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ABSTRACT

Diverse methods which are available for particle beam cooling are reviewed.
They consist of some highly developed techniques such as radiation damping,
electron cooling, stochastic cooling and the more recently developed, laser
cooling. Methods which have been theoretically developed, but not yet achieved
experimentally, are also reviewed. They consist of ionization cooling, laser
cooling in three dimensions and stimulated radiation cooling.

Introduction

In particle beam physics, the concept of "cooling" has a different meaning
than in the rest of physics. In, say, thermodynamics, "cooling" means the
reduction of the material (gas, liquid, solid, plasma) temperature. In particle
beam physics that is not adequate for "cooling". In particular, as one focuses and
de-focuses beams, the transverse temperature can easily be changed. The
"cooling" of particle beams is based upon the concept of phase space and a
theorem first introduced by Liouville [1] (see Fig. 1).

Liouville's theorem states that in a conservative Hamiltonian system, such as
a single particle in an external magnetic and electric field, the phase density of
many non-interacting systems (having slightly different initial conditions) is
preserved as one follows the motion of the system. Thus, this theorem is
applicable to a beam of particles when the interaction between particles is
negligible and can be ignored, which is often true - but not always true - for
high energy beams.

Even within the restrictions of Liouville's theorem it is possible to arrange to
interchange phase space (between, say, longitudinal and transverse degrees of
freedom). Of course, other Hamiltonian requirements, summarized in the
requirement that the transformation be symplectic, greatly restricts this process.
Sometimes, although it is not possible, or convenient, to exchange phase space, it
is possible to introduce correlations between the degrees of freedom.

* Work supported by the Director, Office of Energy Research, Office of High Energy and Nuclear Physics,
Division of High Energy Physics of the U. S. Department of Energy, under Contract No. DE-AC03
76SF00098.
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Figure 1 : Joseph Liouville, (1809 - 1882)

A proof of Liouville's theorem can be found in many text books [2]. A simple
way of looking at this theorem is to think of it as equivalent to the condition of
incompressible flow in the phase space of a given system. Let the system be
described by the N coordinates qa and the N conjugate nomenta pa, a=l,2,. ..,N.
The phase space is just the 2N-dimensional space with coordinates qa and pa,
and the development in time of the state of the system is represented by the
trajectory of a single point in phase space. Just as with fluid flow, there is a well
defined velocity field at each instant of time, which assigns to each point in phase
space a definite velocity, with components qa and pa given as functions of the
q's and p's by Hamilton's equations. For fluid flow in any number of dimensions
the condition that volumes are preserved by the flow is equivalent to the
vanishing of the divergence of the velocity field:

v· v(x) = 0 .

For phase space the components of the velocity field are
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(3)

The divergence condition (1) then becomes

which is automatically satisfied as a consequence of Hamilton's equations, and
thus demonstrates the validity of Liouville's theorem. It is important to note that
the Hamiltonian may depend explicitly on the time t.

Often a dynamical system is represented by an ensemble of possible states,
with a distribution function f giving the number~V of particles systems in a
small volume L\V of phase space:

(5)

If the qi and pi are Hamiltonian variables, then L\V is conserved, and since the
number of particles is clearly invariant, we deduce that moving with the particles
(or set of systems) the density function f is constant:

df
-=0
dt

(6)

Note that we can apply Liouville's theorem to an ensemble of non-interacting
particles, but not to an ensemble of interacting particles.

However if one has a conservative fluid then Liouville's theorem exactly
applies, as was shown in Ref. [3]. To a collection of particles interacting through
their self-generated electric and magnetic fields Liouville's theorem again
applies. (It doesn't work when "hard scattering" - - non-fluid-like behavior is
included.)

It is, then, in the context of Liouville's theorem that "cooling" is defined. It
means an actual reduction of phase space volume; that is, an increase in phase
space density. This can only be achieved by violating the assumptions behind
Liouville's theorem. Generally, this is not easy, but, nevertheless, a number of
effective cooling methods have been devised. We review them in this paper. For
each of the methods, we leave to the reader the task of determining how
Liouville's theorem for a continuous conservative medium is circumvented.
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Radiation Cooling

The radiation of accelerating electrons has been known since the last century,
but it was only in 1956 that Kolomenski and Lebedev [4] realized that the
radiation reaction has a damping effect upon the emitting electron.

The radiation of an electron moving in a circular accelerator is well-known.
The power emitted is:

2
2(.l4 4

e I-' Y c
p - - ----:::----

- 3 R2 (7)

where e is the electron charge, Pis the electron speed divided by c, c the speed of

light, y the relativistic factor, and R the radius of the circular orbit.

