
f

LBL-38457
UC-405

Lawrence Berkeley Laboratory
UNIVERSITY OF CALIFORNIA

Physics Division

Mathematics O~panment
·..,. . .,.:

To be submitted t6r publication

Fast Adaptive 2D Vortex Methods

J. Strain

March 1996

Prepared for the U.S. Department of Energy under Contract Number DE-AC03-76SF00098

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

FAST ADAPTIVE 2D VORTEX METHODS

John Strain1

Department of Mathematics
and

Lawrence Berkeley Laboratory
University of California

Berkeley, CA 94 720

March 1996

LBL-38457

1This research was supported by a NSF Young Investigator Award, Air Force Office of
Scientific Research Grant FDF49620-93-1-0053, and the Applied Mathematical Sciences
Subprogram of the Office of Energy Research, U.S. Department of Energy under Contract
DE-AC03-76SF00098.

Abstract

We present a new approach to vortex methods for the 2D Euler equa­
tions. We obtain long-time high-order accuracy at almost optimal cost by
using three tools: fast adaptive quadrature rules, a free-Lagrangian formula­
tion, and a nonstandard error analysis. Our error analysis halves the differ­
entiability required of the flow, suggests an efficient new balance of smooth­
ing parameters, and combines naturally with fast summation schemes. Nu­
merical experiments with our methods confirm our theoretical predictions
and display excellent long-time accuracy.

1 Introduction

Vortex methods solve the 2D incompressible Euler equations in the vorticity
formulation by discretizing the Biot-Savart law with the aid of the flow
map. They have been extensively studied, widely generalized and applied
to complex high-Reynolds-number flows: See [11] for a survey.

Vortex methods involve several components: velocity evaluation, vortex
motion, diffusion, boundary conditions and regridding. In this paper, we
improve the speed, accuracy and robustness of the velocity evaluation. We
eliminate the flow map, improve the quadrature used for the Biot-Savart law,
and analyze the error in a nonstandard way, requiring less differentiability
of the flow and obtaining efficient new parameter balances. We employ
standard techniques for the vortex motion and consider inviscid free-space
flow to eliminate diffusion and boundary conditions. Our approach combines
naturally with regridding and fast summation methods.

In Section 2, we review Lagrangian vortex methods. These move the
nodes of a fixed quadrature rule with the computed fluid velocity, preserving
the weights of the rule by incompressibility. This procedure loses accuracy
when the flow becomes disorganized [5, 17], a difficulty which motivates
many regridding techniques [16]. Even before the flow becomes disorganized,
however, obtaining high-order accuracy with a fixed quadrature rule requires
smoothing of the singular Biot-Savart kernel. Smoothing gives high-order
accuracy for short times but slows down fast velocity evaluation techniques
and halves the order of accuracy relative to the differentiability of the flow.

In Section 3, we review two free-Lagrangian vortex methods, the tri­
angulated vortex method of [19] and the quadrature-based method of [22].
Triangulated vortex methods are robust, practical and efficient but limited
to second-order accuracy. Quadrature-based methods compute adaptive
quadratures tailored to the Biot-Savart kernel at each time step, yielding
long-time high-order accuracy at asymptotically optimal cost.

The present paper develops a free-Lagrangian method which couples ker­
nel smoothing with adaptive quadrature rules not tailored to the Biot-Savart
kernel, producing long-time high-order accuracy. The asymptotic slowdown
produced by kernel smoothing is almost eliminated by a careful choice of
smoothing functions and parameters, based on a new error analysis of the
velocity evaluation. This analysis requires about half as many derivatives of
the solution as the standard approach.

The structure of our method is standard: At each time step, the smoothed
velocity is evaluated once and the vortices are moved with an explicit multi­
step method. The velocity evaluation is nonstandard: First, a data structure
groups the N vortices into cells convenient for integration. Then a global
order~q quadrature rule is built. Finally, the fast multipole method is used
with this rule to evaluate the smoothed velocity field. The details are pre­
sented in Section 4.

Section 5 presents numerical experiments. The error is measured for

1

standard test problems and our theoretical predictions are fully verified.
Then more complex flows are computed.

2 Lagrangian vortex methods

This section is an overview of 2D vortex methods. First, we describe how
the 2D Euler equations reduce to an infinite system of ordinary differential
equations for the flow map. This formulation leads naturally to vortex
methods. We contrast the Lagrangian and free-Lagrangian viewpoints, then
review the convergence theory of Lagrangian methods.

Second, we explore avenues for improvement. We explain the conflict
between smoothing for accuracy and fast summation for speed, and demon­
strate the Perlman effect in which the derivatives of the flow map interfere
with the quadrature error bound.

2.1 Equations of motion

The 2D incompressible Euler equations

U + UUx + VUy + Px/ P 0

v+uvx+vvy+Py/P = 0

Ux + Vy 0,

involve the fluid velocity u(z,t) = (u,v), where z = (x,y), the pressure
p(z, t) and the constant density p. Taking the 2D curl eliminates the pres­
sure, giving the vorticity equation

W + UWx + VWy = 0

for the vorticity w = Vx- uy. Let z ~--+ ~(z, t) be the flow map, defined by

ci>(z, t) = u(~(z, t), t) ~(z, 0) = z. (1)

Then vorticity is conserved along particle paths:

w(~(z,t),t) = w(z,O); (2)

We close Eqns. (1) and (2) for ~ and w by solving the elliptic system

Vx- Uy W,

Ux + Vy 0

for the velocity (u, v). When w has compact support, the solution is given
by the Biot-Savart law

u(z, t) = j K(z- z')w(z')dx'dy' (3)

2

where K is the Biot-Savart kernel

zl.
K(z) =-

2rrr2 (4)

Thus we have a closed system for q, and w, the "free-Lagrangian" equations
of motion consisting of the vorticity transport law (2) coupled with

4(z,t) = j K(q,(z,t)- z')w(z',t)dx'dy'. (5)

The "Lagrangian" equation of motion is derived by changing variables
z' ~ q,(z', t). The Jacobian is unity because the flow is incompressible, so
this gives a closed system for q, alone:

4(z,t) = j](~q,(z,t)- q,(z',t))w(z',O)dx'dy'. (6)

This requires values of w only at time t = 0, and is the usual starting point
for vortex methods.

2.2 Lagrangian vortex methods

Lagrangian vortex methods now discretize Eqn. (6), tracking N points Zj(t) ~
q,(Zj, t) moving with the fluid velocity, starting at t = 0 from the nodes Zj

of a. quadrature formula. with weights Wj. Suppose we use a quadrature
formula.

