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A Discrete-time Linear Shift-invariant System 
. Not Representable as a Convolution 

Paul Hughett 

Life Sciences Division, Lawrence Berkeley National Laboratory, 
. One Cyclotron Road, Berkeley, CA 94720 

A counterexample is presented to the claim that every discrete-time linear 
shift-invariant system can be represented as a convolution. We will say 
that a linear operator is a-linear if superposition holds for an infinite 
number of terms; a-linearity is stronger than linearity. Every a-linear 
shift-invariant operator can be represented as a convolution. 

1 Introduction 

A widely used result in discrete-time linear system theory is that the action 
of every discrete-time linear shift-invariant system can be represented as the 
convolution of the input signal with the impulse response of the system. This 
result does not appear to have a commonly accepted name, and we shall refer 
to it as the representation theorem. This result appears, for example, in the 
textbooks by Oppenheim and Schafer[!], Rabiner and Gold[2], and Jackson[3]. 
This paper gives a counterexample to demonstrate that this representation is 
not always valid. The usual proof of the result makes the assumption that, if 
superposition holds for a finite number of terms, it necessarily holds for an 
infinite number of terms as well; in fact, infinite superposition is a stronger 
property which does not necessarily follow from linearity. Since this stronger 
property extends linearity from finite sums to countably infinite sums, we will 
call it a-linearity by analogy to the way that a a-field allows countably infinite 
sums where an ordinary field allows only finite sums. 

Kailath[4] has pointed out that linearity does not imply (in our terms) a­

linearity but did not explore the consequences of this fact, perhaps because 
the only examples known to him were rather pathological. Steiglitz[5] has 
observed that a-linearity is required fo~ the usual proof of the representation 
theorem but again did not examine the consequences. Sandberg and Ball[6, 7] 
have investigated the conditions under which a continuous-time system can 
be represented as a convolution. 
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A correct theorem can be obtained in two different ways. The first is to weaken 
its conclusion to that which can validly be proven from ordinary linearity; the 
weaker conclusion is that representability holds for every sequence with only a 
finite number of non-zero elements. The second is to strengthen the hypothesis 
of the theory by requiring that the LSI system be a-linear rather than simply 
linear; then the system can be represented as a convolution for every input 
sequence. This paper does not attempt to determine criteria for the 0'-linearity 
of an LSI system, and more research will be needed to do so. 

2 Notation and Previous Results 

We denote by C.iZ the set of all functions from Z to C, where Z is the set of 
integers and C is the set of complex numbers. That is, C.iZ is the set of all two­
sided infinite sequences of complex numbers. Members of C.iZ will be denoted 
by lower case italic letters. The notation x[n] will be used to denote the nth 
element in the sequence x; the notation Xn the nth of a set of sequences. Unless 
otherwise specified, the indices j, k, and n range over all integer values; this 
applies in particular to summations such as Ln x[n]. The unit sample sequence 
8 is the sequence defined by 8[0] = 1 and 8[n] = 0 for all other n. The shifted 
unit samp~e sequence 8n is the sequence defined by 8n[k] = 1 if n = k and 0 
overw1se. 

The convolution of two sequences x and y is the complex sequence x * y with 
elements 

00 

(x * y)[n] = L x[k] y[n- k] (1) 
k=-oo 

provided that the sum converges for all values of n. Otherwise the convolution 
x * y is undefined. This definition is stricter than the usual definition in that 
it requires that the sum converge for all output values. 

The set C.iZ is a vector space over the complex numbers. Let A be a linear 
subspace of cLZ. An operator F defined on A is a mapping F : A --+ A; note 
that this means that Fx exists and is in A for every x E A. An operator F 
defined on A is linear if F(ax +,By)= a(Fx) + ,B(Fy) for all sequences x, yEA 
and all (complex) scalars a,,B. Linear operators will be denoted by sans serif 
letters. The shift operator zP is defined by (zPy )[n] = y[n- p] for any integer p. 

A linear operator F on A is shift-invariant if zPFx = FzPx for every sequence 
x E A and every integer p. For brevity, we will refer to a linear shift-invariant 
operator on c.iZ as an LSI operator. The impulse response of an LSI operator 
F is the sequence f = F8; we will assume that 8 E A and so F8 is always 
defined. 
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An infinite sum L:~=-oo Xn of sequences Xn . E A converges pointwise to some 

x E <CiE if the sum L:~=-oo Xn[k] converges for .every k. More explicitly, for 
every integer k and every E > 0, there exists an integer N such that lx[k]­
L:;:=-N Xn[k]l < €. The infinite sum L:~=-oo Xn converges uniformly to x if, for 
every E > 0, there exists an integer N such that lx[k]- L:::=-N Xn[k]l < E for 
every k. Uniform convergence is stronger than pointwise convergence in that 
it requires that N be independent of the value of k. 

