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Abstract 

Various geometrical aspects of quantum spaces are presented showing the pos

sibility of building physics on quantum spaces. 

In the first chapter we will give the motivations for studying noncommutative 

geometry and also review the definition of a Hopf algebra and some general features 

of the differential geometry on quantum groups and quantum planes. 

In Chapter 2 and Chapter 3 the noncommutative version of differential calcu

lus, integration and complex structure are established for the quantum sphere s: 
and the quantum complex projective space C P,(N), on which there are quantum 

group symmetries that are represented nonlinearly, and are respected by all the 

aforementioned structures. The braiding of s: and CP,(N) is also described. 

In Chapter 4 the quantum projective geometry over the quantum projective 

space CP,(N) is developed. Collinearity conditions, coplanarity oonditions, inter

sections and anharmonic ratios will be described. 

In Chapter S an algebraic formulation of Riemannian geometry on quantum 

spaces is presented where Riemannian metric, distance, Laplacian, c~~nection, and 

curvature ha,_ve their quantum counterparts. This attempt is also extended to com

plex manifolds. Examples include the quantum sphere, the complex quantum pro

jective space and the two-sheeted space. The quantum group of general coordinate 

transformations on some quantum spaces is also given. 

Brief reviews of Poisson-Lie groups and Lie bialgebras are included in Appendix 

A and Connes' noncommutative geometry in Appendix B. 
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Chapter 1 

Introduction -,. 

In this chapter we give the motivation and background for studying noncommutative 

geometry and quantum groups. 

1.1 Motivation 

The purpose of this section is to give the physical and mathematical motivations 

for working on noncommutative geometry and quantum groups. 

1.1.1 Physical Motivation 

As early as the advent of the Heisenberg uncertainty relation and the canonical 

commutation relation (x, p] = i in quantum mechanics, people have speculated that 

spacetime should not be treated like a classical 1 manifold (1], because the quantum 

effects of gravitation should impose some lower bound on the measurable distance 

(the Planck scale). Rather, the coordinates of spacetime are expected to satisfy 

some nontrivial commutation relations. 

If spacetime is quantized, the Lorentz group might as well be quantized, either 

as the structure group of a vector bundle over spacetime, or as the symmetry group 

of a macroscopically Hat region in spacetime. Similarly, internal symmetry groups 

might also have to be quantized. 

In addition, noncommutative geometry, quantum groups or similar ideas have 

been applied to other fields of physics such as the quantum Hall effect (2], Wess· 

1 Here and in lhe following lhe words "classical" and "quanlum" are used to indicate the 
commutativily and noncommutativity, respedively, o( the algebra of (unctions over the underlying 

spare. lienee not only SU(2), but ai!IO Ee will be called" classical group. 



Zumino- Witten models [3, 4], conformal field theory [5, 6], lattice field theory [i, 8, 

9], integrable models (10, II] and string field theory (12]. 

1.1.2 Mathematical Motivation 

A mathematical theorem (13] says that if A is a commutative C"-algebra 1 and 

A the space of maximal ideals of A, then A is •-isomorphic to Co(A) (the set of 

functions vanishing at infinity) and A is a locally compact Hausdorff space. 

Given a manifold, the maximal ideal mentioned above can be identified with the 

subset of (complex-valued continuous) functions which vanish at a certain point on 

the manifold. It is an ideal because if any function is multiplied to an element of 

this subset the product is still in the subset. It is maximal in the sense that if any 

function not in the subset is adjoined to the subset, their linear span will include the 

whole algebra A. Conversely, if one is given the algebra of functions on a manifold 

directly as an algebra without knowing the underlying manifold, the theorem says 

that one can associate each maximal ideal with a point and identify the space of 

maximal ideals with the manifold. 

The descriptions of functions and points are dual to each other. The evaluation 

of a function f on the manifold at a point p, /(p), can be thought of as the evaluation 

of a function p on A at a "point" J, p(/), i.e., /(p) = {/,p) = p(/). It is expected 

that properties of a space can be stated in a dual way for the dual space. 

The natural question is whether we can generalize classical geometry by consid

ering noncommutative algebras 3. While in the noncommutative case the concept 

of points loses its actual meaning, the concept of functions survives (as noncom

mutative algebra) and the dual description of things becomes the only appropriate 

choice. In this sense the dual description is more fundamental since it has a wider 

applicable range. 

The effort to restate everything in the dual picture also stimulates a better 

understanding of the classical objects. Furthermore, it is remarkable that a quantum 

counterpart can be found for almost every classical notion. Mathematically for such 

a generalized notion the classical case appears as a VP.ry restrictive case among all 

the noncommutative possibilities. Therefore it would be a great mystery if the 

physical world (spacetime) is purely classical while all the relevant concepts are 

naturally embedded in a much more general setting. 

