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Abstract 

Several numerical methods for slender vortex motion (the local induction equation, 

the Klein-Majda equation, and the Klein-Knio equation) are compared on the specific 

example of sideband instability of Kelvin waves on a vortex. Numerical experiments on 

this model problem indicate that all these methods yield qualitatively similar behavior, 

and this behavior is different from the behavior of a non-slender vortex with variable 

cross-section. It is found that the boundaries between stable, recurrent, and chaotic 

regimes in the parameter space of the model problem depend on the method used. 

The boundaries of these domains in the parameter space for the Klein-Majda equation 

and for the Klein-Knio equation are closely related to the core size. When the core 

size is large enough, the Klein-Majda equation always exhibits stable solutions for our 

model problem. Various conclusions are drawn; in particular, the behavior of turbulent 

vortices cannot be captured by these approximations, and probably cannot be captured 

by any slender vortex model with constant vortex cross-section. Speculations about 

the differences between classical and superfluid hydrodynamics are also offered. 
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1 Introduction 

Fluid vorticity is often concentrated in small regions. The special case where vorticity is 

concentrated on a single slender filament is important in many problems (e.g. turbulence, 

superfluidity). The study of the motion of slender vortices has received a lot of attention. 

The local induction equation [IJ, the Klein-Majda equation [21, and the Klein-Knio equation 

[31 are three different approximations for the motion of slender vortices. The comparison 

of these methods and the study of differences between the results and what we expect in 

turbulence theory are the main goals of this paper. 

The paper is organized as follows. After a brief review of vortex dynamics, we present 

approximate equations of motion for slender vortices, namely, the self-induction equation, 

the Klein-Majda equation and the Klein-Knio equation. The third section describes a model 

problem which comes from the theory of vortex wave motion in superfluid helium. The 

methods are applied to the model problem, and the results are displayed. We then draw 

various conclusions from these results. 

We consider unbounded, inviscid, incompressible flows. In the absence of external force, 

the motion of such fluid with unit density is described by the Euler equations: 

( Du 
Dt 

'V. u 

- - \Jp, 

0, 

(1) 

(2) 

where u(x, t) is the velocity, x = (xb i 2 , x3) is the position, p is the pressure, 'V = 

(8j8x 1 ,8j8x2,8j8x3 ) is the differentiation vector, tis the time, and DjDt =at+ u · 'V 

is the material derivative. 
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The curl of the velocity field, 

W=\7XU (3) 

is the vorticity. The velocity u(x) can be determined from the vorticity w(x) through the 

Biot-Savart law : 

( ) = _ _!_j (x- x') x w(x')d , 
u X I I 13 X. 47r X- X 

(4) 

If the vorticity is concentrated on a single thin filament C of circulation r, equation ( 4) 

becomes 

u(x) =_I_ r (x- x') x,dl(x') 
47r lc I x- x 13 

(5) 

If self-induced motion of the line filament is calculated by evaluating the velocity from (5) 

on the filament itself, the result will be logarithmically infinite if the filament is curved and 

zero if it is straight. Thus, self-induced motion occurs only for curved filaments. But to 

obtain the correct value for the velocity, further considerations of the finite size of the vortex 

core as well as the vorticity distribution are required. 

In this paper we focus our attention on very thin vortex filaments. We shall use the term 

thin or slender to describe any vortex filament with a typical radius of the core that is small 

compared to a characteristic radius of curvature. Thin vortices are very important in many 

respects. It has been suggested by Chorin and Akao [41 that thin vortices play an important 

role in the structure of turbulent flows. 

Vortex motion in three-dimensional space differs from vortex motion in two dimensions in 

several ways; the most significant result from vortex stretching (sJ. Vortex stretching causes 

vortex folding and the temperature is decreased [GJ,[71. As time t --t oo, a statistically steady 

state can be expected for a vortex filament system (s),[91. 
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2 Equations of Motion for Thin Vortices 

To simulate the motion of a slender vortex filament, using a vortex method would be 

dramatically expensive. Therefore, approximate equations are developed to replace the Biot-

Savart law. Three modeling approaches are used in this section to analyze the motion of 

