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Abstract 

A grand unified S U ( 5) theory is constructed with a hierarchical 

breaking of a U(2) flavor symmetry. The small parameters of the 

squark and slepton mass matrices, necessary to solve the supersym

metric flavor-changing problem, and the inter-generational quark and 

lepton mass hierarchies are both generated from the U(2) symmetry 

breaking parameters. The flavor interactions of the theory are tightly 

constrained, with just 10 free real parameters for both the fermion 

and scalar sectors. All but one of the 8 small fermion mass ratios, and 

all of the 3 small Cabibbo-Kobayashi-Maskawa mixing angles, can be 

understood without introducing small dimensionless Yukawa parame

ters. Predictions are made for 2 of the Cabibbo-Kobayashi-Maskawa 
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ment of Energy under Contract DE-AC03-76SF00098 and in part by the National Science 

Foundation under grant PHY-95-14797. 



mixing angles and for 2 of the fermion masses. The six flavor mixing 

matrices which appear at the neutralino vertices, and which in general 

are arbitrary unitary matrices, are determined in terms of just a single 

free parameter. 
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1. The flavor group U(2) 
The fermion mass puzzle arose with the discovery of the ml,.l.on, and has 

become more pressing with the discovery of each new quark and lepton. In 

terms of the standard model, the question is: what is the origin of the small 

dimensionless parameters in the Yukawa coupling matrices? In supersymmet

ric extensions of the standard model, the spectrum of squarks and sleptons 

possess a second puzzle. Although none of these particles have masses much 

less than the weak scale, the scalar mass matrices are highly constrained by 

flavor-changing processes (1], and must involve a second set of small dimen

sionless parameters. 

The fermion and scalar mass matrices are different aspects of the super

symmetric flavor problem, so that it is attractiye to consider these two sets 

of small parameters to be related. The key to such a relationship is provided 

by flavor symmetries. 

A flavor group G 1, which commutes with supersymmetry, treats quarks 

and squarks identically. In the G 1 symmetric limit the squarks acquire 

masses, but have mass matrices with a high degree of flavor conservation, 

while the quarks are massless, except possibly the heaviest ones. The lighter 

quark masses are generated when G 1 is broken hierarchically by a set of vevs, 

vi, so that the small parameters of the Yukawa matrices involve vi/M1 = fi, 

where M1 is a flavor mass scale. Such breakings also introduce corrections 

to the squark mass matrices, some of which violate flavor. However, these 

flavor-changing effects are proportional to fi, and are suppressed for the same 

reason that some quarks are light. Such a mechanism deserves the title 

"super-GIM" (2]. 

The power and simplicity of this use of approximate flavor symmetries 

was first illustrated using G 1 = U(3)5 , the maximal flavor group of the stan

dard model, with the fi taken to be the three Yukawa matrices [3]. Such 

a scheme, called effective weak scale supersymmetry, provides a framework 

for the soft operators which is greatly preferable to the universality assump

tion. However, this scheme treated the Yukawa matrices as phenomenological 
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symmetry breaking parameters, and did not provide a theory for their ori

gin. Several such models have b-een constructed over the last three years 

[4-15], based on flavor groups which are Abelian or non-Abelian, continuous 

or discrete, and gauged or global. 

We consider this development- the ability to construct supersymmetric 

theories of flavor - to be of great importance. For quark and lepton masses 

it provides a symmetry_ basis for textures, which need no longer be postu

lated purely on grounds of phenomenological simplicity. Not only can these 

theories solve the flavor-changing problem, but the coupling to the fermion 

mass problem produces a very constrained framework. In the present pa

per, we continue our attempt to develop a theory with a simple believable 

symmetry structure, which solves the flavor-changing problem, provides an 

economical description of the quark and lepton spectrum, and is able to make 

experimentally testable predictions, both in the fermion and scalar sectors. 

Three requirements provide a guide in choosing the flavor group, G1 . 

1. G f must solve the flavor-changing problem. 

The minimal, most straightforward and compelling flavor symmetry 

solution to the flavor-changing problem is for G 1 to be non-Abelian, 

with the lightest two generations in doublets 

If this symmetry is sufficiently weakly broken, the resulting near de

generacy of the scalars solves the flavor-changing puzzle. t We find it 

surprising that this elegant idea was not studied prior to 1993, when 

Gf = SU(2) was considered [4]. 

tFlavor changing amplitudes are also induced by a non-degeneracy between the scalars 

of the third generation and those of the lighter two generations. These effects, although 

close to the limits of what experiments allow, are not problematic if the relevant mixing 

angles are similar to the corresponding CKM mixings and/or the amount of fractional 

mass splitting is somewhat less than maximaL 
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2. G 1 must be compatible with gauge unification. 

There are many groups which could have the representation structure 

of (1). The choice can be greatly reduced by requiring that the group 

acts identically on (qa,ua,da,l!.a,ea) = '1/Ja, as results from a theory in 

which the components of a generation are unified. 

3. In the symmetric limit, fermions of the first two generations must be 

massless. 

The flavor group G1 = SU(2) allows the interaction qaf.abdbh, giving 

unacceptable, large, degenerate masses to d and s quarks. We are there

fore led to consider G1 = U(2), which can be written as SU(2) x U(1) 

with '1/Ja transforming as (2,1). The tensor f.ab is a non-trivial singlet of 

U(2) carrying charge -2, so that U(2) invariance allows Yukawa cou

plings only for the third generation, which is taken to transform as a 

trivial U(2) singlet. 

A discrete subgroup of U(2) might provide an acceptable alternative 

choice for G1. We prefer the continuous groups, however, because U(2) 

contains a U(1) subgroup with a color anomaly. The Peccei-Quinn solution 

to the strong CP problem [16] arises as an automatic consequence of the 

above three requirements, which led us to choose G1 = U(2). The strong 

CP problem involves the phase of the determinant of the quark mass matrix, 

and hence is clearly an aspect of the flavor problem. The Peccei-Quinn sym

metry naturally finds a home as a subgroup of a more comprehensive flavor 

group. This solution of the strong CP problem would be lost if U(2) were 

gauged. Gauging a continuous flavor group is problematic, however, as the 

D 2 contribution to the scalar masses reintroduces the flavor-changing prob

lem [17]. We are therefore led to a non-Abelian, continuous, global flavor 

group: G1 = U(2). 

While we believe the choice of G J = U(2) is very well motivated, it is 

obviously not unique. For example, U(2) could be extended to U(3), with 
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the three generations forming a triple ( 7/Ja, 7/;3 ). We view U(2) as a stage of 

partial flavor unification. We prefer to study U(2) first: the top quark mass 

strongly breaks U(3) to U(2), and hence it is the weakly broken U(2) which 

must solve the flavor-changing and fermion mass hierarchy problems. It is 

important to establish whether U(2) theories can solve these problems. While 

the representation structure (1) appears promising, a general low energy 

effective U(2) theory does not solve the flavor changing problem [10]. 

A complete U(3) flavor-unified theory would not only be elegant, but it 

also offers the prospect of a flavor symmetry origin for R parity, which U(2) 

alone is unable to provide, since matter parity is a parity of U(3) triality [14]. 

Although Abelian symmetries can constrain the mass matrices to solve 

the flavor-changing problem [5], we find the necessary group structure to 

be less compelling than that of U(2) or U(3), due to a large freedom in · 

the choice of charge quantum numbers. For example, the rank 2 case of 

G1 = U(1) 2 contains two symmetry breaking parameters, E1 and t:2 , which 

can appear in a mass matrix element as E~E~, where n and m are positive 

integers which can be freely chosen by suitable charge assignments. Compare 

this to the rank 2, non-Abelian care of G1 = U(2), which also has 2 symmetry 

breaking parameters, E and t:', which we find appear only linearly in the 

Yukawa matrices. Indeed, while the small parameters E and t:' solve the 

flavor-changing problem and account for the two intergenerational fermion 

mass hierarchies, they are unable to describe all the features of the quark and 

lepton mass matrices. Nevertheless, we find that the highly constrained group 

theory, and the resulting testable predictions, are an important virtue of the 

U(2) theory. In this paper we seek to understand several other features of 

the quark and lepton mass matrices from the SU(5) unified gauge symmetry. 

