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Abstract 

We study gaugino condensation in the context of superstring ef

fective theories using the linear multiplet formulation for the dilaton 

superfield. Including nonperturbative corrections to the Kahler poten

tial for the dilaton may naturally achieve dilaton stabilization, with 

supersymmetry breaking and gaugino condensation; these three issues 

are interrelated in a very simple way. In a toy model with a single 

static condensate, a dilaton vev is found within a phenomenologically 

interesting range. The effective theory differs significantly from con

densate models studied previously in the ch~ral formulation. 
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1· Introduction 

Among the massless string modes, a real scalar ( dilaton), an antisym

metric tensor field (the Kalb-Ramond field) and their supersymmetric part

ners can be described either by a chiral superfield S or by a linear multiplet L, 

which is known as the chiral-linear duality. By definition, the linear multiplet 

L is a vector superfield that satisfies the following constraints [1]: 

-(VaVa- SR)L 0, 

-(V01Va- 8Rt)L 0. (1.1) 

The lowest component of L is the dilaton field 1!, and its vev is related to the 

gauge coupling constant as follows: g2(Ms) = 2(£), where Ms is the string 

scale [2, 3]. Although the chiral-linear duality is obvious at tree level, it be

comes obscure when quantum effects are included. Although scalar-2-form 

field strength duality, which is contained in chiral-linear duality, has been 

shown to be preserved in perturbation theory [4], the situation is less clear 

in the presence of nonperturbative effects, which are important in the study 

of gaugino condensation. It has recently been shown [5, 6] that gaugino con

densation can be formulated directly using a linear multiplet for the dilaton. 

However, the content of the resulting chiral-linear duality transformation is 

in general very complicated. If there is an elegant description of gaugino 

condensates in the context of superstring effective theories, it may be simple 

in only one of these formulations, but not in both. Therefore, a pertinent 

issue is: which formulation is better? 

In this paper we will construct the effective theory of gaugino conden

sation directly in the linear multiplet formulation without referring to the 

chiral formulation. There is reason to believe that the linear multiplet for

mulation is in fact more appropriate. The stringy reason for choosing the 

linear multiplet formulation is that the precise field content of the linear 

multiplet appears in the massless string spectrum, and (L) plays the role 

of string loop expansion parameter. Therefore, string information is more 
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naturally encoded in the linear multiplet formulation of string effective the

ory. In the context of gaugino condensation, it has been pointed out that 

the gaugino condensate U should be a constrained chiral superfield [5, 6, 17]; 

this constraint arises naturally in the linear multiplet formulation of gaug

ino condensation. Finally, in the linear formulation the symmetries of the 

underlying Yang-Mills theory in the weak coupling limit are automatically 

respected [7]. 
In the next section we describe the linear multiplet formulation of string 

effective Yang-Mills theory, whose effective theory below the condensation 

scale is constructed and analyzed in Sect. 3. It is then shown in Sect. 4 

that supersymmetry is broken and the dilaton is stabilized in a large class of 

models of gaugino condensation. In this paper we use the Kahler superspace 

formulation [8], suitably extended to incorporate the linear multiplet [9]. 

2 The Linear Multiplet Formulation 

2.1 Superstring Effective Yang-Mills Theory 

In the realm of superstring effective Yang-Mills theory, there are two 

important ingredients, namely, the symmetry group of modular transforma

tions and the linear multiplet. In order to make the discussion as explicit as 

possible, we consider here orbifolds with gauge group E8 ® E6 ® U(1)2
, which 

have been studied most extensively in the context of modular symmetries 

[2, 3, 10]. They contain three untwisted (1,1) moduli T 1, I= 1, 2, 3, which 

transform under SL(2,Z) as follows: 

T
I aT1

- ib 
---+ 1 , ad - be = 1, a, b, c, d E Z. 

icT +d 
(2.1) 

The corresponding Kahler potential is 

G = L:l + L:exp(L:q~/)I<I>AI 2 + 0(<1> 4
), (2.2) 

I A I 
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where g1 = -ln(T1 + '1'1), and the modular weights q~ depend on the 

particular matter field (pA as well as on the modulus T 1• However, it is well 

known that the effective theory obtained from the massless truncation of 

superstring is not invariant under the modular transformations (2.1) at one 

loop [11, 12]. Counterterms, that correspond to the result of integrating out 

massive modes, have to be added to the effective theory in order to restore 

modular invariance since string theory is known to be modular invariant to all 

orders of the loop expansion [13]. Two types of such counterterms have been 

discussed in the literature [2, 10, 12], the so-called !-type counterterm and 

the Green-Schwarz counterterm. The Green-Schwarz counterterm, which is 

analogous to the Green-Schwarz anomaly cancellation mechanism in D=10, 

is naturally implemented with the linear multiplet formulation [1]. Here we 

consider only those orbifolds for which the full modular anomaly is cancelled 

by the Green-Schwarz counterterm alone. This is the case unless the modulus 

T 1 corresponds to an internal plane which is left invariant under some orbifold 

group transformations, which may happen only if an N =2 supersymmetric 

twisted sector is present [14]. Therefore, a large class of orbifolds, including 

the z3 and z7 orbifolds, is under consideration here. 