N

j g(z)dxdy = ~ Wjg(zj) + EN(g)
J=l

with a qth-order error bound

(7)

for g E Cq. Here h is the mesh size of the rule and the Cq norm is defined
by

ll9llo =max lg(z)l,
z ll9llq = ll9llo + I: na~atgllo-

Ot+fJ=q

Applying this quadrature to the Lagrangian equation of motion (6) gives a
system of N ordinary differential equations:

Zi(t) = LwiK(z;(t)- Zj(t))w(zj,O).
j::f:i

The quadrature error bound (7) is infinite since K is unbounded, so we
replace](by the smoothed kernel

Ks(z) = c.p5 * K(z)

where * denotes convolution,

3

and <p is an appropriate radial "core function." Almost all modern vortex
methods use smoothing [8], often with c.p and the "core radius" o chosen to
give high-order convergence as the mesh size h vanishes [13]. This can be
guaranteed by the following conditions on c.p and w:

Jc.p =
J xay(3 c.p

j lzlmlc.pl <

c.p E

w E

1,

0,

00

cL
eM

1 :$ a + {3 :$ m- 1,

and c.p(z) = 0 for lzl 2: 1,

has compact support.

(8)

(9)

(10)

High-order accuracy requires smooth solutions, so condition (10) on w is
natural. Compact support in condition (9) can be weakened, but it is im­
portant for efficiency. Given these conditions, a typical convergence theorem
follows.

Theorem 1 ([1]) Assume conditions {8} through {10} ar·e satisfied with
L 2: 3, M 2: max(L + 1, m + 2) and m 2: 4. Let 0 = cha where 0 < a< 1.
Suppose L is large enough to satisfy

L
(m- 1)a

> .
1-a

Then the computed flow map <I> h,8 satisfies

as h and o go to zero.

Here the discrete 2-norm is given by

where Zi are the initial vortex positions, and similar bounds hold for the
computed velocity and vorticity.

This theorem allows a close to 1 and 0 close to O(h) only for very smooth
flows, where Land Mare large. For general flows, Hald [12] and Nordmark
[16] show that 0 = 0(../h) is a good choice. Then 2m derivatives of w
guarantee only O(hm) accuracy. Later, we reduce this tom+ 1 derivatives
at the cost of redefining convergence.

4

2.3 Cost and accuracy

Convergence theory must be augmented by practical considerations of cost
and accuracy. Since there are N vortices and each velocity value is a sum

N

uh,s(zi) = L Ks(zi- Zj)Wjw(zj, 0),
j=l

a direct velocity evaluation costs O(N 2) work. This is prohibitively expen­
sive if the flow is complex, since many vortices are required. The expense
has been reduced by fast summation schemes such as the method of local
corrections [2], the fast multipole method [6] and Ewald summation [20].
These schemes evaluate unsmoothed sums like

N

u(zi) = L K(zi- Zj)Wj
j=l

to accuracy € in O(N log£) work, by separating local from global interactions
and applying separation of variables globally. They run much faster than
direct evaluation when N is large.

However, this does not completely resolve the difficulty. Fast methods
cannot evaluate the smoothed interaction](s(Zi - Zj) between vortices Zi
and Zj closer than 6, because Ks ::f. K. Asymptotically, there are O(N62

)

vortices in a circle of radius 6, so if 6 = 0(Vh) there are a total of

local interactions to be evaluated directly. Thus fast summation schemes
slow down from O(N) to O(N312) when](is smoothed with b = O(Vh).

Hence there is a conflict between smoothing and fast summation. If we
take b close to O(h) to speed up fast summation, we need many derivatives
of the flow for a modest order of convergence. Larger 6 is more accurate
for rougher flows, but hampers fast summation schemes. In Section 4 we
resolve this conflict by allowing another 0(€) in the error bound.

2.4 The Perlman effect

A completely different obstacle to accurate calculations with vortex methods
is the "Perlman effect." Since the error bound for numerical quadrature in
Eqn. (7) depends on order-q derivatives of the integrand, here

g(z') = Ks(cp(z,t)- cp(z',t))w(z',O),

the higher derivatives of the flow map will affect the error bound. The flow
. map moves fluid particles far apart and therefore develops large derivatives
when the flow becomes disorganized. Thus vortex methods lose high-order
accuracy in long-time calculations [5, 17]. For example, Figure 1 plots the

5

number of correct bits in the computed velocity and vorticity of a stan­
dard test case for a fourth-order vortex method. Fourth-order accuracy­
evidenced by the gain of one tick mark per line in the figure-is attained
only during a very short initial time period. Figure 1 also plots the errors
when the C6 vorticity is replaced by a C 2 vorticity. The order of accuracy
of the velocity is halved, indicating that the differentiability requirement is
genuine. The vorticity errors, however, continue to converge with fourth­
order accuracy during the usual short initial time period. The numerical
parameters used are summarized in Table 3 in Section 5.2.

The Perlman effect has motivated much research on regridding, the idea
being to avoid large derivatives of the flow map by restarting before the
flow becomes disorganized [16]. Similarly, Beale has developed an iterative
reweighting scheme to overcome the Perlman effect [4]. The Perlman effect
also motivated the free-Lagrangian vortex methods we discuss next.

3 Free-Lagrangian methods

Free-Lagrangian methods overcome the Perlman effect by removing the flow
map from the Biot-Savart integral. Thus

<P = j K(<P- z')w(z',t)dx'dy',

replaces the Lagrangian equation of motion (6). Since w values are known
only at the moving points Zj(t), each velocity evaluation requires adaptive
quadratures with new weights adapted to the current vortex positions. Two
such methods are discussed below.

3~1 Triangulated methods

Triangulated vortex methods evolve points Zj(t) by

where wh is a piecewise linear interpolant to the vorticity values

and the nodes Zj(t) form the vertices of a triangulation of R 2 .

Given any piecewise linear function wh on a triangulation of R 2 , one can
evaluate uh exactly, with results depending strongly on the triangulation. In
[7], this observation was combined with a. fixed triangulation carried by the
flow. While convergent, the resulting scheme costs O(N2) work per time step
with a large constant and loses accuracy quickly because the triangulation
degenerates.

6

28.0 as 28.0
en

::I Q)

.!.: E
0 ...

.!.: e
Cii

...
..- g
.....1 Q)

Q) ..-
>1
-~ Q)

> a;
8.0 ~ 8.0 a: a;

C\1 4.0 a: 4.0 en
0 C\1 -r en
I 0.0 5.0 10.0 15.0 20.0 0 0.0 5.0 10.0 15.0 20.0

Time -r Time

28.0 as 28.0
en

::I Q)

.!.: E
0 ...

