
.
i~

LBL-38451
UC-405
Pre print

Lawrence Berkeley Laboratory
UNIVERSITY OF CALIFORNIA

Physics Division

Mathematics Department

To be submitted for publication

Fast Marching Methods for Computing
Distance Maps and Shortest Paths

R. Kimmel and J.A. Sethian

February 1996

Prepared for the U.S. Department of Energy under Contract Number DE-AC03-76SF00098

,...
C:J ,...

('") I
0 w
"C ())
'< +ilo

U'l

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

LBL-38451

FAST MARCHING METHODS FOR COMPUTING DISTANCE MAPS
AND SHORTEST PATHS*

Ron Kimmel
Lawrence Berkeley National Laboratory

University of California
Berkeley, CA 94 720

J .A. Sethian
Department of Mathematics and Lawrence Berkeley National Laboratory

University of California
Berkeley, CA 94720

February 1996

* This work was supported in part by the Applied Mathematical Sciences subprogram of the Office of
Energy Research, U.S. Department of Energy, under Contract Number DE-AC03-76SF00098.

Fast Marching Methods for Computing Distance Maps
and Shortest Paths *

Ron Kimmell! J .A. Sethian**

Abstract

In this paper, we present a fast technique for computing both paths of minimal cost,
and minimal geodesics on surfaces. The technique exploits the fast marching method
introduced in [15, 16] for solving the Eikonal equation and its extension to general
static Hamiltonian-Jacobi equations given in [1]. The solution to the appropriate static
Hamiltonian provides the arrival time of the shortest path, and is then coupled to high
order ordinary differential equation solvers to construct the path itself. The resulting
technique is an O(N log N) procedure, where N is the total number of grid points.
The technique works without change in any number of space dimensions. We provide
upwind approximation schemes for the relevant Hamiltonian, and a series of examples
of the construction of such geodesics, as well as additional comments about the use of
such schemes in computing general distance maps and shape-offsetting.

*This work was supported in part by the Applied Mathematical Science subprogram of the Office of
Energy Research, U.S. Department of Energy, under Contract Number DE-AC03-76SF00098.

IIMail-stop 50A-2152, Lawrence Berkeley Laboratory, University of California, Berkeley, CA 94720 Email:
ron@csr.lbl.gov FAX: (510)486-5401 Tel: (510)486-5453

**Department of Mathematics and Lawrence Berkeley Laboratory, University of California, Berkeley, CA
94720 Email: sethian@math.berkeley.edu

1

1 Introduction

In this paper, we present a numerical technique to calculate two minimal path problems.
The technique is based on the fast marching technique of Sethian [15, 16] for constructing
the solution to Eikonal equations and its extension to general static Hamiltonians given by
Adalsteinsson, Kimmel, Malladi and Sethian[1].

The first problem may be stated as follows. Given a cost function F(x1,x2 , •• ,xM), and
a starting point A E lRM, find the path 1(t): [0, oo) ~ lRM from A to any point BE lRM
which minimizes the integral

LB F(!(t))dt, (1)

where t is the arclength parameterization of /i namely bt I = 1. Vile shall refer to this as
minimal cost path. The second problem is related: Given a surface z(xb x 2, .. , XM), find the
shortest path, known as a minimal geodesic, between two points (A, z(A)) and (B, z(B)) on
that surface.

In this paper, we use the fast marching technique to construct the solution to both
problems. Coupling this technique to a high order ordinary differential equation solver
results in a method for constructing such paths with a computational complexity of order
O(N log N), where N is the total number of grid points used to discretize the domain lRM.
The algorithm works in any number of space dimensions; for ease of discussion, we limit
ourselves to lR 2 •

2 Underlying Equations

2.1 Equation for the Minimal Cost Path

Given the cost function F(x,y), and a starting point A, let u(x,y) be the minimal cost
required to travel from A to the point (x, y), that is

l
(x,y)

u(x, y) =min F(!(t))dt,
"Y A

(2)

with lit I = 1. The level set u = C is the set of all points in lR2 that can be reached with
minimal cost C, and the minimal cost paths are orthogonal to the level curves, hence we
have

I \lui = F(x, y). (3)

This is a particular simple static Hamiltonian known as the Eikonal equation, and our goal
is to first construct u(x, y) in all of JR?. Then, given a point B in lR2

, explicit construction of
the shortest path comes from back propagation from B to A via the solution of the ordinary
differential equation

g1ven X(O) = B, (4)

until we reach the starting point A.

