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DISCLAIMER 

This document was prepared as an account of work sponsored by the United States 
Government. While this document is believed to contain correct information, neither the 
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assumes any legal responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not 
infringe privately owned rights. Reference herein to any specific commercial product, 
process, or service by its trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof, or the Regents of the University of 
California. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof or the Regents of the 
University of California. 
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Analytical expressions are obtained for fringe field multipoles of an N channel 

permanent magnet quadrupole array [1 ]. See figure 1 below. It is assumed that the 

system of magnetic wedges starts at some transverse (x, y) plane located at z=O, and 

it continues to a magnet length z=Q, where it stops. The iron yoke continues to z = ± oo, 

but it will be shown that only a small overhang is actually required to maintain the 

quadrupole and translational symmetries. Recall the 2-d solution for the magnetic 

potential ( ~ = ~ <1> ): 

where A = - M0/4b, M0 is the remnant field of the wedges, and (Xi, Yi) are the 

coordinates for the center of box (i). Boxes have dimensions 2b x 2b and alternate 

between vacuum fill (for beams) and magnetic wedge fill. The 2-d system looks like a 

portion of an infinite transverse lattice with periodicity lengthy = 4b in both the x and y 

directions. For the magnetic potential Q>, the periodicity length is 2b. 



3-d Magnetic potential tor a semi-infinite system 

More generally we have a 3-d situation where the potential <1> is a function of z 

as well as (x, y). It still satisfies 

2 2 c:P V =Vj_ +-2 , 
dz 

where M = B - H is the local density of magnetization. 

For now we take M, which is still transverse, to turn on at Z=o and continue to Z=+oo. 

Hence 

Where e(z) is the unit step function and V j_ • M1_ is the source of the 2-d potential (<l>z) 
- -

given above. The truncated 2-d potential 8 (z) <1>2 is clearly not a valid 3-d solution. 

However, we can add homogeneous 3-d potentials in the zones z<O and z>O to 

obtain the desired 3-d solution. Generally the homogeneous 3-d solutions consist of 

a sum of terms of the form 

~ 2 2 1tZ 

[ (nrrx)] [ (mrry)] ± n +m -cos b • cos -b- • e b 

These terms preserve the periodicity in x andy exhibited by the 2-d solution. In tact, 

since <1>2 is a pure quadrupole potential in each 2b X 2b box, we only use 

homogeneous combinations of the form 
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[ ( mtx) ( n1ty )] ± mtz 
cos b -cos b e b . 

Since M is transverse, d<l> I dz must be continuous at z = 0, and we obtain 

Here {Fn} is a set of coefficients to be determined (below). 

We must also have <1> continuous at z = 0; this gives 

We may restrict attention to a single 2b X 2b box centered at x=y=O; substituting for <1>2 

we get (inside the box) 

To evaluate Fn we set y = 0; an elementary Fourier series on the interval 

- b < x < + b remains: 
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It follows that 

and the individual coefficients are 

Evaluation of the quadrupole amptitude 

Note that 

nnx nny -1t 2 2 2 1t 4 4 4 1t 6 6 6 
( ) 

2 4 6 

cosb-cosb = 2b2 n {x -y )+ 24b4 n {x -y )- 720b6 n (x -y )+···. 

So in the box centered at x = y = 0, the potential has the simple form 

This is true for z > 0 as well as z < 0 since <1>2 - e(z) ( x2 - y2 ) and can be absorbed into 

f (z). For other boxes (x-xi) and (Y-Yi) must be inserted in this expression in place of x 

andy. 

To obtain the quadrupole amplitude f(z) we gather terms of <1> proportional to 

(x2-y2); for z < 0 
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f ( z) = ~I F n ( 7t22bn22 J e n:z = A = A (I + tanh 7tZ ) . 
£... l+e-1tz/b 2 2b 

The same formula is found for z > 0 by direct summation (or by invoking analyticity). 

To obtain the field for a magnet of finite length R we add a displaced semi
infinite solution with reverse M to get 

A [ 7tZ 1t(z- R)] f = - tanh - - tanh . 
2 2b 2b 

Note that for the semi-infinite magnet the quadrupole amplitude has a "Fermi-Dirac" 

distribution form with amplitude A/2 at z = 0. We expect a profile of this general shape 

from elementary considerations. Outside the magnet <!> falls off very rapidly with z, so it 

should actually be sufficient to continue the iron yoke to only about ~ ::::: 2b beyond the 

magnet ends; note the very low value of the quadrupole amplitude at this distance 

from the magnet: 

f (z = -2b) = (.00186) A. 