1A C"-algebra is a Banach algebra with an involution (a Banach •-algebra) satisfying liz" zll = 
llzW; a Banach algebra is a complete normed linear apace with 11z1111 :S llziiiiYII· 

3Th is question wa.• rai~d by •·on Neumann snd called ll "pointless" goometry. 

2 

The Gel'fand-Naimark theorem [IJ] states that every c·-algebra is isomorphic 

and isometric to a Banach algebra of operators on a Hilbert space where the Her

mitian conjugation corresponds to the •-involution. Hence when one talks about 

noncommutative algebras it is the safest to restrict oneself to c· -algebras so that 

everything can be realized as operators on a Hilbert space. Nevertheless, since the 

work presented in the following is a kind of piloting work that is aimed at investigat

ing the possibility and difficulty of using noncom mutative objects to make physical 

statements (geometrical statements), we will not be too concerned with the mathe

matical rigor and allow formal manipulations unless obvious contradiction appears. 

This has been the attitude of physicists toward mathematics for most of the time. 

1.2 Hopf Algebras 

In this section we will see that the concept of group, after being rephrased in the 

dual language, can be generalized to the noncommutative case. 

The definition of Hop£ algebra (14] is closely related to the definition of groups. 

It is a generalization of the algebra of functions on a group. While ordinary func

tions on a group {or any classical manifold) form a commutative algebra, a Hopf 

algebra is a possibly noncom mutative algebra with all essential properties of the al

gebra of functions on a group except commutativity. Just like in ordinary quantum 

mechanics the coordinate x and the momentum p satisfying the noncommutative 

relation (x,p] = i can be viewed as functions on the quantum phase space, elements 

in a Hop£ algebra can be viewed as functions on a quantum group. 

The defining properties of a group G are: 

I. Product: g = g1g2 EGis defined for all 9~>92 E G. 

2. Associativity: (9192 )93 = 91 (9293). 

3. Unit: There exists lc E G such that leg= g = glc for all g E G. 

4. Inverse: For all g E G there exists g- 1 E G such that gg- 1 = lc = g- 1g. 

All the four properties above can be stated alternatively as properties of the 

algebra of functions on the group G, which is denoted by A. Since A is dual to 

G in the sense that G is also the algebra of functions on A by the identification 

g(f) = J(g) for any g E G and f E A, the statements for A are called the dual 

statements of the corresponding ones for G. Classically there is a multiplication on 

3 



A which is independent of the product defined on G. It is the associative, point-wise 

multiplication: 

(/lfl)(g) = /l(g)h(g). ( I. I ) 

We also assume the c:>xistence of the unit element I.A E A so that I.A.f = f = .fl.A 

for any f E A. In this case l he dual statements are the following: 

I. Coproduct: According to the product g = g1g2 on G, any f E A can be 

decomposed into functions of g1 and functions of g, as /(g) = /(g1g2) = 
Li /l;(g.)fl;(g,). This induces the coproduct map t:. :A --+A® A such that 

fi(/) = Li /1; ® fl;. In Sweedler's notation (14) it is abbreviated as 

fi(/) = /(1) ® /(2)- ( 1.2) 

Intuitively the coproduct is used to "undo" the product operation in G. As a 

result of ( 1.1 ), the coproduct is an algebra homomorphism, i.e., 

fi(/IJ,) = t:.(J. )t:.(J,), ( 1.3) 

where the multiplication on A®A is as usual (!J ®f,)(/3®/4) = (/1/3®/2/4). 

2. Coassociativity: It is equivalent to say that the product in G is associative 

or that f((glg,)g3) = f(g1(g2g3)) is true for all functions f. For the latter 

we apply the coproduct twice to undo the two multiplications involved and 

derive the coassociativity for the coproduct: 

( t1 ® id) 0 t1 = ( id ® t1) 0 t:., ( 1.4) 

where id is the identity map id(f) = f on A. In Sweedler's notation, it says 

(o(l))(l) ® (o(1))(21 ® o121 = o111 ® (a(2))(1l ® (o(21)!2l• ( 1..1) 

which will be denoted as O(l) ® 0(2) ® a131. In general, we dl'note the result of 

n consecutive actions of t1 on a as o111 ® 0(2) ® · · · ® aln+ll· 

3. Counit: The counit is a linear map c : A --+ C 4 defined by c(/) = /( lG ). 

It undoes the evaluation of a function at the unit of G. It follows from ( 1.1) 

that the counit is also an algebra homomorphism: 

e(ftf,) = e{ft}t(f,}. ( 1.6) 

4 We will alway• assume that the field o£ the algebra is I:= C. 
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From the dual statement of the existence of the unitinG, namely /(JGg) = 
f(g) = f(glc). we see that 

(c ®id) o t1 = id = (id® c) o fi. ( 1.7) 

I. ( 'oilll''·''-'t: The coinn·rse S : A -+ A. also called th1• auliJiorh. is an anti

automorphism on A defined by S(/)(g) = f(g- 1 ). Because /(g- 1g) = /( lG) = 
J(gg- 1 ) we have 

m o (S ® id) o t:. = l..4c = m o (id ® S) o fi, 

where m is the multiplication map: m(J. ® J,) = J.J,. 