-
slender vortex filaments. The first is the local induction approximation (LIA), which leads 

to a ·cubic nonlinear Schrodinger equation. The second is due to Klein and Majda, who 

derived a more accurate asymptotic equation for the motion of thin vortex filaments. The 

third approach, due to Klein and Knio, is a three-dimensional simulation based on a vortex 

element method. It should be pointed out that all three equations assume that the core size 

is small compared with the radius of curvature. According to the stability analysis given by 

Widnall et al [101, instability occurs when the wavelength is comparable with the core size of 

the vortex filament. Therefore, it is plausible to conjecture that hairpins might not develop 

when the core size is very small, even though Klein and Majda [131 claimed that hairpins 

appear in their model. 

To start with, consider a vortex filament described by r( s ), where s is an arc length 

parameter measured along the filament and r(s) is the' position vector. Lett, n, b denote 

the unit tangent, normal, and binormal vectors, respectively. 

One way to avoid singularity in equation (5) is to simply ignore the nonlocal contribu-

tion of the filament and replace the Biot-Savart law (5) by a different fluid velocity that 

depends only on a local curvature of the vortex filament. This leads. to the local induction 
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approximation, which reads [11 

or ot 
ot. = t x os = Kh, (6) 

where K is the curvature. Equation (6) has a very different character from the Euler equa-

tions, and in particular it preserves vortex length (nJ. 

Differentiation of both sides of (6) with respect to s gives the local induction equation in 

terms of the tangent vector: 

(7) 

Hasimoto [121 has shown elegantly that equation ( 6) can be reduced to a cubic nonlinear 

Schrodinger equation (NLSE) 

~ o¢ = o2¢ ~"' I "' 12 
i ot os2 + 2 'f' 'f' 

(8) 

where t is the time, s is the length measured along the filament, ¢is the complex function 

defined in terms of the-filament curvature K and torsion r: 

¢ = K exp(i las rds). (9) 

We call (9) the Hasimoto transformation and ¢the filament function which contains all the 

geometrical information for the filament. 

While the local induction approximation does not allow for any vortex stretching, numer-

ical simulations indicate that vortex stretching occurs for moderately thin vortex filaments 

in incompressible fluids. To retain vortex stretching, Klein and Majda [21 developed an 

asymptotic theory for slender vortex filaments. 

The slender vortices in Klein-Majda regime are, to leading order, straight vortex filaments 

that are subject to small amplitude displacements. The displacement of the vortex filament 
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centerlines away from the straight reference lines may be, but is not necessarily, large in 

comparison with a typical core size of the filament but it must be small compared to a 

typical perturbation wave length. In turn, the perturbation wavelengths are small compared 

to a characteristic radius of curvature of the filament. Thus with lengths measured on 

the curvature scale, the. slender vortices in Klein-Majda regime are characterized by small 

amplitude - short wavelength distortions ofa slender columnar vortex. 

Assume the centerline of a slender vortex filament is described by 

(10) 

where x is the position vector, s is the arc length along the curve, t is the time, u = s/c 

and r = t / c2 are the scaled space and time coordinates, t 0 is a constant unit vector, c is a 

perturbation scaling parameter and c < < 1. The vortex core size b and c are linked through 

the distinguished limit 

where C is some constant. 

2 1 c - -,...---
-In 2" + C 

0 

(11) 

When the far-field flow surrounding the filament is at rest, the filament motion obeys the 

perturbed binormal law 

ox(s, t) 
ot = ~~:b(s, t) + c2v(s, t) (12) 

where c2v(s, t) is a small perturbation velocity. Using the curve representation (10) and by 

the method of asymptotic expansions, one finds 

(13) 
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Here I[·] is the linear nonlocal operator 

100 1 [ 1 h
2 

11 l I[w](o-) = -oo lh3 l w(o- +h)- w(o-)- hw (a+ h)+ 2 H(1 -jhi)w (a) dh (14) 

with the notation I = a I 8a and H is the Heaviside function. Therefore, the nonlocal 

contribution of the filament is replaced by I, whose effect can be understood by considering 

its Fourier symbol: 

i(~) l e"'-iu~I(a)da 

I ~ 12 
( -ln I ~ I +Co) (15) 

where Co= 1/2 -1, and 1 is Euler's constant. 

