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S.P. Pozdniakovt, Chin-Fu Tsang, and V.A. Korneev 

Earth Sciences Division, Ernest Orlando Lawrence Berkeley National Laboratory, 
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ABSTRACT 

Steady state flow and tracer transport between an injection well and a pumping well 

in an aquifer with a circular inclusion are investigated using analytical and numerical 

techniques. A rigorous solution for the flow and velocity field was obtained. Calculations 

of transport are based on a particle-tracking technique on the advective field. Tracer 

breakthrough curves are calculated to study the influence of the location and hydraulic 

parameters of the circular inclusion. Examples are given to show the resulting impact on of 

the effective aquifer macroscopic parameters determined from an analysis of doublet flow 

and tracer tests without considering the presence of the inclusion. 

INTRODUCTION 

In the design of an optimal groundwater remediation strategy for contaminated 

hetero~eneous aquifers, one needs to estimate in situ flow and transport parameters. One 

method for field-scale determination of transport parameters is a tracer injection test. There 

are two common test schemes: the radial convergent test with flow dominated by a single 

well and the doublet test with a divergent-convergent flow pattern based on two wells. The 

doublet test is considered to be more appropriate for a heterogeneous aquifer (Mironenko 

and Rumynin, 1986 and Gelhar, 1993). 

t Current address: Departn).ent of Hydrogeology, Moscow State University, 
Vorobyovy (Lenin's) Hills, 119899, Moscow, Russia 
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Radial flow and transport in heterogeneous media have been investigated by many 

authors, including Shvidler (1964), Desbarats (1992), Moreno and Tsang (1991), 

Vandenberg (1977), and Mironenko and Rumynin (1986). Flow in a multiple-well system 

in heterogeneous media has been studied by Gomez-Hernandez and Gorelick (1989), 

Desbarats (1993), and others. Transport problems for such systems using advective and 

advective-dispersion approaches were studied by Grove (1971) and Mironenko and 

Rumynin (1986), who obtained analytical solutions for the advective-dispersive problem 

for a scale of heterogeneity much less than the doublet dimension, defmed as the distance 

between injection and pumping wells. Numerical solution methods for this problem have 

been published by Huyakorn et al. (1986). 

The advantages of the doublet-test scheme for the entire thickness of the aquifer 

have been discussed by Mironenko and Rumynin (1986). For equal injection and 

production flow rates, the flow lines of a doublet form a closed net between the two wells, 

thus effectively averaging the aquifer properties over the doublet's area of influence. It 

seems that this advantage exists only for the case where the doublet dimension is much 

larger than the scale of heterogeneity. In the work of Tsang et al. (1988), tracer transport 

in a statistically heterogeneous aquifer was studied, and it was shown that flow becomes 

channelized due to the influence of heterogeneity. Furthermore, for many fractured and 

porous aquifers the scale of heterogeneity of hy'!rnulic conductivity or transmissivity can be 

tens of meters_. On th~ other hand, from a practical point of view, the doublet dimension is 

usually less than two hundred meters. Hence, the case where the doublet dimension is the 

same order as the scale of heterogeneity is common. In the work of Pozdniakov and Tsang 
. . 

(1994), numerical transport modeling of a doublet system for a heterogeneous aquifer with 

the scale of heterogeneity similar to the doublet dimension was conducted. It showed that 

large differences in breakthrough curves were obtained for tests at different locations in the 

same heterogeneous aquifer. Kurowski et al. (1994) also studied the effects of aquifer 

heterogeneity on the doublet test for the special case of a confined circular aquifer. 
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The purpose of the present study is to investigate the .influence of aquifer · 

heterogeneity on the results of the tracer test in the simplest case of heterogeneity-a 

circular inclusion in an otherwise homogeneous aquifer. The choice of this model is 

explained by the possibility of obtaining an exact analytical solution for the flow problem. 

This model will be useful for estimating the hydraulic properties of an artificial circular 

underground barrier created by injection into a well, for testing numerical programs that 

solve the advective-dispersive transport problem, and for studying uncertainty ranges from 

analyses of doublet flow and transport tests. 