2

2.2 Equation for Geodesics on Surfaces

2.2.1 Construction of Stationary Hamiltonian

The construction of the appropriate static Hamiltonian for geodesics on surfaces is a little
more complex. A geometric perspective based on the Osher-Sethian level set formulation
[13] was developed in [8]. Here we follow that discussion.

Suppose we are given a scalar function u(x,y). The level sets of u are dtfined by C(t) =
{(x,y): u(x,y) = t}. Now, let us consider the level sets C(t) as a family of planar curves;
thus, the t level set is given as C(t). The planar normal for each of these curves may be w~itten
as ii = V'ujj\i'uj. The change of u in this normal direction is dujdii = (V'u, V'u/IV'ui) = jV'uj,
and by the chain rule we have

C
1

t = IV'uin. (5)

Thus, we have cast the level sets of u as a time-dependent partial differential equation
describing the evolution of the level sets in timet. Summarizing, there are two ways to look
at the level curves; either as static curves corresponding to different constant values t of u,
or as a parameterization by timet of the evolution of an initial curve C(t = 0). Furthermore,
we may rewrite the above expression as an Eikonal equation in the form

IV'ul = _!_ii.
Ct

(6)

Recall that our goal is to construct the shortest path on a surface z(x, y) from an initial
surface point (A, z(A)) to any surface point (B, z(B)). Following a geometrical interpreta
tion, imagine the propagation of the initial surface curve £(t = 0) along the surface, where
£(t = 0) corresponds to the single point (A, z(A)). Furthermore, imagine that this curve
propagates with uni~ speed along the surface. Then the location of the curve at timet will
correspond to the set of all points of distance t from the point (A, z(A)), and again, the
shortest path will correspond to back propagation along the surface vector field orthogonal
to the surface curves £.

These surface curves may be constructed in a different way as follows. Since the surface
z(x, y) is a graph, there exists some speed function F which provides the corresponding
motion of the surface curves projected onto the xy plane.' That is,

Ct = F(~z, ii) ii, (7)

where ii is the unit normal vector of the planar curve C, and z(x, y) is the given surface.
This is the result of projecting the evolution of the equal geodesic distance contours from
the surface to the xy coordinate plane. Our goal is to determine this speed function F.

We first note that the evolution on the surface itself before the projection is given by

(8)

where, using the notation (p, q) = \7 z, the surface normal is N = (-p, -q, 1) / v'1 + p2 + q2 ,

and f is the tangent to the current equal geodesic distance contour£. This evolution can

3

be used to compute the geodesic distance map from a given point or a set of points on the
surface z(x, y). Thus

1 ~ ~ _ = (II o N x T, n),
F("V z, n)

where II o (x,y,z) = (x,y) is the projection operation onto the xy coordinate plane.
~ ~ (-u u qu - pu)

In the next section we compute the tangent T to beT= J y, x' x Y • We
· u; + u~ + (qux- puy)2

also use the relation n = "Vufi"Vul. Again, solving for I"Vul, we have the static Hamilton
Jacobi equation of the surface distance map u given by

2 - ~ 2
i"Vul = F("V z, n) .

