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ABSTRACT 

The optical design of a varied line-space spectrograph for the multi-channel recording of NEXAFS spectra in a single 
"snapshot" is proposed. The spectrograph is to be used with a bending magnet source on beamline 7.3.2 at the Advanced 
Light Source (ALS). Approximately 20 volts of spectra are simultaneously imaged across a small square of material sample 
at each respective K absorption edge of carbon, nitrogen, and oxygen. Photoelectrons emitted from the material sample will 
be collected by an electron imaging microscope, the view field of which determines the sampling size. The sample also 
forms the exit slit of the optical system. This dispersive method of NEXAFS data acquisition is three to four orders of 
magnitude faster than the conventional method of taking data point-to-point using scanning of the grating. The proposed de­
sign is presented along with the design method and supporting SHADOW raytrace analysis. 

Keywords: NEXAFS, synchrotron optics, varied line-space gratings 

1. INTRODUCTION 

Every optical system can be described in terms of some set of parameters that define it--the distances between ele­
ments, their orientations, and shapes. The problem of geometrical optical design is to find a set of parameter values that will 
produce a desired image. Ideally the optical system can be modeled analytically, so that the optical behavior of the system can 
be expressed in equations that provide insight into the role of each parameter in the imaging of the system. A set of parame­
ter values can then be chosen based on these equations. Unfortunately, most complicated systems cannot easily be analyti­
cally solved--there are no equations and therefore no insight. In these cases it is necessary to turn to the raytrace; complex, 
numerical, and exact, but a black box as far as the designer is concerned. The design problem becomes one of tedious and 
time-consuming trial-and-error, best performed by computer. 

This paper will outline a design method for a three-element optical system consisting of two spherical mirrors and a 
plane varied line-space (VLS) grating, which is to be used for NEXAFS spectroscopy. The design problem poses a number of 
challenges. First, it is difficult to construct a simple analytical model that adequately models the optical system. This forces 
the use of a complex raytrace to model the optical behavior of the system. Second, the system is described by a large number 
of parameters, most of which affect the behavior of the system, and many of which are themselves related through other quan­
tities significant to the design. The raytrace allows only trial-and-error analysis, a time consuming task even when done by 
computer. Finally, the specifications call for many characteristics that are themselves somewhat mutually exclusive: large 
aperture size and small spot size, low dispersion and high resolving power. These contradictions force continual trade-off and 
compromise. 

Varied line-space grating systems historically arose from the development of exacting control systems for ruling en­
gines1· 2. An engine with electronic feedback control to guarantee exact placement of equally spaced grooves already has most 
of the necessary capabilities for ruling VLS gratings. VLS gratings have seen application in astrophysical applications for 
many years3. A very fruitful relationship has existed between the space program in the United States and two companies, 
Hitachi in Japan and Perkin Elmer in California. The principals have been T. Harada and T. Kita in Japan and G. Hirst in the 
United States. The main proponent and designer of VLS systems over the last decade, M. Hettrick, provided feedback so that 
excellent VLS gratings could be manufactured. 

VLS systems, which have been slow to be accepted by the synchrotron light source community in general, have 
been championed in the United States by the Center for X-ray Optics (CXRO)(Hettrick, Underwood, and Koike)4 at Lawrence 
Berkeley National Laboratory (LBNL), and in Japan by Hitachi (Harada and Kita)5-7. VLS systems are in place on the exper­
imental floor of the ALS8• 9. They achieve excellent resolving power, and also achieve significant cost savings since they 
stay in focus over a very wide energy range, and do not require moving slits to maintain focus. To our knowledge, a VLS 
system is operational at the Synchrotron Radiation Center in Madison Wisconsin 1 O, 11 , and another at the Center for 



Advanced Microstructures and Devices (CAMD) in Louisiana12. The gratings for these instruments were ruled by Hyperfine 
in Boulder, Colorado. The Richardson Grating Laboratory in Rochester New York (formerly Milton Roy Co.) also has the 
capability to rule VLS gratings, and has made them for internal evaluation. 

There have been concerns that ruled VLS gratings might not give the required stray light performance at soft X-ray 
wavelengths when used with a bright continuous source like a synchrotron bending magnet. Ruled VLS gratings share the 
same increasing ·stray light from random groove misplacement as ruled non-VLS gratings. Recently several vendors have 
pursued the construction of VLS gratings by holographic methods, which may address this concern.· Tayside Optical in the 
UK, Shimadzu in Japan, and Zeiss in Germany have interest in this method. If holographic VLS gratings can be produced 
with good "blaze" efficiency, it will help speed the acceptance ofVLS systems. 