FLOW TOWARD A WELL NEAR A CIRCULAR INCLUSION 

In this section we outline a method of obtaining the general solution for the two­

dimensional hydraulic head field of a source in an aquifer with a circular inclusion. The 

solution to this problem seems straightforward but we were unable to find it in the available 

literature. The well-known Landau and Lifshitz (1962) solutions of such problems deal 

w.ith-uniform. far-field flow with a circular inclusion. Strack (1989) presented the solutions 

of limiting cases: the flow toward the well near a circular lake and a circular impermeable 

inclusion in a unifo~ far-field system. Butler and Liu (1993) obtained the analytical 

solution for ~ient flow toward a pumping well in an aquifer with a circular inclusion in 

the Laplace-tranform. domain with a numerical inversion procedure. 

O?nsider the configuration shown in Fig. 1. Both the Cartesian { x ,y} and 

cylindrical {r,e} coordinate systems will be used jointly. Centered at-the origin of the 

systems is a cylinder of radius r = R. Placed outside the cylinder, the source has the 

coordinates x = Ro andy = 0, where Ro ;::: R. The volume within this cylinder is labeled v 

= 1, while the volume outside is labeled v = 2. The aquifer properties inside and outside· 

~e cylinder in general will be different and are described by their values of transmissivity 

T._ = const. (v = 1,2). (1) 
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Imposing ail initial hydraulic head at a point in the medium v = 2 in the absence of an 

inclusion in v = 1 results in a field given by the Dupuit-Thiem equation 

U0 (X,y) = U 0 + 2~ In~, p = ~R~+r2-2R0rcos8, 
2 

(2) 

where U 0 (x,y) is the hydraulic head at a point (x,y) with distance p from the source, uo is 

the constant hydraulic head on the boundary at a distance Q from source, and Q is the 

pumping rate at the source. The interaction of this field with the cylinder field gives rise to 

an additional field both inside and outside the cylinder, denoted by 

Uv = Uv(x,y) (v = 1,2). (3) 

The additional fields (3) as well as the initial field (2) must all satisfy the equation of 

steady-state ground water flow, i.e., Laplace equation 

11· Uv = 0 (v = 1,2). (4) 

Furthermore, taken together, the fields must satisfy the boundary conditions on the surface 

of. the cylinder, i.e., the hydraUlic head and the normal velocity should be continuous. 

Thus we require that, at r=R, 

d T. aui _ ·(auo au2 ) U0 + U2 = U1 an 1--- T.2 · --+--
dr ar ar · (5) 

We also req~ that the additional fields remain finite within the circle and its radial 

derivative tend to zero at large distances from the circle. This is a well-posed problem in 

that, given the initial field, the boundary conditions are sufficient to solve for the additional 

fields and thus arrive at a unique solution to the problem. The way to find this unique 

solution in terms of U1 and U2 is shown iii. Appendix A. Alternatively the solution can be 

obtained by using an extension of the circular theorem given by Golubeva (1966). The 

results for the case of the source point inside the inclusion can be similarly derived and they 

are also given in Appendix A. 
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The total field outside the inclusion Uout equals to U0 + U2 , and the total field inside 

the inclusion Uins equals to U1• In a Cartesian coordinate system of the source Y = y, X = 

x- Ro, the equation for fields inside the inclusion has the form: 

Q X-1 ~X2+Y2 
U. = U - ----ln---

ms 0 2'Jtl; x+ 1 Ro 

Outside of the inclusion it has the form: 

T. 
x=-~ 

T2 
(6) 

(6a) 

Using these equations, the groundwater drawdown S = r.f- U can be calculated for any 

ratios of transmissivities and distances from the source to the inclusion. From a practical 

point of view, it is important to estimate the influence of an inclusion on the productivity of 

a pumping well. The equation is 

s = JL(ln .Q + ~J or s = _g__ln n; r.: = rwexp(-~),. 
21ff2 r w 21(['2 re 

where S is the drawdown of groundwater head, r w is the radius of the borehole, r e is the 

effective radius of the well, and~ is the dimensionless additional hydraulic resistance or 

skin of the well. 