Hence the radiated energy per turn is

2
4 ne 3 4

oE=--Py
3 R

or, in practical units (and taking P=1):

(8)

(oE)(MeV) = 8.85 x (9)

The frequenc¥ spectrum of the radiation is complicated; for low frequencies it
varies as 0)2/ . The radiation drops off exponentially for 0) larger than a critical
frequency, roc' where

(10)

Note that this frequency varies as y3 times the revolution frequency. Thus the
radiation can extend up to very high frequencies.

The emission of radiation has an effect on the radiation particle [4-6]. The
radiation reaction can cause either damping or undamping of the electrons'
oscillations (transversely and in energy) about the equilibrium orbit. If we
characterize this exponential damping rate by rate constants ax' a y , aE then
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(11)

where the subscript i stands for x, y or E, and m is the electron mass.
The damping partition numbers satisfy:

(12)

One can arrange by proper lattice design, as one must in a storage ring, to have
damping in all three directions.

Thus, on the basis of the above analysis, an electron beam in a storage ring
will just damp and damp so that its transverse size becomes smaller and smaller.
This is approximately true, and beams become very small indeed, but they do
not become arbitrarily small. Why not? Because quantum effects need to be
taken into account; i.e. that electrons radiate discrete photons and that the hard
photons, which are radiated statistically, kick the electron. In fact, the size of
electron beams at equilibrium is determined by these quantum mechanical
effects. The energy spread erE of the beam, which also damps to zero
classically, is (in a uniform field),

(13)

and one can see that the finiteness of erE is due to a quantum mechanical effect;
i.e. to the non-zero nature of Planck's constant n.

For transverse motion we have for the normalized emittances

( 55 )( n )[(1- 2n)2] 3
cnx ~ 32-fi me n(l-n) Y ,

(14)

(15)

for field gradient O<n<3/4, where the formulas have been given for a constant
gradient, weak focusing machine.

Recently some insight into the process of radiation damping was provided
through an analysis, by Huang, Chen and Ruth, who considered radiation
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damping in a uniform focusing channel [7]. Their analysis is quantum
mechanical, but need not be. They show that an electron introduced into such a
channel will experience damping of its transverse betatron oscillations at a rate

ex = _% fek ,
me

(16)

where f e is the classical electron radius and k is the focusing strength of the
channel (V(x)=kx 2/2). The rate of damping is very slow (no y3 in Eq. 16!) but,
there is no quantum excitation from photon recoil as there is for motion in a
circular orbit. This is because there is no continual, forced, emission of photons.
Consequently, the final emittance reached is only determined by uncertainty in
the lowest state of an oscillator and can be derived, easily, from the fact that
E ~ 1i~. Thus,

Cn ~ 1i / 2me = Ac / 2 , (17)

where Ae is the Compton wavelength and cn is the normalized emittance.

The contrast between Eq. (17), and Eqs. (14 & 15) are most dramatic
('Y dependence !) and very significant in practice (since damping rings usually
have 'Y~2xl03).

Electron Cooling

Electron cooling was first suggested by Budker [8] (see Fig. 2). A good
discussion may be found in Ref. 9.

(18)

Here ne is the electron density, assumed to be the same as the ion density ni' re
and r i are the classical electron and ion radii. F1 is a constant that for a smooth
focusing system has the value FI = 3/ 4..J21t = 0.3 and 'Y is the relativistic
energy factor (identical for both beams); the electron and ion temperatures are
measured in the beam frame. Le / C is the fraction of the storage ring occupied
by the cooling section, and InA is the Coulomb logarithm. When equilibrium is
reached, the two beam temperatures are the same (i.e., T bi = Tbe)' Assuming
that both beams have identical transverse cross sections, one obtains an
emittance ratio of ci/ce=(rne/mj)1/2 that is, the ion-beam emittance is
considerably smaller than that of the electron beam.
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Figure 2: Gersh I. Budker, (1918 - 1977)

Stochastic Cooling

The idea of stochastic cooling is due to Simon van der Meer [9] (see Fig. 3).
The article by Bisognano presents a comprehensive treatment of the subject [10].
At the most elementary level, a pick-up takes a signal from a section of beam,
amplifies it and sends it across the diameter of an accelerator so as to put an
appropriate signal upon a beam kicker just as the same section of beam arrives
on its circular route.

Suppose there are N particles in the ring and that f = 1/ T is the revolution
frequency, and that W is the bandwidth of the electronics. Then the pick-up
"sees" a number of particles

Nn=-- .
2WT

(19)

Under influence of pick-up and kicker the betatron amplitude of oscillation
becomes

n

x· ~x· -g"x.
1 1 .LoJI

j=l

where g is the effective gain of the system.