This paper develops the design work in a manner to promote understanding for those facing a similar problem. 
Section 2 provides an overview of the optical system, its geometry, and the parameters that define it. Section 3 briefly out­
lines the optimization algorithm used in the work, the simplex method. In Section 4 the merit function is developed, includ­
ing the optical model and some important calculations. Section 5 discusses the choice of optimization variables, and Section 
6 explores the problems and compromises required in choosing a design. Section 7 presents a design and reviews its perfor­
mance, and Section 8 concludes the paper. 

2. THE OPTICAL SYSTEM 

NEXAFS spectroscopy is an atom-specific technique that probes the electronic structure of the selected atom near the 
valence level. Atomic specificity is achieved through selection of an absorption edge (e.g., K or L shell) of an atom of inter­
est. The technique is particularly useful in probing bonds to intra-molecular and, to lesser degree, extra-molecular neighbors 
(e.g., surface atoms). The method has special capabilities to detect the presence of a specific bond in a molecule and map the 
orientation of the molecule or functional group adsorbed on the surface or present in solids13. It can also tell which orbitals 
are involved in bonding to the surface. 

The conventional method for NEXAFS measurement uses synchrotron radiation from a tunable monochromator 
which falls on a sample after passing through a grid. The total or partial electron yield signals from the sample as well as 
from the grid are measured as the monochromator is scanned in small photon energy intervals through an atomic absorption 
edge of interest to obtain a NEXAFS spectrum over an energy width of about 15-30 eV. However, there are many advantages 
{specifically related to time-resolved spectroscopy) if it is possible to obtain a complete NEXAFS scan in one "snapshot". 
This paper describes a straightforward existing technology to achieve this goal. 

The idea is an extension of the method which has been used for decades in optical spectrographs. Gerritsen 14 has 
demonstrated in principle the technique of obtaining a complete NEXAFS scan in one shot using a laser-produced plasma 
source in the soft x-ray energy range. One exposes the sample with a well-defined, dispersed spectrum of radiation and uses an 
imaging electron microscope to detect the total yield electron signal, which will in tum spatially resolve the position from 
which the electrons are emitted. Each location (more precisely line) on the sample corresponds to excitation from a different 
photon energy. The resolution achieved by Gerritsen et al. using a laser plasma source was about 7 eV. The goal of this 
work is to develop a bending magnet branchline spectrograph, which when used in conjunction with an electrostatic electron 
microscope having a magnification of == 20, a resolution of== 5 micron, and a field of view of 0.5 rnm x 0.5 rnm will allow 
the implementation of this technique15. The spectrograph should maintain a resolving power of greater than l500 in the 
recording of a 15-20 e V wide "single shot" NEXAFS spectrum with == 1% statistics in about a millisecond in the soft x-ray 
energy range (280-550 eV). Although this technique presumes a homogeneous sample over roughly 0.25 rnm2, it is possible 
to treat inhomogeneous materials by rotating or oscillating the sample at an appropriate rate and time-averaging the signal. 
Finally, the spectrograph will be designed to provide these "snapshots" at each of the three K absorption edges of carbon, ni­
trogen, and oxygen by suitable rotation of the grating. 

The spectrograph will consist of a Kirkpatrick-Baez16 (K-B) mirror system in series with a plane VLS grating. The 
Kirkpatrick-Baez mirror configuration consists of two spherical or cylindrical mirrors whose normals are perpendicular, shown 
in Figure 1. 
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Source 

Ml 
Sample 

Fig. I. The three element system geometry and variables (side view) 

Distances between elements are measured along the pole ray. The distance from the source to the vertically focusing mirror 
(M2) is denoted rJ. The M2-grating separation is then r2, and the grating-sample distance is r3. 6 and R denote the mirror 
incidence angle and radius, respectively. The grating groove pattern is described by the polynomial 

(1) 

where n is groove frequency in grooves per millimeter, and x is the coordinate on the grating as measured from the element 
, pole in the dispersion plane. ao denotes the fundamental groove frequency, with aJ, a2, and a3labeling the VLS coefficients. 
a and f3 denote the incident and reflected angles, respectively, again as measured from the element normal. We follow the 
signed angle convention of Palmer and McKinney 17 where angles on the source side of the normal are negative. The grating 
coordinate is therefore taken as negative for points on the near side of the grating relative to the source and positive for points 
on the far side. The diffracted order of the grating is m, with inner orders corresponding to positive values of m, and vice , 1 
versa. K is chosen to denote the half deviation angle. 