2. The Structure of U(2) Theories. 

In the next sections we discuss in detail the simplest U(2) models and their 

predictions. In this section we discuss general aspects of the construction of 

models with G f = U(2). 
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The generations are assigned to ¢a(2)+¢3 (1 ), where¢ represents q, u, d, f, 

or e, and does not imply any particular choice of gauge group. We choose 

the two light Higgs doublets, h, to be G f singlets, both for simplicity and 

because, in the U(3) extension of the flavor group, this allows for a flavor 

symmetry origin of matter parity. The renormalizable superpotential con

tains Yukawa couplings only for the third generation, 'lj;3¢ 3h, and the first 

question is therefore how U(2) breaking can lead to a 2:3 entry for the Yukawa 

matrices. 

The only known way of generating small dimensionless parameters is from 

perturbative loop factors or from ratios of mass scales. A radiative origin for 

me/m~-' in a theory with Gf = U(2) has been discussed elsewhere [18], in this 

paper we consider the fermion hierarchies to arise from a set of flavon vevs 

which break the flavor group at scales beneath some flavor scale M1. From 

the viewpoint of an effective theory beneath Mj, it is clear that the 23 entry 

of the Yukawa matrices must come from an interaction of the form 

(2) 

where ¢a is a doublet flavon, with opposite U(1) charge to ¢a, taking a 

vev (¢a) = (0, V). The most general effective theory would also contain 

interactions quadratic in ¢a: 

and 

~2 [¢a</Ja</;b¢b h]F 
f 

1 [,/,ta)..t )..b,/, t "] M2 'f/ '1-'a'f/ 'f/b Z - D, 
f 

(3) 

(4) 

where z is a supersymmetry breaking spurion, taken dimensionless, z = m(J2. 

Operators (2) and (3) lead to masses for second generation fermions at order 

e: 2 , where E = VjM, while (4) leads to a non-degeneracy between the scalars 

of the first two generations which is also of order e: 2 • Hence in the lepton 

sector 
2 2 

me- mp_ ~ 0 ( m,..) 
m~ + m~ mr 

e 1-' 

(5) 
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and in the down quark sector 

m~-m~ 
d s '"'-'0(!!!:-L) 

m~+m~'"'"' mb 0 

d s 

(6) 

When combined with rotations in the 1/2 space to diagonalize the fermion 

mass matrix, these non-degeneracies are extremely problematic for It -+ e1 

and EK [10]. 

The general effective field theory based on G f = U(2) leads to difficulties. 

However, an important point with regard to constructing supersymmetric 

theories of flavor is that specific models, especially if they are simple, typically 

do not lead to the most general set of G f invariant operators of the low energy 

effective theory. This result has been crucial in several models which have 

been constructed [8, 19, 14, 15). For supersymmetric theories of flavor, low 

energy effective theories are useful only if they can be used to demonstrate 

that certain symmetry schemes are safe from flavor-changing problems. If a 

general effective theory has problematic flavor-changing properties, it simply 

tells us which operators should be avoided in constructing explicit models. 

In this paper we generate small Yukawa couplings, from ( </>) / M1 , by ro

tating from flavor to mass eigenstates [20). Let '1/J represent the light mat

ter of q, u, d, 1!, e, where for now we omit flavor indices. Suppose that it 

has a Yukawa coupling xh'l/J to a Higgs doublet h and some heavy matter 

x = Q, U, D, L, E. The heavy generations are vector-like, with mass terms 

M XX. Finally, mass mixing between light and heavy matter is induced by 

(</>) =EMf via the interaction x</>'1/J (as always in this paper, we assume that 

the flavons, </>, are gauge singlets). The theory is described by the superpo

tential 

(7) 

where coupling constants of order unity are understood.t The vev (</>)implies 

t Since ¢ is non-trivial under G 1, x and 1/; are typically distinguished by G 1. In the 

cases where they have the same G 1 transformation, x is defined as the linear combination 

which has a bare mass coupling to X· 
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that the heavy state is x' = x+c'l/; while the light matter is '1/;' = '1/;-cx rather 

than '1/;, so that when the heavy mass eigenstate is decoupled the interaction 

xh'l/; contains a small Yukawa coupling for '1/;': c_'!j;'h'!j;'. The small parameter 

E arises because G f is broken at a scale less than M1. 

This mass mixing of states introduces a similar non-trivial effect in the soft 

supersymmetry breaking interactions. If '!j; and x have different G 1 trans

formation properties the soft m 2 matrix is diagonal, with entries m~, m;. 

Rotating from the flavor basis ( '!j;, x) to the mass basis ( '1/;', x'), one finds: 

(8) 

On decoupling the heavy eigenstate x', only the m~ + c2m~ entry of this 

matrix is of interest. When flavor indices are reintroduced, this entry is a 

3 x 3 matrix, and the c2m~ terms can lead to non-degeneracies and flavor

changing entries at order c2 [21]. If x and '!j; have the same G1 transformation, 

there are additional order E contributions to the '1/;'t'!j;' mass matrix, which 

arise from an initial xt'l/; operator. 

The generation of interactions involving light eigenstates, suppressed by 

powers of E, from interactions that involved the initial x flavor eigenstate, 

can be summarized by 

[x'l/;h]F --+ c['l/;'1/;h]F 

[x'l/;h z]F --+ c['l/;'1/;h z]F· 

[xtx ztz]v --+ c2 ['1/;t'!j; ztz]v 

(9a) 

(9b) 

(9c) 

where (9b) yields soft trilinear scalar interactions. An immediate consequence 

of this picture is that there are no scalar mass terms linear in E. For example, 

the operator ['l/;1¢a'l/;a]D can never be generated by this mechanism. 

It is frequently useful to use an approximate diagrammatic technique to 

perform the generation of the operators 9a, 9b, 9c from diagonalization of 

heavy mass matrices. This is especially true for models more complicated 
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than the simplest example discussed here. The three diagrams for 9a, 9b and 

9c are shown in Figures 1a, 1 b, 1c. If x2 contains a G 1 singlet, additional 

0( t:2
) contributions to the Yukawa couplings amongst the light states result 

from: 

(10) 

as illustrated in Figure 2. Such 0( t:2
) contributions to Yukawa matrices are 

more dangerous than the O(t:) contributions of (9a) from Figure 1a: to get a 

particular value for a Yukawa coupling, they require a larger value of c and 

hence the scalar mass operators of (9c) lead to larger flavor-changing effects. 

In this paper we consider only "first order" Froggatt-Nielsen mixing, as 

described above. In this case the mixing from ax state, which has a coupling 

to the Higgs, to an external 'lj; state is linear in fiavon fields. Theories in which 

more powers of cP appear between Higgs and external states are possible, by 

having a chain of internal heavy states of differing G 1 quantum numbers. In 

this paper we do not consider theories with higher order mixings: generally 

they are expected to be more dangerous than theories with just first order 

mixing because the higher the order of the mixing the larger the c necessary 

to give the observed fermion masses. 

We now consider the case of U(2) where the external 'lj; states are 'lj;a 

and 7.f;3, and the Higgs field h is a U(2) singlet. The 23 and 22 entries of 

the Yukawa coupling matrices cannot arise from the diagram of Figure 2, 

because then the contributions of Figure 1c to the scalar masses lead to the 

disastrous splittings of (5) and (6). This result is independent of the U(2) 

representation choices for the X and cP fields. 

