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Abstract 

The standard procedure for estimating regional tracer concentrations from 

emission tomographic data may be summarized as follows. A region of interest 

(ROI) is defined within the organ of interest. The concentration estimate is 

obtained by integrating the reconstructed image over the ROI and dividing by 

the volume of the ROI. This estimate may be written as J m(x)f(x) dx, where 

m is the normalized mask function of the ROI and f is the reconstructed 

image. The purpose of this study was to investigate whether the variance 

of such tracer concentration estimates can be reduced by replacing the mask 

function m with a smoother function, termed an aperture function, that is 0 

outside the ROI and whose integral is 1. The latter conditions insure that the 

resulting concentration estimate is unbiased. 

Methods: We computed the variance of tracer concentration estimates 

using the conventional mask function as well as an appropriate aperture func

tion for an idealized mathematical model of emission tomography as well as 

for real emission tomographic data collected from a phantom. 

Results: In both the mathematical model and the phantom experiments, 

estimates obtained using an appropriate aperture function had a smaller vari

ance than those obtained using the standard mask function. 

Conclusion: The variance of regional tracer concentration estimates ob

tained from emission tomographic data can be reduced by replacing the usual 

mask function with a smoother aperture function. 

Keywords: Emission tomography, Region of interest, Aperture function, 

Signal-to-noise, Quantitation. 
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1 Introduction 

The standard procedure for estimating regional tracer concentrations in a tar

get organ from emission tomographic data can be summarized as follows. A 

region of interest (ROI) is defined within the organ of interest. The concen

tration estimate is then obtained by integrating the reconstructed image over 

the ROI and dividing by the volume of the ROI. Let m denote the normalized 

mask function of the ROI, i.e., 

{ 
1/ volume(ROI) 

m(x) = 
0 

ifx E ROI 

if X fj. ROI 

and let f denote the reconstructed estimate of the image f. Then the standard 

concentration estimate can be written as 

j m(x)f(x) dx. (1.1) 

Suppose that the tracer density in the ROI is equal to a constant, f0 , and 

that f is an unbiased estimate of the true underlying image density f. Then it is 

easy to see that the expected value of the estimate given in equation 1.1 is equal 

to f0 , and hence our estimate is unbiased. Moreover, if the mask function m in 

equation 1.1 is replaced by a function a(x) that is uniformly 0 outside the ROI 

and of unit integral, our estimate is still unbiased. Thus, assuming f is constant 

within the ROI, one can construct many distinct unbiased estimators for the 

tracer density. The main point of this paper is that, due to the correlation 

properties of the statistical errors in reconstructed tomographic images, the 

variance of tracer concentration estimates can be reduced by replacing the 

normalized mask function m with a smoother function a. We term the function 

a(x) an aperture function. We shall see that this effect is intimately related to 

the tomographic nature of the observations; it does not occur in the analogous 

non-tomographic planar-imaging problem. 
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2 Methods 

While emission tomography (ET) is inherently a 3-dimensional (3D) problem, 

it gives insight to begin by considering tomography in 2 dimensions. We there

fore start by considering the effect of replacing the normalized mask function 

for a 2-dimensional (2D) ROI with an appropriate aperture function. 

2.1 The 2D Problem 

2.1.1 Mathematical Model for 2D ET 

We consider a simple mathematical model of 2D ET. The model is highly 

idealized in that it ignores numerous secondary physical effects, such as at

tenuation and scatter, that occur in practice. However, it abstracts the basic 

problem of ET. 

We identify the "image" with a probability density function, f(x), on the 

unit radius disk D ~ R2 , where R 2 denotes 2-dimensional Euclidean space. 

The locations of radioactive disintegrations are modeled as independent, iden

tically distributed random variables distributed according to f. Denote the set 

of lines in R 2 by lL. lL is the observation or sinogram space. lL is parameter

ized by assigning the coordinates ( B, s) to the line through ( s cos B, s sin B) E R 2 

perpendicular to the vector (cos B, sin B). The observations in ET are modeled 

as independent, identically distributed random variables distributed according 

to the Radon transform off, which we denote by Rf(B, s). For a given line 

IE lL, Rf(I) is defined to be the integral off over I. 