(7) 

It is easy to show that in the most important case, when the well is close to the 
.. 

inclusion, i.e., Y = 0, X= rw, and X + R .= Ro, the additional hydraulic resistance has the 

form 

x-1 rw 
~=-ln-. 

x+l Ro 
(8) 

For extreme cases, equation (8) means that the effective radius of the well equals to Ro for 

highly conductive inclusion <x=oo), and equals to r!Ro for an impermeable inclusion (X= 

o). 
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FLOW FIELD FOR A DOUBLET WELL SYSTEM 

Let us consider the doublet well system presented m Fig. 2. Using the 

superposition of solutions for a source near an inclusion, the initial groundwater drawdown 

Sat a point (x, y) in such a system can be represented in the form 

( 
d J (-+xf+l 

s = _Q_ In ~ + s;+s~ , 
4n'Tz (--xf+yz 

2 
(9) 

where Q is the withdrawal/injection rate at the well, T2 is the transmissivity of the aquifer, 

dis the distance between the two wells, s: and s; are additional dimensionless drawdown 

due to the interactions of the well field and the circular inclusion; and x ,y are the Cartesian 

coordinates with the. origin at half the distance between the two wells. Here S is positiye 

when the groundwater head is less than the initial head. 

The form of equation for additional drawdown depends on whether the location of 

the point is inside or outside the inclusion. For a point inside the inclusion, eq. (9) has the 
' 

form 

(10) 

where Rw is the distance between the pumping well and the center of the inclusion, and Ri 

is the distance between the injection well and the center of inclusion. 

For a point outside the inclusion, the equatio11: for the additional drawdown can be 

written as 

(11) 

where 

(lla) 
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R 
and f3 =­

w R ' 
w 

where Xc and Yc are the coordinates of the center of the inclusion and <p1 is the angle of 

rotation from the system of coordinates with the origin in the inclusion and the well placed 

on the positive part of the x' axis (see Fig. 2). 

Coordinates x",y" are calculated using eq. (11a) with angle <l>w· When the doublet 

dimension is much less than the distance to the inclusion, the model of the perfect dipole 

can be used for field calculations (see Appendix C). 

NUMERICAL CALCULATION OF BREAKTHROUGH CURVES 

It is difficult to use eqs. (9) through (11) to ob~ closed analytical equations for 

flow streamlines for arbitrary values of the coordinates and the transmissivity. of the 

inclusion. Therefore, to calculate streamlines and transport in the system, a particle 

tracking method is used. A large number of particles is placed regularly on a circle with a 

sQlall radius Rint centered at the injection well. For each particle, the equation of motion 

can be written in the form 

(12) 

where Xp,Yp are the coordinates of the particle, n is the aquifer porosity, and V .x. Vy are the 

components of the field velocity. They are calculated analytically for every point using 

equations for velocity in the form 

TdS 
V::::---

% max' 
· r as 

V=---
' m (Jy' 

(13) 

where m is the thickness of aquifer. Equations for velocity components inside the circular 

intrusion according to eqs. (9) through (11) and (13) have the forms: 
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(14) 

Outside the inclusion they have the forms: 

v = V 0 +v' cosm.-v' sinm.-v"cosm +v"sinm 
X X X '1'1 y '1'1 X 'f'w y 'f'w 

(15) 

where 

v' = Q x-1 y' 
y 21tl'z x+1x'2+y'2, 

(15a) 

and the coordinates x',y' are calculated according to eq. (11a). Equations for v~, v.Y have 

the same structure as eq. (15a), where coordinates x',y' are changed tox" andy", and ~i 

to ~w· 

The system of equations (12) with the initial condition of determined coordinates 

for particles was integrated in dimensionless form using. the fourth-order explicit Runge­

Kutta algorithm. For greater accuracy the time step At of integration is chosen so that the 

maximum displacement of the particle is no more than the small Courant number Co, i.e., 

(16) 