Klein and Majda showed that Hasimoto's transformation (9) turns the evolution equation 

(12) with v from (13) into the perturbed nonlinear-nonlocal Schrodinger equation 

(16) 

with r = tjc2 and u = sjc. We call (16) the Klein-Majda equation. In this equation, 

the nonlocal term I[¢>] directly competes with the cubic nonlinearity. Thus, the nonlocal 

contributions become as important as the nonlinear local induction effects. Furthermore, it 

is shown that the nonlocal term -€2 I[¢>] is responsible for filament local self-stretching. It 

is also shown in Klein and Majda [21 that the nonlocal operator generates a highly singular 

perturbation of the NLSE (8). According to the numerical calculations presented in Klein and 

Majda [l3), the filament function ¢> develops higher and much narrower peaks as time evolves 

when compared with the corresponding solutions of NLSE; and these curvature peaks may 

correspond to the birth of small scale "hairpins" or kinks along the actual vortex filament. 
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Recently Klein and Knio [31 derived an asymptotically correct representation of the non-

local induction effects, which is based on a thin-tube model. This method represents the 

influence of the vortex core structure on the vortex filament motion, including a nontrivial 

axial flow. 

The standard thin-tube model [I41 is a simplified version of general vortex element method 

[Is) for three-dimensional incompressible flows. The model represents a slender vortex as a 

single chain of overlapping vortex elements. Each element is a circular cylinder characterized 

by a circulation ri equal to the flux of vorticity across its cross section and by two Lagrangian 

variables which describe the endpoints of the associated line segment. The Lagrangian 

variabl~s are moving with the fluid and can be denoted by Xi, i = 1, 2, ... , N. The vortex 

elements are ordered so that the indices increase in the direction of the vorticity. Therefore, 

the vorticity can be discretized as 

N 

w(x, t) = 2::: fic5Xi(t)h(x- xi(t))., (17) 
i=l 

Iri. this expression, 16 is a smooth approximation to the Dirac delta function with a cutoff 

radius c5 and obeys the relationship: 

and 

xi(t) 

- Xi+I(t)- Xi(t), 

Xi+I(t) + Xi(t) 
2 

(18) 

(19) 

(20) 

denote respectively the length and center of the i-th vortex element. The smoothing function 

f(x) is chosen so as to enhance accuracy [tsJ. The velocity at a point x can be obtained by 
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inserting (17) into (5) and performing the integration. The result is the following desingu-

larized version of the Biot-Savart law: 

uttm(x t) = _ _!_ ~r- (x- xi(t)) x 8xi(t) I< (x- x7(t)) 
' 4 ~ • I c(t) 13 6 • . 7r i=1 X- Xi 

(21) 

where 

(22) 

and I< ( r) is the velocity smoothing kernel corresponding to the vorticity smoothing kernel: 

(23~ 

The calculated velocity u ttm(Xi) is used to advance Xi· 

In the above standard thin-tube approach the cutoff radius is implicitly assumed to be 

the physical characteristic vortex core radius. Klein and Knio found that this assumption 

is in general incorrect because of the differences between the physical and numerical core 

structures [31. To modify the standard thin-tube model, Klein and Knio derive an asymptotic 

expression for the induced velocity. 

In the derivation of the Klein-Knio equation, the principal assumption is that the' slender 

vortex filament has the following core vorticity distribution in curvilinear coordinate system: 

1 ( (o) r (o) r ) w(x,t;8) 62 17 (b,s,t)e8 +( (
8

,s,t)t 

1 ( (1) r (1) r . (1) r ) + 8 e (8,8,s,t)er+77 (
8

,o,s,t)e8 +( (b,8,s,t)t 

+ 0(1) (24) . 

where 8, the ratio of the core size and the radius of curvature, is a dimensionless parameter, 

e(i)' T/(i)' ((i) are asymptotic expansion functions for the radial, circumferential and axial 
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vorticity components in the vortex core. Notice that the leading order terms "l(o), ((o) are 

assumed to be independent of (} so that the leading order core structure is axisymmetric. 

Let uttm denote the velocity obtained from the standard thin-tube model, C, cttm the 

physical and numerical core structure coefficients, "' the curvature, b the binormal vector. 

