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Abstract 
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Volume of interest extraction for radionuclide and anatomical measurements requires correct identification 

and delineation of the anatomical feature being studied. We have developed a toolset for specifying 3D volumes-of

interest (VOis) on a multislice Positron Emission Tomography (PET) dataset. The software is particularly suited for 

specifying cerebral cortex VOis which represent a particular gyrus or mid-brain structure. A registered 3D magnetic 

resonance image (MRI) dataset is used to provide high-resolution anatomical information, both as oblique 2D sec

tions and as volume renderings of a segmented cortical surface. VOis are specified indirectly in 2D by drawing a 

stack of 2D regions on the MRI data. The regions are tiled together to form closed triangular mesh surface models 

which are subsequently transformed into the observation space of the PET scanner. Quantification by this method 

allows calculation of radio nuclide activity in the VOis as well as their statistical uncertainties and correlations. The 

methodology for this type of analysis and validation results are presented. 

Key Words: Positron Emission Tomography, Volume-of-Interest, Brain, Multi-modality 

1.0 Introduction 

Quantitative analysis of multi-slice positron emission tomography (PET) datasets using regions of interest is 

a standard technique for studying brain function. A significant aspect of this technique is the process by which one 

identifies a desired portion of anatomy and then specifies its boundaries as a region of interest on a single slice, or a 

volume of interest (VOl) on a stack of slices. In particular, the availability of multislice scanners with true 3D imag

ing capabilities poses new challenges for 3D data analysis. Numerous issues related to t~is process exist which could 

skew quantitative results if not addressed properly. Because PET data represent functional, not necessarily anatomical 
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information, data from a PET scanner are not always appropriate for specifying regions. Functional boundaries seen 

on PET may not correlate with anatomical boundaries, hence, relying on these boundaries while specifying regions of 

interest could easily introduce quantification biases. Even where functional boundaries correspond to anatomical 

boundaries, the resolution obtained from the highest resolution PET scanners is often inadequate to confidently iden

tify desired anatomical boundaries. For these reasons, many researchers have relied upon other modalities, such as 

Magnetic Resonance Imaging (MRI), to identify anatomy [1][2][3]. However, even with this multi-modality 

approach, the problem is not completely solved .. Typical MRI datasets consist of 256x256x96 voxels and are usually 

displayed as 256x256 pixel images, one slice at a time. Trying to identify a region of anatomy, for example a particu

lar gyrus in the cortex, from this slice-based data can be quite difficult even for experienced clinicians. Additional 

information is required to aid the 3D navigational task and to convey appropriate cues about the 3D nature of the anat

omy. 

In this paper, we describe a methodology for specifying meaningful 3D VOis on PET datasets. The method

ology is particularly suited for calculation of radiotracer activity and statistical uncertainty on cerebral cortex VOis 

representing a particular gyral or deep brain structure. The approach addresses two problems that have plagued the 

specification of such regions in the past. First is the proper identification of a desired anatomical object from a func

tional PET image. Second is the specification of a true 3D boundary around that object once it is identified using con

ventional X-Windows interfaces. Unique in the approach is the method by which the regions can be used to 

accurately model statistical uncertainty of quantified activity in a 3D acquisition environment. 

2.0 Methods 

The procedure for obtaining quantitative PET VOl values can be summarized as follows. Our approach uses 

the high resolution anatomical data from MRI to identify and specify 3D regions of interest. The MRI data are regis

tered to multislice PET data using a sequence of manual and automated techniques. VOl boundaries are specified on 

the MRI dataset by. drawing 2D regions on a set of parallel image planes. The parallel set of planes may be chosen at 

any oblique slicing orientation through the MRI volume such that the cross sections most clearly show the features of 

the desired anatomical object. 2D regions are specified on these planes by drawing a freehand polygon or by laying 

out points which are then connected as a continuous cubic spline. Region drawing on this set of planes is facilitated 

by the display of a "3D cursor", which shows the position not only on the current drawing plane, but also on a number 

of slices orthogonal to the parallel planes, and on a volume rendering of a segmented cortical surface. Further feed

back is provided by displaying the intersections of selected regions with these orthogonal slices 