(1.8) 

Now the only thing we have to do to give the definition of a Hop( algebra 

[14) is to write down all the dual statements above which allow a noncommutative 

multiplication m. 

Definition 1 A Hopf algebra (A, m, l.A, t:., t, S) is an associative algebra with the 

unit element I .A and the following properties: 

t:.(flf,) = t:.(ft)t:.(J,),-

(fi ® id} 0 t:. = (id ® t:.) 0 t:., 

t(/ah) = t(ft}t(J,), 

(t®id)ot:. = id= (id®t}ot:., 

m o (S ® id) o t:. = l.At = m o (id ® S) o t:.. 

( 1.9} 

( 1.10) 

(1.11} 

(1.12} 

(1.13) 

In the definition we left out the requirement that the coinverse is an anti

automorphism because it is a result of the rest (14). 

Lemma 1 For a Hop/ algebra, 

S(f J') = S(f')S(f). 

Proof In Sweedler's notation, 

(ob}(l) ® (ab}121 = a(l)b(l) ® a121b(2) 

=> dob)(l) ® (ab)m = t{o(l))t(b(l)) ® a121b12l 

=> c(ob)(l) ® (ob)(2) = t(o(I))S(b(l))b(2) ® 0(2)b(3) 

=> t(ab)(J) ® (ab)121 = S(b(I))S(a(l)}a(2)b(2) ® O(J)b(Jl 

=> t(ab)(1)S((ob)(2)} = S(b(I)}S(o(l))a(2)b(2)S(a(J)b(Jl) 

=> S(ab) = S(b(a))S(o(l)}c(a(2)}c(b(2)) 

=> S(ab) = S(b)S(o). 

5 

( 1.14) 
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Clearly the algebra of functions on classical groups is a Hopf algebra. 

Gi";_ing the definition of the Hopf algebra is only the beginning of the story 

of quantum groups. For an algebra to be the algebra of functions on a quantum 

group as a deformation of a classical group, it is not sufficient to check that it is a 

Hopf algebra. One has to check additional properties. For example, the number of 

independent generators of the algebra should be the same as the classical case. If a 

classical group is endowed with a •-involution, one would hope for the same thing in 

the quantum case. The involution on a Hopf algebra will make it a •-Hopf algebra 

if the •-involution 5 
( • o • = id) is compatible with the Hopf algebra structure: 

(•®•)ol\=L\o•, 

*0(=(0*, 

• oSo • = s- 1
, 

(1.15) 

(1.16) 

( 1.17) 

where s- 1 is the inverse map of S and we have used the same symbol • for the 

complex conjugation on the left hand side of the second line. 

1.2.1 G£9(2} 

The simplest example of a matrix quantum group (15) as a Hopf algebra is G£9 (2) 

(16). It is a one-parameter deformation of the classical group G£(2). The algebra 

of functions on G£(2) is generated by the elements o,fj, -y,6 in the fundamental 

representation 

7r(g) = ( o(g) fj(g) ) 
-y(g) 6(g) 

(1.18) 

for g E G£(2). Since they are sufficient to distinguish all group members, any 

function on the group can be written as a function of the generators. In the quantum 

case the Hop£ algebra A is usually defined to be the set of all polynomials of the 

generators a, {3, -y, 6, which are now noncom mutative objects, e.g., operators on a 

Hilbert space. 

I. Algebra: 

5We will always assume that the •-involution reverses the order of a product: (ab)" = b"n". 

Hence in fact it should be called an anti-involution. 

6 

The multiplication in A is noncommutative and the commutation relations 

are given compactly as 

R1,T!T~ = r;r/ R~" 
in terms of the quantum matrix 

and the kmatrix 

where 

T=(~ :) 

(

qOoOl 
R= 0 A I 0 

0 1 0 0 • 

0 0 0 q 

-I .\=q-q -

( 1.19) 

( 1.20) 

(1.21) 

( 1.22) 

A very convenient notation is to label each string of contracted indices by 

a number. For example, in the RTT relation (1.19) there are two strings of 

indices on both sides. They are { i, k, m} and {i,l, n}, which will be labelled 

by 1 and 2, respectively. So in this new notation, {1.19) can be written simply 

as 

Rl2TIT2 = TIT2Rl2· ( 1.23) 

When the deformation parameter q -+ 1, the R-matrix becomes the permu

tation matrix and the RTT relation (L19) simply says that all generators 

commute with each other. The form of the RTT relation is therefore a simple 

generalization of the classical commutation relation. 