We consider the statistical properties of regional tracer density estimates 

of the form fut2 a(x)f(x) dx, where f is the usual filtered-backprojection esti

mate of the underlying image f. One approach to obtaining these statistical 

properties is through Monte Carlo simulation. However, we believe that more 
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insight is obtained by computing the statistical properties of these estimates 

directly using what we term the observation-domain representation of these 

estimators. 

2.1.2 Observation-Domain Representation of Estimators 

It is shown in appendix A that the density estimate JJR2 a(x)f(x) dx can be 

expressed as n-1 2::~=1 HRa(li), where 11 , ... , In ElL denote the observations in 

ET and H denotes the ramp-filter operator used in the filtered backprojection 

algorithm, cf. equation A.4. (H is defined more precisely in appendix A.) We 

see that our estimate may be expressed as the average value of the function H Ra 

at the observation points. We call the function HRa an observation-domain 

representation of the estimator generated by a. 

Our primary motivation for introducing observation-domain representa

tions of estimators is that it makes their statistical analysis transparent. Since 

the observations are independent and identically distributed according to Rf, 

the expected value of our estimator is equal to 

1 HRa(l)Rf(l) dl = 1r_,_
1 11r foo HRa(B, s)Rf(B, s) dsdB 

lL 0 1-oo 
It is shown below in equation A.5 that 

·1 HRa(l)Rf(l) dl = f a(x)f(x) dx. 
lL JJR2 

Denoting the observation-domain representation of a by b = HRa, a routine 

calculation shows that the variance of the estimator is given by 

n _, [ 1 b2(1) Rf(I) dl-u b(I) Rf(I) dl) '] . (2.1) 

Now let fo denote the assumed constant value off on the ROI. Under 

the assumptions that the aperture function a vanishes outside the ROI and 

JJR2 a(x) dx = 1, the expression for the estimator mean reduces t~ f 0 • It is thus 

an unbiased estimator of the tracer density. 
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2.1.3 Observation-Domain Representation of Mask FUnctions 

There is a technical problem in applying the formulation in the preceding 

subsection to the case where a is a normalized mask function since the integral 

defining HRa does not converge. To fix this problem, it is customary to replace 

the operator H with a bandlimited substitute H... whose action is given by 
'I max 

convolution with a function h... on lL whose Fourier transform with respect 
'I max 

to the s variable is given by 

- { 1rl77l 
~max((), 1J) = O 

Explicit formulas for evaluating the function h17max may be found in [1]. 

2.1.4 ROI and Aperture FUnctions 

As an example, we consider the problem of estimating the regional tracer 

concentration inside an ROI consisting of a disk of radius p = 0.25 centered at 

the origin. As a smoother aperture function for this ROI, we used a Kaiser

Bessel function with support on the disk of radius p: 

(2.2) 

where Ii denotes the modified Bessel function of order i [2]. The parameter 

a was set equal to 2.25. The normalized mask function and the correspond

ing Kaiser-Bessel aperture function are illustrated in figure 1. The Kaiser

Bessel function was chosen because its Fourier transform is highly concentrated 

around the origin. This tends to mitigate the tendency of the ramp filter to 

amplify high-frequency noise. 

It may be easily verified that the observation-domain representation of a 

radially symmetric function is independent of the () variable and hence may 
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be written as an even function of the s variable. We will henceforth express 

these representations as functions of s alone. 

2.1.5 Numerical Calculation of Estimator Variances 

Numerical evaluation of estimator variances was done in the following way. 

Since both the image density f and the aperture function a were always taken 

to be radially symmetric, equation 2.1 for the variance reduces to 

n-1 [L b2 (s)Rf(s) ds- (1: b(s)Rf(s) ds) 
2

] , (2.3) 

where we also used the fact that Rf vanishes outside the interval [ -1, 1]. We 

produced a sampled version of b as follows. The Radon transform of a was 

computed analytically. Ra( s) was sampled at p evenly spaced points about 

the origin with a sampling interval of 2/p. Ramp filtering was done with a 

bandlimited ramp filter with "lmax equal to the Nyquist frequency of p /4 cycles 

per unit length. H77max was applied by discrete convolution of the sampled 

versions of h,max and b. The convolution was performed in the frequency 

domain '?sing the Fast Fourier transform with appropriate zero padding. 