3D VOls are formed by tiling each set of parallel 2D regions into a closed triangular mesh surface model. A 

matrix is calculated which describes the transformation between the registered MRI and PET, as well as between the 
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original and obliquely resliced MRI. This matrix is used to transform the surface model from the resliced MRI coor

dinate system into the coordinate system of the PET gantry. Once transformed, the VOl surface models may be used 

to calculate the activity within a 3D volume within the PET gantry. In our application, the surface models are cur

rently projected onto the originally acquired PET slices, resulting in a series of labeled 2D regions. Quantification of 

activity within these regions and their uncertainty is achieved by projecting the regions into tomographic sinogram 

space, and then directly evaluating the counts in this space. Because the full region covariance matrix is available 

after this calculation, the 2D region values can be added together, giving an activity value and uncertainty for each 

PET VOL Finally, VOl values are adjusted for the effects of partial volume by using the segmented MRI dataset as 

prior information. 

Data referenced in this paper were acquired using a CTI- Siemens ECAT EXACT HR PET scanner and a 1 

m bore 0.5 T Oxford MRI magnet with a home-built spectrometer. MRI volumes comprised a 3-dimensional data set 

of TI-weighted images (voxel size 1 x I x 2 mm, volume size 256 x 256 x 96 voxels) acquired using a 3-D gradient 

recalled echo sequence (TE = I4.3, TR = 30). PET data were obtained using the 47-slice scanner in 2D acquisition 

mode imaging the radiotracer, fluorodeoxyglucose (FOG). The data were reconstructed using standard 2D filtered 

backprojection techniques (voxel size 2.4 x 2.4 x 3.I mm, volume size I28 x 128 x 47 voxels). 

2.1 Segmentation/Registration 

In order to relate MRI-based regions to PET measurements, it is necessary to spatially register the two 

datasets. Automated methods for this process exist but most require that the brain be segmented from non-brain 

regions in the MRI data[4][5]. Some have claimed success using completely automated methods to perform this seg

mentation. However, such techniques require special pulse sequences or complex clustering algorithms. We take a 

simpler approach relying on the facts that in FDG PET images, the outer cortex can be easily segmented from the 

background using image thresholding, and that the PET and MRI datasets can be approximately registered relatively 

quickly using manual techniques. As suggested by Pietrzyk [6], the registered and segmented PET data are used to 

mask the MRI and perform an automatic MRI segmentation. Once the segmented MRI is obtained, it is used to refine 

the PET registration via automatic techniques. Hence, the bulk of manual interaction that is required for the segmen

tation and registration exists solely in the "approximate" manual registration step. 

Figure I shows the interface used to obtain a manual registration. Transverse, sagittal and coronal views of 

each dataset are simultaneously presented to a user, who is allowed to manipulate translation, rotation and scale 

parameters. The amount of misregistration is displayed via an interactive cursor showing corresponding points in the 

six views, or via an edge mask of either dataset which may be overlaid on the other set. 
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Once an approximate registration is found, the PET data are resliced at the resolution of the MRI volume 

and are thresholded to form a binary mask. To prevent slight misregistrations from masking away brain regions in the 

MRI, the PET mask is usually dilated using a morphological operator [7]. Further, to prevent masking the inner por

tions of the MRI brain, the outer boundaries of the PET mask are filled using a 2D filling operation. The resulting 

masked MRI dataset is a nearly complete segmentation; however, because the PET mask generally includes some 

portions of the outer tissue, a 3D region growing operation seeded from the interior of the cortex is used to obtain the 

final result. A final step in obtaining an accurate registration is the use of the segmented MRI dataset in an automated 

cross-correlation registration technique [ 4]. 

After registration and segmentation, an orientation file is stored which describes the registration parameters 

(nine parameters for rigid transformation with scaling). A 4x4 transformation matrix can be calculated from this ori

entation file, and it may be used to relate voxel positions in one volume to their corresponding positions in the 

resliced registered volume. 