The K-B grating configuration has a number of features that make it attractive for design and use. The first, and 
most important for this work is the almost complete separation of the vertical and horizontal focusing of the mirrors. This 
characteristic is crucial because it allows the horizontal and vertical design to be considered separately-instead of one three-el­
ement design problem in three dimensions, there is one one-element problem in one dimension (the horizontal mirror) and 
one two-element problem in one dimension (the vertically focusing mirror and grating). This not only allows the use of 
standard wavefront aberration theory in the design of the horizontal mirror, but more importantly it permits the use of only a 
two-dimensional raytrace in the design of the two-element system, a simplification vital to the computer implementation of 
the numerical design method. The rest of this paper will largely be concerned with the two-element design, as one-element 
design methods are well established. 

The other advantage of the Kirkpatrick-Baez system, held in this case over spherical grating systems, is that in the 
dispersion plane the focusing and dispersion are separated. This is useful if the grating is to rotate to scan different energies 
across a exit slit, or in this case to focus different energy ranges on a sample. In a spherical grating monochromator, disper­
sion and focusing are not separated, so that when the grating is rotated, the focal plane rotates with it, altering the focal char-
acteristics at the (stationary) exit slit18. This effect is eliminated in the K-B configuration. 

3. THE SIMPLEX ALGORITHM 

Since the two-element system cannot easily be described analytically, it must be modeled numerically. The numeri­
cal optical model leaves the designer with a black box into which parameter values are entered, and out of which comes an 
image profile. The simplest way to use this for design would be to select random sets of parameters and run the model, ex­
amining the results until a satisfactory one is found--simple, but tremendously inefficient. A more efficient method would be 
to choose a initial set of parameter values and then adjust them, comparing the results of each adjustment with preceding sys­
tems until a satisfactory one is found. This form of iterative trial-and-error is still simple, yet much more efficient than blind 
guessing. Better still, it is a problem ideally suited to solution by computer, and several algorithms already exist. The 
Simplex Method of Neider and Mead (reviewed by Caceci 19 and explained further by Palme~0) is perhaps the simplest, yet 
very effective. 

The simplex algorithm, also known as the amoeba algorithm to distinguish it from the simplex of linear program­
ming, was developed as a general solution to the problem of fitting curves to a set of numerical data. One often wishes to de­
termine a set of unknown parameter values in an equation such that a set of independent and dependent variable values satisfy 
a known relation. Most often an equation is known from theory (the known relation), and a set of numerical data from mea-
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surement forms the set of independent and dependent variables. The task is to find the set of parameters values such that the 
measured data lies on the theoretical function curve19. 

This is most commonly achieved by choosing a response surface, to be minimized, according to the following 
scheme. The parameters to be fit define a parameter space: M parameters define a space of M dimensions. An additional di­
mension is added to this space, which spans a function of the parameters, yielding a space of dimension M+ I. This function, 
called the merit function, describes a surface whose value depends on position in parameter space. The merit function/surface 
is generally chosen so that lower values correspond to better fit: this assignment is arbitrary, but easier to deal with than the 
opposite arrangement--perfect fit then gives a merit value of zero as opposed to infinity19• 20. 

The simplex itself is a polyhedron defined in theM-dimensional parameter space, comprised of a set of vertices with 
one more vertex than the number of dimensions spanning the space (M+l). The simplex is constructed by choosing a single 
point in parameter space (corresponding to a set of parameter values) as an initial vertex, and then building a polyhedron con­
taining M+ 1 vertices by adding vertices at a multiple of each of the set of unit vectors that spans the parameter space. Once 
the simplex is constructed, it calculates the response value corresponding to each of its vertices and moves in parameter space 
according to a carefully designed set of rules until it finds a set of parameter values that provide a minimum of the response 
surface. This procedure is exactly the same for optical design.· Some measure of optical quality is used as the response sur­
face, and the simplex is used to explore parameter space until a minimum is found. 

The simplex is well suited to our problem for a number of reasons. First, it is conceptually simple, and therefore 
fairly easy to code and test. Second, it uses only evaluations of the merit function, not its derivatives. The merit function 
needs only be single valued for all points of parameter space, not continuous or differentiable. Finally, the algorithm is eas­
ily controlled to prevent divergence. 