.!.: e
Cii

... e
:i Cii
Q) ..-
-~1

.Iii Q)
>

Q) 8.0 :; 8.0 a: a;
C\1 4.0 a: 4.0 en
0 C\1 -r en

0.0 5.0 10.0 15.0 20.0 0 0.0 5.0 10.0 15.0 20.0
Time -r Time

Figure 1: Correct bits for the vortex method with. parameters from Table 3
in Section 5.2. The top row plots errors w.hen w is C6 , the second when w

is C2 •

We developed practical triangulated vortex methods in [19]: a fast sum­
mation scheme brought the cost down to 0(N 413) and a fast Delaunay tri­
angulation scheme gave excellent long-time accuracy. An adaptive initial
triangulation technique made the method robust enough to compute even
discontinuous patches of vorticity, a difficult task for a method of this gener­
ality. Figure 2 shows results for the standard test case used in Figure 1, with
numerical parameters given in Table 4 in Section 4.2. The error displays no
Perlman effect; second-order accuracy (one tick per line) is maintained u:r:ti­
formly in time. The triangulated approach is now being applied to flows in
three dimensions with viscosity and boundaries [10, 15]. However, it seems
difficult to make a triangulated vortex method with higher than second-order
accuracy. This motivated the next approach we discuss.

7

"5'
.£
~
«D

::i
Q)
>
~
Qi
a:
C\1
Cl
0

-T

16.0

14.0

12.0

10.0

8.0

6.0

4.0

2.0

0.0

16.0

14.0

12.0

10.0

8.0

6.0

4.0

2.0
v
0.0

5.0 10.0 15.0 20.0
Time

_...--..

~

5.0 10.0 15.0 20.0
Time

til 16.0
Cl

14.0 Q)

E
0 12.0

.!;;;
.... 10.0 g
Q) 8.0
::i
Q) 6.0
> -i6 4.0

Qi
a: 2.0
C\1
Cl
0

-T 0.0 5.0 10.0 15.0 20.0
Time

til 16.0
Cl
Q)

14.0 E
0

.£ 12.0
....
~ 10.0
Qj
X 8.0
ell
E
Q)

.~
4.0 a;

Qi
2.0 a:

C\1
Cl
0 0.0 5.0 10.0 15.0 20.0 -T Time

Figure 2: Correct bits for the triangulated vortex method with parameters
from Table 4 in Section 5.2.

3.2 Quadrature-based methods

We developed higher-order free-Lagrangian methods in [22]. The basic idea
is to construct time-dependent quadrature weights Wij(t) which give high­
order accuracy in the Biot-Savart law:

u(zi, t) = j K(zi- z')w(z', t)dx'dy'

N

~ LWij(t)K(zi- Zj)w(zj,t).
j=l

For example, high-order product integration weights [9] ma.ke smoothing un­
necessary, but the i-dependence of Wij(t) precludes fa.st summation methods.
Thus we construct Wij with the "locally-corrected property" that

Wij = Wj for almost all j

8

for each point of evaluation Zi and some "smooth" quadrature rule with
points Zj and weights Wj. Such rules can be built and the velocity evaluated
in 0(N log2 N) work. The price for efficiency, however, is a redefinition of
convergence. The error bound for these quadratures is 0(f + h9), where f

is an arbitrary user-specified error tolerance and the constant in the O(N)
cost depends weakly on f. Thus one gets order-q convergence only down
to 0(f). This is for three reasons: computer arithmetic operates with finite
precision, practical computations can afford rather low accuracy for the most
part, and fast summation methods introduce an 0(f) error as well. High­
order accuracy can be maintained for long times, though these rules are
somewhat expensive to implement.

4 A new approach

We now present a new high-order fast adaptive vortex method which aims
to avoid obstacles both to speed and to accuracy. The key ingredients are

o A free-Lagrangian formulation to avoid the Perlman effect.

o Adaptive quadrature rules with high-order accuracy on smooth func­
tions, but not tailored to the Biot-Savart kernel.

o New error bounds requiring fewer derivatives of the vorticity and lead­
ing to an efficient new smoothing strategy.

These ingredients combine to give a method with almost optimal efficiency
and long-time high-order accuracy without excessive smoothness require­
ments on the solution. The method is flowcharted in Figure 6.

4.1 Overview

We begin with quadrature. Given N arbitrary nodes Zj E R 2 , we construct
the weights of a quadrature rule having order-q accuracy on cq functions
if the nodes are well distributed. Note that without some restriction on
the asymptotic distribution of nodes, a guarantee of order-q accuracy is
unavailable. Thus we construct rules with an error bound composed of
two factors. The first depends only on the point locations and is easily
computable a posteriori, as a monitor for bad point distributions. The
second depends only on the mesh size and the Cq norm of the integrand.

Our quadratures are composite: After partitioning the nodes into rect­
angular cells in Section 4.2, we construct order-q rules on each cell in Section
4.3. The union of these rules is globally accurate of order q: We quote an
error bound from [21] in Section 4.4.

After quadrature, we analyze smoothing. Section 4.5 presents a standard
smoothing error bound. In Section 4.6, we construct a family of arbitrary­
order· core functions and shape factors.

9

Section 4. 7 presents our multistep time stepping procedure and the start­
ing value problem. Finally, Section 4.8 presents a nonstandard error analysis
of velocity evaluation which requires fewer derivatives of the vorticity and
leads to an efficient new balance between quadrature and smoothing.

4.2 Data structures

Let B = [a, b] X [c, d] be a rectangle containing the nodes Zj. Composite
quadrature partitions B into a union of rectangular cells B;, each containing
enough nodes to construct an order-q quadrature. There are m := q(q+ 1)/2
monomials xo:yf3 of degree a+ f3 ::::; q- 1, so we will need at least p 2: m
nodes per cell. Thus we partition B into cells, each containing p or p + 1
nodes. (Some cells must have p + 1 if p does not divide N exactly.) This is
conveniently done via the following tree structure.

Let B = B1 be the level-0 root of the tree. Divide B1 in half along its
longest edge, with the dividing plane located so that each half of B1 contains
either LN/2J or LN/2J + 1 nodes. This gives the level-1 cells B 2 and B3.
Recursively, split B2 and B3 along their longest edges to get B 4 through
B1, each containing LN /4J or LN /4J + 1 nodes Zj. Repeat this procedure L
times to get M = 2L cells Bi on the finest level L, numbered from i = M
to i =2M -1, each containing p = LN/MJ or p+ 1 nodes Zj. The union of
all the cells on any given level is B. The tree structure is stored by listing
the boundaries of each cell Bi = [ai, bi] x [c;, d;] from i = 1 to i = 2M- 1,
a total of 4 · 2M numbers, and indexing the nodes into a list so that the
nodes Zj E B; are given by j = j(s) for s = b(i), ... , e(i) and three integer
functions j, band e. This can be done in O(NlogN), but the simplest
method requires sorting each cell before each subdivision, giving a total cost
O(N log2 N) for the tree construction with an O(N log N) sorting method
such as Heapsort. Figure 3 shows an example of this tree structure.

4.3 Quadrature rules

We now construct order-q quadrature rules on B with N given quadrature
nodes Zj. Assume N 2: m := q(q + 1)/2, and choose an integer L 2: 0
with p := LN /2L J 2: m. The data structure just constructed divides B into
M = 2L rectangular cells B;, each containing either p or p + 1 nodes Zj.