2.2 Volume of Interest Construction 

2.2.1 Region Drawing Environment 

Rather than attempting to create a sophisticated virtual reality environment for directly sculpting 3D VOls, 

our approach uses conventional 2D X-Windows interfaces which indirectly specify surfaces through a sequence of 

2D operations. That is, VOis are constructed by drawing stacks of 2D regions. The region drawing environment 

makes use of two main principles to carry out this task. First, because the cross sectional 2D geometry of an object 

boundary can be considerably simplified just by reslicing along a different orientation, we allow the user to select a 

set of parallel slicing planes at angles different from the original acquisition planes. For cortical regions, the typical 

reslicing orientation is the coronal view of a transaxially acquired MRI. However, in general, these reslice orienta

tions can be at any oblique angle with respect to the original acquisition orientation. Second, to aid in the 3D naviga-

. tiona! task, simultaneous views of data are provided in different formats: volume rendered surfaces, orthogonal slices 

or registered PET slices, on which corresponding points can be visually related . 

. Figure 2 shows an example of the region drawing environment. Structured around the VIDA software pack

age [8], a main window (Figure 2a), hereafter called the drawing plane, is provided for the user to draw 2D regions. 

Regions may be drawn using freehand polygons, laying out points connected via a cubic spline algorithm, or a num

ber of other techniques. Any number of auxiliary viewing planes sliced at orthogonal angles (e.g. sagittal and coronal 

when the drawing plane is transverse) can be seen as well. A 3D cursor reflecting the position of the drawing cursor is 

projected on these views using a parallel projection technique. At any time, a keystroke may be hit while in the draw

ing plane to update the auxiliary views and display the orthogonal slices intersecting the current main cursor position 
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at that orientation. As a stack of 2D regions are drawn, their position with respect to one another may be displayed by 

showing the intersection with the auxiliary orthogonal planes (Figure 2b). Additionally, to provide guiding points 

while drawing regions on the drawing plane, curves may be drawn on the auxiliary views and their intersection with 

the drawing plane will be displayed. 

For specifying cortical regions, probably the most useful visual cue is a rendering of the cortical surface. 

Historically, rendering techniques have been grouped into two subclasses, surface rendering and volume rendering. In 

surface rendering, a vector model is extracted from the underlying volumetric data, and is displayed as a set of shaded 

polygons. This technique has the advantage that it can take advantage of commonly available graphics hardware for 

real-time user interaction. It has the disadvantage that the process of extracting the polyhedral model can be 

extremely computationally intensive, and the model requires considerable storage to adequately describe a surface 

with enough detail. Volume renderings, on the other hand, are directly calculated from volume data and generally 

result in a single static image of one perspective of the shaded surface. An advantage of volume renderings is that 

high-quality renderings can be calculated quickly; however, once calculated, little interaction is possible because 

most of the 3D information has been lost. 

We calculate volume renderings using a parallel projection gradient shaded technique on the segmented MRI 

data. Because a depth map calculated during the rendering is retained along with the corresponding transformation 

matrix, the 3D position of each point in the rendered surface can be calculated. Therefore, visual cues may be pro

vided in two ways. First, a 3D polyline may be drawn on the rendering, and its intersections with the 2D drawing 

plane will be shown (Figure 3). This technique is useful for following a specific cortical gyrus through subsequent 2D 

slices. A second met]:J.od provides real-time feedback between the drawing cursor and the volume rendering. As the 

cursor is moved in the drawing plane, its position in the rendering may be displayed as the projection of the cursor 

position along the line of sight used to obtain the rendering. Therefore, as the cursor is moved along the boundary of 

the cortex in ~he drawing plane, its correct position in the volume rendering is displayed. 

2.2.2 VOl Construction 

A typical set of 2D contours drawn for a brain dataset is seen in Figure 4a. Stacks of 2D ROis like these 

could be used directly to calculate VOl statistics. This calculation could take place by summing voxels on calibrated 

PET images resliced at the same resolution and orientation of the MRI data. However, there are a number of advan

tages to constructing 3D surface models from the 2D stack, and describing them in a format independent of the dis

crete MRI voxel space, as depicted in Figure 4b. Here, the 2D regions are tiled together to produce VOl boundaries 

described as closed polyhedral surface models. These surface models can more smoothly represent slice-to-slice tran

sitions than can discrete 2D stacks and can be easily manipulated for editing the overall 3D VOl shape and for trans

forming into other registered spaces. 
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For relatively simple regions, a graph-searching technique is suitable to produce acceptable tilings [9]. How

ever, a more sophisticated tiling algorithm is required to prevent self-intersections in the tiled surface for complex 

cortical regions. We use the NUAGE [I 0] algorithm to obtain such tilings. This algorithm obtains a tiling based on a 