7
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Initially there are no correlations so

Optimum cooling is obtained at g=l/n and there

So the rate of damping of rms betatron amplitudes is:

1 1 1 1 1 W- ---------
't 2 2 n T 2N

x not Xl -.-J + '\.-
damped rms happens once

a tum

Reprinted with pennission of CERN, 1995.

Figure 3 : Simon van der Meer, (Nobel Prize, 1984)
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From this we see it is good to Plake W as big as possible and that it works best at
small N.

If there is noise then

Xi ---; xi -{j~lXj +tJ
amplifer noise expressed
as apparent x - amplitude
at the pick-up (26)

Now
1 w

(27)

Thus we see that amplifier noise only slows things down, doesn't stop cooling at
some effective temperature (of course some -less important sources of noise
do introduce a temperature limit).

There have been efforts to raise the typical frequency employed in stochastic
cooling (~5 GHz) to much higher frequencies (~ 90 GHz). This work, so far, has
only been theoretical. Recently, there have been proposals by Mikhailichenko
and Zolotoev and Zolotorev and Zholents to extend operation into the optical
range [11,12]. For this purpose it is proposed to use wigglers for the pick-ups and
kickers while wide-band lasers are employed as amplifiers. Experimental work
on these ideas is being initiated, as well as theoretical analysis taking into
account 3-D effects [13].

Laser Cooling

The cooling of not-fully-ionized ions by means of Doppler laser cooling was
first introduced in 1975 by a number of atomic physicists [14]. It was applied to
beams of ions in a storage ring by groups in Heideberg, Germany and Aarhus,
Denmark [15]. A rather comprehensive treatment can be found in the thesis of J.
Hangst [16].

Laser cooling is the result of velocity-selective transfer of photon momentum
from a laser beam to a moving ion. In the most basic laser cooling scheme,
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known as Doppler cooling, particles have a closed transition (i.e. the population
is confined to two levels) between internal energy levels. Those particles which
are in resonance with a laser beam absorb photons. Each absorbed photon
transfers momentum of magnitude hv / c to the particle, which recoils in the
direction of the laser beam propagation. When a photon is spontaneously
emitted by the excited particle, the particle again recoils, but the average
momentum transfer to a particle after many spontaneous emissions is negligible,
because the angular distribution of the emission is symmetric. There is thus a net
radiation pressure force, directed along the laser beam, on resonant particles.
The process is shown in Fig. 4. Due to the small magnitude of the photon
momentum (optical photons have at most a few eVIe), it is necessary for an ion
to absorb many photons to achieve macroscopically significant acceleration. It is
for this reason that the optical transition must be closed. The force is dependent
on the velocity of the particle, by virtue of the Doppler shift. By tuning the
frequencies of two counter-propagating lasers to accelerate slow particles and
decelerates fast ones, it is possible to reduce the velocity spread (in one
dimension) of a collection of particles; hence the name "cooling".

Figure 4 : The principle of laser cooling. The net effect of photon absortion
and emissions is that the ion has a change in velocity.

The minimum temperature Tmin achievable by Doppler cooling is given as

nr
kBTmin =

2

10
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where kB is the Boltzmann constant, and r is the spontaneous decay rate of the

upper level back to the lower level; r /2 is the radiative linewidth of the
transition. The maximum laser cooling force

FLeX =(~p) = likof
~t max 2

(29)

where kO is the wave number.
In a storage ring, laser cooling is sometimes achieved using two laser beams,

overlapping the ion beam for up to a few meters in the machine. One laser
propagates opposite to the ions' direction of travel and can decelerate particles
with velocities above the mean. The second laser is co-propagating and acts to
accelerate slow particles. The initial energy spread in a stored beam is usually
much higher than the linewidth of the cooling transition. The lasers must then be
tunable over a wide frequency range in order to interact with all of the ions.

There are at least four different ways in which to achieve laser cooling, all of
which have been used in practice. That is, it is not necessary to employ two laser
beams if: (1) one laser can be swept in frequency, or an auxiliary force is
employed which is (2) constant, (3) varies linearly, or (4) is produced by an RF
bucket. Of course, much theoretical work, employing the Fokker-Planck
equation, etc. has been done on this subject. The essence of the laser cooling,
however, has been described here.