We construct local weights Wj for nodes Zj E B; by solving the following
system of m linear equations in at least p unknowns:

2: Po:(xj)P(J(Yj)Wj
ZjEB;

0:Sa+f35q-l.

Here IB;I = (b;- ai)(d;- ci) is the area of Bi and

Po:(x) = Po:(t),

10

• j • • I

~------------·~:-!-,=-~~,~~~~~;:~~~~~-:-.~~~:--.~----------
. '•.:'1;-:!:: .' ,,• ·: ... • .:• I o

!·.
~ . :

I ;

l I
i i

! ' ! ·l -! .I, ·t

·I , .
. I .;.

·.·,'

___ _, __ ._· •-·--:,::;f-,-;~~T--
···r=·,;-:i:: • ... r:.· .. _,. ..

' i· l .,
!.

I.

I
!•

,:,

'-·----1 .

Figure 3: Levels 1, 3, 5 and 7 in the cell data structure with N = 1000
nonuniformly distributed points. Here each level- 7 cell contains either 4 or
5 points, suitable for a quadrature rule of order q = 2 since q(q + 1)/2 = 3.

11

.,
I

I

where Pa(t) are the usual Legendre polynomials on [-1, 1] and Xm = (bi +
ai)/2, Xh = (bi - ai)/2, with similar expressions for the y variable. Since
p ~ m, this system of m equations in at least p unknowns generically has
solutions. We compute the solution Wj of least 2-norm, using a complete
orthogonal factorization routine from LAPACK [3]. The weights of the rule
W are then defined to be Wj = Wj where Zj E Bi. The algorithm is
summarized in Figure 4.

Remark: In most vortex methods, the vorticity w is known only at the
vortices, so interpolation is needed to evaluate the vorticity elsewhere. The
tree structure provides a natural interpolation technique. Suppose vortices
Zj lie in a cell C and we want w(z) for z E C. We approximate w(z) by

w(z) ~ :L nj(z)w(zj),
ZjEC

where the interpolation weights nj(z) form the least 2-norm solution of the
underdetermined linear system

L nj(z)Pa(Xj)Pp(Yj) = Pa(x)Pp(y), 0Sa+f3Sq-l.
ZjEC

This gives an qth order interpolation formula on each cell. The weights
are bounded if there are enough nodes Zj in C. To contour the computed
vorticity in Section 5.3, we interpolated w to a fine equidistant grid, then
contoured on the grid.

4.4 Quadrature error bounds

The weights Wj now integrate all polynomials of degree less than q exactly
over alllevel-L cells Bi. This property implies order-q accuracy:

Theorem 2 ([21]) Let B = U~1 Bi where Bi = [ai, bi] x [ci, di]- Suppose
that W integrates xayfi exactly over each Bi for 0 :S a+ j3 :S q- 1. Then
for any Cq function g on B, the quadrature error

satisfies the bound
hq

lEI :S n lEI 1 llgllcq(B) q.

where h =maxi max(bi - ai, di- ci) is the longest cell edge,

and IBI = (b- a)(d- c) is the area of B.

12

In general, the condition number n cannot be bounded a priori for arbi­
trary points, but we can easily compute it a posteriori, yielding an excellent
diagnostic for the quality of the rule.

Remark: By reducing each cell condition number ni = 1+Jih 'L:ziEBi JWjJ,
we can reduce the global condition number f2 = 'L:i f!i. Increasing p reduces
n, since the additional degrees of freedom can be applied to reducing the
2-norm of Wj, but it is too expensive to increase p globally. Thus we reduce
n adaptively: when ni exceeds a tolerance !1m, we merge Bi with its sibling
in the tree structure, obtaining a cell B1 containing twice as many points
Zj. We then recompute all weights Wj for which Zj E B1, reducing !11 at
the cost of a larger linear system and a larger cell size h

7

This adaptive technique also treats the degenerate cases when no solution
exists on a cell Bi, because the points Zj are not in sufficiently general
position. A solution is more likely to exist after such a cell is merged with
its sibling,

Remark: In practice, the choice of L may be difficult. L too small
increases h, while L too large precludes order-q accuracy. Thus our code
accepts a user-specified safety parameter S 2: 1 and chooses L so that each
level-£ cell contains at least LSq(q + 1)/2J points. Values of S typically
range from 1 to 2. ·

4.5 Smoothing error bounds

Since convolution is associative, replacing](by Ks is equivalent to smooth­
ing u with the core function r..p. The following is a standard error bound for
such smoothing.

Theorem 3 ([18]) Assume the compactly supported cor·e function r..p satis­
fies the moment conditions

J<.p = 1,

j xo:y(3r..p 0, 1::; a+{J::; m-1, (12)

1 J . M = -
1

JzJmJr..pJ < 00.
m.

Suppose u belongs to the Sobolev space wm,p of functions with m distribu­
tional derivatives in LP, where 1 ::; p ::; oo. Then

II'Ps * u- uiJLP::; Mcm L IJo~ofullLP·
o:+(3=m

Proof: Suppose by density that u is smooth and Taylor expand:

m-1 (1)/
u(z'- z) = u(z') + L T L a~afu(z')x0 y(3

1=1 . o:+(3=l

l 1(t-1)m-1 "' !:10:!:1(3 (I) o: (31
- ()I L._.; UxUyU Z -tz X y lt.

o m-1. (3 o:+ =m

13

Quadrature Algorithm

Set parameters :
Degrees of freedom required per cell: m = q(q + 1)/2
Top level in cell structure: L = Llog2 (N/Sm)J.
Points per cell: p = N j2L.
Maximum cell condition number: f2m .

Construct cell data structure:
B 1 = B, a rectangle enclosing all the points Zi.

do l = 1, L- 1
Divide level-[cells along longest edge Yith approximately
half the points in each subcell, yielding level-l+ 1 cells.

end do
Result: 2£ cells Bi on level L Yi th p or p + 1 points each.

Compute Yeights vvi one cell at a time.
do i = 1, 2L

Compute least-2-norm solution VV of
I::zjEB; VVjPa(xj)P/3(Yj) = 8ao8{3oiBil for 0:::; 0' + f3:::; q- 1
Compute cell condition number

ni = 1 +Ph I::zjEB; IVVil·
if ni 2: nm then

Merge cell B; Yith its sibling, flag cell and sibling
done, and recompute Yeights on double cell B1 .

end if
end do

Figure 4: Order-q quadrature with N points Zj in a. rectangle B.