The three different modifications of the thin-tube model derived by Klein and Knio can be 

generalized into the following form 

r 6ttm 
u = uttm + -(cttm- C +In --)Kb 

4?r 6 ' 
(25) 

which we name the Klein-Knio equation. 

If 6ttm is chosen to be 6, then 

(26) 

Therefore, when we use the standard thin-tube model with 6ttm = 6, we have to add an 

explicit correction velocity to the numerical velocity u ttm. 

If 6ttm is chosen so that cttm - c + In( 6ttm I 6) = Q, then u = u ttm. In other words, 

if we use a rescaled numerical core radius 6ttm = 6 exp( C - cttm), the standard thin-tube 

model can be applied directly without correction. This method is very attractive when 6 is 

small and exp(C- cttm) is large. However, (25) is more general and is preferred when 6 is 

extremely small. 
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3 Numerical Solutions of the Approximate Equations 

The method we use to solve the local induction approximation is due to Buttke [n] which 

is based on equation (7). 

Let tj denote the approximation to t(j.6..s, n.6..t). Buttke developed a Crank-Nicholson 

type scheme: 

(27) 

where .6..s is the spatial increment, .6..t is the temporal increment and the term tj+1 + tj has 

been cancelled by the first term in the cross product. 

The equation (27) can be solved by two iterative methods. Both methods produce a 

sequence of unit vectors xj which converges to tj, provided .6..t is appropriately restricted. 

In the first iterative method, given unit vector tj, we define yj+1 by the equation 

and then define 

k+1 tn _ .6..t ( k + tn) ( k + k + tn + tn ) 
Yj - i - 4(.6..s)2 xi i x xi+I xi-1 i+I i-1 

k+I 
k+I _ Yi 

.xi = -1 y-'j::--.+.....,.1-1. 

It can be shown [161 that xj----+ tj+I if .6..t < (.6..s) 2 j4. 

In the second iterative method, we define the sequence of:unit vectors xj by 

The sequence xj obtained in this manner [161 converges to t j+I if .6..t < ( .6..s )2. 

12 
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A fractional step method developed by Klein and Majda [I31 is used to solve the Klein-

Majda equation. The method is designed for general periodic initial data. It consists of two 

steps. In one fractional step, solv~ the linear problem 

(31) 

exactly. Through discrete fast Fourier transform (DFFT) of the data for </> on an equi-

distance grid, one obtains the Fourier modes J1 , l = - Nj2, ... ,Nj2 - 1. Then applying the 

exact solution formula 

(32) 

and using the inverse Fourier transform (IFFT) gives the solution of (31 ). 

In the second fractional.step, solve the nonlinear ODE 

(33) 

exactly at each discrete spatial location by 

(34) 

The two steps are alternated in time through Strang-type splitting. The method is second 

order accurate and unco1}ditionally stable. An adaptive time step D.r is chosen by 

271" 1 
D.r=s-

w*N' 
(35) 

where sis a safety factor (says= 0.5), N is the number of grid points and w* is the weighted 

average frequency 

(36) 
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and w , w are the frequencies in the fractional step solution formulas in (32) and (34). 

Once the filament function ¢>( s, t) is known, one can determine the filament position using 

the Serret-Frenet equations. 

We use a hybrid of a fractional step method and a high order Runge-Kutta method to 

solve the Klein-Knio equation. In one fractional step, solve 

dx ttm 
-=U 
dt 

(37) 

by an embedded Runge-Kutta method [t71 for one step with controlled step size .6.t. In the 

second fractional step, solve 

dx = I._(,;b)[C- cttm + ln 8ttm] 
dt 411" 8 

(38) 

by the same embedded Runge-Kutta method for several time steps until the sum of the time 

steps is equal to .6.t. As before, the two steps are alternated in time through Strang-type 

splitting. 

4 A Model Problem 

To examine the equations for slender vortex m~tion, we want to apply them to a well-

understood model problem. Our problem comes from the theory of superfluid vortices [211, 

chosen because of the wealth of analytical results available. 

