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Abstract 

In this paper, we present a fast technique for computing both paths of minimal cost, 
and minimal geodesics on surfaces. The technique exploits the fast marching method 
introduced in [15, 16] for solving the Eikonal equation and its extension to general 
static Hamiltonian-Jacobi equations given in [1]. The solution to the appropriate static 
Hamiltonian provides the arrival time of the shortest path, and is then coupled to high 
order ordinary differential equation solvers to construct the path itself. The resulting 
technique is an O(N log N) procedure, where N is the total number of grid points. 
The technique works without change in any number of space dimensions. We provide 
upwind approximation schemes for the relevant Hamiltonian, and a series of examples 
of the construction of such geodesics, as well as additional comments about the use of 
such schemes in computing general distance maps and shape-offsetting. 

*This work was supported in part by the Applied Mathematical Science subprogram of the Office of 
Energy Research, U.S. Department of Energy, under Contract Number DE-AC03-76SF00098. 

IIMail-stop 50A-2152, Lawrence Berkeley Laboratory, University of California, Berkeley, CA 94720 Email: 
ron@csr.lbl.gov FAX: (510)486-5401 Tel: (510)486-5453 

**Department of Mathematics and Lawrence Berkeley Laboratory, University of California, Berkeley, CA 
94720 Email: sethian@math.berkeley.edu 

1 



1 Introduction 

In this paper, we present a numerical technique to calculate two minimal path problems. 
The technique is based on the fast marching technique of Sethian [15, 16] for constructing 
the solution to Eikonal equations and its extension to general static Hamiltonians given by 
Adalsteinsson, Kimmel, Malladi and Sethian[1]. 

The first problem may be stated as follows. Given a cost function F(x1,x2 , •• ,xM), and 
a starting point A E lRM, find the path 1(t): [0, oo) ~ lRM from A to any point BE lRM 
which minimizes the integral 

LB F(!(t))dt, (1) 

where t is the arclength parameterization of /i namely bt I = 1. Vile shall refer to this as 
minimal cost path. The second problem is related: Given a surface z(xb x 2, .. , XM ), find the 
shortest path, known as a minimal geodesic, between two points (A, z(A)) and (B, z(B)) on 
that surface. 

In this paper, we use the fast marching technique to construct the solution to both 
problems. Coupling this technique to a high order ordinary differential equation solver 
results in a method for constructing such paths with a computational complexity of order 
O(N log N), where N is the total number of grid points used to discretize the domain lRM. 
The algorithm works in any number of space dimensions; for ease of discussion, we limit 
ourselves to lR 2 • 

2 Underlying Equations 

2.1 Equation for the Minimal Cost Path 

Given the cost function F(x,y), and a starting point A, let u(x,y) be the minimal cost 
required to travel from A to the point ( x, y), that is 

l
(x,y) 

u(x, y) =min F(!(t))dt, 
"Y A 

(2) 

with lit I = 1. The level set u = C is the set of all points in lR2 that can be reached with 
minimal cost C, and the minimal cost paths are orthogonal to the level curves, hence we 
have 

I \lui = F(x, y ). (3) 

This is a particular simple static Hamiltonian known as the Eikonal equation, and our goal 
is to first construct u(x, y) in all of JR?. Then, given a point B in lR2

, explicit construction of 
the shortest path comes from back propagation from B to A via the solution of the ordinary 
differential equation 

g1ven X(O) = B, (4) 

until we reach the starting point A. 
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2.2 Equation for Geodesics on Surfaces 

2.2.1 Construction of Stationary Hamiltonian 

The construction of the appropriate static Hamiltonian for geodesics on surfaces is a little 
more complex. A geometric perspective based on the Osher-Sethian level set formulation 
[13] was developed in [8]. Here we follow that discussion. 