The antisymmetric tensor field of superstring theories undergoes Yang

Mills gauge transformations. In the effective theory, it can be incorporated 

into a gauge invariant vector superfield L, the so-called modified linear mul

tiplet, coupled to the Yang-Mills degrees of freedom as follows: 

-(Vo,TY"'- 8R)L 
a 

-(vo:vo:- sRt)L 
a 

where n is the Yang-Mills Chern-Simons superform. The summati~n ex

tends over the indices a numbering simple subgroups of the full gauge group. 

The modified linear multiplet L contains the linear multiplet as well as the 

Chern-Simons superform, and its gauge invariance is ensured by imposing 

appropriate transformation properties for the linear multiplet. The generic 
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lagrangian describing the linear multiplet coupled to supergravity and matter 

in the presence of Yang-Mills Chern-Simons superform is [2]: 

I< 

.c 

b = 

k(L) + G, 

-3 j d4{)EF(L) + j d4{)E{bL2:l}, 
I 

c 2 
871"2 3bo, 

(2.4) 

(2.5) 

where L is the modified linear multiplet and C 30 is the Casimir oper-

ator in the adjoint representation of Es. bo is the E8 one-loop ,8-function 

coefficient. The first term of .C is the superspace integral which yields the 

kinetic actions for the linear multiplet, supergravity, matter and Yang-Mills 

fields. The second term in (2.4) is the Green-Schwarz counterterm, which is 

"minimal" in the sense of [2]. Furthermore, arbitrariness in the two functions 

k(L) and F(L) is reduced by the requirement that the Einstein term in .C be 

canonical. Under this constraint, k(L) and F(L) are related to each other 

by the following first-order differential equation [9]: 

(2.6) 

The complete component lagrangian of (2.4) with the tree-level Kahler poten

tial (i.e., k( L) = ln L and F( L) = f) has been presented in [15] based on the 

Kahler superspace formalism. Similar studies have also been performed in 

the superconformal formalism of supergravity [16]. In the following sections, 

we are interested in the effective lagrangian of (2.4) below the condensation 

scale. 

2.2 The Low-Energy Effective Degrees of Freedom 

Below the condensation scale at which the gauge interaction becomes 

strong, the effective lagrangian of the Yang-Mills sector can be described by 

a composite chiral superfield U, which corresponds to the chiral superfield 
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Tr(WaWa) of the underlying theory. (We consider here gaugino conden

sation of a simple gauge group.) The scalar component of U is naturally 

interpreted as the gaugino condensate. It was pointed out only recently that 

the composite field U is actually a constrained chiral superfield [6]-[7],[17]. 

The constraint on U can be seen most clearly through the constrained su

perspace geometry of the underlying Yang-Mills theory. As a consequence of 

this constrained geometry, the chiral superfield Tr(WaWa) and its hermitian 

conjugate Tr(Wa-Wa-) satisfy the following constraint: 

(DaDa- 24Rt)Tr(WaWa) - (Da-Da- 24R)Tr(Wa-Wir) = total derivative. 

(2.7) 

(2. 7) has a natural interpretation in the context of a 3-form supermultiplet, 

and indeed Tr(WaWa) can be interpreted as the degrees of freedom of the 

3-form field strength [18]. The explicit solution to the constraint (2. 7) has 

been presented in [17], and it allows us to identify the constrained chiral 

superfield Tr(WaWa) with the chiral projection of an unconstrained vector 

superfield L: 

Tr(WaWa) 

Tr(Wa-Wa-) 

-(Do-Do-- SR)L, 

-(DaDa - 8Rt)L. (2.8) 

Below the condensation scale, the constraint (2. 7) is replaced by the following 

constraint on U and [!: 

(DaDa - 24Rt)U - (Da-Da - 24R)U = total derivative. (2.9) 

Similarly, the solution to (2.9) allows· us to identify the constrained chiral 

superfield U with the chiral projection of an unconstrained vector superfield 

V: 

U -(Da-De. - 8R)V, 

[! (2.10) 

(2.10) is the explicit constraint on U and U. 
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In fact, the constraint on U and [J enters the linear multiplet formulation 

of·gaugino condensation very naturally. As described in Sect. 2.1, the linear 

. multiplet formulation of supersymmetric Yang-Mills theory is described by 

a gauge-invariant vector superfield L which satisfies 

-(VixVo,- 8R)L (Vo,Vo,- 8R)n = Tr(WaWa), 

-(VaVa- 8Rt)L - (VaVa- 8Rt)n = Tr(Wa,Wo,). (2.11) 

For the linear multiplet formulation of the effective lagrangian below the 

condensation scale, (2.11) is replaced by 

(2.12) 

where U is the gaugino condensate chiral superfield, and V contains the 

linear multiplet as well as the "fossil" Chern-Simons superform. In view of 

(2.12), it is clear that the constraint on U and [J arises naturally in the linear 

multiplet formulation of gaugino condensation. Furthermore, the low-energy 

degrees of freedom (i.e., the linear multiplet and the gaugino condensate) 

are nicely merged into a single vector superfield V, and therefore the linear 

multiplet formulation of gaugino condensation can elegantly be described by 

V alone. The detailed construction of the effective lagrangian for the vector 

superfield V will be presented in the next section. 