4. THE MERIT FUNCTION 

From the point of view of the designer, the simplex algorithm merely automates the trial-and-error process through 
evaluations of some generalized merit function. All of the optics, all of the modeling and all of calculations are hidden in the 
merit function, which returns a single number for use by the simplex. The choice of the merit function is therefore crucial to 
the final result. The simplex is relentless in finding local minima in the merit function, but this relentlessness is a two-edged 
sword: the simplex will find minima no matter how wrong the model is, and it will produce good quality systems no matter 
how mistaken a version of optics it is given. However, apply a raytrace like SHADOW21 or build that system, and a funda­
mental fact quickly surfaces: if the model represented by the merit function differs from reality in any way, then the real im­
age will reflect that difference. This gap between result and reality makes choosing a satisfactory design even more difficult, 
and must be guarded against with repeated use of independent testing, preferably with a quality commercial-grade raytracing 
program. Unfortunately the need for an accurate model of the optical system must be balanced with the computational burden 
that more accurate models impose, particularly given the nature of the simplex algorithm. An optimization may require sev­
eral hundred iterations of the simplex, each requiring ten or more calls of the merit function, a load which adds up quickly, 
even with a powerful PC or workstation. 

In order to understand how the model works, it is helpful to first explain how the optical system functions on an 
general, intuitive level. The NEXAFS experiment requires that roughly 20 e V be spread over a small material sample at the 
image plane. In this sense the system functions as a spectrograph--the grating is stationary, dispersing diffracted light over a 
length in the image plane. If a single K edge were to be treated, no further discussion would be necessary, however it is ob­
viously much more efficient to design the optics to be capable of recording more that one absorption edge. To do this one 
merely rotates the grating until the desired energy range is focused onto the material sample. In this sense, the system func­
tions as a constant deviation angle (CDA) monochromator, whose exit slit is defined by the finite field of view of the electron 
imaging microscope. This action is shown in Figs. 2 (a), (b), and (c). 

G --"\ G -- -

(a). Grating rotation for carbon edge. (b). Grating rotation for nitrogen edge. (c). Grating rotation for oxygen edge. 
Fig. 2. The dual nature of the grating. 
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To accurately model this system and insure a design which is truly optimized, this dual nature of the system must be 
considered. The model must rotate the grating appropriately for each K edge, then perform the raytrace across the source at 
each of a range of wavelengths before moving on to the next edge. This insures that the system will be optimized for all of 
the wavelengths involved and that the optimization will include by definition the effects that result from the rotation of the 
grating. Since this behavior is all hidden in the merit function, and since so many of the calculations necessary for design are 
also embedded here, it is convenient to review the structure of the merit function. The calculations in tbe merit function are 
divided roughly into three parts: first, those calculations depending on neither wavelength nor the rotation of the grating. 
Second, calculations that change which each rotation of the grating, but do not change over the range of wavelengths within 
each repositioning of the grating, and finally, those calculations that depend on wavelength. 

The radius of the vertically focusing mirror does not depend on wavelength, so it is calculated first. For this the mir­
ror can be treated as a single element, and wavefront aberration theory can then be used to calculate the radius such that the de­
focus will be zero at the sample. This is accomplished using the defocus aberration coefficient22 F2o = 0, where for a mirror, 

(2) 

The rotation of the grating is modeled by calculating the incident and diffracted angles for the grating, a and {3, at the 
central wavelength of each absorption edge. For this the constant deviation geometry is used, where 

and 

a=sin-1( aomA. )+K, 
2cosK 

/3 - . -1( aomA.) K -sm ---- . 
2cosK 

(3) 

(4) 

This calculation deteQDines the position of the grating, which also fixes the source-size limit and the reciprocal linear disper­
sion for the system. The reciprocal linear dispersion is defined as the change in wavelength seen in the image plane for an in­
finitesimal change in position in the image plane along the dispersion direction. This quantity serves both as a measure of 
how much the grating disperses light of different wavelengths, as well as a conversion factor for converting distances in the 
image plane to wavelength units18. It is given by the equation, 

(5) 

The source-size limit is defined as the image size in the focal plane of the source. It is a fundamental focusing limit which 
results from the magnification of the finite source by the system, and is defined by the equation, 

(6) 

where Gx is the r.m.s. source size in the vertical direction, Mm is the mirror magnification, and Mg is the magnification of 
the grating in the dispersion direction. 

For each position of the grating, the model samples a number of wavelengths across a range on either side of the 
central edge wavelength. At each of these wavelength samples, the source is modeled and then traced through the system. In 
order to ensure adequate correspondence between the optimizer and real systems, we model the synchrotron source as accurately 
as possible--experimentation with the model has shown this to be worthwhile even at a heavy price in computer run-time. 
This is accomplished by creating a sample of rays at each wavelength that is Gaussian in both dimension and angle. For both 
angle and spatial dimensions, the parameter values of the Gaussian function are calculated from the characteristics of an ALS 
bending magnet port. Each of the rays is then traced through the two-dimensional raytrace and its image coordinate calculated. 
The standard deviation of the ray coordinates is calculated, then converted from distance to wavelength units by multiplying 
by the linear reciprocal dispersion as calculated for the wavelength's central edge wavelength (Eq. 5). 
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The result is a list of r.m.s. image coordinate values, each corresponding to a wavelength sample across three edges, 
converted to spectral units. This list is sorted, and the worst one is returned as the merit value. This choice of optical merit 
becomes dear with a quick look at the equation defining resolving power, given by, 