Suppose we are given a scalar function u(x,y). The level sets of u are dtfined by C(t) = 
{(x,y): u(x,y) = t}. Now, let us consider the level sets C(t) as a family of planar curves; 
thus, the t level set is given as C(t). The planar normal for each of these curves may be w~itten 
as ii = V'ujj\i'uj. The change of u in this normal direction is dujdii = (V'u, V'u/IV'ui) = jV'uj, 
and by the chain rule we have 

C 
1 .... 

t = IV'uin. (5) 

Thus, we have cast the level sets of u as a time-dependent partial differential equation 
describing the evolution of the level sets in timet. Summarizing, there are two ways to look 
at the level curves; either as static curves corresponding to different constant values t of u, 
or as a parameterization by timet of the evolution of an initial curve C(t = 0). Furthermore, 
we may rewrite the above expression as an Eikonal equation in the form 

IV'ul = _!_ii. 
Ct 

(6) 

Recall that our goal is to construct the shortest path on a surface z( x, y) from an initial 
surface point (A, z(A)) to any surface point (B, z(B)). Following a geometrical interpreta
tion, imagine the propagation of the initial surface curve £(t = 0) along the surface, where 
£(t = 0) corresponds to the single point (A, z(A)). Furthermore, imagine that this curve 
propagates with uni~ speed along the surface. Then the location of the curve at timet will 
correspond to the set of all points of distance t from the point (A, z(A) ), and again, the 
shortest path will correspond to back propagation along the surface vector field orthogonal 
to the surface curves £. 

These surface curves may be constructed in a different way as follows. Since the surface 
z(x, y) is a graph, there exists some speed function F which provides the corresponding 
motion of the surface curves projected onto the xy plane.' That is, 

Ct = F(~z, ii) ii, (7) 

where ii is the unit normal vector of the planar curve C, and z(x, y) is the given surface. 
This is the result of projecting the evolution of the equal geodesic distance contours from 
the surface to the xy coordinate plane. Our goal is to determine this speed function F. 

We first note that the evolution on the surface itself before the projection is given by 

(8) 

where, using the notation (p, q) = \7 z, the surface normal is N = ( -p, -q, 1) / v'1 + p2 + q2 , 

and f is the tangent to the current equal geodesic distance contour£. This evolution can 
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be used to compute the geodesic distance map from a given point or a set of points on the 
surface z(x, y). Thus 

1 ~ ~ _ = (II o N x T, n), 
F("V z, n) 

where II o (x,y,z) = (x,y) is the projection operation onto the xy coordinate plane. 
~ ~ ( -u u qu - pu ) 

In the next section we compute the tangent T to beT= J y, x' x Y • We 
· u; + u~ + (qux- puy)2 

also use the relation n = "Vufi"Vul. Again, solving for I"Vul, we have the static Hamilton 
Jacobi equation of the surface distance map u given by 

2 - ~ 2 
i"Vul = F("V z, n) . 