The 23 entry of the Yukawa matrices must be generated by Figure 1a, 

so that a U(2) doublet fiavon, cPa is necessary and the operator in (9a) is 

[7.f;3cPa7.f;ah]p. What are the U(2) properties of x? There ar~ just two possibil

ities, either it is a singlet, X, or a doublet xa. The choice is critical, from the 

diagram of Fig. 1c it is immediately clear that the singlet X exchange gener

ates the dangerous operator (4), while the doublet xa exchange generates a 
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harmless contribution to the third generation scalar mass: ['l,b1'l,b3 </>~<Paztz]D· 
A solution to the flavor-changing problem, based on the flavor group U(2) 
alone, dictates that there should be no singlet x states. Given the necessity 

of the doublet flavon, <Pa, there can similarly be no Xb states. 

A 22 entry for the Yukawa matrices can only be generated from Figure la, 

which requires (</>,x) = (<Pab,xa), where <Pab = +<Pba, (</>22
) =f. 0. In this case 

the splitting in mass of the scalars of the first two generations is quadratic 

in the second generation fermion mass: 

m~- m~ 2 

e '"~0(~) 
m~ + m~ mr 

e JL 

(11) 

and similarly for the up and down sectors. This gives contributions to f.l -t q 

and EK which are acceptable, although close to the limit of what experiments 

allow. In this paper we construct the minimal U(2) model, in which there is 

no two index symmetric tensor <Pab. 
Finally we consider generating Yukawa matrix elements which involve the 

lightest generation. In principle these could originate from the diagram of 

Figure 2, which involves x states with zero U(l) charge: x,Xb,Xbd···· How

ever, the large vev of <Pa, necessary for Vcb, implies that x and Xb should 

be absent, so such diagrams would necessarily involve x states with at least 

four tensor indices, and therefore <P states with at least three tensor indices. 

Ignoring such complicated possibilities, all contributions to the Yukawa ma

trices arise from Figure la, and therefore from the exchange of doublet X 

states: xa. Hence, assuming no second order Froggatt-Nielsen mixing, the 

only question is how many such xa states there are. Even this is only relevant 

in the case of a unified gauge group where gauge breaking enters the masses 

of the xa states non-trivially. In this paper we consider a single xa state. 

The most general contributions to Yukawa matrices from Figure la there

fore involve (</>;x) = (</>a,sab,Aab;xa) where Sba = +Sab and Aba = -Aab. 

The corresponding mixing of states is described by 

(12) 
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Allowing for the most general possible vevs of these flavons, this leads to 

Yukawa matrices of the form 

(

0 0 

A= 0 0 

0 0 

o) 1 ( sn 
0 +- s M -
1 f ¢} 

and scalar mass matrices, from Figure 1c, of the form 

0 

0 

sn S_ + S22 S+ 
s:_ + (s22)2 

</>2 522 + </>1 s_ 

(13) 

<PS22 + </>2S+) 
<1>2s22 + </>1S_ 
( </>1? + ( </>2)2 

(14) 

where the fields stand for their vevs, and S± = S12 ± A 12
. The trilinear soft 

scalar interactions from Figure 1b take the form of (13). The flavor-changing 

effects from this general scheme, which invokes only xa states, are acceptable: 

the exchange of scalars of the lighter two generations give effects which are 

automatically well below expermentallimits. Flavor changing amplitudes are 

also induced by a non-degeneracy between the scalars of the third generation 

and those of the lighter two generations. These effects, although close to the 

limits of what experiments allow, are not problematic if the relevant mixing 

angles are similar to the corresponding CKM mixings and/ or the amount of 

fractional mass splitting is somewhat less than maximal. 

In this paper, rather than studying the most general doublet xa scheme 

given by (12), (13), and (14), we study the very simplest such scheme, in 

which sab is absent. Several interesting phenomenological features follow 

from the vanishing of the 22 entry. § In this case, since (A 12
) preserves 

SU(2), (</>a) can be chosen to lie in the a= 2 direction. The Yukawa matrices 

and scalar mass matrices then depend on only two flavor vevs; E = ( </>2) / M1 

§The case of 5 22 i= 0 will be discussed elsewhere. 
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and c' = (A12
) jJVff, and take the forms 

(15) 

and 

( 

mi +Oc'2m 2 0 
m2= mi+~m2 

cc'm2 0 

(16) 

In (13) - (16) it is understood that each mass mixing entry involves an un-

known 0(1) coefficient. However, the c' terms of (15) are antisymmetric, and 

the two c'2m 2 terms of (16) are identical since they do not violate SU(2), ~ 
hence 

(17) 

A U(2) flavor symmetry which solves the flavor-changing problem of su

persymmetry provides a powerful tool for constraining the flavor sector of 

supersymmetric theories. Assuming only that the Higgs doublets are trivial 

under U(2), and that more complicated higher order mixings are irrelevant, 

we have shown that the entire flavor structure is generated from doublet xa 
exchange, as shown in (12), (13) and (14). Furthermore, the assumption that 

sab is absent leads to the remarkably simple theory of (15) and (16). It is 

this theory that was introduced in [15], and in this paper we study further 

consequences of this theory in the case that the gauge group is grand unified. 

3. The Minimal U(2) Symmetric Model. 

In this section we review the minimal U(2) flavor structure in the case 

that the gauge group is SU(3) x SU(2) x U(1). These results were obtained 

in reference [15]. 

1fThe coefficients of S+ and 5_ of (13) are also equal, as are the coefficients of S~ and 

s:_ of (14). 
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The theory is defined by the interactions of (12) and (13), with the sab 

tensor absent: 

(18) 

Each of the matter fields ( '!j;3 , '1/Ja, xa, X a) contains all components of a genera

tions: q, ue, de,£, ee, or the conjugate representations in the case of Xa, which 

we represent by the index i, and h represents both light Higgs doublets. In 

(18), the coupling constants and their i dependence are left understood; hence 

Xa<Pa'l/J3 = AiXai<Pa'l/J3i, hxa'l/Ja = )..~jhX't'l/Jaj (ij = que, ueq, qde, deq, lee, eel), 

etc. 

The texture of the Yukawa and scalar trilinear matrices, .X and e, is 

given in (16), and that of the scalar masses in (17). The off-diagonal a'm2 

entries of (17) are numerical insignificant, and can be dropped. The diagonal 

correction terms, t'2m 2 and <: 2m 2
, can be reabsorbed into the definition of 

the mi and m~ parameters, so that the scalar mass matrices are 

mi= (~l ~l JJ (19) 

The scalars of the first two generations are accurately degenerate, and the 

m 2 matrices involve 10 free parameters mii and m~i· 

The Yukawa interactions are '1/J] AJ'l/J], involving coupling matrices 

(20) 

where I= U, D, E labels up, down and charged lepton sectors, and A1, B1, C1 

and D1 are real and positive. The phases of these matrices can be factored 

into diagonal phase matrices P and pe: 

14 

-D 
0 

B 
~) P] 
A I 

(21) 



where 
( -•o 0 

nl P1 = e ~ eif3 (22a) 

0 

and 

( 

ei(<PD-!3) 0 

P/ = 0 ei<Ps 

0 0 e';J (22b) 

where O:J = (</>B- </>n)I and f3I = (</>c- <I>Ah· Superfield phase rotations can 

remove all phases, except a= au- an and (3 = f3u- f3n, which appear only 

in charged current interactions. 