Delaunay triangulation of each 2D contour from which an exterior triangular surface is derived. To facilitate manipu

lations of the polyhedral surface model, the list of triangles is organized in a data structure known as a winged-edge 

structure [11]. This structure stores adjacency information between faces, vertices and edges and allows searches over 

these structures in linear time. The surface model is integrated into an Inventor Toolkit 3D graphical display environ

ment [12]. In this environment, the user may visualize the resulting 3D region set and perform a number of arbitrary 

manipulations on them including scaling, translation and rotation, subdivision, selection and deletion. 

2.3 PET Quantification 

2.3.1 Statistical Quantification 

As just stated, quantification of PET activity could take place directly using the stack of 2D regions by 

reslicing calibrated PET data into the voxel space of the MRI data. Of course, care must be taken to properly scale 

calibration factors in accord with the new voxel size of the resliced PET data, and to suitably treat voxels on the bor

der of the region. Besides the error possibly induced from summing edge voxels, there is one main disadvantage to 

this technique: the uncertainty of the activity data can no longer be accurately characterized. If an accurate estimate of 

the activity within the region and its uncertainty are desired, calculations must take place in the observation space (i.e. 

projection, or sinogram space) of the tomograph, where the statistical properties are well established as a Poisson 

counting process [ 13 ], [ 14]. To carry out this calculation, the description of the VOis must be transformed into the 

projection space of the PET scanner. 

We acquire brain PET data as a set of 47 sinograms, one for each transverse plane, or slice, of the recon

structed PET volume. To obtain a suitable description of each VOl in projection space, the VOl is first transformed 

into the image space of the PET scanner using the 4x4 transformation matrix calculated during the PET-MRI registra

tion and during the MRI reslicing processes. The 2D intersection of the VOl surface model with each acquisition 

plane is next calculated, resulting in another set of 2D regions. The uniformly-weighted interior of these regions is 

then forward projected into sinogram space, convolved with a ramp filter and the vector inner product with the atten

uation-corrected emission counts is calculated. Complete knowledge of the covariance matrix between the 2D region 

values allows summing into composite values for each VOl, and calculation of their uncertainty. Values are computed 

as PET counts/sec/cc. Figure 5 summarizes the process. 

Calculation of VOl activity by this method has a number of other advantages besides the capability of 

obtaining statistical properties. Since the high resolution anatomical data were used to define the VOl boundaries, the 
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PET data do not need to be greatly smoothed to obtain suitable visual image quality. Only a ramp filter is used, pre

serving spatial resolution during quantification. Also, because the technique effectively performs a fast reconstruction 

and summing of the data, reconstruction of a PET image volume is required only to register the data. For dynamic 

PET acquisitions, it is therefore not necessary to reconstruct every time point in the data acquisition. Finally, a third 

advantage is that calculation of VOl values for a 3D PET acquisition without septa would proceed in a straight-for

ward manner. In this case, a 2D forward projection of each VOl would be required at each projection angle, followed 

by convolution and calculation of the vector inner product. 

2.3.2 Partial Volume Correction 
Many have recognized the importance of correction for partial volume effects in PET quantification [15], 

[16]. The full width at half-maximum (FWHM) spatial resolution of the ECAT EXACT HR ranges from 3.6 mm to 

7.4 mm throughout the field of view [17] whereas the dimension of typical structures of interest, such as cortical grey 

matter (5-7 mm), is well within this range. Activity calculated for a VOl drawn along the MRI-derived anatomical 

boundary of a uniformly active small cortical region is thus a considerable underestimate if the region is bordered by 

cerebrospinal fluid (CSF) or bone, which do not take up notable quantities of most radiotracers. Because the spatial 

resolution of MRI data is considerably higher than the PET resolution, we can account for this effect by using seg

mented MRI data to adjust the PET activity values. Ideally, if the spatial response of the PET scanner was known and 

one had access to an anatomical dataset perfectly segmented into regions of different uniform radiotracer uptake 