To complete the numerical calculation of variances, Rf ( s) was computed 

analytically and sampled at the same points as b was sampled. The integrals 

in equation 2.3 were then approximated by appropriate Riemann sums. For 

example, 

1: b( s) Rf( s) ds "' (2/p) t, b( s;)Rf ( s;), 

with Si = (2i- p- 1)/p. 

2.1.6 The Planar-Imaging Problem 

It is instructive to compare the tomographic imaging problem, where the ob

servations are distributed according to Rf, with the simpler non-tomographic 
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problem where the observations are distributed according to f itself. We term 

the latter problem the planar-imaging problem. The analogous estimate for 

JR2 a(x)f(x) dx is n-1 2:~=1 a(Xi), where the Xi E R2 denote the observations. 

The expected value of this estimate is JR2 a(x)f(x) dx. The variance of this 

estimate is 

n-
1 L (•(x)-1, a(x)f(x)dx) 

2 

f(x)dx. 

Iff = fo on the ROI, then fn~.2 a(x)f(x) dx = fo and the estimator is unbi

ased. Under the assumption that the aperture function a is of unit integral 

and vanishes outside the ROI, the expression for the variance then reduces to 

Denote the area of the ROI by A. We shall now show that among all aper

ture functions a satisfying the unbiasedness conditions a = 0 outside the ROI 

and JR2 a(x) dx = 1, the variance is minimized by the normalized mask func

tion a(x) = A- 1 on the ROI. Indeed, writing the expression for the variance 

as 

n-1 fo (L
01 

a2 (x) dx- fo) 

= n-1 fo (L
01 

(a(x)- A-1 + A- 1
)

2 
dx- fo) 

= n- 1fo ( f (a(x)- A- 1)
2 dx 

JROI 
+2A-1 f (a(x)- A-1

) dx + A- 1 
- !o) (2.4) 

JROI 
=n- 1/o (L

01 
(a(x)-A- 1

)
2 

dx+A- 1 -fo), (2.5) 

it is obvious that the expression is minimized by choosing a(x) =A-I, giving 

a variance of 

(2.6) 
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2.2 The 3D Problem 

The ideas developed in the analysis of tomography in 2D extend in a natural 

way to tomography in 3D. Quantitatively, the reduction in variance obtained 

by the choice of an appropriate aperture function can be greater in 3D than 

2D. Our goal here is to exhibit this effect by means of a simple example. 

For simplicity, we only consider the problem where a 3D cylindrical volume 

is reconstructed by combining 2D slices that are independently reconstructed 

from lines that are perpendicular to the axis -bf the cylinder. This is the usual 

case in practical imaging situations. While our methodology could be extended 

in a straightforward way to include more general imaging situations, such as 

positron volume imaging, we will not consider such problems here. 

2.2.1 Mathematical Model for 3D ET 

We identify the "image" with a probability density function, f, on a cylinder 

C ~ IR3 of unit radius and unit height centered at the origin. We take the axis 

of the cylinder to coincide with the z axis in IR3 . The locations of radioactive 

disintegrations are modeled as independent, identically distributed random 

variables distributed according to f. Denote the set of lines in IR3 parallel 

to the x-y plane by Z. Z is the observation space. Z is parameterized by 

assigning the coordinates ( (}, s, z) to the line through ( s cos (}, s sin(}, z) E IR3 

that is parallel to the x-y plane and perpendicular to the vector (cos (}, sin (), z). 

It will be convenient to define the plane in IR3 with third coordinate z by IR; 

and the set of lines in IR; by lLz. We will sometimes refer to the IR; as slices. 

The observations are modeled as independent, identically distributed Z-valued 

random variables distributed according to Tf, where Tf(B, s, z) is equal to the 

2D Radon transform of f restricted to IR;. Denoting the restriction of f to IR; 

by fz, we can write this as Tf(B, s, z) = Rfz(B, s). 
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We consider the statistical properties of regional tracer density estimates of 

the form JJR3 a(x)f(x) dx, where f is the usual filtered-backprojection estimate 

of the underlying image f, i.e., for each z, fz is reconstructed on IR~ from the 

lines in lLz using 2D filtered backprojection. 