Superfluid helium at absolute zero temperature is inviscid and irrotational. The circu-

lation around a vortex core is quantized and the core radius of superfiuid vortices is very 

small (O(lA)). Vortex waves are a very important phenomenon in the understanding of 
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quantized vortex lines. Wave excitations of isolated vortex lines in superfluid are considered 

to be helical disturbances which rotate about the axis of symmetry with a known frequency. 

When these two helical waves are excited on a vortex line between fixed boundaries, two 

waves of opposite polarization combine to form a plane standing wave called a Kelvin wave. 

Benjamin and Feir 1181 showed that finite-amplitude waves on deep water are unstable 

to perturbations in the sideband waves ( i.e. modes whose number of half waves are n ± k, 

with k = 1, 2, ... and n the number of half waves for the main harmonic). The Benjamin-Feir 

instabilities are widespread and play an important role in nonlinear wave phenomena. In 

particular, Yuen and Ferguson 1191 have shown that the Benjamin-Feir instabilities appear 

in the wave solutions to the NLSE. Since helical waves in our problem are wave solutions to 

the NLSE, it is not surprising that the Benjamin-Feir instabilities occur for Kelvin waves .. 

Following the stability analysis of Andersen, Datta, and Gunshor 1201, Samuel and Donnelly 
' ,. 

1211 found that the stability condition for helical waves which obeys the NLSE is 

a0 j).. < 1/(27rn), (39) 

where a0 is the initial amplitude of the main helical wave, ).. is the wavelength, and n is the 

number of half waves on the vortex. The stability condition (39) can also be obtained by a 

linear stability analysis following Klein and Majda 1131. 

The amplitudes of the unstable sidebands grow exponentially when a0 /).. violates the 

stability condition (39). Once the amplitudes of the sidebands grow to be comparable in 

' magnitude to the amplitude of the main wave, this instability analysis is invalid and a new 

behavior occurs. More specifically, when the initial amplitude a0 /).. is smaller than the 

threshold value given by (39, the amplitudes of the main harmonic and the sidebands don't 
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grow. We obtain stable phenomena. If the initial a0 /). is increased, the amplitudes of the 

sidebands start to grow due to Benjamin-Feir instabilities. However, after some time the 

amplitude of the main harmonic begins to grow and the amplitudes of the sidebands decline. 

The main harmonic and the sidebands grow or decay alternatively and the process repeats 

itself although not with perfect periodicity. This kind of phenomenon is normally referred 

as the Fermi-Pasta-Ulam recurrence [221, as opposed to Poincare recurrence, which requires 

the return of both amplitude and phase to their initial states. A further increase in the 

initial value a0 /). leads a behavior which is neither stable nor recurrent, which can be called 

chaotic. Those behaviors will be illustrated numerically in the following section. 

· 5 Numerical Simulations 

We choose the same problem as in Samuels and Donnelly [211. The initial conditions 

are chosen as a vortex line extended between two parallel planes 10-5 m apart and the 

vortex line being a superposition of a planar wave and two neighboring sidebands of small 

amplitude as a perturbation. The boundary conditions are that the vortex line must meet 

the boundaries perpendicularly and can slip along the boundaries. These conditions can be 

met by the method of images; one can extend the vortex filament between the boundaries 

and obtain periodic boundary conditions. In our numerical simulations, as we advance the 

vortex filament in time, we take the wave form of the filament and obtain the amplitudes of 

the main mode and its sidebands. 

In Figure 1 we present the results given by the self-induction equation. The x-axis is the 
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time, whereas the y-axis is the ratio of the amplitude and wavelength A. Plotted are the 

amplitude of the main harmonic ( n = 11) and the lower harmonics ( n = 10, 9, 8 in order 

of decreasing amplitude) as a function of time. A plot of the upper harmonics (n = 12, 13, 

14) looks very similar. When the ratio of the amplitude of the main harmonic a0 and its 

wavelength .X is 0.02 initially, the amplitudes of the sideband waves don't grow (Figure 1 (a)) 

and we obtain stable phenomena. If the initial a0 / A is increased to 0.03 (Figure 1 (b)) or 

0.04 (Figure 1 (c)), a recurrent behavior is presented. When a0 /A is further increased to 0.08 

(Figure 1 (d)), a chaotic behavior occurs. These results confirm the stability condition (39). 