3 Gaugino Condensation in Superstring 

Effective Theory 

3.1 A Simple Model 

Constructing- the linear multiplet formulation of gaugino condensation 

requires the specification of two functions of the vector superfield V, namely, 
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the superpotential and the Kahler potential. In the linear multiplet formula

tion, there is no classical superpotential [7), and the quantum superpotential 

originates from the nonperturbative effects of gaugino condensation. This 

nonperturbative superpotential, whose form was dictated by the anomaly 

structure of the underlying theory, was first obtained by Veneziano and 

Yankielowicz [19]. The details of its generalization to the case of matter 

coupled to N =1 supergravity in the Kahler superspace formalism has been 

presented in (20], and the superpotential term in the Lagrangian reads: 

j d48 ~ ~bUln(e-I<I2UfJL3 ), 

j d4e :t ~b[! In( e-K/2[! I JL3), (3.1) 

where U = -('D6/Da, - SR)V is the constrained gaugino condensate chiral 

superfield with Kahler weight 2, and JL is a constant with dimension of mass 

that is left undetermined by the method of anomaly matching. 

As for the Kahler potential for V, there is little knowledge beyond tree 

level. The best we can do at present is to treat all physically reasonable 

. Kahler potentials on the same footing and to look for possible general fea

tures and/ or interesting special cases. Before discussing this general analysis, 

it is instructive to examine a simple linear multiplet model for gaugino con

densation defined as follows [7): 

K ln V + G, 

J 4 { b } J 4 E K/2 J 4 E I</2 -.Ceff deE -2 + VG + de R e Wvy + de Rt e Wvy, 

G - L ln(T1 + T1
). (3.2) 

I 

This simple model describes the effective theory for (2.4) below the conden

sation scale, where the Kahler potential of V assumes its tree-level form. It 

is a "static" model in the sense that no kinetic term for U is included. From 

the viewpoint of the anomaly structure, static as well as nonstatic models 
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are interesting in their own right. In the chiral formulation of gaugino con

densation, it can be shown that the static model corresponds to the effective 

theory of the nonstatic model after the gaugino condensate U is integrated 

out. Nonstatic models [5, 6] in the linear multiplet formulation have been 

studied less extensively. Here we will restrict our attention to the static case, 

since the points we wish to illustrate are not substantially altered by includ

ing a kinetic term for U. In Sect. 5 we will indicate how the model considered 

here can be generalized to the case of a dynamical condensate. 

With U = -(Va,Va-8R)V and [J = -(VaVa-SRt)v, we can rewrite 

the superpotential terms of £eff as a singleD-term, and therefore the simple 

model (3.2) can be rewritten as follows: 

ln V + G, 

j d4B E { -2 + bVG + bVln(e-K[JUj JL6
) }. (3.3) 

In (3.3), the modular anomaly cancellation by the Green-Schwarz countert

erm is transparent [7]. The Green-Schwarz counterterm bVG and the su

perpotential D-term bVln(e-KUUj JL6 ) are not modular invariant separately, 

but their sum is modular invariant, which ensures the modular invariance 

of the full theory. In fact, the Green-Schwarz counterterm cancels the T 1 

moduli-dependence of the superpotential completely. This is a unique feature 

of the linear multiplet formulation, and, as we will see later, has interesting 

implications for the moduli-dependence of physical quantities. 

Throughout this paper only the bosonic and gravitino parts of the compo

nent lagrangian are presented, since we are interested in the vacuum configu

ration and the gravitino mass. In the following, we enumerate the definitions 

of bosonic component fields of the vector superfield V. 

u 
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D 

(3.4) 

where 

are the auxiliary components of supergravity multiplet. It is convenient to 

write the lowest components of 'D2U and f:P[J as follows: 

(3.6) 

(Fu- Po) can be explicitly expressed as follows: 

(3.7) 

The expression for ( Fu + Po) contains the auxiliary field D. The bosonic 

components of T 1 and '1'1 are 

(3.8) 

We leave the details of constructing the component lagrangian for this simple 

model (in the Kahler superspace formalism) to Sect. 3.2, and present here 

only the scalar potential: 

(3.9) 

Eq.(3.9) agrees with the result obtained in [6), where the model defined by 

(3.2) was studied for the case of a single modulus using the superconformal 

formalism of supergravity. 