Explicitly the commutation relations are 

ofj = qfjo, a-y = q-yo, 

{36 = q6/J, -y6 = q6-y, 

{J-y = -y{J, o6 - 6o = .\{J-y. 

( 1.24) 

( 1.25) 

( 1.26) 

The self-consistency of the commutation relations and the independence among 

the generators can be checked and thus ensure a correct classical limit for 

q-+ I. In particular, when one commutes a generator through both sides of 

i 



the RTT relation (1.19), one hopes that no new relation is implied. This is 

guaranteed by the quantum Yang-Baxter relation 

A ij "'j'lc #0 i'j" - .. jlc "'ij' ;o j"k' 
R;'J'Ri"nRim - Rl•'Ril.Rmn , 

which in our new notation is 

R.nR.,3R.u = R.,3R.uR.,3. 

2. Coproduct: 

The coproduct of a generator is defined by the matrix multiplication 

( 1.2i) 

( 1.28) 

( 
A(a) A(/1)) = ( a®a+/1®-y a®{J+/3®6), (1.29) 
L\(1) L\(6) -y®6+6®-y -y®{J+6®6 

which is abbreviated as 

t.(T) = T@ T, ( 1.30) 

where® means matrix multipli~tion by tensor products of the elements. This 

formula is the same as the classical one. The coproduct of a generator eval· 

uated at g.,g, E G is therefore L\(Tj)(g.,g2) = Ti(gt)Tl(g2 ) as one expects. 

The coproduct of polynomials of the generators is obtained by the linearity 
of the coproduct 

L\(af + bf') =at.(/)+ bl\(/') ( 1.31) 

for a, b E C and /, /' E A and the property that it is an algebra homomor· 

phism (1.9). Another equivalent way to say that the coproduct is an algebra 

homomorphism is to say that the algebra is covariant under the left transfor

mation 

T--+ T"= TT' ( 1.32) 

or the right transformation 

T--+ T" =T'T, ( 1.33) 

where T' is another quantum matrix satisfying (1.19) whose entries commute 

wi.th the entries ofT. The left- or right-covariance of the algebra means thai. 

the commutation relations among the entries of T" is the same as those for 

the corresponding entries of T for the left or right transformation ( 1.32) or 

( 1.33), respectively. In our example it means that T" also satisfies the RTT 

8 

relation (1.19) with T replaced by T" so that T" is also a quantum GL9(2) 

matrix. This can be easily checked: 

RuT;'T;' R..,r.r:r,r; 
ii.,T. T1 r:1~ 
r. r,R.nr:r; 
r.r,r:r;R.u 
r:·r;·R.u 

for the right transformation and similarly for the left transformation. The 

algebra (1.25) is said to be bicovariant since it is both left and right covariant. 

Because in .the above we did not use the specific expression for R, the con

clusion is applicable for any algebra with commutation relations of the RTT 

type. 

3. Counil: 

The definition of the counit on generators also coincides with the classical 

case: 

( 
e(a) e(P) ) = ( 1 0 ) . 
e(-y) e(6) 0 1 

(1.34) 

In short, t(T) = I, where I is the identity matrix. For the counit to be an 

algebra homomorphism, we need I to be a quantum matrix. This is true 

since lj = 6j and the RTT relation (1.19) is trivially satisfied. (Once again 

this fact does not depend on the choice of k.) It follows that one can con

sistently extend the definition of counit to the whole algebra A as an algebra 

homomorphism. It can be checked that (1.12) is also satisfied. 

4. Coinverse: 

The coinverse of the generators is defined so that .they form a matrix r-• 
which satisfies r-•r = rr-• = I. It is 

S(T) = ( S(a) S(IJ) ) = (det
9
(T)t 1 ( 

6 -q-• {3 ) = r-•, ( 1.35) 
S(-y) S(6) -q.., a 

where det9 (T) = a6 - qf]"( is called the quantum determinant of T. The 

quantum determinant is central in A (it commutes with everything in A) and 

A(dd 9(T)) = det 9 (T) 0 det 9 (T). ( 1.:36) 

!) 



It can be shown that r-• is a GL9-•(2) quantum matrix. 

This definition of S can be consistently extended to A such that S is an 

antihomomorphism (1.14). In addition, (1.13) is satisfied. 

This concludes our dcsniption of till' CJIIillllllnl group (,"/.y(2) itS il llopf ill!!;rhra. 