14

Multiply by cp6(z), integrate and use the moment conditions (12):

11 (t l)m-1 J
cp6*u(z')-u(z') = - (- _)' L 8~8eu(z' -tz)xayf3cp0(z)dxdydt.

o m 1. ,
a+fJ=m

Take LP norms and use the fact that the norm of an integral is less than or
equal to the integral of the norm:

Since the LP norm is translation invariant and lxayf31 :S lzlm for a+ {3 = m,
we have

4.6 Explicit core functions

Suppose cp is a continuous radial function and write cp(z) = cp(r) where
r2 = lzl 2 = x2 + y2 . Then J x0 yf3cp(z)dxdy = 0 if a or {3 is odd, so the
moment conditions (12) become

11

cp(r)rdr = 1/27r,

where m = 2n + 2 is even.
Using scaling, the explicit formula (4) for](, polar coordinates and the

standard integral

-----:---::-dB -1
2

11" 1 - a cos 8 { 27r if a 2 < 1
o 1- 2acos8 + a2 - 0 if a.2 > 1

gives the useful result

Ks(z) = cp0 * K(z) = f (i) K(z)

where the "shape function" f is given by

f(r) = 27r for cp(s)sds.

Since cp(r) = 0 for r > 1, we have f(r) = 1 for r > 1. This facilitates fast
summation methods.

We now construct a family of shape functions f. A convenient ansatz
suggested by [16] is

f(r) = rl [ad[>d + ... + ao] + 1 (13)

15

cp(r) = _1_/'(r)
21rr

~1 [(p + d)ad{!p+d-1 + ... + pao{!p-1~] (14)

for r2 < 1. For r 2 > 1, cp(r) vanishes. Such a core function cp has p - 2
continuous and p - 1 bounded derivatives.

The d + 1 coefficients a.i must be chosen so that cp satisfies· n + 1 moment
conditions, so we cannot expect a solution unless d?: n. If d > n, the linear
system of moment conditions is underdetermined, and we use a complete
orthogonal factorization routine to find the solution with smallest 2-norm.

A brief calculation shows that the moment conditions are equivalent to
a linear system

Aa = b

where bo = -1, bi = 0 fori> 0, a= (a0 ,ab ... ,ad) and then+ 1 by d + 1
matrix A is determined by the recurrence

1
A,·1· = A· · p + i + j •-1,)

0 < i ~ n, 0 ~ j ~ d,

with initial values Aoj = 1 for 0 ~ j ~ d. When p is large, each row is
almost proportional to the previous one, so A is highly ill-conditioned.

Given the coefficients ai, we have

where zl. = (-y, x). Thus we expect roundoff problems when r ~ b. They
can be reduced by observing that since f(O) = 0, there exists a polynomial
g such that

In terms of g, we have a convenient formula

The coefficients bj are given by

bp-1 = bp-2 = ... = b1 = bo = 1

and

16

Several well-known core functions are included in this scheme. For exam­
ple, Nordmark's eighth-order core function from [16] has p = 10, d = n = 3
and m = 8: the corresponding shape factor is

f(r) e10
[-560tl + 1365e2

- 1092!,> + 286] + 1

r
2

[560o10
- 805o11 + 287 o10 + o9 + o8 + · · · + 1] .

Figure 5 shows several shape functions of this type, for various choices of
parameters. The increasing oscillation as n increases follows naturally from
the vanishing of more moments.

The polynomial degree d makes little difference to the values of high­
order kernels, but Table 1 shows that increasing d can noticeably reduce the
sizes of the coefficients and thus the smoothing error bound. Indeed,

M

<

<

~! j lzlml<p(z)ldxdy

1 {1 rm+1 (CP + d)iadiop+d-1 + ... + plaolop-1] dr
1rm! Jo

1
--[lad I + · · · + laol].
4·m!

n m p d M
0 2 4 1 2.1-2
1 4 6 2 3.6-3
2 6 8 3 3.8-4
3 8 10 4 2.0-5
4 10 12 5 6.9-7
8 18 20 8 1.8- 13

d M
5 1.6-2
6 1.5-3
7 8.9-5
8 3.2-6
9 8.5-8
12 5.0- 1.5

Table 1: Error constants M as a function of moment order m, smoothness
p and polynomial degree d for the piecewise polynomial shape factors (13)
shown in Figure 5.

4. 7 Time stepping techniques

Since the Euler equations are not stiff and we are constructing high-order
vortex methods, we discretize time with explicit s-step Adams methods.
These methods require an accurate procedure for computing the s starting
values. Suppose we use an explicit s-step Adams method with a fixed time
step !11. We begin with a tiny time step /1; << /11 and 1-step Adams,
giving error 0(~~). Since our final method is order-s accurate, we should

choose ~i = 0(~12). We now increase the order of the Adams method by
1 at each step until order s is reached, simultaneously increasing ~i by a
factor R :::; 2 until ~ f is reached. The final non-equidistant step is adjusted
to land precisely at t = ~f.

17

- 2.0 - 2.0
0 ..-
II II
c c
cr) r-:
v 1.0 v 1.0 'C 'C
v v

0 .,....

..,f <0
II II
0. 0. - 0.00.0 - 0.00 - -0.5 1.0 .0 0.5 1.0

r r

- 2.0 - 2.0
C\1 C')

II II
c c

CX) 0')

v 1.0 v 1.0 'C 'C
v v

C\1 C')

aS 0 ..-
II II
0. 0. - 0.0 0 - 0.00.0 - -0. 0.5 1.0 0.5 1.0

r r

- 2.0 - 2.0
~ CX)

II II
c c
c5 C')
..- ..-
v 1.0 v 1.0 'C 'C
v v

..;t ,.....

C\i 0
..- C\1
II II
0. 0. - 0.00.0 - 0.00.0 - -0.5 1.0 0.5 1.0

r r

Figure 5: Piecewise polynomial shape factors f with various parameters.

18

4.8 Balance of error

We now balance the errors due to smoothing and quadrature. The error in
velocity evaluation splits naturally into two parts

N

E lu(z)- L WjKs(z- Zj)w(zj)l
j=l

< IK * w(z)- Ks * w(z)l
N

+ IKs * w(z)- L WjKs(z- Zj)w(zj)l
j=l

Here Es is the smoothing error, which satisfies

if t.p satisfies moment conditions (12) of order m and u E em. The second
term EN,s is the quadrature error, which satisfies

' -----

g(z') = Ks(z- z')w(z')

for each fixed z. By a standard inequality for the Cq norm of a product of
two functions (14], we have

We know that

Ks(z) -2 z- z z ' '
(

') ,.l. j o t.p -o- 27rlz'l2 dx dy

-1 z ' z ' '
()

,.l.

o j t.p 6- z 21l"lz'l2dx dy'

so there is some constant C, depending only on <p, such that

ll aaaf3 K II < coa+{3-l
X y 0 0-

if t.p E ca+f3. Thus if t.p E Cq, we have

so the quadrature error satisfies

19

Hence the total error in one velocity evaluation satisfies

where q is the order of quadrature and <p E Cq satisfies moment conditions
(12) of order m.

