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United States Government or any agency thereof, or the Regents of the University of 
Califomia. The views and opinions of authors expressed herein do not necessarily state or 
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The partition function is evaluated numerically for two-dimensional discretized incom-

pressible fields with a hydrodynamical energy function and an infinite number of invari-

ants; the behavior of the partition function is examined as the discretization is refined. 

The results are contrasted with those of recent mean-field theories, which are seen to be 

reasonable approximations only at moderate ITI, where T is the temperature. At finite 

T the system has no phase transitions and no states invariant under refinement of the 

discretization. Invariant states may appear if a simple representation. of vortex stretching 

is added to the system, in agreement with recent work on three-dimensional turbulence. 
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Introduction. A large number of papers have examined the statistical mechanics of the 

two-dimensional incompressible Euler equations in a· vortex representation1--8 ; it is well-

known that negative temperature states play a major role in the analysis, and it is readily 

seen that at negative temperatures, T < 0, the partition function of the usual discrete 

vortex approximation diverges, as one can check by substituting T < 0 into its functional 

integral representation (see e.g. Ref. [9]). Most authors have therefore concentrated on the 

mean behavior of a vortex system, which is well-approximated by a mea:p.-field theory, and 

have set aside questions regarding fluctuations in finite vortex systems. 

The Euler equations in two dimensions admit as invariants the integrals In = J ~ndx 
r 

where ~ is the vorticity, ~ = curl u, and u is the velocity, and n is a positive integer. 

Miller et al. 10•11 noted that one can construct a family of discrete vorticity fields which 

share common values for a finite n:umber of these invariants by simply permuting the 

vorticities in a finite number of boxes. The partition function then becomes a sum over 

the permutations, and remains well-defined for all T, negative as well as positive. Miller et 

al. then proceeded to approximate the free energy of their many-invariant vortex system 

with the help of an assumption of scale separation, and obtained a mean-field theory, 

identical to the mean-field theory with scale separation of Robert and Sommeria12•13 • The 

assumption of separation of scales, discussed below, is essential in this analysis. 

In the present paper the partition function , as formulated by Miller et al., will be 

evaluated numerically. Whether all the invariants are needed to describe the physics is an 

interesting question, and we shall discuss it briefly. The invariants are certainly needed 

at present to obtain a sensible partition function. We shall see that the Robert-Miller 
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mean-field theory is in general a poor approximation to the full theory, except at moderate 

and temperatures; this observation resolves certain paradoxes in the theory. 

The main goal of the present paper is to set up a two-dimensional functional integral 

representation of random flow, to serve as an introduction and a contrast to a three-

dimensional theory6 •14•15 . The observations that are important from this point of view 

are that, contrary to the conjecture in Ref. 11, the many-invariant system has no phase . 
transition at a temperature T =/= 0, and no invariant measures in the limit of vanishing 

discretization. 

The addition of vortex stretching to this two-dimensional system, though artificial, 

reverses these conclusions, in agreement with the conclusions in Refs. 6,14,15, according to 

which invariant states at non-zero temperature and vanishing discretization exist in three 

space dimensions and contain significant information about turbulence. 

The discrete many-invariant system. Following Miller et al., we consider a vorticity 

field e supported in a bounded domain D (the unit square, for simplicity). The energy U 

associated with this field is16 : 

where u is the velocity. Up to an immaterial additive constant U can be rewritten as5 : 

u = - 4~ L dx L dx' e(x)G(x, x')e(x'), (1) 

where G(x, x') is the Green function appropriate to the boundary conditions on the bound-

ary &D of D; G(x, x') = - 2~ log lx - x'l + ¢, where ¢J is harmonic. In the calculations 
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below we set for convenience u · n = 0 or 8D, where n is the normal to 8D; this choice is 

immaterial in the limit of vanishing discretization. 

DivideD into N small squares of side h, N = h-2
, and approximate U by Uh: 

Uh = -~ 2:::2::: h4
eiiGii,i'i'ei'i'' 

ij i'j' 
(2) 

where Gii,i'i' is the usual5-point discretization of G, Gij,i'i' = Gh(ih,jh, i'h,j'h), and eii 

is the constant value of e on the ij square. 