The result is given by u = 0 at A as boundary conditions to the solution of 

u;(l + q2
) + u;(l + p2

)- 2pquxuy 
~~~~--~~~~--~--~=1. 

1 + p2 + q2 

This results in the following Hamiltonian 

(9) 

(10) 

Again, our goal is to find the surface u that solves the static Hamilton Jacobi equation given 
by H(ux,uy) = 0, with the bo'undary conditions u = 0 at A. In this case H(v,w) may be 
checked to be always convex. 

2.2.2 Back Propagation to Construct Geodesic Path 

Finally, we explicitly show how to compute f, and how to construct the geodesic by solving 
the ordinary differential equation 

Xt = -II 0 (N X T) given X(O) = B, (11) 

fl is given as a function of "V z, and f is obtained by back projecting the-level set of u 
onto z and then computing the· tangent. Here, X is the projection of the geodesic on the xy 
coordinate plane. 

Since the level sets of u a~e the projections of the equal geodesic distance contours, we 
can back project the tangents of those contours back to the surface and obtain f. The 
tangent of the level sets of u is given by ( -uy, ux), or 

II of= c( -uy, Ux)· 

Writing the tangent as f = (T1 , T2, T3 ), we have (Til T2) = c( -uy, ux)· We also know that 
f is in the tangent plane, and thus orthogonal to fl. Therefore, 

(f,il) = o. 
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Using the previous expression we may write 

T3 = c(qux- puy), 

and compute the constant c by normalizing f to be: 

j = ( -uy, Ux, qux- puy) . 

Ju; + u~ + (qux- puy)2 

We can now compute the vector product 

jJ X j _ (ux(1 + q2)- pquy, uy(1 + p2)- pqux,PUx + quy) 

- .j(l + p2 + q2)(u; + u~ + (qux- puy)2) ' 

and conclude with the back projection evolution on the coordinate plane: 

X _ ( Ux(1 + q2)- pquy, uy(1 + p2)- pqux) 

t-- .j(l + p2 + q2)(u; + u~ + (qux- puy)2). 
(12) 

Thus our goal is two-fold; first to solve the static Hamiltonian for the function u given 
by Eqn. (10), and then to solve the ordinary differential equation given by Eqn. (12). :.n: 

3 Numerical Approximation 

In this section, we discuss schemes to approximate the above equations. 

3.1 The Fast Marching Method 

In [15, 16], the fast marching method for the Eikonal equation was introduced. This method 
forms the core of our algorithm, and we now briefly review it. 

The simplest example involves solving the Eikonal equation 

IV'ul = F(x, y), 

in which F(x,y) > 0. It may equivalently be written as 

IV'ul2 = F(x, Y?, 
for which the Hamiltonian is given by 

H(v,w) = v2 + w 2
- F 2

• 

(13) 

With the simple boundary conditions u(x0 , y0 ) = 0, a 'smooth' surface u that satisfies 
H(ux,uy) = 0 is consideredto be the desired result. 

It was shown in [16] that this equation may be efficiently solved on a rectangular grid 
by guaranteeing that the update of the grid points is done in a monotonic fashion, from the 
boundary conditions "outwards". This way, once the grid point with the smallest u value 
is selected, there is no way that it might be updated again. The goal then is to build a 
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consistent approximation to the above gradient which is upwind/monotone in this sense. 
We now do so. 

Define the backward and forward x partial derivative approximation of ui,j = u( i.6.x, j .6.y) 
to be Di/ = (ui,j- Ui-I,j)j.6.x, and ntx = (ui+I,j- Ui,j)j.6.x, and similarly for y. Several 
consistent approximations to the above gradient are possible, for example, the scheme used in 
the level set approximation given in [13]. Let us use the roots that result from the following 
consistent numerical approximation given in [14] for Equation (13), namely 

(14) 

Our goal is to construct values Ui,j on the grid which satisfy this difference approximation 
and initial starting value u = 0 at one grid point ( io, j 0). 

The fast marching method uses a thin band of points, known as NarrowBand points, 
which lies in between Alive points where the value of Ui,j has been correctly computed and 
FarAway points which have not yet been considered. The essential idea is to systematically 
sweep through the grid in an upwind fashion, converting points from Narrow Band to the 
Alive, and adding new points from Far Away into the Narrow Band points. Choosing the 
smallest element of the N C!-rrowBand set for conversion to an Alive point insures that the 
grid of points is systematically considered in an upwind fashion; use of min-heap algorithm 
provides an efficient way of locating this minimum. For complete details, see [1, 16]. 

Algorithmically, the fast marching method can be written as: 

1. Initialize 