A A 
R=-=---, 

.6...1. Dr W rm.s 
(7) 

where 8,. is the reciprocal dispersion and wrms is the full-width r.m.s. image size. The resolving power is the true measure of 
a dispersive system's optical quality, however it is a quantity for which larger values correspond to higher quality systems. 
The simplex as it is defined here finds minima, so to maximize the resolving power, the simplex is used to find the mini­
mum of the denominator--the full width r.m.s. spot size, converted to wavelength units. We denote this 

merit= D, wrm.sl . worst 
(8) 

The choice of the largest spot size across all of the wavelengths insures that the simplex will optimize the system "from the 
bottom up"--always changing the parameters so that the worst spot size gets better. Averages or other statistical quantities 
are not as well suited, primarily because they ignore the absolute nature of the resolving power requirement: an average can 
be quite good even though several of its components are not. · 

5. VARIABLES OF OPTIMIZATION 

The simplex algorithm allows complete freedom in choosing which system variables should be optimized, and this 
selection deserves some discussion. Like the merit function, the optimization variables must be chosen carefully to insure 
the simplex does not misunderstand the nature of the problem. If the simplex is given variables that are in any way related, 
secondary effects may arise in the merit function and lead to unpredictable behavior in the optimizer. Further, the simplex is 
a local optimizer--the smaller the number and scope of parameter values it is given, the more effective it is likely to be. The 
choice of optimization variables should therefore correspond as exactly as possible to the optical problem that the simplex is 
being called upon to solve. 

With this in mind, the system parameters are divided roughly into three separate categories: user selected parameters, 
selected "arbitrarily" by the designer; calculated parameters, calculated from user selected parameters; and optimizer parameters, 
those parameters which will be used by the simplex. For this system, the designer-selected parameters are chosen to be r 1, 
r2, r3, 6, K, ao, and the diffracted order m. From these the calculated parameters can be found, consisting of a, /3, and R. 
Finally, the grating groove pattern coefficients aJ, a2, and a3 are chosen as the variables of optimization. 

This division of parameters is based primarily on the premise that for each arrangement of the system (i.e. for each 
set of rJ, r2, r3, 6, K, and ao) there exists a set of grating groove pattern coefficients that best corrects the aberrations of that 

system22. Since each arrangement will result in different aberrations and therefore a different set of grating coefficients to cor­
rect those aberrations, this division is quite natural. r3, K, and ao are fixed for another reason as well: each of these affects 
the reciprocal dispersion, which is a important design specification, so these parameters must remain in the designer's direct 
control. Finally, the calculated parameters: again a and f3 fall naturally into this category based on the nature of the optical 
system. The decision to focus the mirror at the sample is based on the need to reduce the mirror aberrations as much as pos­
sible. Other designers have manipulated the mirror radius to decrease the magnification of the source even furthe~, but un­
fortunately this technique is not possible in this case, as the requirement for a large aperture will not allow sufficient correc­
tion of the resulting increase in mirror aberrations. 

For all its intuitive basis, this division of variables does carry some complication. Although it is true that for each 
arrangement there probably exists a set of grating coefficients that will best correct the mirror aberrations of that arrangement, 
it is also true that different placements will themselves affect the spot size and resolving power. The optimizer has simplified 
the design problem to the choice of placement and orientation of the elements, but which such placement is best? Although 
again the optical model is of no help except for trial and error, this choice can be made using some experimentation with the 
optimizer, and some intuition about the dispersion and the source-size limit. 
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6. CHOOSING A DESIGN 

The secondary optimization that lies in the selection of a system layout is more complicated than that of the grating, 
largely because of the effects that result from relations between the parameters involved. Since resolving power is perhaps the 
most important measure of the quality of a dispersive optical system, it is a natural place to begin our analysis. Recall that 
the resolving power is defined by the equation, 

A A 
R=-=--. 
~ 8rwrms 

(9) 

The wavelengths are fixed by the experiment, leaving two factors which directly control the resolving power: the full-width 
r.m.s. spot size and the reciprocal dispersion of the grating. 

The r.m.s. spot size results from the convolution of two separate quantities, the-source-size limit and the optical 
aberrations Of the system. The source-size limit can be analytically expressed, and although the aberrations cannot, experience 
with the optimizer can be used to draw some general conclusions so that both may be analyzed. Combining this analysis 
with the specifications from the NEXAFS experiment, it is possible to eliminate large areas of parameter space, an effort well 
worth the reduction in computer run-time-. 