However, this simple model is not viable. As expected, the weak-coupling 

limit .e = 0 is always a minimum. As shown in Fig.l, the scalar potential 
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starts with Vpot = 0 at f = 0, first rises and then falls without limit as f 

increases. Therefore, "Vp0 t is unbounded from below, and this simple model 

has no well-defined vacuum. This may be somewhat surprising because the 

model defined by (3.2) superficially appears to be of the no-scale type: the 

Green-Schwarz counterterm, that destroys the no-scale property of chiral 

models and destabilizes the potential, is cancelled here by quantum effects 

that induce a potential for the condensate. However the resulting quan

tum contribution to the Lagrangian (3.3), bVln(UU /V), has an implicit T 1-

dependence through the superfield U due to its nonvanishing Kahler weight: 

w( U) = 2. This implicit moduli-dependence is a consequence of the anomaly 

matching condition, and parallels the construction of the effective theory in 

the chiral formulation [19] which is also not of the no-scale form once the 

Green-Schwarz counterterm is included. By contrast, in [7] a no-scale model 

was constructed in the chiral formulation precisely through a cancellation 

of the Green-Schwarz counterterm. In the construction of that model, the 

point of view was adopted that a superpotential for the dilaton could arise 

only from nonperturbative effects on the string world sheet, and the anomaly 

matching condition was bypassed by directly writing an effective low energy 

theory that was exactly modular invariant. The relation between these ap

proaches warrants further investigation. 

If we take a closer look at (3.9), it is clear that the unboundedness of "Vp0 t 

in the strong-coupling limit f ---+ oo is caused by a term of two-loop order: 

-2b2f 2
. This observation strongly suggests that the underlying reason for un

boundedness is our poor control over the model in the strong-coupling regime. 

The form of the superpotential Wvy is completely fixed by the underlying 

anomaly structure. However the Kahler potential is much less constrained, 

and the choice (3.2) cannot be expected to be valid in the strong-co~pling 

regime where the nonperturbative contributions should not be ignored. We 

conclude that the unboundedness shown in Fig. 1 simply simply reflects the 

importance of nonperturbative contributions (21, 22] to the Kahler potential. 

In the absence of a better knowledge of the exact Kahler potential, we will 
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consider models with generic Kahler potentials in the following sections. 

3.2 General Static Model 

In this section, we show how to construct the component lagrangian 

for generic linear multiplet models of gaugino condensation in the Kahler 

superspace formalism. Further computational details can be found in [8, 15). 
Although our results can probably be rephrased in the chiral formulation, 

the equivalent chiral superfield formulation may be expected to be rather 

complicated because of the constraint on the condensate chiral superfield U. 

Quite generally we do not expect a simple ansatz in one formalism to appear 

simple in the other. 

As suggested in Sect. 3.1, we extend the simple model in (3.2) to lin

ear multiplet models of gaugino condensation with generic Kahler potentials 

defined as follows: 

K ln V + g(V) + G, 

.Ceff j d4B E { ( -2 + f(V)) + bVG + bVln( e-KtJUj fl6
) }. (3.10) 

For convenience, we also write ln V + g(V) = k(V). g(V) and J(V) repre

sent quantum corrections to the tree-level Kahler potent"ial, and, according 

to (2.6), they are unambiguously related to each other by the following first

order differential equation: 

vdg(V) = _ vdf(V) f 
dV dV + ' 

g(V = 0) = 0 and f(V = 0) 

The boundary condition of g(V) and f(V) at V 

(3.11) 

0. (3.12) 

0 (the weak-coupling 

limit) is fixed by the tree-level Kahler potential. Before trying to specify 

g(V) and f(V), it is reasonable to assume for the present that g(V) and 

f(V) are arbitrary but bounded. 
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In the construction of the component field lagrangian, we use the chiral 

density multiplet method (8], which provides us with the locally supersym

metric generalization of the F-term construction in global supersymmetry. 

The chiral density multiplet r and its hermitian conjugate r for the generic 

model in (3.10) are: 

r - ~(152 - 8R){ ( -2 + f(V)) + bVG + bVln(e-KtJUj J.L6
) }, 

r - ~(D2 - 8Rt){ ( -2 + f(V)) + bVG + bVln(e-KOUj J.L
6

) }. (3.13) 

In order to obtain the component lagrangian leff, we need to work out the 

following expression 

1 
-.Ceff 
e 

(3.14) 

An important point in the computation of (3.14) is the evaluation of the 

component field content of the Kahler supercovariant derivatives, a rather 

tricky process. The details of this computation have by now become general 

wisdom and we can to a large extent rely on the existing literature (23]. In 

particular, the Lorentz transformation and the Kahler transformation are 

incorporated in a very similar way in the Kahler superspace formalism, and 

the Lorentz connection as well as the so-called Kahler connection AM are 

incorporated into the Kahler supercovariant derivatives in a concise and con

structive way. The Kahler connection AM is not an independent field but 

rather expressed in terms of the Kahler potential [{ as follows 

(3.15) 

(3.16) 

In order to extract the explicit form of the various couplings, we choose to 

write out explicitly the vectorial part of the Kahler connection and keep 
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only the Lorentz connection in the definition of covariant derivatives when 

we present the component expressions. In the following, we give the lowest 

component of the vectorial part of the Kahler connection Am lo=B=O for our 

generic model. 