Physicists who do laser cooling generally work with the concept of
temperature. In terms of particle velocities the longitudinal temperature, Til' and
the transverse temperature, T1- , are given by

(30)

(31)

where kB is Boltzman's constant.
For particle beams these are not very good quantities as they are not

invariants as one moves about the storage ring. In practical units

4(OP)T,,(a K) = 2.32xlO -;;- EO[eV]

11
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(33)

(34)

where EO is the kinetic energy of the reference particle, £.1 is the transverse beam

emittance, and (f3) denotes the averaged value of the betatron function.
°Experimental achiev~mentshave been Til - ImK for 7U + and 24Mg+ ions at

100 keV, and Til - 30mK for 7Be+ at 7.3 MeV. The achievements correspond to
.L\p / P - 4xlO-7 (to be contrasted with .L\p / P - 4x10-5 from electron cooling
prior to the laser being used). Unfortunately, laser cooling is only effective in the
longitudinal direction, and in these mK-experiments the transverse temperature
remained at the 10000 K value (to which it had been brought by electron cooling).

Ionization Cooling

There are three methods of cooling, which are reviewed here, which have not
yet been achieved experimentally, but have been subject to detailed theoretical
analysis. Ionization cooling is special to muons, but is the basis of much recent
work on Muon-Muon Colliders; it is the first of the three methods which we
review. The possibility was first put forward by Sasha Skrinsky [17] and
analyzed, in considerable detail, by Neuffer [18].

The concept is quite simple: muons passing through a material medium lose
energy (and momentum) through ionization interaction. The losses are parallel to
the particle motion, and therefore include transverse and longitudinal
momentum losses; the transverse energy loses reduce (normalized) emittance.
Re-acceleration of the beam (in rf cavities) restores only longitudinal energy. The
combined process of ionization energy loss plus rf re-acceleration reduces
transverse momentum and hence reduces transverse emittance. However, the
random process of multiple scattering in the material medium increases the
emittance. There can also be longitudinal cooling, under proper circumstances, as
we discuss below. The equation for transverse cooling can be written in a
differential-equation form as:

dE~ (
d£.1 = _ dz E.1 + f30 d e;ms)
dz E~ 2 dz '

where £.1 is the (unnormalized) transverse emittance, dE~ / dz is the absorber
energy loss per cooler transport length z, f30 is the betatron function in the
absorber and erms is the mean accumulated multiple scattering angle in the
absorber. Note that dE~ / dz =fA dE~ / ds where fA is the fraction of the
transport length occupied by the absorber, which has an energy absorption
coefficient of dE~ / ds. Also the multiple scattering can be estimated from:

12



(35)

where LR is the material radiation length and E~ is in GeV. (The differential
equation form assumes the cooling system is formed from small alternation
absorber and reaccelerator section; a similar difference equation would be
appropriate if individual sections are long).

If the parameters are constant, the equations may be combined to find a
minimum cooled (unnormalized) emittance of

(36)

or, when normalized

(37)

Longitudinal (energy-spread) cooling is also possible, if the energy loss
increases with increasing energy. The energy loss function for muons, dElds, is
rapidly decreasing (heating) with energy for E~ < 0.3 GeV, but is slightly
increasing (cooling) for E~ > 0.3 GeV. This natural dependence can be enhanced
by placing a wedge-shaped absorber at "non-zero dispersion" region where
position is energy-dependent. Longitudinal cooling is limited by statistical
fluctuations in the number and energy loss of muons (Landau straggling).

Muon colliders, using ionization cooling must observe the limit of Eq. (37)
(and the corresponding limit on energy spread), but, nevertheless, appear to have
an adequately small beam size to create an interesting luminosity.

Laser Cooling in Three Dimensions

As we saw earlier, laser Doppler cooling only works in the longituindal
direction, but there it works very well indeed. At high temperature, intra-beam
scattering will cause the transverse temperature to stay close to the longitudinal
temperature and, therefore, laser cooling will cool in all three directions. As the
temperature is reduced, however, intra-beam scattering becomes greatly reduced
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and laser cooling (given the finite lifetime of beams due to residual gas
scattering) only works in the longitudinal direction.

Transverse laser illumination is not practical (the overlap with the particle
beam is not adequate). The idea of a coupling cavity, or of an rf cavity operating
in a location where there is dispersion, has recently been introduced [19].