During the evolution of the filament, the total arclength is conserved. In the calculations 

which lead to Figure 1, we used N = 257 nodes to represent the vortex filament between the 

walls; equation (7) was integrated using a midpoint rule. 

The numerical results given by the Klein-Majda model for a0 / A = 0.02, 0.03, 0.04, and 

0.06 at timet= 0 are shown in Figure 2 (a), (b), (c), and (d). Stable, recurrent, and chaotic 

behaviors are also observed here. Figure 2 was obtained with N = 257, and c = 0.309, which 

is related to the core size through the distinguished limit (11). 

Figure 3 (a), (b), (c), and (d) display the results by the Klein-Knio model corresponding 

to different initial values of a0 / A = 0.03, 0.04, 0.06, and 0.08. Again, stable, recurrent, and 

chaotic behaviors are exhibited. The evolution of the vortex filament by the Klein-Knio 

equation keeps the total arclength almost a constant. The results in Figure 3 were obtained 

with N = 513 and 8ttm = 0.01. 

The above numerical experiments indicate that the self-induction equation, the Klein

Majda model, and the Klein-Knio model yield qualitatively similar results for our model 
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problem. However, they do have some quantitative differences. The boundaries between 

stable, recurrent, and chaotic regimes in the parameter space (i.e. initial values of a0 / >..) 

of the methods are different. A comparison of Figure 3 (a) and Figure 1 (b) shows that 

the Klein-Knio equation has larger stability region than that of the self-induction equation, 

since for the same initial value a0 /).. = 0.03, the self-induction equation gives unstable 

(recurrent) behavior, whereas the Klein-Knio model gives stable behavior. Further numerical 

experiments also reveal that the stability region of the Klein-Knio model is related to the 

core size: A larger core size generates a larger stability region. 

To compare the self-induction equation and the Klein-Majda model, we plot the stability 

diagram for both the Klein-Majda model and the NLSE in Figure 4 for c: = 0.5 (Figure 4 

(a)), 0.4778 (Figure 4 (b)), 0.309 (Figure 4 (c)), and 0.1 (Figure 4 (d)). The solid lines are 

for the Klein-Majda model and the dashed lines are for the NLSE. The horizontal axis is 

a0 / >.., where a0 is the initial amplitude of the main cosine wave, ).. is its wavelength. The 

vertical axis is the growth rate G. Instability occurs for negative G. As shown in Figure 

4, the stability behavior of the Klein-Majda model depends on the parameter c:. More 

precisely, if c: > 0.4778, the Klein-Majda model always gives stable behavior. When c: is 

further decreased, the Klein-Majda model has smaller stable region than that of the NLSE. 

As c: decreases, the stability region of the Klein-Majda model eventually converges to that 

of the NLSE. For our model problem, the parameter c: is approximately 0.309, hence the 

self-induction equation has a larger stability region than that of the Klein-Majda model. 

For comparison purposes, we use standard vortex method [231, which uses several vortex 

filaments with overlapping cores, to examine the behavior for the vortex filament. We used 7 
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vortex filaments to represent the cross-section of the vortex filament, each of which initially 

having the same shape of Kelvin waves and having 200 segments. The calculation is ter-

minated if there is a filament with more than 1000 segments. A fourth-order Runge-Kutta 

method was used to advance the filaments with 6t controlled by 6t · maxjufl :::=; Ch, where 

uf is the velocity at the i-th node, C is some constant, h is the spatial step size. Figure 5 

depicts perspective views of the vortex at timet = 0.4216, 0.8198, 1.5787 and 1.9189. Here 

the initial value a0 / A is taken as 0.04. Violent stretching happens very quickly. Figure 6 

is another view of Figure 5. The view is generated by projecting the vortex lines on the 

yz-plane. It is clear that the cross-section is no longer unchanged. We plot the evolution of 

the modes n = 8, 9, 10 and 11 in Figure 7 with different initial data a0 / A = 0.02, 0.04, 0.06, 

0.08. The solid curve denotes the amplitude of mode n = 11, dashed curve n = 10, dashdot-

ted curve n = 9, and dotted curve n = 8. These results show that classical vortex does not 

present the same dynamical phenomena as the superfluid vortex. Instead, classical vortex 

seems to present some kind of chaotic behaviors. Our numerical experiments indicate that 

thick vortices with variable cross-section behave differently from thin vortices with constant 

cross-section. 