The particle is collected when it reaches the small area with radius Rend surrounding the 

pumping well, and the particle is recorded as having arrived at the well. At the time of the 

particle arrival at the pumping well, the withdrawal tracer concentration is calculated as 

kiN, where k is the number of particles arrived at the pumping well up to that time and N is 

the total number of injected particles. To test this algorithm, numerical results are 

compared with the analytical solutions for the breakthrough curve in the homogeneous 

aquifer (See-Appendix B). It was found that by using the Courant" number equal to 0.091 
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of the doublet dimension, d; the total number of particles equal to 1000, and Rint =Rend 

equal to 0.001 of the doublet dimension, the difference between the numerical and 

analytical solutions is less than 1%. Coordinates of particles during the tracking 

procedures are used to draw the flow streamlines. Figure 2 shows an example of 

streamlines for the case of a circular inclusion with permeability higher than that of the 

surroundings. 

RESULTS 

Let us consider the results of a pumping test in this system. The average value of 

transmissivity T av for this test is calculated by substituting the drawdown of groundwater 

head, S, at a point ri and rw from the injection and withdrawal wells respectively, into the 

solution for a doublet test in a homogeneous aquifer (Desbarats, 1993) 
2 

Qlnrw 
r.2 

T = I 
av 41tS' (17) 

On the other hand, according to eq. (9), the theoretical expression for transmissivity has· the 

form 
2 

1 rw 
n­

r.2 
T ·- T. I 
av- 2 2 • 

rw S' S' ln-y+ i+ w 

'i 

(18) 

It is easy to use eq. (18) to obtain values for the various locations of the inclusion and the 

point of observation .. For example, if the center of inclusion is halfway between the wells, 

and the point of. observation is inside the inclusion, the theoretical value of averaged 

transmissivity has the form 

z+l 
Tav =2Tz--· 

z+3· 
(19) 

It means that as the ratio of transmissivities inside and outside changes from zero to infm­

ity, the average value varies from 2/3 to 2 times the aquifer transmissivity. 
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One can find from the structure of the equations (10) and (11) for the drawdown 

that the influence of the inclusion is determined by the distances from the wells to the center 

of the inclusion and the ratios of these distances to the radius of inclusion. So the most 

significant effect of the inclusion becomes visible when it is placed between the wells, i.e., 

the center of the inclusion lies at the origin of the coordinate system and the radius of the 

inclusion assumed to be equal to half the distance between the wells (Figure 3 ). Thus the 

influence of the inclusion was studied for this particular geometry and several sets of 

calculations were performed. The results are discussed below. 

The !JISt set assumes the same porosity inside as outside of the inclusion, and the 

calculations explore different ratios of transmissivities X from zero for case of the 

impermeable inclusion to infinity for the case of the highly permeable inclusion. Tracer 

arrival-times to the pumping well are used to estimate aquifer porosity (Appendix B). For 

cases when the transmissivity of the inclusion is equal to or more than the transmissivity of 

the aquifer, the relationship between the arrival time and the aquifer parameters can be 

foimd by integrating along the streamline y(x) = 0: 

O.Sd dx (X+ 1) mizm 
to=~ J - = n,. 

...().Sdvz 6Qz 
(20) 

or, toQ 1 x+1 
1: = ---'--- = - --

. ~mi2m 3 2z 
(20a) 

where 't is the dimensionless characteristic time for tbe doublet test in a uniform aquifer (see 

Appendix B). Here ~ is the porosity of the inclusion, noting that the fastest flow path 

between the injection and production wells resides entirely in the inclusion. Equations (20) 

and (20a) show that increasing the tr~smissivity of the inclusion from a value equal to that 

of the aquifer to a very large value decreases the arrival time only by a factor of 2. So 

using analytical solution of arrival time for uniform aquifer to calculate porosity will yield 

an estimated value less than the real one and the maximum error should be less than 100%. 
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For cases where the transmissivity of the inclusion is less than the transmissivity of the 

aquifer, the earliest tracer amval to the pumping well do not follow the streamline y(x) = 0, 

and eq. (20) would give the wrong arrival time. In Fig. 4 are shown results of the 

numerical calculations of the earliest tracer arrival time for a wide range of X values. 