The result is given by u = 0 at A as boundary conditions to the solution of

u;(l + q2
) + u;(l + p2

)- 2pquxuy
~~~~--~~~~--~--~=1. 

1 + p2 + q2 

This results in the following Hamiltonian 

(9) 

(10) 

Again, our goal is to find the surface u that solves the static Hamilton Jacobi equation given 
by H(ux,uy) = 0, with the bo'undary conditions u = 0 at A. In this case H(v,w) may be 
checked to be always convex. 

2.2.2 Back Propagation to Construct Geodesic Path 

Finally, we explicitly show how to compute f, and how to construct the geodesic by solving 
the ordinary differential equation 

Xt = -II 0 (N X T) given X(O) = B, (11) 

fl is given as a function of "V z, and f is obtained by back projecting the-level set of u 
onto z and then computing the· tangent. Here, X is the projection of the geodesic on the xy 
coordinate plane. 

Since the level sets of u a~e the projections of the equal geodesic distance contours, we 
can back project the tangents of those contours back to the surface and obtain f. The 
tangent of the level sets of u is given by ( -uy, ux), or 

II of= c( -uy, Ux)· 

Writing the tangent as f = (T1 , T2, T3 ), we have (Til T2) = c( -uy, ux)· We also know that 
f is in the tangent plane, and thus orthogonal to fl. Therefore, 

(f,il) = o. 

4 



Using the previous expression we may write 

T3 = c(qux- puy), 

and compute the constant c by normalizing f to be: 

j = ( -uy, Ux, qux- puy) . 

Ju; + u~ + (qux- puy)2 

We can now compute the vector product 

jJ X j _ (ux(1 + q2)- pquy, uy(1 + p2)- pqux,PUx + quy) 

- .j(l + p2 + q2)(u; + u~ + (qux- puy)2) ' 

and conclude with the back projection evolution on the coordinate plane: 

X _ ( Ux(1 + q2)- pquy, uy(1 + p2)- pqux) 

t-- .j(l + p2 + q2)(u; + u~ + (qux- puy)2). 
(12) 

Thus our goal is two-fold; first to solve the static Hamiltonian for the function u given 
by Eqn. (10), and then to solve the ordinary differential equation given by Eqn. (12). :.n: 

3 Numerical Approximation 

In this section, we discuss schemes to approximate the above equations. 

3.1 The Fast Marching Method 

In [15, 16], the fast marching method for the Eikonal equation was introduced. This method 
forms the core of our algorithm, and we now briefly review it. 

The simplest example involves solving the Eikonal equation 

IV'ul = F(x, y), 

in which F(x,y) > 0. It may equivalently be written as 

IV'ul2 = F(x, Y?, 
for which the Hamiltonian is given by 

H(v,w) = v2 + w 2
- F 2

• 

(13) 

With the simple boundary conditions u(x0 , y0 ) = 0, a 'smooth' surface u that satisfies 
H(ux,uy) = 0 is consideredto be the desired result. 

It was shown in [16] that this equation may be efficiently solved on a rectangular grid 
by guaranteeing that the update of the grid points is done in a monotonic fashion, from the 
boundary conditions "outwards". This way, once the grid point with the smallest u value 
is selected, there is no way that it might be updated again. The goal then is to build a 

5 

'J .. }_" 



consistent approximation to the above gradient which is upwind/monotone in this sense. 
We now do so. 

Define the backward and forward x partial derivative approximation of ui,j = u( i.6.x, j .6.y) 
to be Di/ = (ui,j- Ui-I,j)j.6.x, and ntx = (ui+I,j- Ui,j)j.6.x, and similarly for y. Several 
consistent approximations to the above gradient are possible, for example, the scheme used in 
the level set approximation given in [13]. Let us use the roots that result from the following 
consistent numerical approximation given in [14] for Equation (13), namely 

(14) 

Our goal is to construct values Ui,j on the grid which satisfy this difference approximation 
and initial starting value u = 0 at one grid point ( io, j 0). 

The fast marching method uses a thin band of points, known as NarrowBand points, 
which lies in between Alive points where the value of Ui,j has been correctly computed and 
FarAway points which have not yet been considered. The essential idea is to systematically 
sweep through the grid in an upwind fashion, converting points from Narrow Band to the 
Alive, and adding new points from Far Away into the Narrow Band points. Choosing the 