We now take advantage of the separation between llwllo and llwllq to
derive a nonstandard error bound. \Ve choose 6 as a function of h to make

where € is a user-specified error tolerance, fixed as h vanishes. This implies

1
a= 1---,

q+1

and our error bound becomes

The choice m = q balances the two remaining terms, since an elementary
calculation with the Biot-Savart integral shows that llullm 5 Cllwllm if w

has compact support, and we find

where k = q2 f(q + 1) = q- 1 + q!l > q- 1. For quadrature of orders
q = 2, 4, 6, 8, 10, the exponent a in 6 = 0(ha) is 0.66, 0.80, 0.86, 0.89, 0.91
respectively, with order of accuracy k equal to 1.33, 3.20, 5.14, 7.11, 9.09
rapidly approaching q- 1 from above as q increases. Thus 6 is very close
to O(h) for methods of high order k, with only q derivatives of w required.
This allows us to use fast summation methods with excellent efficiency:
the fast multipole method with this 6 costs O(Nb) with b = 1 + q!l =
1.33, 1.20, 1.14, 1.11, 1.09, very close to 1.

This error bound is nonstandard but extremely useful. It gives almost
optimal accuracy and efficiency at the price of a nonstandard definition of
convergence. Such a definition costs us very little in this context, because
the fast multipole method already involves error €.

We combine this order-k velocity evaluation with an Adams method
of order s = q > k, because the first-order Euler equations imply that
the velocity should have roughly the same order of smoothness in time as
in space, with the particle positions one order smoother by the flow map
equation (1). An order 0(£ + hk) error in the velocity u at each time step
fortunately does not accumulate in the multistep solution of

ci>(z, t) = u(ci>(z, t), t)

20

so we expect to obtain a maximum norm error in ci> of order

as h and .6. f vanish. This would imply similar estimates for the velocity and
vorticity by standard arguments [13].

5 Implementation and numerical results

We implemented a version of the fast adaptive vortex method in Fortran and
studied several numerical examples. First, we measured the accuracy and
efficiency of the velocity evaluation scheme in isolation. Then we measured
the error in long-time calculations with the full method. Finally, we studied
the interaction of several smooth patches of vorticity.

5.1 Velocity evaluation

We studied the accuracy of the velocity evaluation of orders k = 1.33, 3.20,
5.14 and 7.11 corresponding tom= q = 2, 4, 6, and 8, using the well-known
Perlman test case [17]

where p = 10. The vorticity Wp is a cP-l function on R 2 ' while the
corresponding velocity fields are cP:

zl.

u(z) = (1- wp+I(z)) (2P + 2)r2"

This is a stationary radial solution of the Euler equations with shear and a
popular test case for vortex methods.

We tested our method with the following random initial grid. Given N
and n with n2 ::; N, first distribute n2 vortices uniformly over a rectangle R
enclosing the support of the vorticity: Divide R into a n x n grid and choose
a point Zi randomly in the ith grid cell. Of the remaining M = N - n 2

vortices, put

l Mlw(zi, O)l J
mi = Li lw(zi,O)I

or mi + 1 random vortices located in the ith cell of the n x n grid. Thus the
remaining N - n2 vortices are distributed in regions where the vorticity is
large, providing some degree of adaptivity despite their randomness. Note
that the vorticity is conserved along particle paths, so the particles tend to
stay where w is large.

We generated N = 500, 1000,2000, ... , 64000 vortices in such an adap­
tive random grid with n2 ~ N /10 and evaluated the velocity at each of the

21

'·

Free-Lagrangian Algorithm

Read parameters from input file:

Plotting, output, housekeeping.
Time stepping: · ti, t f, Doi, D. f, R, k.
Quadrature order and safety factor: q, S.
Smoothing: p, d, n, b = Cha.
Fast summation tolerance: E.

Initial vorticity w0 , grid points Zi and domain.

Construct initial grid, vorticity values, shape factor
coefficients.

Set t = ti and time step Do = D.i/ R.
Do vhile t < t1:

Compute nev time step D.= min(RD.,D.f,tf- t).
Compute nev order k = min(k,j).
Evaluate quadrature veights Wj by method of Figure 4.
Apply fast multipole method vith smoothing to get

Ui = .Lf:1 Ks(zi- Zj)WjWj for 1 ~ i ~ N
Estimate error, vrite output, store data and plot results.
Calculate VSVO Adams coefficients.
Update velocity differences.
Advance vortices by one order-k

Zi = Zi + D.(a1 Ui + differences)
End vhile

Adams step of size D.
for 1 ~ i ~ N

Figure 6: Outline of a free-Lagrangian vortex method with quadrature, fa.st
summation and Adams time-stepping.

22

vortices, us~ng core functions and quadratures of orders m = q = 2, 4, 6, 8.
The number of correct bits

_ ([llu- uh,sll1])
B1 - max 0, -log2 llulll

in the computed velocity Uh,o in £1 and L 00 norms, the CPU times T (in
seconds on a Sparc-2 workstation) and other statistics are reported in Table
2. The velocity evaluation produces error 0(f + N-kf2) with k/2 = 0.67,
1.60, 2.57 and 3.55 in O(Nblogf) CPU time with b = 1.33, 1.20, 1.14 and
1.11 and a constant of proportionality depending very weakly on the order
q. Note that when N doubles, the average cell size h decreases by a factor
.J2, so we expect to gain k /2 bits per line in each table until 0(f) is reached.

For first-order methods, the 0(hl.33) errors dominate so· the 0(f) limit
on accuracy never appears. For higher-order methods, we get higher-order
convergence in the region where the smoothed kernel is resolved but the 0(f)
limit has not appeared. After the limit is reached, convergence continues
slowly.

m = q = 2, p = 4, d = 1, k = 1.33 m = q = 4, p = 6, d = 2, k = 3.20
N h 6 Bt Boo T N h 6 Bt Boo T

500 0.497 0.631 1.95 1.42 4.83 500 1.300 1.481 1.02 0.52 6.87
1000 0.328 0.479 2.48 2.03 13.8 1000 0.807 1.011 2.26 1. 79 22.2
2000 0.205 0.351 3.28 2.79 43.6 2000 0.443 0.625 4.49 3.71 75
4000 0.142 0.275 3.91 3.41 142.7 4000 0.300 0.4.57 6.00 5.21 209
8000 0.089 0.203 4.74 4.26 336.2 8000 0.180 0.30.5 8.16 7.22 632

16000 0.064 0.163 5.38 4.88 1155 16000 0.128 0.232 9.71 9.00 1485
32000 0.039 0.118 6.29 5.79 2051 32000 0.078 0.156 11.9 10.3 4498
64000 0.028 0.095 6.93 6.41 6493 64000 0.057 0.121 13.3 12.0 8111

m = q = 6, p = 8, d = 3, k = 5.14 m = q = 8, p = 10, d = 4, k = 7.11
N h 6 Bt Boo T N h 6 Bt Boo T

500 1.760 1.948 0.0 0.0 8.66 500 1.810 2.033 1.34 0.48 9.22
1000 1.170 1.374 0.31 0.0 26.9 1000 1.690 1.912 0.0 0.0 34.9
2000 0.721 0.905 4.49 2.67 90.6 2000 1.100 1.304 3.34 2.23 111
4000 0.386 0.529 8.21 5 .. 51 281 4000 0.677 0.848 7.79 6.29 358
8000 0.263 0.381 10.2 7.18 774 8000 0.362 0.486 10.4 6.89 960

16000 0.158 0.245 12.0 6.74 1574 16000 0.247 0.346 11.9 8.00 2923
32000 0.114 0.185 14.0 9 .. 30 4988 32000 0.146 0.217 12.9 8.15 5828
64000 0.068 0.118 15.0 10.1 7634 64000 0.106 0.162 15.1 9.99 14650

Table 2: Velocity evaluation errors in w8 with N adaptive random points.
Correct bits B1 and Boo in L1 and L 00

, CPU times T, cell size h and core
radius b. Here q is the quadrature order and m is the moment order.