According to Fig. 4, the relationship between the arrival time and the ratio of 

transmissivities has non-monotonous shape with the maximum earliest arrival time equal to 

Qfljl 't at x equal approximately to 0.3. It means that for the case of a low permeable 

inclusion, the maximum error for porosity estimated by means of tracer arrival time is also 

less than 100%. When the radius of the inclusion decreases or the distances between the 

inclusion and the wells increase, this error dramatically decreases. The shapes of the plume 

body for different ratios of transmissivities are shown in Fig. 3 for the case where the 

inclusion is between the two wells with its diameter equal to the distance between the wells. 

One can see from Fig. 3 that for a relatively small permeability of the inclusion (X= 0.5), 

the shape of plume body has a complex form with a pair of "toes" at the boundary of the 

inclusion. This complex plume body depends on the complexity of the field of velocity and 

gives breakthrough curves that do not at all look like the curves for the uniform aquifer 

(Fig. 5). It is noted that for relatively large values of time, the differences between the 

curves is not decreasing, so that their shapes are not of sufficient contrast for the prediction 

of the inclusion's parameters. This means that extending the test to large time periods 

would not give additional information about the aquifer parameters. 

The second set of calculations of the breakthrough curves demonstrate the influence 

of changing the porosity when a highly permeable inclusion is placed between the wells. 

The results of these calculations are shown in Fig. 6. The numerically calculated tracer 

arrival time agrees well with the value predicted by eq. (20a). The tracer arrival time for the 

same porosity inside and outside the inclusion (the curve marked by number 1) is about 

0.167, corresponding to the result of eq. (20a) with X= oo. It is two times less than the 

tracer arrival time for the uniform aquifer. The tracer arrival time proportionally increases 
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with porosity as predicted by eq. (20). For the ratio of porosity equals to 5, the tracer 

arrival time is about 0.84, for ratio equals 10 this time is 1.67 and so on. Thus the porosity 

estimated by eq. (B2) for a homogeneous aquifer using the tracer arrival time can be quite 

wrong. For example in the case the same porosity inside and outside the inclusion, the 

tracer arrival time is two times smaller, which means that the estimated porosity will be two 

times less than the real porosity of aquifer. The theoretical value of effective porosity n 

estimated by tracer arrival time can be found by combining eq. (20a) and (B2): 

!!:..._ = !2 x~+1 
nz nz 2X! 

(21) 

where n2 is the porosity of the medium (outside of the inclusion). One can see from this 
.. 

equation that the estimated value of porosity depends on the ratio of transmissivities as well 

as the ratio of porosity, but the latter ratio influences the calculated result much more. Thus 

the effectively porosity n estimated by using. the arrival time (eq. (21)) for highly 

permeable inclusion will be approxirrui.tely half of the value in the inclusion and is not 

dependent on the porosity value in the other part of the aquifer. 

The last set of calculations deals with the influence of the inclusion's location 

relative to the doublet wells. An ·impermeable inclusion, whose diameter is the same as the 

distance between the wells, is located at different distances from the origin of the coordi­

nates for the purpose of studying the influence of the location on the shape Of the 

breakthrough curves. The results of these calculations for the inclusion centered at the 

points with a constant Xc coordinate equal to 0 and three coordinates of Yc equal to 0, 0.5, 

and 1 of the distance between the wells are shown in Fig. 7. It is clear from this figure that 

as the inclusion is removed from the center of the doublet system at a distance 

approximately equal to the doublet dimension, it does not significantly influence the results 

of the ·tracer tests. Also, for smaller distances the influence is complex; for example, the 

arrival time could be less as well as more than the theoretical value calculated for a uniform 

aquifer. 
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CONCLUSIONS 

The simple model of aquifer heterogeneity in the form of a circular inclusion with 

transmissivity different from that of the aquifer was studied in this paper. The choice of 

this model allows us to estimate the influence of the heterogeneity on flow and transport as 

a function of aquifer parameters inside and outside the zone of heterogeneity and also as a 

function of the ratio of its dimension to the dimension of the doublet system. 