(3.17) 

(3.18) 

dmg(V) 
dVm lo=B=O' 

dm J(V) 
dVm lo=B=o· (3.19) 

Another hallmark of the Kahler superspace formalism are the chiral su

perfield X a and the antichiral superfield _xa-. They arise in complete analogy 

with usual supersymmetric abelian gauge theory except that now the corre

sponding vector superfield is replaced by the Kahler potential: 

(3.20) 

In the computation of (3.14), we need to decompose the lowest components 

of the following six superfields: Xa, _xa-, 'DaR, va-Rt, (VcxXa + Va-Xa-) and 

(D2R + fPRt) into component fields. This is done by solving the following 

six simple algebraic equations: 

dg 
(V dV + 1 )VaR + Xa 

3DaR + Xa 

13 

(3.21) 

(3.22) 



- .6., 

(3.23) 

(3.24) 

(3.25) (V :~ +1)(V2R + tPRt) + (V0 Xa + Vo,Xa) 

3(V2R + V2Rt) + (VaXa + DaXa) -2Rb;a + 12GaGa 

+ 96RRt. (3.26) 

The identities (3.22), (3.24) and (3.26) arise solely from the structure of 

Kahler superspace. (3.22) and (3.24) involve the torsion superfields Tcb r.p 

and Tcbci>, which in their lowest components contain the curl of the Rarita

Schwinger field. The identities (3.21), (3.23) and (3.25) arise directly from 

the definitions of X a, xa, (DOt X a + VaXa), and therefore they depend on 

the Kahler potential explicitly. Computing Xa, xa and (VaXa + DaXa) 
according to (3.20) defines the contents of 3a, :=;a and .6. respectively. In the 

following, we present the component field expressions of the lowest compo

nents of 3a, :=;a and .6.. 
. . 
Z (·T. -m)a~ I Z ..=.. (-m.J, )C. I 2 'f-'mO" .::.a 8=0=0 - 2.::.c. 0" 'I-'m 8=0=0 

- ;£(£g< 1l + 1)(u + ~fM)('lj;mO"mn'lj;n) 
1 4 - -

- S£(£g{l) + 1)( U + 3£M )(1/JmO'mn1/Jn) 

z -+ 4£(£g{l) + 1)( 1Jmn1Jpq - 1Jmq1Jnp )(1/JmO'n1/Jp) \lq£ 

+ ~(£g{l) + l)cmnpq(1/JmO"n'lj;p)e
9
aba 

- :e(fg(l) + l)cmnpq(1/JmO"n1/Jp)B9 

-lcvava k )1/Jaa 18=0=0 - l1fiaa(Vava k) 18=0=o· (3.27) 
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The way 3aiB=B=O and :=;alB=B=O are presented in (3.27) will be useful for the 

computation of (3.14). 

It is unnecessary to decompose the last two terms in (3.27) and in (3.28) 

because they eventually cancel with one another. 

Eqs.(3.15-28) describe the key steps involved in the computation of (3.14). 

The rest of it is standard and will not be detailed here. In the following, we 

present the component field expression of Leff as the sum of the bosonic part 

LB and the gravitino part .C6 as follows. t 

(3.29) 

t Only the bosonic and gravitino parts of the component field expressions are presented 

here. 
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~.CG ~Emnpq( i/Jm<!nVp'l/;q - 'l/Jm<7nVpi/Jq) 

1 
- Sf { f + 1 + bfln( e-kuuj p6

)} u ( 'l/Jm<7mn-q;n) 

- ;£ { f + 1 + bfln( e-kuuj p 6
)} u ( i/Jma-mni/Jn) 

- ~(1 + bf) L ( I 1 
I) tmnpq( ¢ma-n'l/Jp)( vqii - Vqti) 

4 I t + t 
z -+ 4£(1 + b£)(£g(1) + 1)( 1]mn1]pq - 1]mq1]np )('l/JmO"n'l/Jp) \iql 

z -
- 4bf( 1]mn1]pq - 1]mq 1]np ) ( 'l/JmO" n 'l/;p) Vq In( UU) 

+ ~bf Emnpq ( i/JmO"n'l/Jp) Vq In( E_ ). (3.31) 
4 u 

For completeness, we also give the definitions of covariant derivatives: 

8.,J, Vmti = 8mti, 

8m'l/J/Y + 'l/Jn 13wmrf', (3.32) 

To proceed further, we need to eliminate the auxiliary fields from .Cef f 

through their equations of motion. The equation of motion of the auxiliary 

field (Fu +Po) is 

(3.33) 
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Eq. (3.33) implies that in static models the auxiliary field uu is expressed 

in terms of dilaton R. The equations of motion of F.j., Pj. and the auxiliary 

fields ba, M, M of the supergravity multiplet are (if Rg< 1 l - 2 =/:- 0) 