Because the quantum determinant is c-entral, it is consistent with the algebra to 

impose an additional condition 

det9(T) = I. ( 1.37) 

This is also compatible with the coproduct since ( 1.36) implies ll( I) = I® I, which 

is always the case as required by ( 1.9). What we obtain after imposing ( 1.37) is the 

deformation of SL(2), naturally named SL9 (2). 

A further step can be taken to get SU9 (2). We define the •-involution on SL9 (2) 

for real q by 

rt = (a· -y• ) = ( 6 -q-•p) = r-• 
p· 6" -q-y Q 

(1.38) 

It is compatible with the algebra in the sense that the the commutation relations 

is covariant under the •-involution. This is a result of the RTT relation (L19) and 

the fact that our k-matrix is symmetric: R~ = R~J-
The •-involution reverses a product: (/ /')" = /'" f" and takes complex conjuga

tion on complex numbers. Therefore it corresponds to the Hermitian conjugation 

when one realizes the algebra as the algebra of operators on a Hilbert space. 

Everything we mentioned in this section can be generalized to GL9(N), SL9(N) 

and SU9(N) (16). These and. the q-deformation for other classical groups can all be 

obtained in a systematic way by starting with Poisson-Lie groups, which is briefly 

described in Appendix I. For a more detailed discussion see IJ7J. 

. 1.3 Dually Paired Hopf Algebras 

Classically the universal enveloping algebra U is dual to the algebra of functions A 

on a group G with respect to the pairing{·,·): U ®A-+ C defined by 

(X, TJ) = 1rj(X), .\' E U, ( 1.:39) 

where 1r is the representation in which T is represented. (The pairing of the gen

erators can be extended to other elements in U and A by using (1.46-1.50) below.) 
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For example, in the fundamental representation of SL(2) and s/1, the generators 

{H, X+,x-} of U satisfying IH, X:t:] = ±2X:t: and IX+, X_J =Hare represented by 

( I 0) , (01) (00) 1r(H)= , 1r(,l;+)= , 1r(X-l= 
0 -1 0 0 I 0 

(1.<10) 

and 1' is represented as a unimodular 2 x "l matrix. 

Given a basis { e;} for U one can find its dual basis { ei} for A such that (e;. t 1 ) = 

6f. As an example, the basis { /1 1 X+ X~} for the universal enveloping algebra of s/1 

is dual to the basis {(l!m!n!t'( -In 6)1(,86)m(-yo-• )"} for the algebra of functions 

on SL(2), where ( ~ :) is an SL(2)-matrix. Define the canonical element 

C = I;e;®ei. ( 1.41) 

It can be easily checked that 

( ... ® id)(C) = T. ( 1.42) 

Actually C is the universal exprt!Ssion of T in the sense that it is representation

independent and for any representation 1r of U one obtains the representation of 

the group in terms of the generators of A by (1.42). 

Note that U is also a Hopf algebra: 

ll(l)= 1®1, ll(X)= I®X+X®I, 

for X= H,X+,X_. 

t(l)=l, 

S(l) = 1, 

E(X) '= 0, 

S(X) =-X 

( 1.43) 

( 1.44) 

(1.45) 

In the quantum case we define a pair of Hopf algebras (U, A) to be dual to each 

other if there exists a non-degenerate pairing such that 

(XX',/)= (X®X',ll(f)), 

(X,Jf') = (ll(X)./®/'), 

{I, f)= t(/), 

(X, I)= E{X), 

(S(X},f) = (X,S(/)), 

(1.46) 

(1.-li) 

( 1.48) 

( 1.49) 

( 1.50) 

where we have two sets of maps (tl.,t,S) acting on X,X' E U and /,/' E A, 
respectively. If they are •-Hopf algebras, we require in addition 

(X",!)= (X,S(f)")". ( l.!i I) 
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The pairing between U and A is defined on generators by (1.39). By requiring 

that U and A are dual one can extend the pairing to the whole algebras U and A. 
(Actually the duality of Hopf algebras is so rigid that it can be used to construct 

the dual of a given Hopf algebra.) 

The canonical element (18] can still be defined by (1.41) and (1.42) still holds. 

1.3.1 Smash Product 

An element in a group acts on the group by left or right multiplication. As a Lie 

algebra element corresponds to a group element by exponentiation, a Lie algebra 

element acts on the group as a right or left invariant vector field. The algebra 

of the vector fields and functions on a group is described in the quantum case by 

the smash product of U and A (19, 20, 21, 22]. The smash product is defined 

by the original wmmutation relations in U and A together with the additional 

commutation rei~ 1 ions for mixed products: 

X I = !(.1(Xc•>• / 121)X121 (1.52) 

if U is left-invariant (generating right transformations). 