Precise numerical calculations of breakthrough curves using explicit analytical 

equations for the velocity fields showed complex results. One can find these breakthrough 

curves in Figures. 5, 6, and 7. They are calculated for the case of continuous injection and 

have a non-monotonous slope with the points of discontinuous derivatives. It means that 

in terms of instaneous injection, the breakthrough curves would have multiple peaks as was 

found in the work of Tsang and Moreno (1991) for the stochastic model of aquifer hetero­

geneity with a large variation of permeability. This implies that the multiple peak pattern of 

field tracer breakthrough curves may be found for less strongly heterogeneous systems by 

placing the wells close to a relatively large zone of heterogeneity. 

The early tracer arrival time (or the extracted volume of water with tracer 

concentration 0-0.3 of the injected value) is a good measure for estimating the aquifer's 

porosity for aquifers which have non-constant permeability and relatively constant 

porosity. The theoretical error of the porosity value gotten by processing the test data using 

an analytical solution, according to our results, should not exceed 100%. It corresponds 

well with the results of stochastic modeling of tracer tests when the scale of transmissivity 

heterogeneity is equal to the doublet dimension (Pozdniakov and Tsang, 1994). This 

conclusion may be valid for some cases of porous media that do not have a strong 

correlation between porosity and permeability. As a rule, fractured media have positive 

correlation between porosity and permeability, and tracer arrival time for tests in such 

media can vary widely. 
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In general, changing the porosity has more iAfl.uence on breakthrough curves than 

permeability. One can find from the structure of eq. (20) for the tracer arrival time that the 

porosity has a direct influence on time, whereas the effect of permeability change is m 

terms of a weaker function. 

(X-1) I (X+l) 

The size of the inclusion has a consequential effect on the breakthrough curves only 

if it is comparable to the doublet dimension. The tracer arrival time varies with the square 

of doublet dimension (Appendix B). One can find from Fig. 7 that, for an impermeable 

inclusion~ tracer delay factor due to flow past an inclusion is approximately equals n/2. It 

means that the arrival time delay, or the effect of the inclusion, is proportional to 1CR2fcfl 

and quickly decreases as the size of the inclusion becomes much less than the doublet 

dimension. 
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APPENDIX A 

Equations for flow toward a well near the circular inclusion in a polar 
system of coordinates. 

It is to trivial to show that the continuous solution of eq. (4) within a circular 

inclusion has a general form p 

-
U1 = LakpkcoskO, p = r/R0 < l. (A.l) 

k=O 

Whereas field U2 outside the circle for r > R must be taken in the form 

-
u2 = bolnr + 'Lbkp-kcose. (A.la) 

k=l 

where ak and bk are unknown coefficients. 

To determine these coefficients, we must satisfy the boundary conditions. This can, 

be done by putting the initial field eq. (2) in the form 

Uo = uo + _Q_{ln Ro - f pkcoskOJ . 
W.l n k=l k 

(A.2) 

where we have used the representation of a log in series (Gradstein, Ryzhik, 1965) 

1 2 ~pkcosk8 
1n-v l+p -2pcos8 =-.LJ , 

k=l k 
(A.3) 

Substituting eqs. (A.2), (A,l), and (A.la) in the boundary conditions and using the 

orthogonal properties of cosk8 we fmd fork = 0 

b = 0 a = U0 + _g_ln Ro . 
o o 211X n 

2 

(A.4) 

For each values of k > 0, we get a system of two linear equations which have the solution 
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(A.5) 

Q 2 1 
ak =----.--. 

21ff2 l+x k 
(A.5a) 

Using the log representaton of a series, i.e., eq. (A.3), finally we get the equations for the 

, field in cylindric coordinates: 

o Q ( Ro 2 , 2 ) · Q 1-x P U1 = U + -- In-+ --.ln-v1+p -2pcos8 = U + ----ln-
21ff2 .Q 1+x o 21ff2 1+x Ro 

(A.6) 

Q 1-x ..J 2 U2 =-----In l+s -2scos8. 
21ff2 t+x 

(A.6a) 

When a hydraulic head 

(A.7) 

is applied inside of the inclusion, the way of obtaining the solution is quite analogous. The 

hydraulic head (A.7) induces additional fields, U 1 and U 2 , inside and outside the 

inclusion respectively, given by 

Q 1-x· P ul = ln-
2~ 1+x Ro 

(A.8) 