F.j. 0, -I 
Ft = 0, 

ba 0, 
3 - 3 

(3.34) M - -bu M =-bu. 
4 ' 4 

Now we are left with only one auxiliary field to eliminate, where this auxiliary 

field can be either i ln( u / u) or Em. This corresponds to the fact that there 

are two ways to perform duality transformation. If we take iln(uju) to be 

auxiliary, its equation of motion is 

(3.35) 

which ensures that {E9 - ~REmnpq(~mO"n¢p)} is dual to the field strength 

of an antisymmetric tensor [6]. The term EmEm in the lagrangian Leff thus 

generates a kinetic term of this antisymmetric tensor field and its coupling 

to the gravitino. The other way to perform the duality transformation is to 

treat Em as an auxiliary field by rewriting the term - ~bln(uju)'VmEm in 

Leff as ~bEm'Vmln(uju), and then to eliminate Em from Leff through its 

equation of motion as follows: 

b£2 -
- i ( R ) \7 mln( ~) 

g(l) + 1 u 

. b£2 "' 1 -I I 
+z(R )L...-(I I)('Vmt -'Vmt ). 

g(l) + 1 I t + t 
(3.36) 

The terms EmEm and ~bEm'Vmln(uju) in Leff will generate a kinetic term for 

iln(uju). It is clear that iln(uju) plays the role of the pseudoscalar dual to 

Em in the lagrangian obtained from the above after a duality transformation. 

With (3.33-36), it is then trivial to eliminate the auxiliary fields from Lef f. 

The physics of Lef 1 will be investigated in the following sections. 
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3.3 Gaugino Condensate and the Gravitino Mass 

Hidden-sector gaugino condensation in superstring effective theories is 

a very attractive scheme (24, 25] for supersymmetry breaking. However, be

fore we can make any progress in phenomenology, two important questions 

must be answered: is supersymmetry broken, and is the dilaton stabilized? 

Past analyses have generally found that, in the absence of a second source 

of supersymmetry breaking, the dilaton is destabilized in the direction of 

vanishing gauge coupling (the so-called runaway dilaton problem) and su

persymmetry is unbroken. To address the above questions in generic linear 

multiplet models of gaugino condensation, we first show how the three issues 

of supersymmetry breaking, gaugino condensation and dilaton stabilization 

are reformulated, and how they are interrelated, by examining the explicit 

expressions for the gravitino mass and the gaugino condensate. A detailed 

investigation of the vacuum will be presented in the following section. 

The explicit expression for the gaugino condensate in terms of the dilaton 

I! is determined by (3.33): 

(3.37) 

With g(i!)=O and f(i!)=O, we recover the result of the simple model (3.2) 

(6]. For generic models, the dilaton dependence of the gaugino condensate 

involves g(i!) and f(i!) which represent quantum corrections to the tree-level 

Kahler potential. According to our assumption of boundedness for g( I!) and· 

f(i!) (especially at I! =0 where following (3.12) we have the boundary condi

tions g(i! = 0)=0 and f(i! = 0)=0), 1!=0 is the only pole of g - (f + 1)/bl!. 
Therefore, we can draw a simple and clear relation between (uu) and (/!): 
gauginos condense (i.e., (uu) # 0) if and only if the dilaton is stabilized (i.e., 

(/!) # 0.) 

Another physical quantity of interest is the gravitino mass m {; which is the 

natural order parameter measuring supersymmetry breaking. The expression 
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for m a follows directly from £ 0 . 

(3.38) 

where we have used (3.33). This expression for the gravitino mass is simple 

and elegant even for generic linear multiplet models. From the viewpoint 

of superstring effective theories, an interesting feature of (3.38) is that the 

gravitino mass m a contains no dependence on the modulus T 1, which pro

vides a direct relation between ma and (uu). This feature can be traced to 

the fact that the Green-Schwarz counterterm cancels the T 1 dependence of 

the superpotential completely, a unique feature of the linear multiplet for

mulation. We recall that, in the chiral formulations of gaugino condensation 
~ 

studied previously (with or without the Green-Schwarz cancellation mecha-

nism), ma always involves a moduli-dependence, and therefore the relation. 

between supersymmetry breaking (i.e., ma # 0) and gaugino condensation 

(i.e., (uu) # 0) remains undetermined until the true vacuum can be found. 

By contrast, in generic linear multiplet models of gaugino condensation, there 

is a simple and direct relation, Eq.(3.38): supersymmetry is broken (i.e., 

ma # 0) if and only if gaugino condensation occurs ( (uu) # 0). We wish to 

emphasize that the above features of the linear multiplet model are unique 

in the sense that they are simple only in the linear multiplet model. This is 

related to the fact pointed out in Sect. 1 that, once the constraint (2.9) on 

the condensate field U is imposed, the chiral counterpart of the linear multi

plet model is in general very complicated, and it is more natural to work in 

the linear formulation. Our conclusion of this section is best illustrated by 

the following diagram: 

Supersymmetry 
Breaking 

Gaugino 
~ Condensation ~ 

Stabilized 
Dilaton 

The equivalence among the above three issues is obvious. Therefore, in 

the following section, we only need to focus on one of the three issues in the 
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investigation of the vacuum, for example, the issue of dilaton stabilization. 