The Yukawa matrices can be diagonalized by orthogonal rotations 

(~ 
0 
BC 

-A 

0 

so that the flavor mixing matrices, W 1 and W], appearing at neutral gaugino 

(~) vertices, ~}WI~!~ and ~~tW]~]~, are given, in the mass basis, by 

- R 1'l R 1'l - ( ~ 0 
0 r ( I sl2 

~r w(c) 1 s23 -s12 1 I - 23/ 12/ -

0 -s23 1 I 0 0 1 I 

( I 
s12 or = -s12 1 s23 (24) 

Sl2S23 -S23 1 I 

We have assumed that (B I A )I, (CIA)! ~ 0( E) and (D I A )I ~ 0( E') with 

E' ~ E ~ 1 so that th.e small angle approximation is always valid. We will 

find later that this is not necessarily always true. The minimal U(2) theory, 

in this approximation, has the interesting feature that W}
1
cd = 0. Thus, for 

example, the photino vertex contains 7-*e but not e*1; staus can be made in 

electron collisions, but selectrons will not decay to taus. 
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The antisymmetry of the 12 entry of the Yukawa matrices implies 

(25) 

The angles of the mixing matrices arise from the diagonalization of the 

fermion mass matrices, and depend on the fermion mass eigenvalues and 

the three free parameters r1 = ( C / B)I: 

(26a) 

(26b) 

(26c) 

where (m1,2,3)I are the fermion mass eigenvalues of generations (1,2,3), renor

malized at the flavor scale M1. Choosing A, B, C, D positive allows (}12 , (}23 

and (}~3 to be taken in the first quadrant. 

The trilinear scalar matrices, e1 , also have the texture (20). By comparing 

Figures (1a) and (1b), one discovers that the difference between AJ and 

el originates from the difference between the supersymmetric interactions 

of h and the trilinear scalar interactions of h. After the superfield phase 

redefinitions of (22) 

(27) 

where, in general A1...4 are four complex parameters. This pattern, like that 

of m;, does not lead to flavor-changing difficulties. If Ai are all real, then 

the theory still possesses just two phases, a and /3. If A are universal then , 

the e1 and AI are simultaneously diagonalized. 

The CKM matrix is given by 

(28a) 
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or 

( 

1 s1 - Szei<P 

V = Sz- s1ei<P ei<P 

-s1s3 s3 

(28b) 

where further phase redefinitions have been performed to go from (28a) to 

(28b) and 

<P =a+ j3 =(au- an)+ (f3u- f3n), (29a) 

(29b) 

(29c) 

(29d) 

The angles 01,2,3 can all be taken in the first quadrant. The CP invariant J 

is given by 

(30) 

Assuming that the observed CP violation in K decays is described by the 

standard model box diagrams, the measurement of Re E in CP violation in 

semileptonic K meson decays implies that S¢ > 0, so that <P is in the first 

or second quadrant, depending on the sign of C¢ which is determined from 

IVusl· The form (28b) for V has been obtained in another context [22] and 

its consequences explored elsewhere [23, 24]. We stress that, in the present 

theory, it is a consequence of a symmetry: the U(2) flavor group. 

After superfield rotations to diagonalize the fermion masses, and phase 

rotations on scalars to make the neutralino vertices real, as in (24), the 

charged wino interactions are 

[ut(PuPn W n)d + ;;tw seJW+ 

+[Jt(PnP(JWu)u + eiWsvJW-. (31) 

The U(2) symmetry alone has solved the flavor-changing problem, and 

produced a significant economy of parameters in the flavor sector, allowing 

17 



many predictions. Any supersymmetric extension of the standard model 

must involvell 

• 9 quark and lepton masses. 

• 15 squark and slepton masses. 

• 1 quark mixing matrix, V 
• 6 neutralino mixing matrices, W 1 and W[. The 4 chargino mixing 

matrices are not independent: w: =·WuV, w; = w D yt and w; =wE· 

While the hierarchical breaking of U(2) by E' ~ E ~ 1 provides an origin 

for the hierarchy between the fermion masses of the three generations, the 9 

quark and lepton masses remain free parameters. On the other hand there are 

only 10 independent squark and slepton masses, since U(2) forces m~i = mii· 

The economical achievements of U(2) are mainly in the mixing matrices, 

however, and we discuss this below by considering the number of parameters 

which enter the quark and lepton masses, and all the mixing matrices. 

The lepton sector involves just 4 parameters, (A, B, C, D)E, because the 

four phases ( ¢> A,B,C,D )E can be eliminated. Once tan f3 is known, three com

binations of these (A,BC/A,AD 2 /BC)E are determined by (m7 ,mJ.L,me), 
leaving just one free parameter rE = ( C / B)E for the 4 leptonic gaugino 

mixing matrices. 

In the quark sector there are 10 free parameters: (A, B, C, D)u,n, a and 

/3. The quark masses and CKM m,atrix involve precisely 10 independent 

observables, so one might guess that these could be used to determine the 

free parameters. However, this is not correct. The quark masses do deter

mine 6 linear combinations of the free parameters: (A, BC /A, AD2 
/ BC)u,n, 

leaving four free parameters: ru,D = ( C / B)u,n, a and /3. The CKM ma

trix, V, is parameterized by 81, 82 , 83, ¢> of (29). Of these, 81 = Jmd/ms 
and 8 2 = Jmu/mc depend only on the same combinations of parameters 

that are determined by the quark masses. The parameters ¢> = a + f3 and 

83 = 83(ru, rn, /3) are determined from Vus and Vcb, and depend on two com-

llwe omit the trilinear parameters in this discussion. 

18 



binations of (ru, rn, a, /3). Hence, the quark masses a.nd V depend on only 

8 of the original 10 parameters. The two predictions in V are 

'

Vtd' §_ Yts = 81 = V ;:;_: = 0.230 ± 0.008 (32a) 

'
v~b, §;_ 
Vcb = 82 = v-:;;;: = 0.063 ± 0.009 (32b) 

to be compared with the experimental values of 0.2 ± 0.1 and 0.08 ± 0.02 

respectively. 

The 4 neutralino matrices Wu,D and W[r,D, of (24), depend only on the 

two free parameters ru,n, which enter the angles as shown in (26). Similarly 

the two quark chargino mixing matrices, w;' shown in (31 ), depend only 

on ru,n, a and /3. 
Hence we can summarize the achievements made possible by the intro

duction of U(2) and its minimal breaking. 

• The supersymmetric flavor-changing problem is solved and the Yukawa 

matrices are forced to have a simple texture, leading to the predictions (32). 

• Two small parameters, E and E', describe both the hierarchy of intergen

erational fermion masses, and the smallness of flavor-changing effects induced 

by superpartner exchange; a structure summarized by (16) and (17). 

• Any supersymmetric extension of the standard model necessarily in

volves 6 new independent flavor mixing matrices, which can be taken as 

those appearing at neutral gaugino vertices, w}c). In the U(2) theory de

scribed above, these 6 new matrices depend on only three free parameters, 

rJ. 

While these results are considerable, the limits to the achievements of 

U(2) are also apparent. There are free parameters for each fermion mass, Vcb 

and for s23r 

The standard model has 12 flavor observables, ignoring CP violation. Of 

these, the hierarchy mu : me : mt can be understood as 1 : E
2 

: E
12 

/ E
2

, 

and 2 parameters of the CKM matrix are predicted, leaving 7 observables for 
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which U(2) provides no understanding. These 7 remaining pieces of the flavor 

puzzle can be described in terms of the parameters (A, B, C, D)I, defined by 

the Yukawa matrices in (21): 

mb 
-~1 
mT 

ms 1 ml-' 1 
-~--~-

mb 3 mT 50 
memf.-L mdms 

m2 ~~ 
T b 

ffit ~ 1 
mb 

me 1 ms 
-~---

ffit 10mb 

Av 
=} -~1 

AE 
BvCv 1BECE 1 

=} ~- "'-
A7J 3 A~ "' 50 

Dv DE 
=}-~-

Av AE 

=} Auv2 ~ 1 
Avv1 
BuCu 1 BvCv 

=} A2 ~ 10 A 2 
U D 

Du 1 Dv 
=}- ~ ---

Au 50 Av 

=}'Cve;f3_ Cu,~_!__ 
Av Au 25 

(33a) 

(33b) 

(33c) 

(33d) 

(33e) 

(33!) 