3 A Counterexample 

The representation theorem is the claim that every LSI operator can be rep­
resented as a convolution with its i~ulse response. That is, for every LSI 
operator F and every sequence x E <C , Fx = (F8) * x. · 

The representation theorem as just stated is false, and we now present an LSI 
operator which cannot be represented as a convolution. Let F be the operator 
defined by 

(Fx)(n] = x[nJ- ~~= 2N
1
+ l'=~N x[n + kJ (2) 

for any sequence x such that the limit exists. We will call this the ideal DC­
blocking filter, since what it does is to remove the DC or average component 
of the input signal without otherwise modifying the signal. To see that this 
is true, observe that the term involving the limit just computes the average 
value of the signal, which is then subtracted from the signal itself. 

Now we claim that the operator F is linear and shift-invariant. To see that F 
is linear, choose any integer n and consider 

(F(ax + ,By))[n] =(ax+ ,By)[n]- lim 
2
N

1 t (ax+ ,By)[n + k] 
N->oo + 1 k=-N 

= ( ax[n] + ,By[n]) 
1 N 

- lim 
2
N I: (ax[n + k] + ,By[n + k]) 

N->oo + 1 k=-N 

=a (x[n]- lim 
2
N

1 
1 
t x[n + k]) 

N->oo + k=-N 

+ (3 (y(nJ-N~ 2N!+ !I=~N y(n + kJ) 
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=a(Fx)[n] + ,B(Fy)[n] (3) 

and it follows that F(ax +,By) = aFx + ,BFy, or that F is linear. To see that 
F is shift-invariant, let z be the unit-shift operator and consider 

1 N 
(F(zPx))[n] = (zPx)[n]- lim 

2
N L (zPx)[n + k] 

N-+oo + 1 k=-N 

1 N 
= x[n - p] - lim N L x[n + k- p] 

N-+oo 2 + 1 k=-N 

= (Fx)[n- p] = (zP(Fx))[n] 

and it follows that FzPx = zPFx, or that F is shift-invariant. 

The impulse response of F has elements 

. 1 N 
f[n] = (F8)[n] = 8[n]- lim 

2
N 

1 
L 8[n + k] = 8[n]- 0 

N-+oo + k=-N 

(4) 

= 8[n] (5) 

and so f = F8 = 8. 

Now let u be the unit step sequence defined by u[n] = 0 for n < 0 and u[n] = 1 
for n > 0. Then Fu has elements 

(Fu)[n] = u[n]- lim 
2
N

1 t u[n + k] 
N-+oo + 1 k=-N 

= u[n]- lim N + 1 
N-+oo 2N + 1 

=u[n]-! 

{ 

_! n < 0 
= +~ otherwise (6) 

However, (F8) * u = f * u = 8 * u = u =f. Fu and so the representation theorem 
is false for this LSI operator. 

4 The False Representation Theorem 

If the theorem is false, then there must be an error somewhere in its proof. 
Let us examine the proof more carefully. 
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Theorem 1 (False) Every LSI operator F can be represented as a convolution 
with its impulse response. That is, for every sequence x, Fx = (F8) * x. 

PROOF. Fix any sequence x and observe that En x[n] 8n = x. Then it follows 
by linearity that 

Fx = F ( ~ x[n] 8n) = ~ x[n] (F8n) (7) 

Now let f = F8 be the impulse response of F and observe that for any k, 
(F8n)[k] = f[k- n]. Then choose any k and compute 

(Fx )[k] = L x[n] · (F8n)[k] = L x[n] f[k- n] = (x * f)[k] (8) 
n n 

Since this equality holds for any k, we have shown that Fx = (F8) * x. D 

To see where the proof goes wrong, let's substitute the definition of the coun­
terexample into equation (7) of the proof to obtain 

which the proof claims is always equal to 

That is, it is necessary to interchange the order of the limit and the summation 
in n. This is always valid if the sum involves any finite number of terms and 
is valid for an. infinite number of terms if the summation in n is uniformly 
convergent. But, for the counterexample, the infinite sum 

00 

L x[n + k] 8n+k = L u[n + k] 8n+k = L 8n+k (11) 
.n n n=O 

is not uniformly convergent, and so it is not valid to interchange the sum and 
limit. 
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In effect, the proof assumes that for any linear operator F, the equality 

(12) 

holds even if the summation involves an infinite number of terms. But as 
we have just seen, this is not always true. That is, linearity over an infinite 
number of terms is a stronger property than linearity over a finite number of 
terms. We will call this stronger property a-linearity, and devote the rest of 
this paper to precisely defining a-linearity and proving a correct version of the · 
representation theorem. 