It is shown in Ref. 11 that a family of discrete vorticity fields shares common values 

of In = In endx, n = 1, ... 'N, if and only if they are obtained by permutations of the 

values of e among the boxes. The partition function for a fixed h is then 

(3) 
permutations 

where Uh is given by (2). This sum is the appropriate discretization of the functional 

integral representation of the partition function. As h --t 0, N and the number of invariants 

tend to infinity. The sum Z h can be evaluated by straightforward Metropolis sampling11 . 

The only remark worth making is that it is more efficient to evaluate and store G h once and 

for all, rather than evaluate the energy by a Laplace inversion after each Metropolis move. 

The Metropolis algorithm converges very fast, and the statistical error in the calculations 

below is negligible. 

Miller et al. as well as Robert and Sommeria assumed a separation of scales, according 

to which the energy E = (U) is determined by the large scales of e and the entropy S by 
,, 

the small scales (the brackets denote an ensemble average). All vorticity configurations 

are then equally likely in the small, and S is readily found. In particular, S is proportional 
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to N for large N. Then, if one sets T = h2T, where T is independent of h, one finds 

Zh = exp( -N~F), where~= 1/'i' and F is the free energy F = E- TS = E- T(S/N); 

one finds the main contribution to Z h by maximizing F for T < 0 and minimizing F for 

T > 0. The curves E = constant in the ({3, h2
) plane are the curves {3h 2 = constant. 

As has been pointed out by several people, e.g. by Marcus17 , Turkington 18 , this 

mean-field theory contradicts well-established facts about two-dimensional vortex systems, 

for example the existence of non-trivial small-scale vortex-vortex correlations in coherent 

structures4 . Furthermore, in the presence of many invariants, E has· a well-defined maxi­

mum Emaxi for {3 < 0, lf3llarge enough, that maximum is approached and S---* 0; energies 

larger than Emax cannot be accommodated by the system. 

It may be worth noting that Miller et al. gave one derivation of their mean-field theory 

that seemed to be independent of separation of scales, but this independence was probably 

illusory; the derivation included an unjustified passage from a weak convergence of discrete 

Laplacians to a strong convergence, which needs something like separation of scales to be 

legitimate. The necessity of the separation of scales assumption has been stressed by 

Turkington and his coworkers19•20 . It should also be noted that the main conclusions of 

the Miller-Robert theory: Validity of a mean-field approximation, constancy of E or lines 

{3h2 = constant, and the specific eva,luation of S, are logically independent of each other; 

some may be true while others are false. 

Numerical results and discussion. Numerical experiments were made with constants 

In for which eii = 1 for half the cells and eii = -1 for the other half. The maximum value 

of E is approximately 7.34, obtained when the positive vorticity fills half of the square and 
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negative vorticity the other half. The computational results are displayed in Figures 1-4/. 

In Figure 1 we display the curves of constant mean energy E in the (/3, h 2 ) plane for 

several values of E. As usual, j3 < 0 is to the right of j3 > 0 because negative temperatures 

are "hotter" than positive temperatures6 . The system heats up as one goes from left to 

right in the figure. The main observation is that the constant E curves never intersect the 

h = 0 line. More observations about Figure 1 will come in the next section. 

The behavior of the E = constant curves is better seen in Figure 2, where the hor­

izontal axis corresponds to the variable j3 x h2 . According to the mean-field theory the 

curves should be asymptotically (ash- 0) vertical in these variables. They are indeed for 

moderate values of E, and hence asymptotically for low values of E, because the c_urves 

all move to the right as h - 0 and do not intersect. As E grows, a departure from the 

Miller-Robert mean-field scaling can be seen. ForE= Emax rv 7.34 the curve is not defined 

and forE> Emax the curves do not exist. 

Note that E = constant on lines j3h2 = constant in the older few-constant theory, 

and that there is no bound on E in the few-constant theory. It is thus plausible that the 

many-constant and the few-constant theories agree for smaller values of E and not too far 

to the right on the j3 axis; this has indeed been shown to be the case21 . 