smallest element of the N C!-rrowBand set for conversion to an Alive point insures that the 
grid of points is systematically considered in an upwind fashion; use of min-heap algorithm 
provides an efficient way of locating this minimum. For complete details, see [1, 16]. 

Algorithmically, the fast marching method can be written as: 

1. Initialize 

(a) (Alive Points:) Initialize Alive to be an empty set. 

(b) (NarrowBand Points:) Let NarrowBand= {(io,jo)} and set Ui0 ,j0 = 0. 

(c) (Far A way Points:) Let Far Away be the set of all the rest of the grid points 
{(i,j): (i,j) =J (i0 ,jo)}, set Ui,j = oo for all points in FarAway. 

2. Marching Forwards 

(a) Begin Loop: Let (irnin,jmin) be the point in NarrowBand with the smallest value 
for u. 

(b) Add the point ( irnin, jrnin) to Alive; remove it from Front. 1 

(c) Tag as neighbors any points ( irnin-1, jrnin), ( irnin+ 1, jrnin), ( irnin, jrnin-1 ), ( irnin, jrnin+ 
1) that are not Alive; if the neighbor is in Far Away, remove it from that set and 
add it to the Narrow Band set. 

(d) For each neighbor (i,j) compute ui,j as follows: 

• Let a= min(ui-I,j,Ui+I,j), b= min(ui,j-I,ui,j+I), F = J1/Ii~j -1. 

• IfF> Ia- bl then let Ui,j =(a+ b + J2F2 - (a- b) 2 )/2. 
• else let Ui,j = F +min( a, b). 

(e) Return to top of Loop. 

6 



v 

Figure 1: A geometric description of finding the solution to the numerical approximation of 
the Eikonal equation, see text. 

The process of finding the roots for Equation (14) may be described geometrically. In 
Figure 1 we consider the circle to be the set of points at which H(v, w) = 0, in the vw plane. 
For every a= min(ui-l,j,Ui+I,j) and b = min(ui,j-I,Ui,i+I) we search for Ui,i that solves 
Equation (14) along a line in the vw plane. IfF > Ia- bl, like a= a1 and b = b1 in Figure 
1, then this line is defined by 

(v(t),w(t)) = (t- a, t- b). 

This is the diagonal dashed line starting at ( -ab -b1). The solution corresponds to the value 
of~ at the intersection with the circle after intersecting the v and w axis. These intersections 
correspond to the restriction on t to be larger than a and b. 

In case a- b > F, like a= a2, b = b2 , the search for the solution is the intersection of 

(v(t), w(t)) = (t- a, 0), 

with the circle, i.e. at t = a+ F. For the last case b- a > F, the solution is the intersection 
of the vertical curve (0, t- b) with the circle at t = b +F. By observing this geometric 
representation of the numerical scheme, it is easy to verify that in this simple case there 
always exists a solution. 

An important observation is that the computational complexity of this approach is 
O(NlogN) where N is the number of grid points. It may be realized by using a min-heap 
data structure for the NarrowBand list of points (see (1]). 

Note also that for the simplest selection o1 Fi,j = 1, u is the Euclidean distance function 
(possibly from a sub-grid resolution initial curve [9]) obtained in a very efficient way. The 
level sets of u may be obtained by applying a simple O(N) contour finder procedure. These 
are actually the offset curves of the initial contour, and the algorithm thus provides an 

7 

I 
', 

'' 
,. f.o 

' 



extremely efficient way to construct shape offsets in computer-aided-design without need to 
c.onsider splitting, merging and singularities in the offsets. 

3.2 Extension of Fast Marching Method Solving Static Hamilto-. 
n1ans 

In [1], the above technique was extended to a wide class of static Hamiltonians. Given the 
Hamiltonian for distance map on surfaces, namely 

(15) 

To approximate this Hamiltonian, we use the scheme proposed in (8], i.e. the minmod 
approximation for uxuy, and max(Dit, -Dtx, 0)2 for u;. Then, select the largest root, 
and verify that it is larger than those neighboring grid points that took active part in it 
computation. i.e. the u values at the neighboring points that result the selected quadratic 
equation are smaller than the selected root. 

More precisely, we need to solve u that satisfies the following static HJ equation: 

or in a more compact form 

au; + bu; + CUxUy = d 

(for a, b, d > 0). Applying the max(D-, -D+, 0) differential approximation for the u; .and 