Considering a coupling cavity as a cavity operating in the TM210 mode, and
forming a Hamiltonian for the system which consists of an rf banding cavity (i.e.,
a normal rf cavity) and a linear lattice, one arrives at the equations of motion

2

d ; +21tVt"'bp(8-8b)=-21t~OrcXbp(8-8c) ,
d8

(38)

(39)

where x is the radial extent of the particle, '" is its phase with respect to the
ordinary cavity, 8 is measured about the circumference, 8b and 8c are the
location of the bunching and the coupling cavities. The quantity ~o = "( -1 / "(2

where'Y is the relativistic factor. The transverse tune is Vx and the longitudinal
tune is close to VL (equal to VL if VL « 1). The periodic delta functions are bp (8)
and the degree of coupling is given by r co For a rectangular cavity (surely not
used in practice)

eVc (R)
r c = 2~OcpO ~ '

(40)

where R is the radius of the machine, 2a is the transverse size of the cavity having
voltage V c . The particle momentum Po = ~o"(omc .

It is simple to solve, by matrix methods, Eqs. 38 and 39, after introducing a
laser frictional force within a small region. One finds that if the coupling
condition v x - vL = integer is satisfied, then the damping rate per tum is:

AD 1 [ (21t)3~orc2] (AD)Im(v)=--+-In 1+ coth --
2 2 2v x 2
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A
where --l2 is the laser damping per turn if there is no coupling.

2
It is easy to see that if the coupling, r CI is zero then only the longitudinal

motion is damped, but at large r e the two damping rate become equal.
Provided re> reo where

(43)

then essentially x and 'If are damped at the same rate (about 1/2 the rate for
damping just the longitudinal motion).

With a skew quadrupole the vertical motion may also be damped. Ordinary rf
cavities in regions of dispersion also can be used to couple motion. Much
theoretical work with tracking of particles and study of how much one can be off
resonance (a good bit) has been done, but no experimental work has yet been
initiated.

Stimulated Radiation Cooling

Recently it has been proposed by Bessonov, and analyzed in detail by
Bessonov and Kim [20], that one can stimulate non-fully-ionized ion beams and,
thus, have effective radiation damping in circumstances where natural radiation
of heavy ions is negligible. Essentially the bound electron is caused to radiate
(transfer from one bound level to another) by means of a laser whose frequency
is close to resonance. The laser beam itself acts as a "wiggler" in the radiation
process.

If the laser, of wavelength A in the laboratory, is exactly on resonance, then

the cross-section is a = (2YA)2 /41t, (Doppler shifted into ion frame), while off

resonance it is cr =(;n}e2
and (typically) 18 orders of magnitude smaller. The

laser cannot, however, due to the temperature of the beam and the resulting
Doppler shifts, be on resonance for all ions. In light of the many orders of
magnitude, it is possible to have a broad band laser, of width ~ro , so that the
average cross-section

(44)

is still large enough to be used for beam cooling.
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Note that in this process, as contrasted with laser cooling, an rf cavity is
essential and the laser is very broad band. Unlike laser cooling, which only
changes the ion energy by a small amount, here, in order to get damping by n e
foldings it is required to change the ion energy by n(rMic2) Thus, as in ordinary
radiative cooling, the rf cavity and energy replacement, are essential ingredients.
On the other hand, as in laser cooling, it is the electron transition, and the transfer
of momentum to the ion, which is basic to the mechanism.

The damping rate for vertical oscillations (similar formulas can be obtained
for each degree of freedom) is (approximately):

SR (~O)J PA
'(=-- -- --

. cAiy 0) P
(45)

where S is the cross-section of the laser beam, of frequency 0) and spread ~O), and
power P, R is the radius of the storage ring, P- is the length of the interaction
region, and PA = memic5je2. In a numerical example the transverse damping
time, for a nitrogen like xenon ion beam at y = 97, is 411 seconds.

Conclusion

We have seen that there are a number of ways to circumvent Louville's
theorem. Attempts to do so were initiated by the MURA Group in 1956, but with
no success. Physicists knew about radiation of electrons, but the MURA Group
was interested in proton damping. The radiation damping of electrons was
quickly developed, but it wasn't until ten years later that Budker with electron
cooling, and then van der Meer, with stochastic cooling, devised effective
methods to circumvent the theorem and, thus, damp protons and anti-protons.

In the last decades, the methods of Budker and of van der Meer have been
greatly refined. Also, a number of new methods have been proposed, and one
has even been demonstrated experimentally. The most effect (in terms of the
lower temperature achieved) is the new method of laser cooling.

It is interesting to note that special cooling methods have been developed for
different species. Thus radiation cooling works for electrons, stimulated radiation
cooling works for relativistic non-fully ionized ions, laser cooling works on non
relativistic non-fully ionized ions, and ionization cooling works for mu mesons.

In the future, we may expect even colder beams useful, for a diversity of
purposes, from collider applications to the achievement of crystalline beams.
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