For the group of one-dimensional translations, the coordinate x with l1(x) = 

I® x + x ® 1, c(x) = 0, and the Lie algebra generator p with l1(p) = I® p + p ®I, 

c(p) = 0, have the pairing (p, x) = 1. It is pz = xp + 1 in the smash product. This 

enables the identification of p with fz. 
Two kinds of vacua [19, 23] are useful here. Define the vacuum )u by 

X)u =)ue(X), X E U (1.53) 

and another vacuum .A( by 

.A(/ = c(/).A (, / E A. ( 1.54) 

It is easy to check that the pairing equals (X,/)= .A(Xf)u- The action of.\' E U 

on f E A, denoted by X I>/, is defined by 

Xf)u. ( 1.55) 

In our example above, the action of p on z is (fzz) = 1. 
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1.4 Quasi-Triangular Hopf Algebras 

Sometimes the term .. quantum groups" is reserved for "quasi-triangular Hopf alge

bras". A Hopf algebra is qutt~i-triangular (24] if 

f1 o l1(.\') = 1M(X)n-•. ( 1 .• 56) 

where u(X@ 1-') = ) .. 0 .\',for a certain invertible n E U ®U (called the universnl 

7?.-rnalr·ir) satisfying 

(id ®l1)(7?.) = n.ann. 

(l1 ® id)(n) = n.an2a, 

(S0id)(n) = n-•. 

For a given representation ,.. of U this R-matrix is given by 

R~ = (7?., T~ ® T/), 

where Tj is the quantum matrix in the same representation. 

(1.57) 

(1.58) 

(1.59) 

( 1.60) 

It follows from (1.56) that the quantum matrix defined in (1.39) satisfies the 

RTT relation 

RnT1T2 = T2T1Rn, (1.61) 

which if written in terms of the A-matrix R~ = fflj will be (1.19). 

The universal 1?.-matrix satisfies the (quantum) Yang-Baxter equation 

nnn1Jn2a = n2an.3nu. (1.62) 

The indices I, 2 and 3 now become the labels for the three copies of U in the tensor 

product so that if n = r; 0 r; then R.n = r; ® r; ® 1, 1?.1a = r; 181 I 0 r; and 

7?.13 = I ® r; ® r;. It follows that the R-matrix in any representation satisfies the 

same equation. 

There is a universal description of the RTT relation (1.61) where Tis replaced 

by C and R is replaced by the universal 1?.-matrix: 

n,2c,c2 = c2c,nn e u ®U ®A, (1.63) 

where C1 = e; ® I 0 e;, C2 = I 0 e; 0 e;. 

Another form of the RTT relation is 

(1?., Jill 0 t<•l)/121 /'121 = f'(ll JO>(n, /121 ® f'C2l), /, /' E A. ( 1.64) 

A more detailed discussion about quasi-triangular Hopf algebras can bf' found 

in (25]. 
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1.4.1 An Example: SL9(2) 

As an example, the quantum universal enveloping algebra U for Sl-9 (2) 124, 26) is 

generated by H,X+ and X_ satisfying 

IH,X~:) = ±2Xt, 

I" v I ·H-·-r .0'\ + t /\- = q-q- . 

(1.65) 

(1.66) 

The fundamental representation for sl, ( 1.40) happens to be also a representation of 

this algebra although the classical and deformed algebras are apparently different. 

U is a Hopf algebra with the coproduct given by 

the counit by 

and the coinverse by 

6(1)=1®1, 

6(H) =I® H + H ® 1, 

6(Xt) = q-!H ® Xt + Xt ® q!H, 

{(1) = 1, 

{(H)= t(Xt) = 0 

S(1) =I, 

S(H) = -H, S(Xt) = -q*1Xt-

(1.67) 

(1.68) 

( 1.69) 

(I. 70) 

(1.71) 

(I. 72) 

( 1.73) 

In the classical limit q -+ I it is not hard to see that this Hopf algebra structure 

gives the dual statements of those on the group. While a group element can be 

written as g = ex for a Lie algebra element X = aH + bX + +eX_, it is up to one's 

choice whether the group properties (the Hopf algebra structure) is to be stated 

in terms of a,b,c (functions on the group) or H,X+,X-. These two possibilities 

correspond to the two dually paired Hopf algebras. 

By imposing the •·involution 

H.= H, X;= X"' ( 1.7-1) 

and q• = q we obtain the universal enveloping algebra for Sl/9(2). 