rates, for example grey matter, white matter, and CSF, the blurring could be completely deconvolved. Unfortunately, 

a reliable grey/white matter segmentation is difficult to obtain on a routine basis from typical clinical data obtained 

with a 0.5 T MR Tl acquisition, and quantification biases resulting from segmentation errors can be substantial. Up to 

a 20% error for a 2.82 mm missegmentation of the grey/white border has been reported [ 16] . For this reason, we take 

a simplified approach, segmenting the dataset into just two regions, brain and non-brain, and obtain a single factor for 

each region expressing the partial volume of non-brain region present in the VOl at the resolution of the PET scanner. 

Though this technique obvious) y suffers from the partial volume mixing of the grey and white matter, we feel that this 

error is less than may be incurred by using an unreliable trilevel segmentation. 

The following procedure is used to obtain the partial volume factor. A segmented MRI dataset is registered 

and resliced into the reconstructed image space of the PET scanner at a resolution comparable to the MRI voxel size, 

thus avoiding potential aliasing effects during reslicing (2-3 times the voxel resolution of the reconstructed PET vol

ume for our data). The segmented dataset is a binary indicator function of brain and non-brain regions seen in the 

MRI. To transform the resliced indicator function into the effective resolution of the PET scanner, the resliced MRI 

indicator mask is blurred to the resolution of the ECAT PET scanner using a 3D spatially-variant Gaussian convolu

tion kernel derived from experimentally-determined resolution factors. These factors range from 3.6mm FWHM at 
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the center to 4.5 mm FWHM tangentially and 7.4 mm radially at R=20 em, and from 4.0 mm FWHM at the center 

axially to 6. 7 mm FWHM at R=20cm [ 17]. Because the tangential and radial components of the transaxial blur are 

approximately equal for radii which span the imaging location of the human head, the blurring is implemented as a 3-

step ID Gaussian convolution kernel. At each transaxial voxellocation, the volume is first blurred using a kernel 

width in the X and the Y dimensions obtained by averaging the radial and tangential blur component at that location. 

Then the axial blur is carried out using the spatially-variant kernel in the Z direction. The Gaussian blur variance in all 

three directions is reduced by 1/6 of a voxel dimension to account for the blur already introduced by the resampling 

step. Summing the blurred indicator mask over the 3D extent defined by each VOl and dividing by the VOl volume 

gives a factor which compensates for the effects of partial volume. 

3.0 Validation 

A specific group of studies were performed in order to evaluate the procedures and software tools developed 

for analyzing three dimensional PET data. These experiments were performed in order to validate the region drawing, 

tiling, coregistration, and partial volume correction techniques. 

3.1 Coregistration 

An experiment was performed to compare the results of coregistration using an automated technique, the 

Automated Image Registration software package (AIR) [4] with a manual technique, the Multi-purpose Match 

(MPM) software package [6]. In addition, since the manual technique is operator dependent, we compared the results 

obtained by two different operators. 

For these studies, 6 patients underwent MR and PET imaging. PET scanning was performed using an injec

tion of approximately 10 mCi of fluorodeoxyglucose (FDG). Four of the patients had Alzhiemer's disease. These 

patients were selected because the PET images contained large irregular regions of hypometabolism which could 

potentially challenge automatic and manual registration methods. 

After scans were obtained, the PET and MR images were coregistered with MPM using techniques 

described by its developers. For the AIR technique, MR images were manually segmented using region growing 

operations on a slice by slice basis to remove the skull and scalp. MR and PET were then coregistered automatically. 

The output from the AIR and MPM files were rewritten to a file format which described three parameters of transla

tion and three parameters of rotation. These data were further reduced so that results could be compared on the basis 

of translational magnitude and rotational magnitude differences. These results are shown in Table I. The registration 

accuracy is comparable to results reported by the developers of MPM [3] where accuracies within 1.84 mm for trans

lation and 1.67 degrees for rotation were found. 
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3.2 Regions of Interest 