In all of our numerical calculations, we have carefully checked that our choices of numer-

ical parameters provide an adequate resolution and that further refinement does not change 

the conclusions. The oscillations presented in the graphs may originate from the numerical 

nOises. 
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6 Conclusions 

We have used three different methods, namely the self-induction equation, the Klein-

Majda equation, and the Klein-Knio equation, to study the sideband instability of Kelvin 

waves in superfluid helium. In this model problem, we assume that the thin vortex filament 

has constant cross-section. 

Our numerical simulations reveal that all those methods yield qualitatively similar re-

suits. For our model problem, the self-induction equation, the Klein-Majda equation, and 

the Klein-Knio equation all present stable, recurrent, and chaotic phenomena, corresponding 

to different ratios of the amplitude of the main wave to its wavelength. The vortex filament 

whose motion is described by the self-induction equation, the Klein-Majda equation or the 

Klein-Knio equation evolves smoothly and the total arc length is almost conserved. Fur-

thermore, hairpin structures are not formed during the vortex filament evolution . Our 

calculations using the self-induction equation and the Klein-Majda equation are in good 

agreement with the results of the linear stability theory. 

The stability region of the Klein-Majda equation is closely related to the core size of 

the vortex filament. When the core size is larger than a· critical value, the Klein-Majda 

equation always gives a stable solution. When the core size decreases below the critical 

value, the stability region of the Klein-Majda equation is smaller than that of the self-

induction equation. When the core size is further decreased, the stability region of the 

Klein-Majda equation coincides with the stability region of the self-induction equation. For 

the model problem, the stability region of the Klein-Majda equation is smaller than that of 
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the self-induction equation. 

The stability region of the Klein-Knio equation also depends on the core size of the vortex 

filament. The bigger the core size, the larger is the stability region. We further find that 

for the model problem, the Klein-Knio equation has a larger stability region than that of 

the self-induction equation. Hence, among our three methods for the model problem, the 

Klein-Knio equation gives the largest stability region, while the Klein-Majda equation has 

the smallest stability region. 

We also carried out the computations for thicker cores with variable cross-section. A 

Biot-Savart model was employed. Only chaotic phenomena were observed for sideband 

perturbations. Our numerical results imply that thick vortices with variable cros.s-section 

may behave quite differex;ttly from thin vortices with constant cross-section. The thickness 

and deformation of the vortex core might play an important role in the differences between 

classical and superfiuid vortex dynamics, which have been highlighted by Buttke [nJ. 

In the derivations of the self-induction equation, the Klein-Majda equation, and the 

Klein-Knio equation, we have assumed a thin model, in which hairpins l24l are excluded; our 

numerical results have no hairpins, and therefore the slender model is self-consistent, at least 

for a class of problems that contains our model problem. Since the models are increasingly 

refined (i.e the Klein-Knio model takes more effects into account than the Klein-Majda 

model, which in turn is a more accurate approximation than the self-induction equation), it 

is reasonable to conjecture that motion without hairpins is self-consistent for a class of thin 

vortex filaments of small-enough cross-section. 

If one views superfiuid vortices as very thin constant cross-section classical vortices, 
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the conclusion is consistent with the statistical theory of vortex motion !71 which shows that 

classical vortices, with finite and deformable cross-section, have a temperature determined by 

vortex stretching, while superfluid vortex systems have a constant temperature determined 

by boundary conditions. 

The difference between classical and quantum vortices are often explained as a conse

quence of quantization; according to our results, maybe slenderness is even more important. 

Of course, only very slender vortices can have a quantized circulation. 

If the self-induction equation, the Klein-Majda equation, and the Klein-Knio equation 

are used to describe superfluid turbulence [n],[2s),[261, then the physical assumption that there 

is no vortex folding on small scale has been implicitly made. Our numerical simulations 

suggest that this may be a reasonable conclusion for a single filament, but is for the moment 

an additional assumption for a tangle of filaments. Deeper understanding remains to be 

found. 
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