The basis dual to { H1 X;' X~} is now 

{ ( /!lml9-o !In )9-o! )- 1 (-In 6)1(q! J16)m(q-! 1 .s -I)"}, 
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. _,,., 1 
where 1m),-•! = lm),-•lm- lj9-• • • ·11)9-• and lml,-• = 99 _,_~ • 

We can use (1.41·1.42) to obtain the quantum matrix of SL9 (2) in any repre

sentation of U. The (2j + I)-dimensional representation of U for SL9 (2) is well 

known: 

7r;(H)Ij,m) = 2mjj,m), 

7r;(Xt>li. m) = (lj =F ml[j ± m + IJ)ljj, m ± 1), 

where [n] = •·-·~·. ·-· For SL9(2) the universal R-matrix is 

(1.75) 

(1.76) 

co (I -l)n n-" -q q!(H®H+nH®l-nl®HIX"®X" (1.77) 
-!;;;, [nJ.! + -' 

I I '"-1 where n 9 = ~- . 
In the fundamental representation (1.40) it is (7?, Ti ® T/) = q-l/l R.t; for the 

kmatrix in (1.21). 

1.5 Differential Calculus 

The differential geometry on a classical manifold can be generalized to the noncom

mutative case. This is the subject of noncommutative geometry initiated by Connes 

[2]. 

1.5.1 Universal Differential Calculus 

For any unital, associative algebra A one can define the exterior derivative d: A-+ 
A®A by 1271 

dl= 1®1-l®l. (1.78) 

The meaning of this expression is the following. When one evaluates df at (x, y), it 

is df(x,y) = f(y)- l(x), which is the difference between the values of I at the two 

points :rand y. (Note that the tensor product diRtributes arguments.) If y is very 

close to x, it coincides with our intuitive notion of the differential dl. 

The enlarged algebra n~ obtained by adjoining the differentials to A is defined 

by the left and right multiplications: 

ldf' = f®f'- If'® I, 

(dflf' = 1 ®I J'- I® f'. 
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( 1.79) 

( 1.80) 



The Leibniz rule 

d(f /') = (df)/' + f(df') ( 1.81) 

follows for /, f' E A. 
Any element in n~ can be written in the form r:. J.df~ Cor some / •• I~ E A 

by using the Leibniz rule. This is the first order universal differential calculus on 

A. It can be identified with A2 = {ktr(m)}, or more explicitly, {L /; ® Jt E 

A® AI L:J;J{ = o}. 
Let 

d(L J; ® J:l := L(l ® /; ® J:- /; ® 1 ®I{+/;® J:@ 1) (1.82) 
i 

then the nilpotency of d 

~(J)=O (1.83) 

also follows for f E A. 
One can further extend the definitions of the exterior derivative, the left and 

right multiplications to differential calculus of all orders such that the Leibniz rule 

and ~ = 0 hold for differential forms of all degrees. A differential form of degree n 

will be an element in A®(n+l). 

At a more abstract level the universal differential calculus can be defined simply 

as a vector space fl(A) = {!0d/1dh · · · dfnlf• E A, n ~ 0} (27) equipped with a 

multiplication defined by juxtaposition modulo the Leibniz rule and the nilpotency 

of d. 

The tensor product representation (1.78-1.80) above is therefore merely a real

ization of the universal differential calculus. 

1.5.2 General Differential Calculus 

In this section we will focus on the first order general differential calculus. In general 

the first order calculus together with the Leibniz rule and ~ = 0 will fix the higher 

order calculus. 

A general differential calculus is defined as the quotient fl(A)/ J of the universal 

differential calculus n(A) over an ideal J c fl(A). 

As an example, the classical differential calculus can be identified with A1 / J, 

where J is the ideal generated by the set N = {!d/'- (d/')/1/,/' E A}, i.e., 

J=ANA. 
Another example is the differential calculus on quantum groups (28, 19, 29, 30, 

22, 20). Given a subset M C ker(t) C A we have a le/1-covnrinrll differential 
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calculus A 2 / J where [28) 

./ = {uS(v(ll)dv(2lu'ju,u' E A, t• EM}. (1.84) 

The left-covariance [28) of a differential calculus is similar to the left-covariance 

of the algebra A. Here the left transformation is defined on one-forms by 

t:.L(fd/') = /(1)/(,, ® /(2)d/(2) ( 1.85) 

and the left-covariance means 

t:.L(J) c A® J. (1.86) 

Similarly right-covariance and bicovariance can be defined [28). An interesting class 

of bicovarianl calculi is considered in (31). The choice of M is restricted by other 

requirements like the correct classical limit and so on. 

As an example, the left-covariant 3D calculus (32) on SU9 (2) is specified by 

M = {6 + q2o- (I+ q2), /12,/11,11 , (o- l)P, (o- lh} and J includes elements like 

(do)6 = q26(do), etc. It is sometimes more convenient to use the Maurer-Carlan 

forms 

where 

T- 1dT = ( w• w
0 

) 
-qwl -qlwl , 

w0 = 6dtJ- q-1pd6, 

w1 = 6do- q-~pd..,, 

w2 = 1do- q-1od-r. 