Other fringe field components 

So far we have evaluated the lowest order quadrupole term: 
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with the expressions for f (z) derived in the previous section. For other fringe field 

features we will treat only the semi-infinite magnet, so 

A ( n:z) f(z)=- l+tanh-. 
2 2b 

A first result is a formula for Hz in lowest order: 

d<j> df 2 
H =-=-r cos2e 

z dZ dZ 

= ( ~) ( 2:) ( 1 - tanh 
2 
;: ) r

2 
cos 2e 

This field component has magnitude similar to the transverse quadrupole components 

near z = 0. Higher order terms of <1> can be extracted from the general expansion in the 

same way as was done for quadrupole component, however a short cut is available. 

We simply plug the expansion 

directly into V2<j> = 0 and equate coefficients of (xm- ym): 

0 = V2<1> = f" ( x2 - y2) + g" ( x4- y4) + h"( x6- y6 )+ ... 

+ 12g(x2 -y2)+30h(x4 -y4)+ ...... . 

-6-



.. 

We have immediately 

-f" 
cr=-
e> 12 ' 

-g" f"" 
h=-=-

30 360' 

and so forth. Hence 

2 2 f" 4 4 f"" 6 6 
cj> = f( X - y ) -U( X . - y ) + 360 (X - y ) - ... • 

After a little algebra this expansion may be cast in the form 

2 f" 4 "'= fr cos2e-- r cos2e 
'!' ' 12 

+- - r cos2e +- r cos6e + ... f"" ( 15 6 1 6 ) 
360 16 16 ' 

displaying directly the allowed terms through sixth order (quadrupole, pseudo

octopole, pseudo dodecapole, and dodecapole). 

Returning to the semi-infinite quadrupole amplitude 

A ( 1tZ) f( z) = - 1 + tanh- , 
2 2b 
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we find by successive differentiations 

f =- - 1-tanh -, A(1t)( 21tZ) 
2 2b . 2b ' 

A ( .1t )4 f""="2 
2

b (16tanh-24tanh3)(1-tanh2
), 

etc. 

The pseudo octopole potential is 

-f" 4 
<j>p0 =- r cos2e 

12 

= ~ ( 2:r (r4 
cos2e)(tanh ;~)(1-tanh2 ;~). 

There is a very small dodecapole potential 

f
,, 

- 6 6 
<l>ooo- (360). (16) r cos e 

A ( 1t )4 = 
11520 2

b (r6 cos6e)(16tanh-24tanh3)(1-tanh2
). 

-8-

·' 



Comparison of Multipole Fields 

We calculate the relative strengths of the various multipoles near z = 0. 

Specifically, Br = Cl<)>/Clr is computed and normalized to the 2-d maximum= -Mo/2: 

( Br ) =[I+ tanh(* )](~)cos 26 
-M0 j2 2 b 
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(quadrupole) 

(pseudo octopole) 

( 
pseudo ) + dodecapole 

dodecapole 



Values of the bracketed functions of z in the multipole field comparison are given in 

table 1. Note the antisymmetry of 3rd and 5th orders. ,. 

1st order 3rd order 5th order ., 
7tJib 1 +tanh(;~) ~: tanh ( 1- tanh

2
) 

7t4 ( 3 ) 
240 

tanh- l tahn3 
( 1- tanh2

) 

2 

-3.0 .002473 -.004037 +.001933 

-2.5 .006693 -.010789 +.004900 

-2.0 .017986 -.028009 +.010892 

-1.5 .047426 -.067264 +.015199 

-1.0 .119203 -.131533 -.016871 

-.7 .197816 -.157756 -.070393 

-.5 .268941 -.149455 -.100256 

-.4 .310026 -.133692 -.103376 

-.3 .354344 -.109631 -.094428 

-.2 .401312 -.078005 -.072489 

-.1 .450166 -.040580 -.039454 

0.0 .500000 .000000 .000000 

.1 .549834 .040580 .039454 

.2 .598688 .078005 .072489 

.3 .645656 .1 09631 .094428 

.4 .689974 .133692 .103376 

.5 .731059 .149455 .100256 

.7 .802184 .157756 .070393 

1.0 .880797 .131533 .016871 

1.5 .957574 .067264 -.015199 

2.0 .982014 .028009 -.010892 

2~5 .993307 .010789 -.004900 

3.0 .997527 .004037 -.001933 
,, 

Table 1 

Relative strength of comQonents of Br at r = b, e = 0. 
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