The source-size limit results from the finite dimension of the synchrotron source, magnified by the system, and is 
composed of three separate parts: the actual size of the source, the magnification of the mirror, and the magnification of the 
grating (Eq. 6). The source itself is fixed, leaving the element magnifications as the only variables. Clearly a small source­
size limit requires that the system demagnify: the source-size limit will be small when the combined total magnification 
MmMg is small. 

Despite the lack of a satisfactory two-element theory, repeated runs and experimentation with the optimizer allow us 
to make three generalizations about the aberrations of the system. First, the aberrations appear to reach a minimum when the 
mirror magnification approaches unity. Second, aberrations terms are strongly coupled to the aperture size of the system. 
Third, aberrations increase with incidence angle, as measured from the element normal. The first conclusion is of primary 
concern, because it reveals a fundamental conflict between the source-size limit and the optical aberrations. Strong mirror 
demagnification provides a small source-size limit but large aberrations, and near unity mirror magnification provides smaller 
aberrations but a large source size limit. This conflict is further complicated by the magnification due to the grating. Since 
the design will require determining which magnification will optimize this conflicting relationship between source-size limit 
and aberrations, it is helpful to explore the system magnification in more detail. This treatment is not meant to be exhaus­
tive, but rather serves to introduce the issues in selecting a design. 

The magnification M of the system is the result of the combined magnification of the separate elements, and is 
given by M = MmMg. The mirror magnification is given by, 

(10) 

and the grating magnification is defined as, 

M=~~ 
m rg cosf3 · 

(ll) 

The magnification of the mirror depends only on the relative position of the image and object. Since we have stipulated that 
the mirror focus at the sample, the grating image and object distances are equal and their ratio unity, so only the ratio of 
cosines are left. The grating magnification therefore depends exclusively on the rotation of the grating, which is in turn in­
fluenced by wavelength, the diffracted order, and the groove frequency (Eqs. 3, 4). For positive (inner) diffracted order, large 
groove frequencies translate into a larger a and smaller /3. Since both are near grazing, the ratio of their cosines becomes 
smaller, in turn bringing down the grating magnification and the total system magnification. The opposite happens for nega­
tive (outer) orders. In this case higher groove frequency translates into smaller a and larger f3 values, which increase the grat­
ing magnification and total system magnification. These changes in magnification will affect both the aberrations and the 
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source-size limit, and it is probable that there exists some set of user-selected parameters that correspond to a value of the 
magnification for which both the source size-limit and aberrations are minimized. 

Unfortunately, matters are complicated further by the second component of the resolving power, the reciprocal dis­
persion. The reciprocal linear dispersion converts the spot size to wavelength units, and is given by Eq. 5. For high resolv­
ing power it is necessary that the reciprocal dispersion be small. The diffracted order will be either positive or negative one, 
and while it has no explicit effect on the reciprocal dispersion, it does implicitly through {3. The grating-sample distance r3 
appears only explicitly in the denominator--large separations translate into higher resolving power. The groove frequency ap­
pears not only explicitly in the reciprocal dispersion, but implicitly in f3 as well: for positive diffracted orders, larger groove 
frequencies translate into smaller values of {3, resulting in turn in an increase in cos/3 and the reciprocal dispersion. 
Conversely, for negative diffracted orders, larger groove frequencies translate to larger values of {3, smaller cosf3 and larger re­
solving power. However, regardless of diffracted order, this relatively minor effect is offset by the explicit appearance of the 
groove frequency in the denominator--larger groove frequencies therefore translate into smaller reciprocal dispersion, and in 
tum higher resolving power. 

The final layer of complication is added when the specifications for the system are considered: low dispersion, large 
aperture, high efficiency. Each of these presents a dilemma for the designer. Low dispersion is necessary to meet the de­
mands of the detector, yet this comes directly at a price in resolving power. A large aperture will collect more light and pro­
vide for later use of off-axis polarizations, but at a cost in aberrations. Efficiency in x-ray optics means grazing incidence, 
again at a price in aberrations. 

Despite the largely unknown relation between the system magnification and its aberrations, it should be possible to 
find a value of the magnification that represents an optimum balance between the source-size limit and the aberrations. 
Ideally we would use the following program to find this optimal value: 

1. Determine the set of rJ, r2, r3, ao, m values that result in a system magnification that best balances the source-size limit 
and the optical aberrations. 

2. Determine the best ao, r3, and m values that will maintain the balance of (1) and also find the optimal compromise be­
tween the low dispersion required and the high dispersion needed for high resolving power. 