4 Supersymmetry Breaking, Gaugino Con

densation and the Stabilization of the Dilaton 

As argued in Sect. 3.1, nonperturbative contributions to the Kahler 

potential should be introduced to cure the unboundedness problem of the 

simple model (3.2). In the context of the generic model (3.10), it is therefore 

interesting to address the question as to how the simple model should be 

modified in order to obtain a viable theory (i.e., with "Vp0 t bounded from 

below). We start with the scalar potential Vp 0 t arising from (3.30) after 

solving for the auxiliary fields (using (3.33), (3.34) and (3.37)). Recalling 

that (3.11) yields the identity £g< 1l + 1 = 1 + f- RJ(ll , we obtain 

1'r>ot = 16~2.e{(1+f-£f<1 l)(1+b£) 2 - 3b2f2 }~t6eg-(f+l)fbe, (4.1) 

which depends only on the dilaton .e. The necessary and sufficient condition 

for Vp0 t to be bounded from below is 

f- (f<
1
l > -O(fe1

fbe) for .e -+ 0, 

f .e f > 2 for .e -+ oo. - ·(1) 

( 4.2) 

( 4.3) 

It is clear that condition ( 4.2) is not at all restrictive, and therefore has no 

nontrivial implication. On the contrary, condition ( 4.3) is quite restrictive; 

in particular the simple model violates this condition. Condition ( 4.3) not 

only restricts the possible forms of the function f in the strong-coupling 

regime but also has important implications for dilaton stabilization and for 

supersymmetry breaking. To make the above statement more precise, let us 

revisit the unbounded potential of Fig.1, with the tree-level Kahler potential 

defined by g(V) = J(V) = 0. Adding physically reasonable corrections 

g(V) and f(V) (constrained by ( 4.2-3)) to this simple model should not 
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qualitatively alter its behavior in the weak-coupling regime. Therefore, as 

in Fig.1, the potential of the modified model in the weak-coupling regime 

starts with "V;,ot = 0 at .e = 0, first rises and then falls as f increases. On 

the other hand, adding g(V) and f(V) completely alters the strong-coupling 

behavior of the original simple model. As guaranteed by condition ( 4.3), 

the potential of the modified model in the strong-coupling regime is always 

bounded from below, and in most cases rises as .e increases. Joining the 

weak-coupling behavior of the modified model to its strong-coupling behavior 

therefore strongly suggests that its potential has a non-trivial minimum (at 

.e =f: 0). Furthermore, if this non-trivial minimum is global, then the dilaton is 

stabilized. We conclude that not only does ( 4.2-3) tell us how to modify the 

theory, but a large class of theories so modified have naturally a stabilized 

dilaton (and therefore broken supersymmetry by the argument of Sect. 3.3). 

In view of the fact that there is currently little knowledge of the exact Kahler 

potential, the above conclusion, which applies to generic Kahler potentials 

subject to ( 4.2-3), is especially important to the search for supersymmetry 

breaking and dilaton stabilization. Though we are unable to study the exact 

Kahler potential at present, it is nevertheless interesting to study models with 

reasonable Kahler potentials for the purpose of illustrating the significance of 

condition ( 4.2-3) as well as displaying explicit examples with supersymmetry 

breaking. This will be done in the following example. 

We start with the consideration of possible nonperturbative contribu

tions to the Kahler potential. Aside from the Planck scale Mp, the only 

natural mass scale in the theory is the condensation scale Ac, that is, the 

scale at which the hidden-sector gauge interaction becomes strong. As is 

well known, it follows from the renormalization group equation for the run

ning of the gauge coupling that Ac depends exponentially on the dilaton 

.e as Ac '"'"' e- 116be, which is consistent with the results of the simple 

model in Sect. 3.1. Therefore, on dimensional grounds, the field-theoretical 

nonperturbative contribution to the Kahler potential has the generic form 

v-me-nfGW /M?- 2 (Mp=1 in our convention), where n 2: 2 and m 2: 0 [21]. 
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In the following example, we consider the leading-order nonperturbative con

tribution (n = 2 and m = 0) to the Kahler potential: 

( 4.4) 

where A
1 

is a constant to be determined by the nonperturbative dynamics. 

The regulation conditions ( 4.2-3) require A1 2: 2. In Fig. 2, "Vp0 t is plotted 

versus the dilaton e, where A1 = 6.92 and f..l=l. Fig. 2 has two important 

features. First, Yp 0 t of this modified theory is indeed bounded from below, 

and the dilaton is stabilized. Therefore, we obtain supersymmetry breaking, 

gaugino condensation and dilaton stabilization in this example. The gravitino 

mass is me; = 7.6 x 10-5 in Planck units. Secondly, the vev of dilaton is 

stabilized at the phenomenologically interesting range ((f) = 0.45 in Fig. 

2). Furthermore, the above features involve no unnaturalness since they 

are insensitive to A
1

. Fig. 2 is a nice realization of the argument in the 

preceding paragraph. It should be contrasted with the racetrack models 

where at least three gaugino condensates and large numerical coefficients are 

needed in order to achieve similar results. We can also consider possible 

stringy nonperturbative contributions to the Kahler potential suggested in 

[22]. It turns out that we obtain the same general features as those of Fig. 