(33g) 

where the approximate equalities hold to better than a factor of 2, and all 

parameters and masses are renormalized at the high flavor scale, M1. A 

comparison of (33b) and (33g) shows that Bv ~ Cv. 

As an example, the mass matrices may be given, at the factor of 2 level 

and ignoring phases, by 

( -1~-· 
w-4 

~) 175GeV mu= 0 
1 

30x 

(34a) 

( -1~-3 
w-3 

; ) 25GeV mv= 0 
_1_ 
30y 10 

(34b) 

ffiE = ( -1~-3 
w-3 

; ) 25GeV. 0 
1 

30z 10 

(34c) 
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In section 5 we study the consequences of a U(2) flavor symmetry in an 

SU(5) grand unified theory. Is such a unified extension possible? If so, can 

the SU(5) unification shed light on any of the patterns and hierarchies of 

(33) and (34)? Before addressing these questions, in the next section we 

extend the analysis for fermion masses and mixing matrices in the minimal 

U(2) model to the case that the rotations in the 23 sector are large. 

4. Large 23 Mixing. 

In U(2) theories, with the minimal texture given in (20), the 2:3 mix

ing angle in the right-handed down sector, shv, is expected to be large. 

This follows from the observation that Vcb and ms/mb are of comparable 

magnitude. More precisely, if we forbid Vcb from resulting from a cancella

tion of large terms in (33g), then Cv/ Av;:{,l/10. From m 5 /mb of (33b) we 

deduce that Bv/ Dv:<:,lj5. Thus this 23 mixing in the right-handed down 

sector is expected to be larger than Cabibbo mixing. A naive estimate gives 

s~3D ~ (m 5 /mb)/Vcb ~ 0.5. In both SU(3) x SU(2) X U(l) and SU(5) theories 

discussed in this paper, there are acceptable fits to the data with s~3v ~ 0.3. 

so that the small angle approximation of the previous sector is not a bad 

first approximation. However, in both theories there are also good fits to 

the data with s~3v ~ 0.7, which can only be discovered with the analysis of 

this section . In this section we derive expressions for mass eigenvalues and 

mixing matrices which treat the 0~3 diagonalization exactly, while still using 

small angle approximations for 023 , 012 and 0~2 • Rotations in the 23 space 

yield:** 

-D 
0 

B 

(35) 

where~= JI + y 2 andy= B/A is not necessarily small. The right-handed 

**This analysis applies to I= U, D or E, but for clarity the subscript I is dropped. 
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mixing angle has 
c y 

823 = z 
while the left-handed mixing angle is 

1m2 
823 = --

ym3 

(36) 

(37) 

which is comparable to m2/m3 for y near unity. The only small parameter of 

the heavy 2 X 2 sector of the Yukawa matrix is cIA, and both 823 = c I e A 
and m2/m3 = yCieA are linear in CIA. The product 

(38) 

which plays an important role in flavor changing phenomenology, is reduced 

by 11~ compared to the small angle result. In the limit that y is small ari.d 

~ = 1 + y 2 -+ 1; these formulae reduce to the small angle versions of the 

previous section. However, even if y = 113, the y 2 correction terms must be 

kept if predictions, for example for Vuoi"Vco, are to be accurate at the 10% 

level. 

The right-hand side of (35) shows that the large B2J rotation has had two 

further important consequences: a non-negligible 13 entry has been gener

ated, requiring an additional rotation, R13 , and the 21 and 12 entries are 

no longer equal in magnitude, implying that 812 and 8~2 will have differing 

magnitudes. The required diagonalization now has the form 

..:....D 

0 

B 

0 
-BC 
~ 

0 

where R 13 is defined with opposite sign to the other rotations 
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so that 813, like 8 23 , 8~3 and 8 12 , is positive. We choose all angles to be in the 

first quadrant, except 8~2 which is in the second. We find 

(41) 

and 
2 y Jm1m2 

813 = y 812823 = (112 m§ . ( 42) 

This last result shows that the 13 mixing in the up sector is irrelevant even 

if Yu is of order unity. Such 1·3 rotations, however, are likely to be important 

for down and lepton sectors. 

The matrix we maintains the same form as (24), except that since 0~3 is 
now large, c~3 cannot be put to unity: 

The matrix W has a form modified by R13 

W = R23R12R13 = ( -~12 
812823 + 813 

1 

( 43) 

( 44) 

so that the W13 entry no longer vanishes. These neutralinos mixing matrices 

still conserve CP, and are again predicted in terms of just one free parameter 

in each of the U, D, E sectors. 

The CKM matrix is given by v = w&PuPh w D· Since 813U is negligible, 

Wu is given by (24). However, 8 13D is not negligible, so that W D has the 

form of ( 44), hence 

23 

8283 - 813De-i(o+"Y)) 

-83 

e-i<P 

( 45) 



where s13v is given by evaluating ( 42) in the down sector, and the phase 1 

is not a new independent phase, but is given by 

( 46) 

and cannot be removed from V when the O(y2
) corrections are kept. As 

before, cp = a+ (3, and a and (3 are the two physical combinations of phases 

of the original Yukawa matrices, defined in (22). It is important to recall that 

while s2 = Jmu/mc, and s23U = Jrumc/mt, the definitions of the angles in 

the down sector have now changed: 

s1 1~ = ~1/2 ms ( 47a) 

1 ms 
( 47b) S23D ymb 

S13D 
Y Jmdms 

= ~1/2 m~ · (47c) 

Treating (3 and cp as the two independent phases, the predictions for IVub/"Vcb I 
and IVtd/Vtsl take the form; 

( 48) 

( 49) 

which manifestly display the O(y2 ) corrections to the small angle results. 

The CP invariant is given by 

It is useful to take the independent phases as cp and (3, because Cf3 is 

determined to be positive by "Vcb, and cq, is determined from Vus· Furthermore, 

if the y2 correction of (50) does not overwhelm the s 1 s 2 s~sq, term, then Rec 

determines sq, to be positive. In this case the only quadrant ambiguity of the 

theory is the sign of s13 • 
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5. The Minimal SU(5) x U(2) Model. 

A U(2) flavor symmetry leads to an economical theory of flavor with 

Yukawa matrices constrained to have a definite texture, and neutralino mix

ing matrices determined in terms of just three free parameters. Grand unifi

cation provides vertical symmetry relations between the U, D and E sectors, 

reducing further the number of .flavor parameters. In this section we study 

whether the simplest U(2) flavor structure is consistent with SU(5) grand 

unification, and whether the combination of these symmetries provides fur

ther progress in understa:qding the pattern of quark and lepton masses. 

The minimal SU(5) x U(2) theory is obtained by arranging the light and 

heavy matter multiplets into 10 + 5 representations: xa = (Ta, Fa), '1/;3 = 
(t3, ] 3) and '1/;a = (ta, fa), and explicitly writing all SU(-5) invariant interac

tions of 18: 

Ta(MrTa + </Jai3 + Aabib) · + Fa(MpFa + </Jaf3 + Aab]b) 

+h(t3t3 + Tata) + h(t3]3 + Tafa + Fata) (51) 

where h and hare 5 and 5 Higgs multiplets. On integrating out the heavy 

ya, Fa states, there are 8 contributions to the Yukawa matrices, shown dia

grammatically in Figure 3. 

Experiment requires that the Yukawa matrices contain significant SU(5) 

breaking at the grand unification scale, Me. How can such SU(5) breaking 

arise? There are three choices for the insertion of SU(5) breaking: <Pa or Aab 
can be SU(5) non-singlets, ya and Fa masses can contain SU(5) breaking, 

or additional heavy states can be introduced. 