3. Determine the largest system aperture and largest incidence angles that will allow (I) and (2). 

To explore all of the possible solutions of this problem represents the search of a prohibitively large area of parame­
ter space, complicated by the many relations between parameters. To simplify the problem, we choose parameter values ac­
cording to the following scheme: 

a Reasonable values for the aperture, the incidence angles, and the source-mirror distance rJ are chosen from consideration of 
the specifications. 

b. The groove frequency ao and grating-sample distance r3 are chosen to provide a reasonable dispersion for the detector view 
field. 

c. The mirror-grating separation r2 is optimized to find the mirror magnification which provides the best balance of source­
size limit and aberrations. 

The first set of parameters (a) are independent of both the magnification conflict and the dispersion conflict, so they 
are fixed to simplify the problem. The second set (b) represents the primary control of the dispersion of the system. Since 
this is both an important specification and optical quantity, a set of values is chosen based on the analysis above. This leaves 
the mirror-grating separation. Since this parameter is independent of most other specifications (notably dispersion) it provides 
an excellent way to control the magnification of the system. Trial-and-error in this case requires optimizing the grating with 
the simplex for each choice of r2, a tedious task that immediately suggests computer solution. The simplex is again a natural 
choice, simple to implement although it now represents a major computing burden. In optimizing the mirror-grating separa­
tion, each merit function call involves the simplex optimization of the grating coefficients outlined in Section V. However, 
although the optimizer may take many hours to run, it is still faster and simpler than manual methods. This combination of 
elimination and optimization reduces the amount of blind trial-and-error significantly, but it is still necessary to adjust both 
the aperture size and the groove frequency to fine-tune the dispersion and resolving power of the system. 
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7. THE DESIGN 

For this optimizer run, five energies were sampled across a 30 e V range at each absorption edge. 441 rays (21 spa­
tial x 21 angular) were sampled across the Gaussian source at each wavelength. The initial simplex vertices were chosen to 
be {Q}= {3000} and {aJ, a2, a3} = {0, 0, 0} for the magnification and grating optimizations, respectively. The grating opti­
mizer was set to terminate after 500 iterations and the magnification optimizer after 150, resulting in a run-time of some 14 
hours. The program is implemented in C++ and was run on a Macintosh PPC noons. T}Je optimized design is given be­
low. 

Optical System Parameters: 

r1 (Iran) : 14000.0000 
r2 (mm): 4152.4414 
r3 (mm): 800.0000 
R (mm): 139801.5713 
m: 1 
K (deg): 87.0000 

Wavelength Data: 

Edge (eV): 
PO (mr): 
Energy (eVl 

276.0 
283,5 
291.0 
298.5 
306.0 

Edge (eV): 
PO (mr): 
Energy (eVl 

392.0 
399.5 
407.0 
414.5 
422.0 

Edge (eV): 
PO (mr): 
Energy (eVl 

522.0 
529.5 
537.0 
544.5 
552.0 

291.0 
0.37506 
SOot (mml 

0.005784 
0.005658 
0.005539 
0.005428 
0.005323 

407.0 
0.32522 
SOot (mrnl 

0.004456 
0.004506 
0.004561 
0.004615 
0.004669 

537.0 
0.29807 
SOot (mrnl 

0.006930 
0.006980 
0.007029 
0.007078 
0.007126 

theta (deg) : 
aO (g/mrn): 
at (g/mrn2 l: 
a2 (g/mrn3): 
a3 (g/mrn4 l: 

87.0000 
900.0000 
2.2463e+OO 
4.5721e-03 
7.2351e:.o6 

Alpha (deg): 89.09948 Beta (deg): 
Target (mrn): 2.1348 Accept (mr): 

84.90053 
0.500 

R. Power s. Size (mrnl S.S. Limited R.P. 

3145.42 0.002377 7654.76 
3130.37 0.002377 7452.25 
3114.95 0.002377 7260.18 
3099.20 0.002377 7077.77 
3083.15 0.002377 6904.29 

Alpha (deg): 88.50094 Beta (deg): 85.49907 
Target (mrn): 1. 2361 Accept (mr): 0.500 
R. Power s. Size (mrnl S.S. Limited R.P. 

3255.85 0.004481 3237.89 
3159.52 0.004481 3177.11 
3064.19 0.004481 3118.56 
2973.45 0.004481 3062.13 
2887.03 0.004481 3007.71 

Alpha (deg): 88.37553 Beta (deg): 85.86248 
Target (mrn): 0.7723 Accept (mr): 0.500 
R. Power s. Size (mrnl S.S. Limited R.P. 