2.2.2 Observation-Domain Representation of Estimators 

The observation-domain representation of the estimator generated by a is ob

tained simply by separately computing the 2D observation-domain represen

tations of a restricted to each slice. In other words, an object domain represen

tation of a is given by b(O, s, z) = HRaz(O, s), where az denotes the restriction 

of a to IR~. This follows from the 2D results since 

r a(x)f(x) dx = 
JJR3 

r r az(x)fz(x) dxdz 
JJR JJR2 

1 n-1 t, HRaz(O;, s,) 8(z- Z;) dz 

n 

- n-1 L b(li), 
i=l 

where o denotes the Dirac delta function and (Oi, si, Zi) denotes the coordinates 

of the ith observation. It now follows easily that the expected value of the 

estimator is 

1 b(l)Tf(l) dl - 11 HRaz(l)Rfz(l) dldz 

r r az(x)fz(x)dxdz 
JJR JJR2 

- r a(x)f(x) dx. 
JJR3 

Under the assumption that f = fo on the ROI and that a = 0 outside the ROI 

and JJR3 a(x) dx = 1, the expected value is f 0 • A routine calculation shows that 
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the variance of the estimator is given by 

n- 1 [1 [b(I)- f 0]
2 

Tf(I) dl]. 

In the 3D problem considered here, where each slice is reconstructed sepa

rately, it is useful to view the concentration estimate as a weighted average of 

independent concentration estimates from each slice. Writing our estimate as 

(2.7) 

note that the function HRaz/ Jn~2 az(x) dx generates an unbiased estimator for 

the density on the intersection of the ROI with the slice IR;. These estimates 

are weighted according to the mass of the aperture function on each slice. 

2.2.3 A More Efficient Estimator 

In general, it is possible to reduce the variance of the estimate given by equa-· 

tion 2. 7 by replacing the weights JJR2 az(x) dx with more general weights w(z). 

We thus consider estimates of the form 

It is clear that as long as these weights satisfy JJR w(z) dz = 1, then the estimate 

will remain unbiased. The variance of this estimate is 

_ 111 ( HRaz(l) )
2 

2 n }; ( )d - fo Rfz(l)dlw (z)dz. 
lR lL JR2 az X X . 

It is convenient to introduce some notation. First, we note that JlL Rfz(I) dl 

is just the marginal probability density of z under the probability density Tf. 
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By elementary properties of the Radon transform, this is equal to the marginal 

probability density of z under the probability density f. We thus define 

Using this definition, we can rewrite the expression for the variance as 

_ 1 { 1 ( HRaz(l) ) 
2 

Rfz(l) ( 2 
n j.R lL JJR2 az(x) dx - fo fm(z) dl fm z) w (z) dz. 

Second, we note that 
Rfz(l) 
fm(z) 

(2.8) 

is just the conditional probability density of the observations given z. It follows 

that 

{ ( HRaz(l) _ fo) 
2 

Rfz(l) d( 
JlL JJR2az(x)dx fm(z) 

is just the conditional variance given z of the estimator generated by b. We 

shall denote this variance by cr~nd(z). Substituting this notation into equation 

2.8 gives a variance of 

(2.9) 

In appendix B, we show that, subject to the unbiasedness constraint JJR w(z) dz = 

1, the expression for the variance given in equation 2.9 is minimized by setting 

This result is analogous to the well-known result of elementary statistics that 

statistically independent estimates should be weighted inversely to their vari

ance to minimize the variance of the combined estimate [3, sec. 3.5). 
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2.2.4 3D Example 

As an example, we considered the problem of estimating the regional tracer 

concentration inside an ROI consisting of a sphere of radius p = 0.25 centered 

at the origin. As an aperture function for this ROI, we used 

(2.10) 

where k(p2_z2)1/2. is the 2D Kaiser-Bessel function defined in equation 2.2. The 

weighting in z was chosen to be identical to the weighting in z of the normalized 

mask function of the ROI. We also considered the minimum-variance weighted 

derived in section 2.2.3. We assumed that the underlying distribution of ac

tivity is uniform throughout the cylinder and that each slice is reconstructed 

independently using the standard filtered backprojection algorithm. 