W.e prefer to work in the minimal theory described by (51), with q;a and 

Aab transforming as SU(5) singlets, but with heavy masses: 

Mr = Mr0 (1 +crY) 

Mp = Mp0 (1 + cpY) 

(52a) 

(52b) 

where Mr0 and Mp0 are SU(5) invariant masses, which we take to be of order 
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the unification scale, Me. The SU(5) breaking masses t:TMT0 Y and cpMp0 Y 
arise from the vev of a 24-plet, and are proportional to the hypercharge 

generator, Y. The theory therefore has the tree-level SU(5) breaking of the 

Yukawa coupling matrices isolated in just two parameters, t:T and cp. 

The Yukawa interactions generated from the 8 diagrams of Figure 8 are 

qT Auuc + qT Avdc + ecT Ag€, with 

Au (53) 

Av,E (54) 

where c = (¢})I MT0 , c' = (A 12
) I MT0 and .\1 •.. .\s are the dimensionless prod

ucts of trilinear Yukawa interactions which appear in the diagrams i) ... viii) 

of Figure 3, respectively. The parameter r = MT0 1Mp0 , while the SU(5) 
breaking effects from the ya, Fa masses are given by the coefficients 

1 
bu = bv = 1 

1 + 6tT 

1 
cu = -----;:-

1 - '£tT 
3 

1 
bE=---

1 + tT 

1 
CE = 1 

1- -cp 
2 

(55a) 

(55b) 

(55c) 

0 (55d) 

(55e) 

The labelling of the A parameters allows easy identification of the diagram

matic origin. For example, Fa exchange occurs in only diagrams v) and vi), 
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with As contributing to the 23 entries of AD,E and A6 to the 12 entries of 

AD,E· These contributions are therefore the only ones proportional to r. A 

close examination of the diagrams of Figure 3 shows that while A1 ... A7 are 

independent parameters, As = A7A4 j A3. 

In section 3 we argued that U(2) alone did not address 7 pieces of the 

fermion mass puzzle, as listed in equation (33). The structure of (53) and 

(54) shows that the addition of SU(5) unification provides an understanding 

for 4 of these features: 

• (33a) The relation mb = m 7 at the unification scale is a well-known 

success of supersymmetric SU(5). 

• (33c) If all dimensionless parameters are taken to be or order unity, 

then memJ.L/m; ~ mdms/m~ 

• (33f) The anomalously small up quark mass can be understood if the 

SU(5) breaking parameter Ey is small. The vanishing of mu in the SU(5) 
limit follows because the TT h interaction gives Au symmetric, while Aab is 

antisymmetric and forces the 12 entry to be antisymmetric. This combination 

of SU(5) and U(2) symmetry breakings to understand the small value of mu 

is striking, and we consider it a major achievement of the theory. 

• ~ ~ Vcb· For textures with vanishing AD22 this requires AD32 ~ AD23 

or Bv ~ Cv, as can be seen by comparing (33b) and (33g). From (54) we 

see that the SU(5) model can give such a hierarchy if r is small, that is if 

Mp0 ~ Mro· 
We note that there is an interesting self-consistency among the last three 

points: in the limits that Ey, r --t 0 the determinantal relation memJ.L/m; = 

mdms/m~ becomes exact. 

In the limit of small Ey and r, tr need only be kept in the 12 and 21 

entries of Au and r only in the 23 entry of AD,E· The Yukawa matrices can 

then be written 

Au (56a) 

27 



-c' 

0 (56b) 

where c and c' have been rescaled: 

c' 
= ).4 (A 12). 

(57) 
A1 MTo 

1 As 
(58) rE = r 1 

).7 1- 2tF 

and 

(59) 

A posteriori, the small tT approximation turns out to be good to about 

10%. Although hereafter the corrections in tT are neglected in the explicit 

analytic formulae, they are kept, as in equations (53) - (55), for numerical 

purposes. In (51) we have assumed that a single 5 or 5 of Higgs, h and h, 
couple to matter. If these contain components of the light Higgs doublets: 

h = cuhu + ... , h = cdhd + ... then Cu and Cd should appear as overall factors 

in (56a) and (56b) respectively. However, they can be absorbed into >. 1 and 

).2· 

In general all parameters appearing in (56a,b) are complex. however, as 

discussed in section 3, this texture has only two physical phases, a and /3. In 

the SU(5) model, these are given by 

(60a) 

(60b) 

in a basis where MT0 and MFo are real. This shows that CP violation can 

arise only from the SU(5) breaking masses for ra and Y or from the >. 
parameters, not, for example from the vevs of ¢a and Aab_ If ET,F were real, 

we would have a= 0 and just a single physical phase /3 = cPCKM· Numerical 
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fits exclude this possibility [25]. Another simplifying possibility is that CP 

is violated spontaneously only by the vev of the 24-plet which generates ET 

and Ep, which therefore have a common phase, while the ,\ parameters are 

real. In this paper we take a and j3 to be arbitrary. 

After performing the phase rotations of (21), we can take all parameters 

of (56a,b) to be real. The SU(3) x SU(2) x U(1) theory of section :3 had 

14 flavor parameters: (A, B, C, D)I, a and /3. The SU(5) theory reduces the 

number of parameters to 10: >.1 , >. 2 , E, E', Er, p, rn, T"E, a and (3. In terms of 

the (A,B, C, D)I parameters, SU(5) imposes the 4 relations: 

An =AE (61a) 

En =BE (61b) 

Bu=Cu (61c) 

Dn =DE (61d) 

In the limit of small 23 rotation angles, 11 of the 14 parameters of the 

SU(3) x SU(2) x U(1) model are determined from quark and lepton masses 

and mixing, giving the two predictions of (32), while the 3 free parameters, 

T"I = CJ/BI, enter the neutralino mixing matrices, WI and Wj. In the 

SU(5) theory, (61a) and (61d) lead to two further predictions: for mb/mr 

and memJ.L/mdms, respectively. The two relations (61b) and (61c) can be 

viewed as determining two of the free parameters r I: 

mJ.L 
ru = 1 

(62a) 

(62b) 

respectively, so that the mixing matrices WI and Wj depend on only one 

free parameter. 

If the 23 rotation angles of the D, E sectors is large, so that y ~ 1, 

then ( 48) and ( 49) are not necessarily predictions of the theory. In the 

SU(3) x SU(2) x U(1) theory these predictions are lost: Vub/Vcb and Vtd/Vts 
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determine two of the free parameters, so that WI and W[ depend on only a 

single free parameter. In the SU(5) theory, there is only one free parameter, 

which is therefore determined by Vub/"Vcb, since it is better measured than 

vtd/vts, which is predicted from ( 49). In this case, the WI and W[ are 

completely predicted. 

The analysis for the 3rd generation is not new: )11 and >. 2 are determined 

by mt and mn allowing a prediction for mb in terms of as and tan /3. For 

the second generation we obtain the relations at the unification scale Me: 

me = t2 (63a) 
ffit 

ms p2c2rv 
(63b) 

mb 1 + y2 

mp. p2c2rE 
(63c) 

m" 1 +y2 

IVcbl = c lei;3 prv - 11 
1 + y2 

(63d) 

where y = pc, and the y 2 correction terms result from the large angle di

agonalization of the 23 space in the D and E sectors, as given in section 

4. 

The masses of the light generation fermions are obtained from the deter

minants of the Yukawa matrices 

m.umc 25 2 '2 = -eye mf 36 

memp. p2cl2 

m; - (1 + y2)3/2 

(64a) 

(64b) 

The equations of (63a,b,c) and (64a,b) provide 6 constraints, which can be 

viewed as determining all the remaining parameters, except a and /3. The 

CKM matrix is given in ( 45). The phase <P =a+ /3 is determined from IVus I, 
while a second combination of a and /3 is determined from IVub/"Vcbl via (48). 