u~, one may alternatively write 

max(Di,j, -DtJ, 0) max(ui,j- Ui-1,j,Ui,j- Ui+1,j,0) 

max( ui,j- min( Ui-1,j, Ui+I,j), 0). 

Denote by mx = min(ui-1,j, Ui+I,j), and similarly for mY = min(ui,j-b Ui,j+1). We are 
searching for Ui,j = r that is. the solution to a quadratic equation and larger than those 
points that generated it. We thus check the following 7 cases: 

1. a(r- mx)2 + b(r- mY)2 + c(r- Ui-1,j)(r- Ui,j-1) = d, 
for r that satisfies mx,mY,ui-1,j,Ui,j-1 < r. 

2. a(r- mx)2 + b(r- mY)2 + c(ui+1,j- r)(ui,j+I- r) = d, 
for r that satisfies mx,mY,ui+I,j,Ui,j+1 < r. 

3. a(r- mx)2 + b(r- mY)2 + c(r- Ui-I.,j)(ui,j+I- r) = d, 
for r that satisfies mx, mY, Ui-1,j, Ui,j+I < r. 

4. a(r- mx)2 + b(r- mY)2 + c(ui+1,j- r)(r- Ui,j-1) = d, 
for r that satisfies mx,mY,ui+I,j,Ui,j-1 < r. 

5. a(r- mx)2 + b(r- mY)2 = d, 
for r that satisfies mx, mY < r and { Ui-1,j, Ui+I,i < r or Ui,j-1, Ui,j+I < r}. 

8 



6. r = mx + ~' where r < mY. 

7. r =mY+ jdib, where r < mx. 

The largest r is selected as the desired solution. 
Other schemes are possible; the goal is a consistent scheme that possesses the monotonic 

updating property that forces correctness of the algorithm results by restricting the computed 
value to be larger, than those that generate it. 

3.3 Computing the Back Trajectories 

Once the solution Uij is computed, our goal is now to construct the actual geodesic from this 
distance map. Let us write our trajectory equation (12) in the abstract form 

(16) 

For numerical implementation we use both second order Runge-Kutta (the midpoint 
method) and Heun's method to integrate this ordinary differential equation. Bilinear inter
polation is used to compute V at the current cell defined by the four closest grid points. 
This way \i'u is computed at the exact position form its central derivatives approximations 
at the grid points. Heun's method seems to yield better results near sharp corners. 

4 Results 

4.1 Minimal Geodesics 

We present two examples of using the above back propagation technique to track minimal 
geodesic on two surfaces: In Figure 2, the surface is given by z(x,y) = 0.4(1- e-2(x

2
+Y

2
)-

0.75e-25((x-o.n)
2
+(y-o.n)

2
)), and in Figure 3, z(x,y) = 0.25sin(27rl.5x)sin(27rl.5y) both are 

defined on the unit box [-0.5, 0.5) x [-0.5, 0.5]. Here, we used the second order Runge-Kutta 
algorithm for the integration. 

4.2 The Eikonal Case 

Here we apply the fast marching scheme to problems involving minimal cost functions and 
paths of minimal cost in IR?. As an example of our technique applied to the problem of 
finding minimal cost paths with sharp changes of the cost function, Figure 4 shows minimal 
paths in a two-valued domain. A cost faction is defined over the domain with a value of 1 
for i < 60 and 0.2 for i > 60. By solving the Eikonal equation with a source point located at 
(i,j) = (30, 10), we first compute Ui,j· Then using Heun's method we back track the minimal 
paths from 28 different destination locations. One may observe the way these paths obey 
the Snell Law in optics as the 'light rays' change their course as they cross the interface line, 
following Fermat's Principle for light rays in an isotropic medium. , 

A smoother cost function is used in Figure 5. Here, F(x,y) = 0.4(1- e-2(x
2

+Y
2
)-

0.75e-25((x-o.n)
2
+(y-o.n)

2
)) on the unit box [ -0.5, 0.5) x [ -0.5, 0.5). Again, we can see the 

9 



way the optimal paths are attracted by low cost area, and how they prefer to avoid the high 
cost area. 

A possible application for medical image analysis taken from [4] is shown in Figure 6. It 
is shown how to track vanes in part of an intensity image I: lR? ~ [0, 1] of the retina. The 
cost function in this case is F ( x, y) = 1 - I ( x, y). The back tracking technique allows us to 
click at any destination point (in this case 5 points) and to isolate a branch connecting to 
the source point. Another medical application, based on the fast marching method to solve 
the Eikonal equation in 3D leading to shape modeling, was recently introduced in [12].· 

4.3 Timings 

Based on the timing tests performed in [12], the time it takes to compute the minimal cost 