Q I-x ..J U = U -- In 1+s2 -2scos8 . 
2 0 2~ I+x 

(A.9) 
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APPENDIX B 

Breakthrough curve for doublet well test with a continuous tracer injection 

In this section we outline a method for obtaining the breakthrough tracer curve in 

the pumping well during a doublet-well tracer test. According to the solution obtained by 

Mironenko and Rwnynin (1986), the dimensionless concentration C in the pumping well is 

given by 

C(-r) = n-1inf F('f//), '!' = t~ , F('f//) = sin'f//-~COS'f// = r , (B.1) 
1TXi nm sin "' 

where inf F is the function inverse to F. 

Here, C = 0 for time 't < 'tO = 1/3, C > 0 for 't > 'tO (Fig. 8), and C = 0.5 for time 't 

= 1, which enables one to use the onset time of tracer anival (to) or time for C = 0.5(to.s) 

as interpretation parameters 

(B.2) 

An approximation of the solution eq. (B.1) for small concentration values can be obtained 

using a series representation of sin and cos for a small number of angles. An approxima­

tion solution for dimensionless concentration (concentration less than 0.25-0.3) has the 

form 

C=.!_~. 
n~~ 

(B.3) 

For relatively large concentrations (C > 0.5 to 0.6), the well approximation of solution 

eq. (B.1) is the solution for a perfect dipole obtained by Kurowski et al. (1994) in the 

form 

2 k c = 1 3 c , k=2.1 . 
3n -v-r 

(B.4) 

Breakthrough curves calculated according to eqs~ (B.l), (B.3), and (B.4) are shown in 

Fig. 8. 

18 



APPENDIX C 

Field of an equal dipole near a circular inclusion 

In this section, we outline a method for obtaining the solution for an equaJ. dipole 

near a circular inclusion based on the general solution for a source near the inclusion 

(Appendix A). When the distance l between sink and source with all equal flow rate Q is 

small, and the solution for the doublet can be obtained from the solution of a perfect dipole 

(Kurowski et al., 1994). The equivalent perfect dipole has a moment equal to Ql, and its 

field can be calculated as. 

dU ud =Z-, 
dl 

where Uis the field of the single sink/source and UdiS the field of the perfect dipole. 

(C.1) 

Let us assume that for the configuration shown in Fig. 1 the perfect dipole (l-o) is 

placed on axis X distance Ro from the center of the inclusion, and it is angle a. to the X 

axis. The field of the dipole can then be calculated through eqs. (A11a) and (A11b) using 

the standard rule 

u = z(au aRo +au de) 
d a~ dl ae dZ • 

(C.2) 

where 

d8 sinadR0 - =- =cosa. 
dl ~ dl 

(C.3) 

FIGURE CAPTIONS 

Fig. 1. Geometry of the problem of a source placed near the inclusion. 

Fig. 2. Geometry of the problem and flow lines for the case of a circular inclusion with 

permeability higher than that of the surroundings. 

Fig. 3. The perticular case where the circular inclusion is assumed to fill the area 

between the injection and pumping wells. The shapes of the injected liquid 
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plume body at the time of the tracer arrival at the pumping well are shown for 

different X values, 0.5, 1, and 100. 

Fig. 4. Relationship between the earliest tracer arrival time and the ratio of 

transmissivities. 

Fig. 5. Breakthrough curves for various values of X from 0 to 100. 

Fig. 6. Breakthrough curves for the case of a highly permeable inclusion. The curves 

are labelled by numbers, giving the ratio of the porosity of the inclusion and the 

porosity of the surrounding rock. 

Fig. 7. Breakthrough curves for different distances between the inclusion and the 

doublet center. The curves are labelled by numbers, giving the dimensionless 

distances between the inclusion and the doublet center. 

Fig. 8. Theoretical breakthi'ough curve for a doublet well system. 

20 



y 

r 

X 

V=1 
V=2 

XBD 9507-03369.1LR 

Figure 1. 

21 



Flow lines for case of highly permeable inclusion 
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