The ratio I vtd/vts I, or equivalently J, can then be viewed as a prediction. 
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The hierarchy of quark and lepton masses in this SU(5) theory can be 

understood to be due to the small parameters c, c', ET and r, with all Yukawa 

couplings, and hence the ). parameters, of order unity. The single exception 

to this is that pis large, as demonstrated from the following simple estimates, 

which ignore renormalization group scalings and assume that y is not larger 

than unity. To avoid a precise cancellation between terms on the right

hand side of (63d) we require cprn ;:; Vcb· This implies from (63b) that 

ms/mb ;:; ~Urn, which is why rn must be small, which we obtained by 

making r small. However from (63a) and (63b ), ms/mb = rnp2mc/mt, which 

requires that p be large. 

The most plausible origin for large p is a small value for >. 2 = >.b. Our 

inability to understand why p is large is nothing other than our lack of un

derstanding of the large mt/mb ratio. If we insisted on taking >.2 ::::::: >.1 so 

that mt/mb arises from a large value for tan (3, we would be forced to make p 

large by taking >.3 anomalously small. It seems much more natural to us that 

p is large because the large mt/mb ratio follows from a large (>.d >.2 ) ratio. 

In this case tan f3 is moderate. Furthermore, since >.2 = >.b ~ 1, the renor

malization group scalings of the masses and mixing angles from Ma to weak 

scales need only include contributions from as and At. The CKM matrix is 

easily scaled by noting that the following quantities are 1 loop renormaliza

tion group invariants:. Vus, Vcu, 1/i;, Vcbe-It, Vube-It, Vtde-It, Vtse-It and J e-21t; 

which all follow from the invariants s1 , s2 , s3 e-It and S¢. For the masses, im

portant invariants are: e1tmb/TJbmr, e-31tmu,c/TJu,cmt, e-1tmd,sTJb/TJdffib where 

It= f >.zdtj47r and TJ; = m;(m;)jm;(mt) fori= c, b, whereas for light quarks, 

i = u, d, s, TJ; = m;(1Ge V)jm;(mt)· It and TJ; are plotted in Ref. [19]. A 

possible origin for small >.2 is that the Higgs multiplets which couple to 'ljJ3 'ljJ3 

are different from those which couple to '1/Jaxa. Small >. 2 would result if the 

Higgs multiplet coupling to t3f 3 contains only a small contribution of the 

light doublet hd, while other Higgs multiplets contain order unity of the light 

doublets. This would account for a large value of p, but otherwise leave our 

analysis unchanged. 
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Above we have described how the 10 free flavor parameters of the SU(5) 
theory can be determined from data leading to predictions for the three 

quantities: mb, memJ.L/mdms and lvtd/vtsl (or J). An alternative procedure 

is to perform a x2 fit to see how well the model can account for all the relevant 

data, which we take to be: the 9 fermion masses, the 3 real CKM mixing 

angles, f.K, 0: 5 and the B°F mixing parameter xd. The predictions for f.K 

(xd) involve the quantities BK ( ..jljfB), which we take as further observables, 

"measured" on the lattice. These 17 observables, and their measured values 

[26, 27, 28) are given in Table 1. 

Table 1 

me 0.511 MeV 

mJ.L 105.7 MeV 

mr 1777 MeV 

(mu/md)IGeV 0.553 ± 0.043 

(ms/md)IGeV 18.9 ± 0.8 

(ms)IGeV (175 ±55) MeV * 
(mc)mc 1.27 ± 0.05 GeV 

(mb)mb 4.25 ± 0.15 GeV 

(mt)mt 165 ± 10 GeV 

lVusl 0.221 ± 0.002 

IVcbl 0.038 ± 0.004 * 
IVub/Vcb I 0.08 ± 0.02 * 

lcKI (2.26 ± 0.02)10-3 

O:s(Mz) 0.117 ± 0.006 * 
Xd 0.71 ± 0.07 * 

..jljfB (180 ± 30)MeV * 
BK 0.8 ± 0.2 * 

These 17 observables depend on 14 parameters: the 10 free flavor param

eters, the ratio of the two electroweak vevs v2/vt, o:5 , ..jljfB and BK, so that 
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the fit has 3 degrees of freedom. Since the uncertainties in the 17 observables 

are very different, we fix the well measured ones, those without an asterisk 

in the final column, to their central values. In particular, inputing central 

values for 8 of the 9 fermion masses, for Vus and for EK allows us to express 

9 of the flavor parameters and v2 /v1 in terms of the other free parameters. 

The 7 observables labelled in Table 1 by an asterisk, are then fit by varying 

the 1 remaining independent flavor parameter, which we choose to bey, and 

the parameters a 5 , ..jljfs and BK. The analysis includes the large 23 mixing 

results of section 4, and is therefore not restricted to small y. The renor

malization scalings from grand to weak scales include 1 loop contributions 

from top and strong coupling constants. For reasons given earlier, we study 

the case of moderate tan /3, so the scalings induced by b and T couplings are 

negligible. 

There are three successful fits in which J, and therefore Rec, are positive, 

as shown in Table 2. In fits 1 and 2, y ~ 0.3 so that the y2 correction 

terms are about 10%. For these fits J is dominated by 5 1 5 2 5~54> so that 5¢ is 

positive, and they are distinguished by the sign of 5(3. In fit 3, y ~ 1 and J is 

dominated by the last term of (50), so that 5f3 is determined to be negative. 

For each of these three fits, Table 2 lists the minimum x2 values of the 

seven observables which were not set to their central values, the value of 

X~in and the corresponding values for 8 of the flavor parameters. (We leave 

out ..\1, ..\2 and v2 jv1, which are determined from the standard analysis of the 

third generation.) Finally, the corresponding values for "Vtd/"Vts and J are 

given. It is clear that each of the fits is extremely good. The analysis of the 

uncertainties associated with these fits will be discussed in a separate paper 

[25]. 
Fits 1 and 2 have small y, and in this limit sin (3 appears only in the small 

y2 correction terms of Vub/Vcb, "Vtd/"Vts and J, so the fits are very similar. 

While Vub/"Vcb and J have about a 10% dependence on the sign of sin /3, 
Vtd/Vts is much less sensitive, as can be understood from ( 49). 
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Table 2 

1 2 3 

sign (sin ¢>) + + -

sign (sin {3) - + -

y = pE 0.305 0.297 1.07 

et5 (Mz) 0.117 0.117 0.117 

IVcbl 0.038 0.040 0.040 

!Vub/Vcbl 0.090 0.071 0.077 

ms /MeV 169 169 164 

!BVB /MeV 173 166 187 

Xd 0.730 0.738 0.711 

Br.: 0.875 0.966 0.855 
2 

X min 0.55 1.65 0.55 

¢> 1.373 1.367 -2.008 

(3 -0.201 0.211 -1.068 

E 0.0345 0.0345 0.0359 

E1 jlQ-4 4.93 5.04 2.36 

ET 0.172 0.168 0.382 

p 8.84 8.61 29.8 

rD 0.208 0.219 0.032 

rE 0.659 0.694 0.073 

IVtd/Vtsl 0.270 0.267 0.232 

J ;w-s 2.63 2.14 2.79 

In the Yukawa couplings of (56), and in much of section 5, the full ET 

dependence of the Yukawa matrices, given in (55), was approximated by 

taking ET small and keeping only the ET dependence in the numerator of 

(55c ). The results of the numerical fit, which included the full ET dependence, 

show that this approximation is not very precise, especially for fit 3. 
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6. Conclusions. 

A U(2) flavor group, broken by small parameters E and c:.', can solve the 

supersymmetric flavor-changing problem and provide an inter-generational 

fermion mass hierarchy 1: c:.2 : c:.'2 /c:.2 [15]. The U(2) symmetry leads to suc

cessful predictions for Vub/Vcb and "Vtd/"Vts, and predicts the 6 flavor mixing 

matrices at neutralino vertices, WI and W[, in terms of just 3 free parame

ters ru,D,E· 

In this paper we have shown that such a U(2) flavor group can be suc

cessfully imposed on an SU(5) grand unified theory, with the consequences 

that 

• Those small quark and lepton mass hierarchies not understood by E 

and c:.', and all 3 small angles of the CKM matrix, can be understood to arise 

from features of the SU(5) theory. 