function on a 3D data structure of size 256 x 256 x 124 is 76 seconds, running on SUN 
SPARC 1000. We note that just loading that data to the memory takes about 10 seconds. 
In our 2D examples, the execution time is less than a second. The back tracking procedure 
is even less time consuming, and took less than a second for the vanes image (including the 
display time on a SUN SPARC 10). 

5 Additional Comments 

Finally, we would like to comment on a nice interpretation that connects several recent 
results in the field of shape modeling, and an alternative method for computing minimal 
geodesics. 

It was shown [8] that the minimal geodesic connecting two points is the minimal level set 
of the sum of their two corresponding distance maps. This is an alternative 'global' approach 
for finding minimal geodesics. However, since the sum of the distance maps is given as its 
samples on the grid, extracting its minimal set while keeping the connectivity between the 
two points is a non trivial operation. It actually requires thresholding the function with a 
value higher than the theoretical infimum. This €-threshold yields a "fat" or "thick" set that 
needs to be refined into a thin contour. The fat set is given by {(x, y): uA(x, y) + uB(x, y) < 
inflRz(uA + uB) + c}. Operating only on that €-threshold set, it is possible to refine the 
result into an accurate curve that is the result of applying a contour finder. At this point, 
it is important to note that the intersection of two functions leads to accurate results when 
searching for contours on a grid. While the set u( x, y) <Threshold, needs to be refined. 

The natural refinement procedures are based on the direct relation between Euclidean 
distance maps and curvature flow [5, 6], the Eikonal equation and geodesic active contours 
[2, 4, 7, 17], and between geodesic (surface) distance maps [8] and geodesic curvature flows 
[3, 10, 11]. The same relation may be used with other metrics by finding the relevant flow 
that minimizes the arclength defined by the given metric. The refinement is the result of 
evolving a curve according to its first variation induced by the specific metric, i.e. following 
the Euler Lagrange equations for minimizing the given metric arclength. 

A natural numerical implementation for these refinement flows is obviously the level set 
approach [13]. In this case we need to perform calculations only within the 'ellipse' defined 

10 

; 



'· 

•. 

by the infimum+c set. Thereby, we can efficiently refine the minimal geodesic connecting 
the two focal points, as a level set of a function, and achieve accurate results. 

Although the above relations present a theoretical overview connecting some recent re
sults, we recommend the back tracking technique which is an accurate and efficient operation. 

6 Acknowledgment 

We thank Ravi Malladi and David Adalsteinsson for many discussions on implementation 
considerations and timing tests. 

References 

[1] D Adalsteinsson, R Kimmel, R Malladi, and J A Sethian. Fatst marching method 
for computing solutions to static Hamilton-Jacobi equations. 1B1 report, 1BN1 UC 
Berkeley, CA 94720, Submitted 1996. 

[2] V Caselles, R Kimmel, and G Sapiro. Geodesic active contours. In Proceedings ICCV'95, 
pages 694-699, Boston, Massachusetts, June 1995. 

[3] D 1 Chopp and J A Sethian. Flow under curvature: Singularity formation, minimal 
surfaces, and geodesics. Jour. Exper. Math., 2( 4):235-255, 1993. 

[4] 1 D Cohen and R Kimmel! Edge integration using minimal geodesics. EE PUB No. 
952, Technion-Israel Institute of Technology, Israel, January 1995. submitted. 

[5] M Gage and R S Hamilton. The heat equation shrinking convex plane curves. J. Diff. 
Geom., 23, 1986. 

[6] M Grayson. The heat equation shrinks embedded plane curves to round points. J. Diff. 
Geom., 26, 1987. 

[7] S Kichenassamy, A Kumar, P Olver, A Tannenbaum, and A Yezzi. Gradient flows and 
geometric active contour models. In Proceedings ICCV'95, Boston, Massachusetts, June 
1995. 

[8] R Kimmel, A Amir, and A M Bruckstein. Finding shortest paths on surfaces using level 
sets propagation. IEEE Trans. on PAM!, 17(6):635-640, June 1995. 