(a) (Alive Points:) Initialize Alive to be an empty set. 

(b) (NarrowBand Points:) Let NarrowBand= {(io,jo)} and set Ui0 ,j0 = 0. 

(c) (Far A way Points:) Let Far Away be the set of all the rest of the grid points 
{(i,j): (i,j) =J (i0 ,jo)}, set Ui,j = oo for all points in FarAway. 

2. Marching Forwards 

(a) Begin Loop: Let (irnin,jmin) be the point in NarrowBand with the smallest value 
for u. 

(b) Add the point ( irnin, jrnin) to Alive; remove it from Front. 1 

(c) Tag as neighbors any points ( irnin-1, jrnin), ( irnin+ 1, jrnin), ( irnin, jrnin-1 ), ( irnin, jrnin+ 
1) that are not Alive; if the neighbor is in Far Away, remove it from that set and 
add it to the Narrow Band set. 

(d) For each neighbor (i,j) compute ui,j as follows: 

• Let a= min(ui-I,j,Ui+I,j), b= min(ui,j-I,ui,j+I), F = J1/Ii~j -1. 

• IfF> Ia- bl then let Ui,j =(a+ b + J2F2 - (a- b) 2 )/2. 
• else let Ui,j = F +min( a, b). 

(e) Return to top of Loop. 
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Figure 1: A geometric description of finding the solution to the numerical approximation of 
the Eikonal equation, see text. 

The process of finding the roots for Equation (14) may be described geometrically. In 
Figure 1 we consider the circle to be the set of points at which H(v, w) = 0, in the vw plane. 
For every a= min(ui-l,j,Ui+I,j) and b = min(ui,j-I,Ui,i+I) we search for Ui,i that solves 
Equation (14) along a line in the vw plane. IfF > Ia- bl, like a= a1 and b = b1 in Figure 
1, then this line is defined by 

(v(t),w(t)) = (t- a, t- b). 

This is the diagonal dashed line starting at ( -ab -b1). The solution corresponds to the value 
of~ at the intersection with the circle after intersecting the v and w axis. These intersections 
correspond to the restriction on t to be larger than a and b. 

In case a- b > F, like a= a2, b = b2 , the search for the solution is the intersection of 

(v(t), w(t)) = (t- a, 0), 

with the circle, i.e. at t = a+ F. For the last case b- a > F, the solution is the intersection 
of the vertical curve (0, t- b) with the circle at t = b +F. By observing this geometric 
representation of the numerical scheme, it is easy to verify that in this simple case there 
always exists a solution. 

An important observation is that the computational complexity of this approach is 
O(NlogN) where N is the number of grid points. It may be realized by using a min-heap 
data structure for the NarrowBand list of points (see (1]). 

Note also that for the simplest selection o1 Fi,j = 1, u is the Euclidean distance function 
(possibly from a sub-grid resolution initial curve [9]) obtained in a very efficient way. The 
level sets of u may be obtained by applying a simple O(N) contour finder procedure. These 
are actually the offset curves of the initial contour, and the algorithm thus provides an 
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extremely efficient way to construct shape offsets in computer-aided-design without need to 
c.onsider splitting, merging and singularities in the offsets. 

3.2 Extension of Fast Marching Method Solving Static Hamilto-. 
n1ans 

In [1], the above technique was extended to a wide class of static Hamiltonians. Given the 
Hamiltonian for distance map on surfaces, namely 

(15) 

To approximate this Hamiltonian, we use the scheme proposed in (8], i.e. the minmod 
approximation for uxuy, and max(Dit, -Dtx, 0)2 for u;. Then, select the largest root, 
and verify that it is larger than those neighboring grid points that took active part in it 
computation. i.e. the u values at the neighboring points that result the selected quadratic 
equation are smaller than the selected root. 

More precisely, we need to solve u that satisfies the following static HJ equation: 

or in a more compact form 

au; + bu; + CUxUy = d 

(for a, b, d > 0). Applying the max(D-, -D+, 0) differential approximation for the u; .and 
u~, one may alternatively write 

max(Di,j, -DtJ, 0) max(ui,j- Ui-1,j,Ui,j- Ui+1,j,0) 

max( ui,j- min( Ui-1,j, Ui+I,j), 0). 

Denote by mx = min(ui-1,j, Ui+I,j), and similarly for mY = min(ui,j-b Ui,j+1). We are 
searching for Ui,j = r that is. the solution to a quadratic equation and larger than those 
points that generated it. We thus check the following 7 cases: 

1. a(r- mx)2 + b(r- mY)2 + c(r- Ui-1,j)(r- Ui,j-1) = d, 
for r that satisfies mx,mY,ui-1,j,Ui,j-1 < r. 

2. a(r- mx)2 + b(r- mY)2 + c(ui+1,j- r)(ui,j+I- r) = d, 
for r that satisfies mx,mY,ui+I,j,Ui,j+1 < r. 

3. a(r- mx)2 + b(r- mY)2 + c(r- Ui-I.,j)(ui,j+I- r) = d, 
for r that satisfies mx, mY, Ui-1,j, Ui,j+I < r. 