A separate experiment was performed to determine the reliability of the procedure for reslicing volumetric 

data sets. An MRI scan was performed according to the aforementioned procedure in a normal young subject. A 

clearly delimited data set was produced from this by selecting 24 slices, thus limiting the dorsal and ventral extents of 

the dataset, and arbitrarily limiting the size of the data in three of the four transaxial directions using a masking fea

ture. This resulted in a cubic region of brain, in which five of six sides were sharply delimited, and the sixth side was 

composed of the grey matter/cerebrospinal fluid (CSF) interface. Regions of interest were drawn to outline the entire 

brain area on the sequential I mm slices of brain, and the total volume of brain so enclosed was then determined. Sub

sequently, the data were resliced in the coronal plane and 33 I mm thick slices were generated. Similar ROis were 

drawn on these data in the coronal plane, and the volume of brain enclosed was also calculated. Volume for the origi

nal axial data was 29.I ml and for the resliced data the volume was 28.3 ml, a difference of 2.8%. 

A second experiment was performed to evaluate the effects upon calculation of regional cerebral metabolic 

rates for glucose (rCMRglc) of different methods of data analysis. Standard methods for computing rCMRglc, using 

regional PET activity, an arterial input function, and known rate constants with the operational equation were utilized 

[18] [I9]. Two patients were studied. All ROis were drawn on MR data. Six ROis were drawn in each hemisphere of 

each patient, using predefined criteria for these regions (dorsolateral frontal cortex, orbital frontal cortex, anterior 

temporal cortex, posterior temporal cortex, amygdala, and hippocampus). Two different operators, each trained in 

neuroanatomy, drew these regions independently on data which had been resliced into a coronal plane (perpendicular 

to the line passing through the anterior and posterior commissures) using slices either every I mm or every 3 mm. 

Finally, the data were coregistered using either the MPM or AIR techniques. Thus, three different comparisons could 

be made: operator I vs. operator 2 ROis, I mm resliced data vs. 3 mm resliced data, and manual vs. automatic coreg

istration. Comparisons were evaluated by calculating the rCMRglc for each brain region using each of the 8 possible 

methods and performing each comparison by collapsing across the other possible comparisons. Thus, a mean differ

ence was calculated for each region for each comparison. 

For the comparisons of operator 1 vs. operator 2, differences in rCMRglc across the 12 regions in the two 

patients ranged from 0.07% to I 0.1% with an average difference of 3. 7%. The greatest differences were found in the 

metabolic rates for the hippocampus, while most brain regions showed average differences on the order of 3-5%. 

For comparisons of the manual vs. automatic methods of coregistration, rCMRglc differences ranged from 

0.15% to I7%, with a mean difference of 5.5%. The greatest differences were found when values in orbital frontal 

cortex were compared. This brain region is particularly susceptible to errors in region placement since it is bordered 

anteriorly, superiorly, and inferiorly by bone and CSF. 
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For the comparisons between I mm and 3 mm resliced data, rCMRglc differences ranged from 0% to 7.3% 

with a mean difference of I .9%. Except for one hemispheric hippocampal region in one subject with the highest per

cent difference, most differences were in the range of 1-3%. 

3.3 Phantom Studies 

In order to validate the methods developed for partial volume correction, a phantom was constructed to 

model three different intensities of MR signal or PET activity. The phantom consisted of a plexiglass cylinder divided 

into two compartments by a plexiglass wall. Through this wall, holes were drilled to permit passage of teflon tubing 

(3 mm internal diameter). Thus, the two plexiglass compartments could be filled with different fluids, and the tubing 

could be filled with a third fluid. This phantom was filled with water doped with copper sulfate for MR imaging. 

Compartment I was filled with water, compartment II was filled with copper sulfate-doped water, and the tubing was 

filled with a different copper sulfate doped water concentration to give MR signals that were sufficient for segmenting 

compartments in the resulting images. For PET imaging, compartment I was filled with water, compartment II with a 

solution of 5.9 Jl Ci/ml and the tubing with a solution of 27.4 Jl Ci!ml. Figure 6 shows a photograph of the plexiglass 

phantom. 

Four sets of regions were drawn on the resliced MRI data, as is done in the routine analysis of brain data. 