23

,,

5.2 Long-time accuracy

We also tested the long-time accuracy of the method on several Perlman
test cases, running for 0 ~ t ~ 20, a final time at which the fastest-moving
particles of fluid (near the origin) have completed 1.6 revolutions while the
slowest have completed only 0.2. This strong shear is usually considered
a severe test for a vortex method. We started with an almost uniformly
distributed adaptive random grid with n 2 ~ 0.8N, and used core functions,
quadratures and Adams methods of orders m = q = s = 2, 4 and 6, yielding
adaptive vortex methods of orders k = 1.33, 3.20 and 5.14. We tested each
method on a Perlman patch of minimal smoothness, with P = q + 1 = 3,
5 and 7. In particular, the errors at different orders are unrelated. Table 5
shows the other numerical parameters. For comparison, Tables 3 and 4 give
the parameters used in the standard and triangulated vortex methods, for
the test cases plotted in Figures 1 and 2.

The correct bits in L1 in the velocity and vorticity are plotted in Figure 7.
The plots are individually scaled and ticked in such a wa.y that the number
of correct bits should increase by half a tick mark at each line. These results
clearly confirm the long-time high-order accuracy of the method; they do
not show the loss of accuracy observed in Lagrangian vortex methods (for
example in Figure 1). The errors are highly oscillatory on a small scale,
because a new quadrature rule is built from scratch at each step.

N h h t:.f t:.; T B1(u7) Bl(wr) B1(u3) B1 (w3)
64 0.27 1.05 0.512 0.0512 0.5 3.77 1.00 3.85 1.37

256 0.14 0.74 0.256 0.0128 1.4 4.42 1.40 4.86 2.89
1024 0.07 0.52 0.128 0.0032 12.0 7.52 4.10 6.35 5.19
4096 0.03 0.37 0.064 0.0008 85.6 8.29 6.49 9.02 8.17

Table 3: Number of vortices N, mesh size h at t = 0, core radius o, time
steps .6. 1 and .6.; and CPU time T per step in seconds for the standard
vortex method. Here B1 (np) and B1 (wp) are measured at t = 20.

N !::.t T B1(u) B1(w)
70 0.625 0.86 4.76 4.61

225 0.41666 5.1 5.97 6.27
745 0.3125 23.9 8.48 9.48

2729 0.20833 120.2 10.15 11.70

Table 4: Number of vertices N, time step .6. f and CPU time T per step
for the triangulated vortex method. Here B1 (u) and B1 (w) are measured at
t = 20.

24

m = q = 2, p = 4, d = 1, k = 1.33
N n !::.t t:.; h 8 T B1 (tt) B1(w)

250 14 1.12 0.056 0.840 0.807 0.58 2.94 2.85
500 20 0.80 0.040 0.516 0.599 3.29 3.75 4.21
1000 28 0.56 0.028 0.345 0.441 6.63 4.78 6.02
2000 40 0.40 0.020 0.198 0.321 20.9 5.73 7.14
4000 56 0.28 0.014 0.136 0.231 35.4 6.64 8.41
8000 80 0.20 0.007 0.076 0.173 112 7.26 9.84

m = q = 4, p = 6, d = 2, k = 3.20
N n !::.t t:.; h ~ T Bl(u) Bl(w)

250 14 0.28 0.01024 1.97 1.33 0.66 O.i.S 0.68
500 20 0.20 0.00512 1.02 0.93 4.18 2.93 4.20
1000 28 0.14 0.00256 0.67 0.64 12.9 6.16 6.00
2000 40 0.10 0.00128 0.40 0.44 27.1 7.97 7.66
4000 56 0.07 0.00064 0.27 0.29 84.1 8.56 9.01
8000 80 0.0.5 0.00032 0.15 0.21 139 10.1 10.2

m = q = 6, p = 8, d = 3, k = 5.14
N n !::.t t:.; h 8 T B1 (tt) B1(w)

250 14 0.14 0.01024 2.00 3.07 1.08 0.0 0.0

500 20 0.10 0.00512 1.97 1.82 6.96 0.46 0.21
1000 28 0.07 0.00128 1.(16 1.24 19.9 2.94 3.87
2000 40 0.05 0.00032 0.68 0.83 59.9 6.64 8 .. 39

4000 56 0.035 0.00008 0.41 0.55 197 9.06 9.27
8000 80 0.025 0.00002 0.26 0.38 365 10.6 12.0

Table 5: Number of vortices N (with n 2 in regular grid), time steps 6.1
and 6-.i, mesh size h and core radius 6 at t = 0 and CPU time T per step
for adaptive methods of orders 1.33 (top), 3.20 (center) and 5.14 (bottom).
Here B1(u) and B1 (w) are measured at t = 20.

25

N
Cl
0 -r

:::l

,!;;;; ...
~
Q;
.....
...J
Ql
>
~
a;
a:
N
Cl
0 -r

:::l

.!;;;; ...
~
Q;

.....
...J
Ql
> :;
a;
a:
N
Cl
0 -r

13.0
11.7
10.4

-
-
-
-

::- .-.

9.1
7.8
6.5
5.2
3.9
2.6
1.3

~ -
-
-

0.0

12.8

3.2

0.0
0.0

15.3

5.1

0.0

~-

5.0 10.0 15.0 20.0
Time

5.0 10.0 15.0 20.0
Time

5.0 10.0 15.0 20.0
Time

111
Cl
Ql

E
0 10.4

,!;;;;
9.1 ...

~ 7.8 Q;
..... 6.5
...J
Ql 5.2
>
~ 3.9
a; 2.6 a:

1.3
N
Cl
0 0.0 5.0 10.0 15.0 20.0 -r Time

111
Cl
Ql

E
0

,!;;;; ...
~
Q;

.....
...J
Ql
>
~
Qi 3.2
a:
N
Cl 0.0 0 0.0 5.0 10.0 15.0 20.0 -r Time

111
Cl
Ql

E
0

,!;;;; ... 10.2 g
Ql

::i
<D
> 5.1
~
Ql
a:
N
Cl
0 -r 0.0 5.0 10.0 15.0 20.0

Time

Figure 7: Correct bits B 1(u) and B1(w) in velocity u (left column) and
vorticity w (right column), for adaptive vortex methods of orders 1.33 (top
row), 3.20 (second row) and 5.14 (last row). The numerical parameters are
given in Table 5.