5 Two Correct Representation Theorems 

But before we investigate a-linearity, there is another way to correct the the­
orem and that is to weaken the conclusion to one which is implied by linearity 
alone. To do this, we observe that the interchange of sum and limit is valid for 
any finite sum, or more generally, for an infinite sum containing only a finite 
number of non-zero terms. 

Theorem 2 Let F be a linear shift-invariant operator on cZ. Then Fx = 
(F8) * x for every sequence x which contains only finitely many non-zero ele­
ments. 

PROOF. Fix any sequence x with finitely many non-zero elements and ob­
serve that En x[n] 8n = x. Since this sum contains only finitely many non-zero 
terms, it follows by linearity that 

(13) 

Now let f = F8 be the impulse response of F and observe that for any k, 
(F8n)[k] = f[k- n]. Now fix k and compute 

(Fx )[k] = L x[n] · (F8n)[k] = L x[n] f[k- n] = (x * f)[k] (14) 
n n 

Since this equality holds for any k, we have the desired result that Fx = (F8)*x. 
0 
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The definition of a-linearity involves a few subtleties that were absent in the 
definition of linearity. The first is that not every infinite sum converges, and so 
we cannot define a-linearity to require superposition for every infinite sum, but 
only for convergent infinite sums. The second is that there are several possible 
definitions of convergence for infinite sums of functions; since pointwise con­
vergence allows us to prove representability, that is what we will use. Finally, 
it appears, from some preliminary investigations into criteria for a-linearity, 
that the more we restrict the set of sequences over which a-linearity must hold, 
the fewer restrictions we must impose for an operator to be a-linear; thus it 
is useful to define a-linearity for an operator defined over some subspace A of 
cZ. Given these considerations, we define a-linearity as follows. 

Definition 3 An LSI operator F defined on A c C~ is pointwise a-linear if 
{1) for every complex number a and every sequence x E A, F(ax) =a F(x); 
and {2) for every infinite sum Ln Xn of sequences Xn E A that converges 
pointwise to a sequence x E A, the series Ln Fxn converges pointwise to Fx. 

Note that a a-linear operator is necessarily a linear operator, since all but 
a finite number of terms in the sum may be set to zero. We will use the 
abbreviation a-LSI to mean pointwise a-linear and shift-invariant. 

As with CT-linearity, it is useful to define representability over subspaces of c~. 

Definition 4 An LSI operator F defined on A c C~ is representable if Fx = 
(F8) * x for every x EA. 

Now we.can stat~ and prove another version of the representation theorem. 

Theorem 5 Suppose that an operator F defined on A c C~ is shift-invariant 
and pointwise CT-linear. Then F is representable. That is, Fx = (F8) * x for 
every x EA. 

PROOF. Fix any sequence x E A and observe that En x[n] 8n converges 
pointwise to x. Then it follows by a-linearity that 

(15) 

where the last sum converges pointwise. Now define f = F8 and observe that 
for any k, (F8n)[k] = f[k- n]. Now fix k and compute 

(Fx )[k] = L x[n] · (F8n)[k] = L x[n] f[k- n] = (x * J)[k] (16) 
n n 

Since this equality holds for any k, we have that Fx = (F8) * x. D 
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6 Conclusions 

We have seen that not every LSI operator can be represented as a convolution. 
This means that any result in discrete-time linear systems theory that relies 
on this representation is valid only for the subset of LSI operators that can 
be so represented. More work is needed to determine which LSI operators 
are representable. Since a-linearity implies representability, one approach is 
to investigate criteria for a-linearity in various sequence spaces. For example, 
one preliminary result[8) for operators defined on the set of bounded sequences 
( £00 ) is that an LSI operator is representable if and only if it satisfies a certain 
locality property. More precisely, an LSI operator F defined on R.oo is semilocal 
if for every € > 0 there exists an integer N such that j(Fy)[O)j < € llxlloo, where 
y[n] = 0 for all jnj < N and y[n] = x[n] otherwise. Then F is representable 
if and only if it is semilocal; furthermore, either of these implies (but not 
conversely) that F8 is absolutely summable. 

The representation theorem is used to prove several other results in linear 
system theory, including the claims that: (1) The transfer function of an LSI 
operator is the Fourier transform of its impulse response. (2) An LSI opera­
tor is stable if and only if its impulse response is absolutely summable. (3) 
The output of a cascade of LSI operators is independent of the order of the 
operators. Unless these results can be proven without using the representa­
tion theorem, their application must be restricted to representable or a-linear 
operators. 
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