for different values ofT. The time evolution of the numerical frequencies 
v is used as a measure of the diffusion of the orbit. Indeed, for a KAM tori, the 
frequency vector is fixed, up to numerical accuracy, while for a non regular orbit, 
the frequency vector (v) will evolve with time, revealing the chaotic diffusion of the 
orbit. In a 2-DOF Hamiltonian system, for a fixed level of energy, the frequency 
space will be a line, so the regular KAM solutions are fixed dots which separates 
the space, and the chaotic zones are confined by the existing KAM tori. On the 
contrary, in higher dimension, the KAM tori are still repre~ented as dot~ in the 
frequency space, but they no longer prevent the chaotic trajectories to wander in 
the frequency space. Nevertheless·, the diffusion is supposed to be extremely small 
·in their vicinity 15•13. Thus, for practical view, over finite time, they can be thought 
to have some width, and regions which are densely filled with such tori will act as 
effective barriers for limiting the diffusion 8 . 

3 STUDY OF ERRORS IN THE ALS 

5 
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FIGURE 2: One quadrupole detuned by 5%. Original working point (left). New working point 
(right). 

Dumas and Laskar have first applied the frequency map analysis techniques in ac
celerator dynamics to the study of the global dynamics and diffusion of a modelized 
cell of the Advanced Light Source (ALS)3. In this paper we chose to study the full 
lattice of the ALS20 in order to investigate the application of frequency map analysis 
for finding strategies for the improvement the design of a real machine. 

The ALS is a third generation synchrotron light source, and like other third 
generation light sources, the ALS storage ring is built up of strongly focussing 
quadrupoles that are necessary to reduce the beam's emittance. These quadrupoles 
generate large chromaticity that needs to be corrected with sextupole magnets. The 
sextupoles excite many nonlinear resonances and have a major impact on the single 
particle dynamics 

The storage ring lattice is constructed of twelve identical sectors. This 12-fold 
symmetry helps suppress many nonlinear resonances. The reason being that if 
a storage ring has no symmetry, resonances can be excited when the condition 
N%v% + Nyvy + N8 v8 = R is satisfied, where v%, vy, and V8 are the horizontal, 
vertical, and synchrotron .tunes respectively and N%, Ny, N8 , and Rare all integers. 
However if the lattice is M -fold symmetric, there is an additional constraint for 
resonance excitation - R must be evenly divisible by M (12 in the case. of the 
ALS). So the ALS's 12-fold symmetry is beneficial in suppressing many resonances. 
If the symmetry of the lattice is broken by magnetic field errors, resonanc~ that 
are "not allowed" by symmetry can become excited, influencing the stability of the 
particle motion. This has been observed experimentally21 . 

It is desirable to understand the affect of resonances on the ALS particle dy
namics. From short term particle tracking alone it is very difficult to gain much 
insight into the dynamics. Frequency map analysis enhances our understanding by 
providing us with a simple global picture of the dynamics. We use frequency map 
analysis to illustrate the effect of symmetry breaking on the beam dynamics. 

6 
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We combined a particle tracking code22 with the NAFF frequency package. Par
ticles are launched with different initial horizontal and vertical transverse momen
tums but with zero transverse offsets. The particles are then tracked on-energy and 
without synchrotron oscillations for 2048 turns or until lost. If the particle survives 
all 2048 turns, then the tunes and diffusion rate are calculated. 

The first example that is tracked is the ideal lattice with perfect symmetry. In 
Figure 1 the frequency map in tunespace is presented. The horizontal and vertical 
tune of each surviving particle is plotted as a single dot. The working point of 
machine is V:r: = 14.28 and vy = 8.18 (upper right corner of Figure 1). Small 
amplitude particles tend to oscillate with tunes close to the working point. Particles 
with large amplitudes oscillate with tunes that are shifted left and downward from 
the working point. This is due to the negative tune shift with amplitude that is 
generated by the sextupoles. 

We also see the influence of different resonances in Figure 1. In regions of tunes
pace where there are no strongly excited resonances, the tunes are evenly spaced. 
In regions of the map where resonances are strongly excited, the tunes become 
unevenly spaced. In these regions, particles have larger calculated diffusion rates. 
We have tracked particles in these regions for a greater number of turns and found 
that many of the particles eventually become unstable. It may seem strange that 
there are stable particles with tunes below the integer resonance (vy = 8.0). This 
is because in a 12-fold machine, this resonance is not excited. 

To illustrate the effect of symmetry breaking we created a lattice in which one 
quadrupole is detuned by 5%. The remaining quadrupoles have been adjusted to 
restore the global tunes. All this had the effect of introducing a beating of the 
betatron function of about 20% which is similar in magnitude to the beta-beating 
that has been measured in the actual machine. The results of the frequency map 
are seen in Figure 2 (left side). Comparing Figure 2 with Figure 1 we see that the 
stable area or dynamic aperture has shrunk drastically. In particular it is clear that 
the fourth order resonance V:r: = 14.25 is excited and limits the dynamic aperture. 
This resonance was previously unallowed by the ideal ring's 12-fold symmetry. 

We can increase the dynamic aperture by retuning the machine to a different 
working point. It is remarkable that a simple examination of the frequency map 
plot {Fig. 2) provided a very good guess for a better working point. We moved 
the working point to V:r: = 14.25 and vy = 8.20 and tracked the lattice again. The 
results can be seen in Figure 2 (right side). Now the limit to the dynamic aperture 
is the fifth order resonance V:r: = 14.20. Comparing right side and the left side of 
Figure 2 we see that stable region of the map has indeed increased. In this case 
of large symmetry breaking the new working point is a more desirable operating 
point. 

This example illustrates that the frequency map provides much more insight 
into the dynamics than just particle tracking alone. It gives a global picture of the 
dynamics that helped us locate a good working point. It contains information about 
the long term stability of the particles. Since more that 99% of the time is spent 
in the tracking portion of the code, the frequency map information is obtained at 
little cost in CPU time. 

7 
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