26

5.3 Interacting vortex patches

As a more complex example, we used the order-1.33 method with parameters
given in Table 6 to compute two interacting smooth patches of vorticity.
Thus the initial vorticity is given by

Q

w(z, 0) = L S1j(1-lz- Zji
2l

j=l

where Q = 2, P = 3 and Zj and nj are given by z1 = (0, 1.05), z2 =
(0, -1.05), !11 = 2 and !12 = 1. Figure 8 shows the final result at t = 30
with N = 1000, 2000 and 4000; the large-scale features of the results are
clearly converged.

We also carried out a similar computation with 20 randomly located
and scaled patches (Q = 20, P = 5) with random strengths nj, using the
order-3.20 method with 6.1 = 0.10 and 8 = 1.2h415 • Some sample vorticity
contours are shown in Figure 9. The L 1 norm of w is conserved exactly by
our method, even for this fairly complicated flow. The L 00 norm is trivially
conserved since the vorticity values are carried by the flow.

N h {J t::.., !:::..; T llulb llwll1
250 1.30 1.19 0.20 0.020 0.59 0.1527 0.2181
500 0.86 0.90 0.14 0.014 2.92 0.1835 0.2048

1000 0.64 0.74 0.10 0.010 9.89 0.1724 0.2302
2000 0.43 0 . .57 0.07 0.007 36.25 0.1834 0.2108
4000 0.32 0.47 0.05 0.00.5 68.72 0.1808 0.2315

Table 6: Number of vortices N, mesh size h a.t t = 0, core radius 8, time
steps b. 1 and b..i and CPU time T per step for the adaptive method of order
1.33. Here llull1 and llwlh are the L1 norms of the velocity and vorticity,
measured at timet= 30.

References

-, [1] C. Anderson and C. Greengard. On vortex methods. SIAM J. Math.
Anal., 22:413-440, 1985.

[2] C. R. Anderson. A method of local corrections for computing the veloc­
ity field due to a collection of vortex blobs. J. Comput. Phys., 62:111-
127, 1986.

[3] E. Anderson, Z. Bai, C~ Bischof, .J. Demmel, .J. Dongarra, .J. du Croz,
A. Greenbaum, S. Hammarling, A. McKenney, S. Ostrouchov, and
D. Sorensen. LAPACK Users' Guide. Society for Industrial and Applied
Mathematics, Philadelphia, 1992.

27

Figure 8: Vorticity contours for two interacting Perlman patches with P = 3,
computed with the adaptive method of order 1.33 and numerical parameters
given in Table 6. The first four plots show the evolution at t = 0, 10, 20
and 30 with N = 4000 vortices, the last row shows the final frame t = 30,
computed with N = 1000 (left) and N = 2000(right).

28

Figure 9: Vorticity contours for 20 interacting Perlman patches with P = 5,
computed with the adaptive method of order 3.20. Results are shown at
t = 0, 4, 8, 12, 16 and 20 with N = 10000 vortices.

29

[4] J. T. Beale. On the accuracy of vortex methods at large times. In
B. Engquist, M. Luskin, and A. Majda, editors, Computational fluid
dynamics and reacting gas flow, volume 12 of IMA volumes in mathe­
matics and applications. Springer-Verlag, 1988.

[5] J. T. Beale and A. Majda. High order accurate vortex methods with
explicit velocity kernels. J. Comput. Phys., 58:188-208, 1985.

[6] J. Carrier, L. Greengard, and V. Rokhlin. A fast adaptive multipole
method for particle simulations. SIAM J. Sci. Stat. Comput., 9:669-
686, 1988.

[7] T. Chacon Rebollo and T. Y. Hou. A Lagrangian finite element method
for the 2-D Euler equations. Comm. Pure Appl. Math., XLIII:735-767,
1990.

[8] A. J. Chorin. Computational Fluid Mechanics: Selected Papers. Aca­
demic Press, 1989.

[9] P. J. Davis and P. Rabinowitz. Methods of Numerical Integration. Com­
puter science and applied mathematics. Academic Press, second edition,
1984.

[10] J. R. Grant, S. A. Huyer, and .J. S. Uhlman. Solution of the vorticity
equation on a Lagrangian mesh using triangularization: computation of
the Biot-Savrt integral in three dimensions. Technical report, NUWC,
1994.

[11] K. E. Gustafson and .J. A. Sethian, editors. Vortex methods and vortex
motion. SIAM, Philadelphia, 1991.

[12] 0. H. Hald. Convergence of vortex methods for Euler's equations III.
SIAM J. Numer. Anal., 24:538-582, 1987.

[13] 0. H. Hald. Convergence of vortex methods. In Gustafson and Sethian
[11], pages 33-58.

[14] L. Hormander. The boundary problems of physical geodesy. Arch.
Rational Mech. Analysis, 62:1-52, 1976.

[15] S. A. Huyer and J. R. Grant. Incorporation of boundaries for 2D tri­
angular vorticity element methods. Technical report, NUWC, 1994.

[16] H. 0. Nordmark. Rezoning for high-order vortex methods. J. Comput.
Phys., 97:366, 1991.

[17] M. Perlman. On the accuracy of vortex methods. J. Comput. Phys.,
59:200-223, 1985.

30

[18] P. A. Raviart. An analysis of particle methods. In F. Brezzi, editor,
Numerical methods in fluid dynamics (Lecture notes in mathematics;
1127) Fondazione C.l.M.E., Firenze. Springer-Verlag, 1985.

[19] G. Russo and J. Strain. Fast triangulated vortex methods for the 2-D
Euler equations. J. Comput. Phys., 111:291-323, 1994.

[20] J. Strain. Fast potential theory II: Layer potentials and discrete sums.
J. Comput. Phys., 99:251-270, 1992.

[21) J. Strain. Locally-corrected multidimensional quadrature rules for sin­
gular functions. SIAM J. Sci. Comput., 16:1-26, 1995.

[22] J. Strain. 2-D vortex methods and singular quadrature rules. J. Com­
put. Phys., 124:1-23, 1996.

AMS Subject Classifications: 76M10, 76M25, 65M50, 65M60, 65Y25,
65D32, 65D05, 65D30, 65R20

Key words and phrases: quadrature, vortex methods, Euler equations,
Legendre polynomials, least-squares problems, quadtrees, data structures,
free-Lagrangian methods, adaptive methods, interpolation, product inte­
gration.

E-mail address: strain@math.berkeley.edu.

31

--_..:. "":--"'·

~

~ I~ ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY

: ~TECHNICAL AND ELECTRONIC INFORMATION DEPARTMENT

fii3;)}i3ifi*S¥1 UNIVERSITY OF" CALIFORNIA I BERKELEY, CALIFORNIA 94720