Figure 7 shows slices through the originally acquired MRI and registered PET as well as VOis projected onto the dis

played transaxial slices of this dataset. Set A was a set of rectangular VOis drawn completely within compartment II, 

set B was a set a of rectangular VOis drawn on the right outer border of compartment II, set C was a set of rectangular 

VOis drawn on the left outer border 'of compartment II, and set D was a set of cylindrical VOis drawn over the 3mm 

tubes in compartment I. Regions were drawn on the MRI data which had been resliced along the coronal plane at a 

resolution of 256x256x53 voxels, voxel dimension I x I x 3 mm. One of these original 2D regions before VOl con

struction and reslicing is seen in Figure 7c,e. 

The original MRI dataset was manually segmented and registered to the PET dataset. Regions were tiled and 

resliced into the PET volume. The count rate for these VOis was extracted and corrected for partial volume. Results 

for these four sets of regions are shown in Table 2. Comparison of corrected values for set A with sets B and C shows 

that the VOl reslicing and correction techniques successfully correct for partial volume effects in regions bordering a 

broad surface, as would be expected for regions drawn on the cortical surface. The results also show the limits of the 

correction techniques. It is seen that the corrected activity values calculated for set D, the VOis around the 3mm 

tubes, are considerably lower than the expected 4.6 times the mean concentration in compartment II. This result is 

due to overestimates of the partial volume calculation caused by resolution limits of the MR data. Recalling that the 

voxel size of the MR data is I xI x2 mm, it is not surprising that even a careful manual segmentation could not accu-
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rately characterize this object. The cross section of a 3 mm tube in a coronal orientation is 7.07 mm2 whereas the 

closest binary segmentation of the long axis of the tube in the transaxial orientation voxelized MRI data could choose 

either a 6 or 8 mm2 cross section over two slices. Either choice results in over a 15% segmentation error. 

The effect of registration errors in the partial volume correction and PET quantification is demonstrated in 

Figure 8. To obtain these values, the PET-MRI registration matrix was permuted by a translation of ±4 mm in 1 mm 

steps along the X-axis in PET space. For each increment in translation offset, a new set of resliced VOis and partial 

volume parameters were calculated. Average values of corrected counts were calculated for the four VOl sets in each 

registration position. The results underscore the importance of accurate registration. For these data, translational reg

istration errors of just 2 mm could produce quantification errors of up to 23%. 

4.0 Concluding Remarks 

The reported technique for specifying and analyzing VOis on PET datasets demonstrates an approach for 

analyzing complex 3D datasets using common 2D interfaces. Navigation through the dataset to find a desired anatom

ical structure can be greatly simplified using a registered MRI anatomical volume showing multiple simultaneous 

oblique sections and volume renderings of the data. Because most clinicians can readily identify specific sulci from 

high-quality renderings of the cortical surface, a crucial step in quickly identifying sulci in 2D sectional data is pro

viding a feedback mechanism between the renderings and the section data. Once identified, 3D VOis may be speci

fied on the anatomical datasets efficiently in an X-Windows environment by drawing a stack of 2D regions 

subsequently tiled together to form a VOl surface model. The voxel-independent description of the VOis allows a 

quantitative analysis in the observation space of the PET scanner for characterization of both VOl radiotracer activity 

and statistical properties. 

Results obtained from typical brain analyses indicate that the stack of regions defining a VOl may be drawn 

on slices oriented at the oblique slicing direction which best allows visualization of the desired anatomy's cross-sec

tion. A 3 mm slicing separation appears sufficient to capture the salient shape features of regions in the cortex. VOis 

drawn using a finer slice separation produced similar quantitative results at the cost of increased manual intervention. 

The registration and segmentation steps are seen to be crucial preprocessing steps in the VOl analysis. An 

accurate segmentation of brain from non-brain structures is needed for PET partial volume corrections, for high-qual

ity surface renderings and for automated registration routines. Phantom analysis results imply that registration 

between PET and MRI datasets must be achieved to an accuracy greater than 2 mm. Our experiences show that this 

level of accuracy is difficult to obtain using purely manual techniques. However, by combining manual with auto

mated registration techniques, we are able to obtain reliable registration with minimal manual burden. The manual 
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portion of the segmentation and registration process has the additional advantage in that quality control can be visu-

ally verified by a trained clinician. 