2. This is not surprising since, as argued in the preceding paragraph, the 

important features that we find in Fig. 2 are common to a large class of 

models. 

Note that the value of the cosmological constant is irrelevant to the ar

guments presented here and in Sect. 3.3. In other words, the generic model 

(3.10) suffers from the usual cosmological constant problem, although we can 

find a fine-tuned subset of models whose cosmological constants vanish. For 

example, the cosmological constant of Fig. 2 vanishes by fine tuning A 
1

. It 

remains an open question as to whether or not the cosmological constant 

problem could be resolved within the context of the linear multiplet formu

lation of gaugino condensation if the exact Kahler potential were known. 
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5 Concluding Remarks 

We have presented a concrete example of a solution to the infamous run

away dilaton problem, within the context of local supersymmetry and the 

linear multiplet formulation for the dilaton. We considered models for a 

static condensate that reflect the modular anomaly of the effective field the

ory while respecting the exact modular invariance of the underlying string 

theory. The simplest such model [6, 7) has a nontrivial potential that is, 

however, unbounded in the direction of strong coupling. Including nonper

turbative corrections [21, 22] to the Kahler potential for the dilaton, the po

tential is stabilized, allowing a vacuum configuration in which condensation 

occurs and supersymmetry is broken. This is in contrast to previous analy

ses, based on the chiral formulation for the dilaton, in which supersymmetry 

breaking with a bounded vacuum energy was achieved only by introducing 

an additional source of supersymmetry breaking, such as a constant term in 

the superpotential [20, 25, 27). 

In further contrast to most chiral models studied, supersymmetry break

ing arises from a nonvanishing vacuum expectation value of the auxiliary field 

associated with the dilaton rather than the moduli: roughly speaking, in the 

dual chiral formulation, (Fs) =/= 0 rather than (Ff.) =/= 0. As a consequence, 

gaugino masses and A-terms are generated at tree level. Although scalar 

masses are still protected at tree level by a Heisenberg symmetry [26), they 

will be generated at one loop by renormalizable interactions. For the model 

considered here, the hierarchy (about five orders of magnitude) between the 

Planck scale and the gravitino mass is insufficient to account for the observed 

scale of electroweak symmetry breaking. A possible avenue for improving 

this result is to consider multiple gaugino condensation; in realistic orbifold 

compactifications the hidden gauge group g is in general a product group: 

g = IIa9a· The generalization of our formalism to the multi-condensate case 

will be considered -elsewhere. 
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The Kalb-Ramond field (or the axion, in the dual description) remains 

massless in the static models considered here, and therefore we still need to 

explain how· the axion mass can be generated. It has recently been shown 

in the context of global supersymmetry [6] that a mass term for the axion is 

naturally generated if kinetic terms for U and [J are included. It is therefore 

worth studying the extension of this paper to the nonstatic case. Consider the 

following generic linear multiplet model with a single dynamical condensate: 

f{ ln V + 9(V, UU) + G, 

j d40 E { ( -2 + f(V, OU)) + bVG + bV ln(e-K[JU I JL6
) }. (5.1) 

The model defined by (5.1) is a straightforward generalization of (3.10), where 

the quantum corrections to the Kahler potential, 9 and j, are now taken 

to be functions of OU as well as of V. The construction of the component 

lagrangian for the nonstatic model (5.1) is similar to that for the static model 

(3.10) presented in Sect. 3.2. For example, the condition for a canonical 

Einstein term for the generic nonstatic model turns out to be: 

a J 
1 

a9 _ _ a9 _ a J 
( 1 + z az )( 1 + 1 av) - ( 1 z az )( 1 v av + J ), (5.2) 

where Z = tJU. It is clear that (3.11) is the static limit of (5.2), where 9 

and f are independent of UU. As suggested by terms that arise both from 

string corrections [28] at the classical level and from field-theoretical loop 

corrections [29], we have studied the nonstatic model with generic functions 

9 and f that ares-duality invariant in the sense defined in [7]. That is, 9 and 

f are functions only of the s-duality invariant superfield variable tJU jV 2
• 

It turns out that the scalar potential Vpot of the nonstatic model with s

duality invariance is always unbounded from below in the strong-coupling 

limit f ~ ex::>. The origin of this unboundedness problem is similar to that 

of the simple static model studied in Sect. 3.1, and again it reflects the 

absence of nonperturbative contributions to the Kahler potential. We expect 

that the unboundedness problem of the nonstatic model will be cured when 
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nonperturbative contributions to the Kahler potential are included. Studies 

along this line are in progress. 
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FIGURE CAPTIONS 

Fig.l: The scalar potential 'V;ot (in Planck units) is plotted versus the 

dilaton .e. J.L=l. 

Fig.2: The scalar potential 'V;ot (in Planck units) is plotted versus the 

dilaton .e. A1 = 6.92 and J.L=l. 
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