• The quark and lepton masses, the CKM matrix, and the 6 neutralino 

mixing matrices WI and W[, are described in terms of just 10 flavor param

eters (and the ratio of electroweak vevs vd v1 ). 

In addition, the Peccei-Quinn U(1) is a sub group of the U(2) flavor 

symmetry, and is broken by (A 12
) = c:.' Me ~ 3 x 1012 Ge V, so that the 

axions are of relevance for the astrophysical dark matter problem. 

Predictions for the 8 fermion mass ratios at the flavor scale are shown 

in Table 3, for the cases where the gauge group is SU(3) x SU(2) x U(1) 

and SU(5). The parameters of Table 3 appear in the Yukawa matrices of 

equation (15) for the SU(3) x SU(2) x U(1) theory, and in equation (56) for 

the SU(5) theory. 

For the SU(5) case the predictions are exact, and follow from (56), 

whereas in the SU(3) x SU(2) x U(1) case, "~" means that ratios of dimen

sionless couplings are omitted. The SU(3) x SU(2) x U(1) theory provides 

no understanding for many features of the spectrum, for example, for why 

mc/mt ~ m 5 /mb or mumc/m; ~ mdms/m~, and must therefore contain 

several small dimensionless ratios of Yukawa couplings. 
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Table 3 

SU(3) X SU(2) X U(1) SU(5) 

mb/mt ~1 ;..2 I >11 

mb/m-r -· ~1 1 

mc/mt ~ E2 E2 

ms/mb ~ E2 p2E2rv 

mJ.L/m-r ~ E2 p2E2rE 

mumc/m; ~ E'2 (25/36)E'2 E} 
mdms/m~ ~ E'2 E'2 p2 

memJ.L/m; ~ E/2 E'2p2 

On the other hand, the SU(5) theory need contain only one small di

mensionless ratio of Yukawa couplings, )..2/ ).. 1 ~ 1 to give mb/mt ~ 1, with 

all other hierarchies understood. The par~meter p = ()..tf )..2)()..7/ )..3) is ex

pected to be large (due to the large )..tf )..2 ratio), explaining why ms/mb 

and mJ.L/m-r are large! than mc/mt, and contributing to the understand

ing of mumc/m; ~ mdms/m~, memJ.L/m;. The anomalously low value for 

mumc/m; is understood in terms of a small amount of SU(5) breaking, ET, 

in the mass of the heavy 10-plet: MT = MT0 (l+ETY). The vanishing of mu in 

the SU(5) symmetric limit is particularly striking: the TaAabTbh coupling is 

made antisymmetric by U(2) invariance, but symmetric by SU(5) invariance. 

The only SU(5) breaking in the Yukawa matrices at the unification scale is 

due to ET =/= 0 and rv =/= rE. Since mJ.L/ms = rE/rv = (1 + Ep/3)/(1- Ep/2) 

is close to 3, the fractional breaking of SU(5) in the mass of the heavy 5-plet, 

Ep, is of order unity, where Mp = Mp0 (1 + EpY). 

The consequences of the U(2) flavor symmetry are similar in the SU(3) x 

SU(2) x U(1) and SU(5) theories. In the small 23 rotation angle approx

imation, valid for fits 1 and 2 of the previous section, the CKM matrix is 

parameterized by the 4 angles 8t, 8 2 ,83 and 8,p. The parameters 8 1 and 8 2 are 

determined by quark mass ratios 8 1 = Jmd/ms and 82 = Jmu/mc, so that 
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the sizes of Vub/Vcb, Ytd/"Vts and Vus are automatically understood in U(2) the

ories in terms of quark mass hierarchies. This is not the case for s3 , which also 

depends on the parameters ru, rn and /3: s3 = i/rnms/mbei/3- /rumc/mtl· 
(The only difference in the expressions for the CKM parameters in the 

SU(3) x SU(2) x U(1) and SU(5) theories, is that, as discussed below, 

ru = 1 in the SU(5) case.) The observed value of Vcb therefore requires 

that rn is small. In the SU(5) theory this can be understood as arising from 

; = Mr0 /MFo < 1. tt Hence, in the SU(5) theory, all small quark and lepton 

mass ratios, and the small values of all three CKM mixing angles, can be 

understood in terms of three small symmetry breaking parameters, c., c.' and 

Ey, and the ratio ofheavy masses, r. The only exception is the small ratio 

).z/ ).l· 

The CP violating phase <P is determined to have a large magnitude from 

IVusl = 1/md/ms- ei<t>/mu/mcl· The size of CP violation can therefore be 

determined from CP conserving quantities - quark mass ratios and the CKM 

flavor mixing angles - and is a significant success of the U(2) symmetry. 

In going from the SU(3) x SU(2) x U(1) theory to the SU(5) theory, 

the number of independent flavor parameters is reduced from 14 to 10. The 

parameter relations imposed by SU(5) are shown in (61). They directly give 

mb =mr (65a) 
iD ms 

(65b) 
i£ mp. 
ru =1 (65c) 

memp. mdms 
(65d) 

m2 mg T 

at the unification scale. The success of (65a) IS a well-known feature of 

supersymmetric SU(5). The SU(5) mass relation (65d) is less well-known, 

but is equally successful. Although such a relation has been obtained before 

[19], in the present theory it is a consequence of a texture forced by the U(2) 

ttit is perhaps surprising that f.T ~ f.p, given that theTis lighter than the F. However, 

in practice r:::::: 1/5, and is not very small. 
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flavor symmetry. The relations ( 65b) and ( 65c) reduce the number of free 

parameters entering the 6 neutralino mixing matrices, WI and W[, from :3 

to 1: 

( I 
ff, k) 2 

WI -ff, 1 
m2 

~ -;;; 
-~3 

1 I 

W' =( ~ k) m2 

1 I m 2 3 

~ -~ 1 I 
3 r m3 

(66a) 

(66b) 

with ru = 1 and rn/rE ~ 1/3. For the case of large 23 rotation angles in 

the D, E sectors, as in fit 3 of section 5, the forms of the CKM and WI 

and W[ matrices are more complicated. While Vub/V:b can no longer be 

viewed as a prediction, there are no free parameters at all in WI and W[. 
If supersymmetry is discovered, this theory can be tested by the predictions 

(66a,b) for WI and W[. 

The U(2) theory of flavor presented in this paper makes definite pre

dictions for various processes, as will be discussed in a separate paper [25]. 

However, the U(2) symmetry is insufficient to determine the fractional mass 

splittings between the scalars of the third generation and the scalars of the 

lighter two generations, t:l.L and t:l.R for the left and right components re

spectively. If t:l.L = t:l.R = 1 in the down sector, then, in the SU(5) theory 

discussed in this paper, the gluino exchange contribution to f.K exceeds the 

experimental value by about a factor of 50, for average squark masses and a 

gluino mass of 1 TeV. Hence, in the down sector of a U(3) theory of flavor, 

it will be crucial to either suppress t:l.L and/or t:l.R, or to have milder flavor 

mixings to the third generation than given by ( 66a, b). 
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(a) 

(b) 

(c) 

Figure 1 

h 

h 

z 

X X X X 

Feynman diagrams which generate operators (9a,b,c) on 
integrating out the heavy x states. 
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Figure 2 

h 

X X 

Feynman diagram which generates the operator (1 0) if 
the flavor symmetry allows the interaction xx h. 
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Figure 3 
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Feynman diagrams which contribute to the Yukawa matrices of 
(53) and (54) at tree level, Ql and (ii); from integrating out Ta, 
(iii), (iv), (vii) and (viii); and Fa , (v) and (vi). 
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