[9] R Kimmel and AM Bruckstein. Shape offsets via level sets. CAD, 25(5):154-162, March 
1993. 

[10] R Kimmel and N Kiryati. Finding shortest paths on surfaces by fast global approxima
tion and precise local refinement. In Proceedings of SPIE Vision Geometry III, volume 
2356, pages 198-209, Boston, Massachusetts, November 1994. 

11 



[11] R Kimmel and G Sapiro. Shortening three dimensional curves via two dimensional 
flows. International Journal: Computers & Mathematics with Applications, 29(3):49-
62, March 1995. 

[12] R Malladi and J A Sethian. An O(N log N) algorithm for shape modeling. Proc. Natl. 
Acad. of Sci. USA, submitted, Feb. 1996. 

[13] S J Osher and J A Sethian. Fronts propagating with curvature dependent speed: Algo
rithms based on Hamilton-Jacobi formulations. J. of Comp. Phys., 79:12-49, 1988. 

[14] E Rouy and A Tourin. A viscosity solutions approach to shape-from-shading. SIAM. 
J. Numer. Analy., 29(3):867-884, June 1992. 

[15] J A Sethian. A review of the theory, algorithms, and applications of level set methods 
for propagating interfaces. Acta Numerica, in press, 1995. 

[16] J A Sethian. A marching level set method for monotonically advancing fronts. Proc. 
Nat. Acad. Sci., 93( 4), 1996. 

[17] J Shah. Recovery of shapes by evolution of zero-crossings. Department of math., 
Northeastern Univ. Boston MA, MA, June 1993. 

12 



Figure 2: Finding the shortest paths on a surface: Upper left: The 28 geodesics connecting. 
to the source point (30, 10) are the thick curves painted on the thin contours which are level 
sets of the surface z. Upper right: A perspective view over the surface z and the geodesics. 
Lower left: The geodesics are the thick curves on the level sets of the u geodesic distance 
map. Lower right: A perspective view over the geodesic distance map u and the minimal 

• geodesics. 

13 



lOIP 

Figure 3: Finding the shortest paths on a surface: Upper left: The 28 geodesics connecting 
tothe source point (30, 10) are the thick curves painted on the thin contours which are level 
sets of the surface z. Upper right: A perspective view over the surface z and the geodesics. 
Lower left: The geodesics are the thick curves on the level sets of the u geodesic distance 
map. Lower right: A perspective view over the geodesic distance map u and the minimal 
geodesics. 

14 



I 
j 

80 

GO 

. :o 

20 

1. 

0 . 

100 

::.oo 

100 

100 

Figure 4: Finding minimal paths in a two valued domain by solving the Eikonal equation: 
Upper left: A 2D gray level image of the weighted domain with 28 minimal cost paths 
connecting to the source point at (i,j) = (30, 10). Upper right: A perspective view over the 
cost function F and the minimal cost paths. Lower left: The minimal cost paths are the 
thick curves on the level sets of the u function. Lower right: A perspective view over the u 
function and the minimal cost paths. 

15 



100 

Figure 5: Finding minimal paths with a smooth cost function by solving the Eikonal equation: 
Upper left: The 28 minimal cost paths connecting to the source point {30, 10) are the thick 
curves painted on the thin contours which are the level sets of the cost function. Upper 
right: A perspective view over the cost function F and the minimal cost paths. Lower left: 
The minimal cost paths are the thick curves on the level sets of the u function. Lower right: 
A perspective view over the u function and the minimal cost paths. 

16 



'· 

100 100 ° 

Figure 6: An example of medical image analysis based on solving the Eikonal equation: 
Upper left: The original vanes image Ii,i (part of a retina image). Upper right: Isolating 
the 5 branches of the vane, painted on the original image. Lower left: A perspective view 
over the u function and the minimal cost paths. The u function is computed by considering 
Fi,j = 1 - Ii,j. Lower right: A perspective view over the image I as a function of the gray 
levels and the detected vane hovering above. 

17 

-··· 
" 



~-,.. ,__.... .... 

____.... 

~ ·~~ ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY 

: ~TECHNICAL AND ELECTRONIC INFORMATION DEPARTMENT 

@j;j:JJGM*¥1 UNIVERSITY OF CALIFORNIA I BERKELEY, CALIFORNIA 94720 

.... 