4. a(r- mx)2 + b(r- mY)2 + c(ui+1,j- r)(r- Ui,j-1) = d, 
for r that satisfies mx,mY,ui+I,j,Ui,j-1 < r. 

5. a(r- mx)2 + b(r- mY)2 = d, 
for r that satisfies mx, mY < r and { Ui-1,j, Ui+I,i < r or Ui,j-1, Ui,j+I < r}. 
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6. r = mx + ~' where r < mY. 

7. r =mY+ jdib, where r < mx. 

The largest r is selected as the desired solution. 
Other schemes are possible; the goal is a consistent scheme that possesses the monotonic 

updating property that forces correctness of the algorithm results by restricting the computed 
value to be larger, than those that generate it. 

3.3 Computing the Back Trajectories 

Once the solution Uij is computed, our goal is now to construct the actual geodesic from this 
distance map. Let us write our trajectory equation (12) in the abstract form 

(16) 

For numerical implementation we use both second order Runge-Kutta (the midpoint 
method) and Heun's method to integrate this ordinary differential equation. Bilinear inter
polation is used to compute V at the current cell defined by the four closest grid points. 
This way \i'u is computed at the exact position form its central derivatives approximations 
at the grid points. Heun's method seems to yield better results near sharp corners. 

4 Results 

4.1 Minimal Geodesics 

We present two examples of using the above back propagation technique to track minimal 
geodesic on two surfaces: In Figure 2, the surface is given by z(x,y) = 0.4(1- e-2(x

2
+Y

2
)-

0.75e-25((x-o.n)
2
+(y-o.n)

2
)), and in Figure 3, z(x,y) = 0.25sin(27rl.5x)sin(27rl.5y) both are 

defined on the unit box [-0.5, 0.5) x [-0.5, 0.5]. Here, we used the second order Runge-Kutta 
algorithm for the integration. 

4.2 The Eikonal Case 

Here we apply the fast marching scheme to problems involving minimal cost functions and 
paths of minimal cost in IR?. As an example of our technique applied to the problem of 
finding minimal cost paths with sharp changes of the cost function, Figure 4 shows minimal 
paths in a two-valued domain. A cost faction is defined over the domain with a value of 1 
for i < 60 and 0.2 for i > 60. By solving the Eikonal equation with a source point located at 
(i,j) = (30, 10), we first compute Ui,j· Then using Heun's method we back track the minimal 
paths from 28 different destination locations. One may observe the way these paths obey 
the Snell Law in optics as the 'light rays' change their course as they cross the interface line, 
following Fermat's Principle for light rays in an isotropic medium. , 

A smoother cost function is used in Figure 5. Here, F(x,y) = 0.4(1- e-2(x
2

+Y
2
)-

0.75e-25((x-o.n)
2
+(y-o.n)

2
)) on the unit box [ -0.5, 0.5) x [ -0.5, 0.5). Again, we can see the 
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way the optimal paths are attracted by low cost area, and how they prefer to avoid the high 
cost area. 

A possible application for medical image analysis taken from [4] is shown in Figure 6. It 
is shown how to track vanes in part of an intensity image I: lR? ~ [0, 1] of the retina. The 
cost function in this case is F ( x, y) = 1 - I ( x, y). The back tracking technique allows us to 
click at any destination point (in this case 5 points) and to isolate a branch connecting to 
the source point. Another medical application, based on the fast marching method to solve 
the Eikonal equation in 3D leading to shape modeling, was recently introduced in [12].· 

4.3 Timings 

Based on the timing tests performed in [12], the time it takes to compute the minimal cost 
function on a 3D data structure of size 256 x 256 x 124 is 76 seconds, running on SUN 
SPARC 1000. We note that just loading that data to the memory takes about 10 seconds. 
In our 2D examples, the execution time is less than a second. The back tracking procedure 
is even less time consuming, and took less than a second for the vanes image (including the 
display time on a SUN SPARC 10). 

5 Additional Comments 

Finally, we would like to comment on a nice interpretation that connects several recent 
results in the field of shape modeling, and an alternative method for computing minimal 
geodesics. 

It was shown [8] that the minimal geodesic connecting two points is the minimal level set 
of the sum of their two corresponding distance maps. This is an alternative 'global' approach 
for finding minimal geodesics. However, since the sum of the distance maps is given as its 
samples on the grid, extracting its minimal set while keeping the connectivity between the 
two points is a non trivial operation. It actually requires thresholding the function with a 