1710.06 0.006055 1957.20 
1673.81 0.006055 1929.48 
1638.88 0.006055 1902.53 
1605.20 0.006055 1876.33 
1572.71 0.006055 1850.83 

The first section of the output represents the optimized set of system parameter values, and the second set summa­
rizes the optical performance of the optimized system across all of the energy samples. The quantities displayed at each edge 
are as follows. Edge refers to the central edge energy used for each energy range. Alpha and Beta are the grating incidence and 
diffraction angles, respectively, at each edge energy. PO denotes the r.m.s. angular width of the synchrotron source at each 
edge energy. ·Target refers to the linear distance in the image plane over which 18 eV is dispersed. Accept is the full-width 
angular acceptance of the system. At each energy within the edge the r.m.s spot size (Spot), resolving power (R. Power), 
source-size limit (S. Size), and source-limited resolving power (S. S. Limited R.P.) are displayed. In both cases the spot size 
refers to the r.m.s. width, while the resolving power is calculated from twice the r.m.s. image width. 
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A few calculations remain. First, the horizontal mirror must be added to the design. The horizontally focusing mir­
ror is·placed 7000 mm from the source, inside the ALS shield wall. The mirror radius is calculated to correct the horizontal 
defocus at the sample, according to Eq. 2, yielding a radius of R = 168701.651 mm. Finally, the element lengths must be 
calculated to give the acceptance chosen in the design. For accuracy this is done using the SHADOW element footprints. 
The horizontally focusing mirror is 1000 mm long; the vertically focusing mirror is 137.6 mm long, and the grating is 74 
mm long. 

To verify the validity of the design, we use SHADOW to ray trace the complete three-dimensional system. In Fig. 3 
(a - i) we show the spot diagrams in the image plane at 3 energies for each edge. 
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Fig. 3. SHADOW plots. 2500 rays each plot, units are centimeters. 
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The SHADOW plots reveal not only the shape of the image at each wavelength but also the dimensions of the im­
age in the horizontal direction and the dispersion of the system. The 30 e V range is spread over approximately 3.57 mm at 
the carbon edge (Fig. 3 [a- c]), 2.06 mrn at the nitrogen edge (Fig 3. [d-.f]), and 1.29 mm at the oxygen edge (Fig. 3 [g- i]). 
At all wavelengths the horizontal spot size is roughly 2 mm, although the r.m.s. value is much smaller. These dimensions 
are larger than ideal for the electron imaging system, but they are an inevitable result of using a single grating for a wide en­
ergy range. 

Although our source model is approximately Gaussian in both space and angle, it does not yet match the accuracy of 
SHADOW's more complete synchrotron source model. We use a two-dimensional model with few rays to limit computer 
run-time, while SHADOW uses a complete three-dimensional model with many more rays and a more accurate Gaussian dis­
tribution. In order to insure that the resulting image error will not adversely affect the choice of a design, we have slightly 
modified our choice of source distribution so that our effective r.m.s. widths will be larger than those of SHADOW: when 
the optimizer differs significantly from SHADOW, the SHADOW raytrace will produce a smaller spot size and higher resolv­
ing power. At the carbon edge (291 eV) the error in the r.m.s. spot size is -23.00%, at the nitrogen edge (407 eV) it is 
3.68%, and at the oxygen edge (537 eV) it is 1.26%. The error at the carbon edge is significant, but again the <?ptimizer errs 
conservatively. We plan future adjustment of the limited ray distribution in the model to better match the full raytrace. 

8. CONCLUSION 

We have reviewed the assumptions and procedures used in the optimization of a hybrid monochromator/spectrograph 
VLS system for NEXAFS spectroscopy with particular attention to selection of variables of optimization. Previous VLS 
systems have been of strictly either spectrograph or monochromator geometry, except that of Koch et al24. The system pre­
sented contains the mirror-grating separation (r2) corresponding to an optimal value of the mirror magnification in the conflict 
between aberrations and the source-size limit given the choice of aperture size and grating dispersion. For this choice of r2, 
an optimal set of groove pattern coefficients {a], a2, a3} has also been found. Even though VLS systems in general offer 
good focusing over a wide wavelength range, the design problem becomes more difficult and interesting when squeezing an 
entire NEXAFS snapshot onto a small, (assumed) homogeneous sample, and insisting that one grating focus all three edges 
by rotating to three "click stop" positions. Despite these challenges, the method presented produces excellent systems. 
Further, this method is easily applied to other energy ranges--the use of multiple VLS gratings, each optimized for several 
edges, should allow simultaneous recording of "entire edge" NEXAFS spectra over the full soft x-ray range. 
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