What is happening to the entropy S and the mean energy E is shown in Figures 3 

and 4. The entropy S2 x 2 in a 2 x 2 box can be readily calculated where ~ takes on only 

two values22 , and this is why the present special case was chosen; if we identify two states 

that differ by an exchange of vorticity between boxes with the same vorticity, as was done 

in Ref. 11, then a 2 x 2 box has 24 = 16 possible states; if they are all equally likely, the 

6 

• 



entropy is S2x2 =log 16"' 2.77. The real entropy is 2::::~6 Pi lnPi, where Pi is the entropy 

of the i-th state which can be estimated from its frequency. In Figure 3 we display S2 x 2 as 

a function of h for various values of E; at the larger values of E the equipartition assumed 

by Miller and Robert does not materialize, at least for the values of h within numerical 

reach. For large enough values of E the equipartition must fail. Note that S 2 x 2 = 0 at 

E ~ 7.34. 

In Figure 4 we display the ratio of the energy of the average configuration of the ts 

to the average energy E, as a function of h. We have taken the precaution to rotate each 

individual solution so that its center of gravity (assimilating ~ to mass) lies in one specific 

fourth of the square, so as not to produce a zero mean solution as a result of the invariance 

of the system under 90° rotations. If the Miller-Robert mean-field theory holds, the ratio 

should tend to 1 as h ~ 0. The slow convergence of the ratio in Figure 4 is surprising; it 

is most likely the result of the slow convergence of the system at small E to its asymptotic 

mean-field state, which can also be deduced from Figures 1 and 2. However, in the range of 

N within numerical reach, the eventual convergence cannot be demonstrated or disproved. 

We cannot exclude the possibility that the stationary mean-field state predicted by the 

theory is not in fact reached for small values of E, maybe because there are too many 

different ways of reaching a given low energy. 

The connection with turbulence theory. From Figures 1,2, one can conclude that 

nothing dramatic happens as one crosses the f3 = 0 line. Furthermore, one can check 

that the system has no phase transitions at any T, positive or negative, contrary· to the 

conjecture in Miller et al. Indeed, such a transition would be a variant of the Kosterlitz-
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Thouless transition, which requires the number of vortex pieces to depend on the chemical 

potential (here, roughly on h); this is not possible in the presence of all the invariants. 

Since the crossing of the line h = 0 by a curve E = constant is connected with a phase 

transition6 , the picture is self-consistent. 

The conjecture of Refs. 6,14,15 is that in three space dimensions, in the presence of 

vortex stretching, the lines E = constant do cross the line h = 0, at a point determined 

by an analogue of the >. vortex phase transition line, producing an invariant state for 

the vortex continuum that provides a rough description of turbulence. To exhibit this 

behavior, which contrasts with what is shown in Figure 1, consider the following crude 

representation of vortex stretching: Assume that vortex tubes are stretched in a direction 

perpendicular to the plane in which our calculation is performed, with the volume of the 

tubes conserved. Then, ash ~ 0, a fraction (1 - Q) of the cells will have ~ij = 0, with 

the other Q having ~ij = ±1/Q in equal numbers. Note that J ~dx is conserved while the 

other constants are not. In the calculation shown in Figure 5, Q = ( 1~4 ) -a with a= 4/3. 

The lines E = constant then tilt towards the vertical (note the change of horizontal scale). 

One can obviously vary a to sharpen this effect, but there is no reason to do so here. 

Note that as Q increases one obtains a space of functions with ever more isolated and 

sharper vortices, which remain invariant for ever smaller h. One can then interpret the 

differential grinding away of background vorticity in two dimensions by viscosity and other 

non-equilibrium effect21 •23 as a relaxation towards the kind of equilibrium that prevails 

in three-dimensional turbulence. One can further speculate that similar mechanisms are 

responsible for the creation of isolated, coherent vortices in three dimensions as well. 
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Figure Captions 

· Figure 1: Constant energy lines in the ({3, h2 ) plane. 

Figure 2: Constant energy lines in the ({3h2
, h2 ) plane. 

Figure 3: Entropy as a function of N = 1/h2 for various values of the mean energy E. 

Figure 4: Ratio of energy of mean to mean energy as a function of N. 

Figure 5: Constant energy lines in the ({3, h2
) plane in the presence of vortex stretching. 
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