Use of0.5 T MRI data at a voxel resolution of I x I x 2 mm has the current limitation in our laboratory that 

the brain grey and white matter cannot be reliably segmented. This limits the extent for which partial volume effects 

can be corrected. Phantom studies indicate that even if perfect segmentation could be obtained at the resolution of the 

MRI data, accurate partial volume correction is difficult with an qbject as small as a 3 mm tube. Correction for this 

object is a more stringent requirement than the continuous 5-7mm sheet of grey matter, but phantom studies imaging 

a more realistic brain phantom are warranted. 
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TABLE 1. Registration Comparison - Automatic and Manual Techniques 

Auto vs Auto vs Manuall vs 
Manual! Manual2 Manual2 

Average Rotational 2.62 2.19 3.07 
Difference (deg) 

Rotational Differ- 0.15-4.56 0.25-5.43 0.41-7.54 
ence Range 

Average Translation 1.95 3.31 3.12 
Difference (mm) 

Translation Differ- 1.50-2.79 1.06-5.40 1.29-4.91 
ence Range 

.. 
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TABLE 2. Phantom Partial Volume Correction Results 

Partial Corrected 
Relative VOl Activity Volume Counts 

Region Label Concentration (counts/cdsec) (fraction) (counts/cdsec) 

A1 1 675 1.000 674 

A2 1 663 1.000 663 

A3 1 623 1.000 623 

B1 1 362 0.590 613 

B2 1 302 0.460 657 

B3 1 278 0.422 660 

C1 1 431 0.636 677 

C2 1 443 0.692 640 

C3 1 493 0.726 680 

D1 4.6 279 0.119 2393 

D2 4.6 272 0.140 1964 

D3 4.6 232 0.107 2488 

D4 4.6 308 0.158 1952 
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Figure 1. Manual Segmentation. FDG PET data are quickly registered to the MRI dataset using this manual interface. 

The registered PET data are thresholded and used as a binary mask to automatically segment the brain from non-brain 

structures in the MRI. Once the segmentation is obtained, the registration is refined using automated techniques. 
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(A) 

Figure 2. Region Drawing Environment. A main drawing window (A) is used to draw 2D regions. The main window 

cursor position is mirrored in real-time on auxiliary views (B,C) as a projected 3D crosshair cursor to aid visualiza

tion of the 30 anatomy. Intersections of selected region stacks with the auxiliary planes (B) give the user intuition of 

the 3D shape of the resulting VOL 
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Figure 3. Volume Rendering-Based Navigation. 3D positional information is recorded for each pixel in the volume 

rendering (B), allowing an interface tying together 2D sectional (A) with rendered information. Intersections of a 

polyline drawn on the rendering are shown as crosses on the 20 view. Position of the cursor in the 2D view is 

reflected in the rendering in real time . 
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(..\) (B) 

Figure 4. Volumes of Interest. 3D Volumes of Interest are created by tiling stacks of 20 contours. Contours in (A) 

are overlaid on the resulting VOl surfaces. A typical set ofVOis drawn for a brain study is seen in (B) in a schematic 

rendering of the cortical surface 
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Figure 5. PET Statistical Quantitation. Activity from a VOl slice is evaluated by projecting the uniformly weighted 

region at each angle. The projected region is convolved, and an vector inner product is formed with the raw tomo-

graphic data set. Activity from all slices of the VOl are summed to obtain the composite activity and uncertainty at a 

single time point for that volume. 
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Figure 6. Three Compartment Cylindrical Phantom. A 3 mm tube passing through two halves of the plexiglass cylin

drical phantom allows validation of atrophy correction and region placement between PET and resliced MRI images. 
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Figure 7. MRI and PET slices (transaxial: A,B,D,E and coronal: C,F) through the three-compartment cylindrical 

phantom used for validation of VOl reslicing and partial volume correction. Four sets of VOis were drawn on the 

coronally resliced MRI data of the phantom and were used to quantify activity in the PET dataset. One of the original 

2D regions comprising a VOl is seen in the coronal slices. Intersections of some of the other VOis are shown in the 

transaxial slices . 
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Figure 8. Misregistration Effects. Average percent quantitation differences induced by misregistration errors in the 

cylindrical phantom. Results show that translational misregistrations of just 2 mm can produce large quantitation 

errors. 
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