2.2.5 Numerical Calculation of Estimator Variances 

Numerical evaluation of estimator variances was done using essentially the 

same procedure used in the 2D problem. The only difference was that the 

functions b and Tf also needed to be sampled in z. This was done by sampling 

at p/2 evenly spaced points about the origin with a sampling interval of 2/p. 

2.3 2D Problem Phantom Experiment 

We attempted to verify our simulation results by conducting a phantom ex

periment on a real tomograph. We scanned a uniform cylindrical phantom 

containing approximately 60 MBq of germanium-68 distributed in a solid 

polyurethane matrix and encased in a high-density polyethylene cylinder ( CTI 

Services, Inc., Nashville, TN). The phantom was approximately 22 em in di

ameter and 23 em in length. Scans were performed on the Donner 600 Crystal 
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Positron Tomograph [4]. 

We collected a total of 600 30-second sinograms. The sinograms were 

organized into 300 angular projections each consisting of 201 bins, cf. [5]. The 

sinograms were corrected for crystal-pair efficiency based on a preceding scan 

of a rotating rod source [6] and corrected for photon attenuation based on a 

transmission scan of the phantom. The implementation of these corrections 

was similar to that described in [5]. Images were reconstructed on a 256 x 256 

grid using the filtered backprojection algorithm with a band-limited ramp filter 

whose cutoff frequency was set equal to the Nyquist frequency as described in 

section 2.1.3. The image grid size was 211r times the bin size. 

We considered the amount of tracer in a circular ROI centered at the 

, center of the phantom with a radius of 0.25 times that of the phantom. For an 

aperture function for this region, we used the Kaiser-Bessel aperture function 

given in equation 2.2 with a = 2.25. 

For each frame, we computed the density estimate generated by the normal

ized mask function for the ROI and the aperture function. The sample mean, 

m, and variance, s 2 , of these estimates over the 600 frames was then computed. 

The standard errors of these statistics were estimated by s I ...fii and J2s2 I ...fii, 
respectively [7, sec. 10.15]. Results were expressed as statistic±standard error. 

The statistical significance of the difference between the means and variances 

was computed using Student's t-test and the F-test, respectively. Since the 

theory predicted that the means should be equal, but the variance of the 

functional generated by the aperture function should be less than that of the 

functional generated by the ROI, a two-tailed test was used for the means, 

while a one-tailed test was used for the variances. The threshold of statistical 

significance was set equal to P = 0.05. 
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3 Results 

3.1 2D Simulation Results 

For the 2D problem, we considered a circular ROI of radius p = 0.25 and took 

the image f to be the uniform density on the unit disk D, i.e., f = 1r-1. ET 

results were computed for p = 128 sample points. 

3.1.1 Planar Imaging 

For the uniform distribution, fo = 1r-1. The area ofthe ROI is A= 1rp2. Thus 

the expression for the variance of the estimator generated by the normalized 

mask function given by equation 2.6 evaluates to 

1f-2(p-2- l)n-1 - 151f-2n-1 

~ 1.52n-1. 

The variance of the estimator generated by the aperture function kp was 

1.65n-1. Thus the RMS signal-to-noise ratios are 0.26n112 and 0.25n112 for 

m and kp, respectively. 

3.1.2 Results for ET 

The observation-domain representations of the estimators generated by m and 

kp are shown in figure 2. For a uniform distribution of tracer on D, the variance 

of the estimate generated by the mask function m was 18.0n - 1 . The variance 

of the estimate generated by the aperture function kp was 14.3n-1 . Since 

the true tracer concentration was 1r-1 , the RMS signal-to-noise ratios were 

7.5 x 10-2n112 and 8.4 x 10-2n112 , respectively. 

With equation 2.3 in mind, one sees from figure 2 that, roughly speaking, 

the reduction in variance obtained using the aperture function kp in place of 
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the normalized mask function m is due to a reduction in the negative peaks 

just 'outside the central region. 

3.2 3D Simulation Results 

For the 3D problem, we considered a spherical ROI of radius p = 0.25 centered 

at the origin and took the image f to be the uniform density on cylinder C, 

i.e., f = 1r-1 . ET results were computed for p = 128 sample points. 