value higher than the theoretical infimum. This €-threshold yields a "fat" or "thick" set that 
needs to be refined into a thin contour. The fat set is given by {(x, y): uA(x, y) + uB(x, y) < 
inflRz(uA + uB) + c}. Operating only on that €-threshold set, it is possible to refine the 
result into an accurate curve that is the result of applying a contour finder. At this point, 
it is important to note that the intersection of two functions leads to accurate results when 
searching for contours on a grid. While the set u( x, y) <Threshold, needs to be refined. 

The natural refinement procedures are based on the direct relation between Euclidean 
distance maps and curvature flow [5, 6], the Eikonal equation and geodesic active contours 
[2, 4, 7, 17], and between geodesic (surface) distance maps [8] and geodesic curvature flows 
[3, 10, 11]. The same relation may be used with other metrics by finding the relevant flow 
that minimizes the arclength defined by the given metric. The refinement is the result of 
evolving a curve according to its first variation induced by the specific metric, i.e. following 
the Euler Lagrange equations for minimizing the given metric arclength. 

A natural numerical implementation for these refinement flows is obviously the level set 
approach [13]. In this case we need to perform calculations only within the 'ellipse' defined 
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by the infimum+c set. Thereby, we can efficiently refine the minimal geodesic connecting 
the two focal points, as a level set of a function, and achieve accurate results. 

Although the above relations present a theoretical overview connecting some recent re
sults, we recommend the back tracking technique which is an accurate and efficient operation. 
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Figure 2: Finding the shortest paths on a surface: Upper left: The 28 geodesics connecting. 
to the source point (30, 10) are the thick curves painted on the thin contours which are level 
sets of the surface z. Upper right: A perspective view over the surface z and the geodesics. 
Lower left: The geodesics are the thick curves on the level sets of the u geodesic distance 
map. Lower right: A perspective view over the geodesic distance map u and the minimal 

• geodesics. 
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Figure 3: Finding the shortest paths on a surface: Upper left: The 28 geodesics connecting 
tothe source point (30, 10) are the thick curves painted on the thin contours which are level 
sets of the surface z. Upper right: A perspective view over the surface z and the geodesics. 
Lower left: The geodesics are the thick curves on the level sets of the u geodesic distance 
map. Lower right: A perspective view over the geodesic distance map u and the minimal 
geodesics. 
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Figure 4: Finding minimal paths in a two valued domain by solving the Eikonal equation: 
Upper left: A 2D gray level image of the weighted domain with 28 minimal cost paths 
connecting to the source point at (i,j) = (30, 10). Upper right: A perspective view over the 
cost function F and the minimal cost paths. Lower left: The minimal cost paths are the 
thick curves on the level sets of the u function. Lower right: A perspective view over the u 
function and the minimal cost paths. 
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Figure 5: Finding minimal paths with a smooth cost function by solving the Eikonal equation: 
Upper left: The 28 minimal cost paths connecting to the source point {30, 10) are the thick 
curves painted on the thin contours which are the level sets of the cost function. Upper 
right: A perspective view over the cost function F and the minimal cost paths. Lower left: 
The minimal cost paths are the thick curves on the level sets of the u function. Lower right: 
A perspective view over the u function and the minimal cost paths. 
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Figure 6: An example of medical image analysis based on solving the Eikonal equation: 
Upper left: The original vanes image Ii,i (part of a retina image). Upper right: Isolating 
the 5 branches of the vane, painted on the original image. Lower left: A perspective view 
over the u function and the minimal cost paths. The u function is computed by considering 
Fi,j = 1 - Ii,j. Lower right: A perspective view over the image I as a function of the gray 
levels and the detected vane hovering above. 
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