3.2.1 Results for ET 

For the case of a uniform underlying distribution of tracer on C, the variance 

of the estimate generated by the mask function m was 6l.On-1. The variance 

of the estimate generated by the aperture function a in equation 2.10 was 

49.7n- 1 . Since the true tracer concentration was 7r-I, the RMS signal-to-noise 

ratios were 4.07 X 10-2n112 and 4.50 X 10-2n 112 , respectively. 

When the weighting in z was modified to the minimum variance weighting, 

the estimators generated by m and a had variances of 58.8n-1 and 47.9n-I, 

respectively. The RMS signal-to-noise ratios increased to 4.15 X w-2n 112 and 

4.60 X 10-2n 1/ 2 , respectively. 

3.3 2D Phantom Results 

The mean values for the estimates generated by the ROI and the aperture 

functions were (3.003 ± 0.010) x 105 and (2.996 ± 0.009) x 105 , respectively. 

The difference between the means was not statistically significant (P > 0.08). 

The variance for these estimates was (5.60±0.32) x 108 and (4.63±0.27) x 108 , 

respectively. Thus the variance for the estimate generated by the ROI was 1.21 

times that for the estimate generated by the aperture function. This difference 

was statistically significant (P = 0.01). 
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4 Discussion 

Our results indicate that a small, but significant, reduction in the variance of 

tracer concentration estimates may be obtained by simply replacing the usual 

mask function with a smoother aperture function. For example, our results 

for the 3D problem give a variance that is 78% of the variance of the usual 

estimator. This translates to a 22% reduction in imaging time or radiation 

dose while attaining equivalent statistical information. 

Lewitt has advocated the replacement of the traditional voxels by Kaiser

Bessel aperture functions in iterative reconstruction algorithms [8]. Simulation 

results have indicated that this replacement can improve image quantification 

[9]. It seems plausible that this improvement, at least in part, is due to the 

variance reduction effect described in this paper. Moreover, quantification of 

the variance reduction effect may give a good metric for choosing an appro

priate aperture function. 

There are some applications in which the assumption that the tracer den

sity is constant throughout the ROI is almost certainly valid. One example 

is measurement of tracer concentration in blood using an ROI within the left 

ventricular cavity of the heart. In most applications, this will only be approx

imately true. H the tracer concentration is not constant over the ROI, the two 

approaches may give somewhat different results. Roughly speaking, the con

centration estimates obtained using the new procedure will be weighted more 

toward the center of the organ. The significance of this point will depend on 

the particular application. It likely will have the beneficial effect of reducing 

the effect of contamination from nearby organs. 

The RMS signal-to-noise ratio found for the normalized mask function in 

the 2D problem roughly agrees with previously obtained empirical results on 

the statistical uncertainty in reconstructed tomographic images [10] [11]. For 
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example, Budinger et al. [11, eq. 11] claims the RMS SNR in a pixel is given 

by~ m-314n112 /1.2, where m is the total number of pixels and n is the total 

number of observations. If we equate the total number of pixels to the inverse of 

the relative area of a circular ROI, this predicts aRMS SNR of~ 0.83p312n 112 

for an ROI of radius p. For p = 0.25, this amounts to 0.104n112 , which is in 

rough agreement with our result of 0.084n112 . 

The result mentioned in the preceding paragraph that RMS SNR for a 

2D circular ROI of radius p is approximately proportional to p312 gives some 

insight into the difference between the estimator generated by the normalized 

mask function in 3D and the one with the optimized weights derived in section 

2.2.3. Consider the problem of estimating the tracer density inside a 3D sphere. 

In the estimator generated by the normalized mask function, the concentration 

estimates from the slices are weighted according to the area of their intersection 

with the ROI; if the radius of this intersection is p, the weight is proportional to 

p2
. However, the RMS SNR being approximately proportional to p312 implies 

that the optimal weights are approximately proportional to p3 . 

For an irregularly shaped ROI, an appropriate aperture function may be 

constructed as follows. Let d(x) denote the distance from a point x in the image 

space to the exterior of the ROI. One then composes an aperture function for 

a circular ROI of radius p = maxxEROI d(x) with the function d- p. 

In our examples, we only considered cases where the underlying distribution 

is uniform. In practice, it will be desirable to optimize the aperture function for 

the underlying distribution. This is straightforward to do since an estimate of 

the variance for a given aperture function can be obtained simply by replacing 

Rf in equation 2.1 with the measured observation density. In essence, this 

equation reflects the uncertainty in the observations due to counting statistics. 

More generally, it will also be desirable to modify this expression to reflect the 
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additional uncertainty introduced by preprocessing to correct for attenuation 

and other secondary physical effects. 
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A Observation-Domain Representation of Es

tlmators 

The standard filtered-backprojection reconstruction algorithm is based on the 

inversion formula for the Radon transform 

(A.1) 

where RT and H denote the backprojection and ramp-filter operators, respec

tively [12, thm. II.2.1]. The backprojection operator, which takes functions on 

1L to functions on IR2 , is given explicitly by 

RT g(x) = 1r-
1 17r g(O, (} · x) dO, 

where (} = (cos (}, sin 0) and · denotes dot product. The notation RT is used to 

indicate that RT is the adjoint operator of R, i.e., it satisfies the equality 

f Rf(I)g(I) dl = 1r-1 {1r f Rf(O, s)g(O, s) dsdO = f f(x)Rr g(x) dx, (A.2) 
ln. Jo J~ 1~2 

for all functions f on IR2 and g on lL [12, eq. II.l.7]. (The matrix analogue of 

the adjoint operator is the transpose. The matrix analogue of equation A.2 is 

the matrix identity Ca · b =a· crb.) The action of the ramp-filter operator 

H, which maps functions on lL to functions on lL, may be described as follows. 

Define the function h on lL by 

so that, for each 0, the Fourier transform of h with respect to the s variable is 

the ramp function 7ri7JI. Then for each 0, Hg(O, s) is equal to the convolution 

of g and h with respect to the s variable. It may be verified that H is its own 

adjoint, i.e., it satisfies the equality 

1 Hg(l)g'(I) dl = 1 g(I)Hg'(I) dl (A.3) 

•' 
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for all functions g and g' on lL. 

The filtered backprojection estimate off, f, may be obtained in following 

way. Let lll ... , ln ElL denote the observations in ET and b(li) denote a unit 

point mass at ~. We estimate Rf by the empirical estimate n-1 2::~1 6(~). 

Substituting this estimate into equation A.1 gives the filtered backprojection 

estimate 
n 

i=1 

of f. Substituting this expression into our concentration estimate and using 

the adjoint equations A.2 and A.3 for Rand H gives 

L, a(x)f(x) dx ~ n-1 ~f., a(x)RTHO{x) dx 

n-1 t 1 HRa(l)b(l) dl 
i=1 lL 

n 

- n-1 L HRa(~). 
i=1 

(A.4) 

We see that our estimate may be expressed as the average value of the function 

HRa at the observation points. We call the function HRa an observation

domain representation of the estimator generated by a. This result may be 

found in [13]. A discrete version may be found in [14]. 

Since the observations are independent and identically distributed accord

ing to Rf, the expected value of our estimator is equal to 

1 HRa(l)Rf(l) dl = 1
2 
a(x)RTHRf(x) dx 

- r a(x)f(x) dx, 
J.JR2 

(A.5) 

where we used the adjoint properties of R and H in the first equality and the 

inversion formula for the Radon transform in the second. 
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B Minimum Variance Weights for the 3D Prob

lem 

In this appendix, we show that, subject to the unbiasedness constraint 

L w(z)dz= 1, 

the expression for the variance given in equation 2.9 is minimized by setting 

Using the method of Lagrange multipliers, we set the derivative of the La

grangian function 

with respect tow equal to 0. This yields the equation 

The solution to this equation is 

-A 
w(z) = 2 ( ) ( )" 20" cond z fm z 

The Lagrange multiplier A is determined from the constraint conditions: 

1 - 1 w(z)dz 

- ~A J [o-~nd(z)fm(z)t 1 dz 

A 
-2 

-
JR[o-~nd(z)fm(z)]- 1 dz · 

Thus the minimizing weights are 
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Figure 1: The normalized mask function m and Kaiser-Bessel aperture function kp for 
a circular ROI of radius p = 0.25. 
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Figure 2: Observation-domain representations of the estimators generated by the 
functions shown in Figure 1. 
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