The commutation relations between funct.ions and forms are 

w0o = q-1ow0 , w0P = q/Jw0
, 

w1o = q-2ow1, w1P = q2Pw1
, 

w1o = q-1ow1 , w1P = q/Jw1 

( 1.87) 

( 1.88) 

( 1.89)" 

( 1.90) 

( 1.91) 

(1.92) 

(1.93) 

and the same formulas with o -+ 1 and P -+ 6. Since the Maurer-Carlan forms 

are left-invariant and the commutation relations between functions and forms are 

the same for o -+ 1 and /1 -+ 6, it is easy to see directly that the calculus is 

left-covariant. 

A bicovariant calculus can also be defined for SU9(2) and is called the 4D cal

culus [28). However it has four instead of three independent one-forms. This is 

originated from the fact that although the quantum determinant is central, its dif

ferential d(dct 9 (T)) is not central in that calculus. 
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1.6 Quantum Spaces 

Another approach [33] to quantum groups is to derive them as symmetries of quan· 

tum spaces. The simplest example is the quantum plane (34]. The coordinates on 

the quantum plane are x, y with the commutation relation 

xy = qgx. ( 1.91) 

Define the transformation 

(:)-(~ :)(:)· ( 1.95) 

where o, P. -y, 6 commute with x, y and their commutation relations are to be de

termined later. Another way to say it is that we define the left coaction by 

. t.L(x)=o®x+P®y, 

t.L(y) = -y®r + 6 0y. 

(1.96) 

( 1.97) 

Requiring that the algebra of x,y is covariant under the transformation, or 

equivalently that t.L(z)t.L(Y) = qt.L(y)t.L(z), one can derive some commutation 

relations among o, P, -y, 5. If we demand in addition the transformation 

(x y)-(z y)(~ i) (1.98) 

to be a symmetry of the quantum plane, we arrive at the full set of commutation 

relations defining a GL9(2)-matrix ( ~ :) . 

If we had started with the central extension of the algebra ( 1.94 ): 

xy = qyx + h, hE C, (1.99) 

we would have obtained SL9(2). 

In general, for a left coaction t.,_ : X -+ A 0 X, where X is the algebra of 

quantum space and A is the algebra of the quantum group, the coproduct t. : A -+ 

A® A for the quantum group is inferred from the left coaction through 

(t. ® id) 0 t.,_ = (id ® t.t.) 0 t.~.. ( 1.100) 

If the algebra A is determined by the requirement that the coaction Llt. is an 

algebra homomorphism, the coproduct for the quantum group defined in this way 

is guaranteed to be also an algebra homomorphism. 
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Similarly, since the counit is defined by the assignment of each generator in 

A to give the identity transformation and the identity map is always an algebra 

homomorphism, the counit can always be extended to be an algebra homomorphism. 

However, there is no general arguments for the existence of the coinverse. 

If there is a differential calculus on the quantum space, usually one would require 

the covariance of the differential calculus under the quantum group trans~ormations 

as well. The left-coaction of a differential form, for instance, is defined by (1.85). 

We always assume the undeformed Leibniz rule for the exterior derivative:· 

dw1w2 = ( dw.)w, ± WJ dw,, ( 1.101) 

where the sign depends on the parity of w1• The differential calculus is usually 

almost fixed by the Leibniz rule, the algebra of functions and the covariance: under 

a transformation. After one obtains the commutation between functions and one

forms, one can use the Leibniz rule and the nilpotency of the exterior deriv•·tive 

jl = 0 (1.102) 

to derive commutation relations between forms. 

Furthermore, with the Leibniz rule and the identification d = E;w;x;, where 

{w;} is a basis of one-forms and {x;} is the dual basis of derivatives, one can derive 

the commutation relations between functions and derivatives from those between 

functions and one-forms and vise. versa. 

In terms of the A-matrix, (1.94) can be written as 

-1 •• , 
ZjZj = q R;jXkXI, (1.103) 

where x 1 = x and z, = y. In the classical limit R is the permutation matrix and it 

simply states the commutativity of the algebra. With the RTT relation ( 1.19) it is 

easy to see that ( 1.103) is left-covariant. 

The covariant differential calculus is defined by .. , 
x;dxj = qR;jdztXt. (1.104) 

ll follows from the Leibniz rule and J2 = 0 that .. , 
dx;dxj = -qR;jdxtdx,. ( 1.105) 

Eqs.(l.103-1.105) can be directly generalized for the quantum hyperplanes co

\'ariant under GL.(N) [34], SU9 (N) (35] or S09 (N) [36]. Integrations invariant 
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under coactions can also be defined on quantum groups 115) and quantum spaces 

(23, 37). In Chap.2 and Chap.3 we will give interesting examples of quantum spaces 

with covariant differential calculi and invariant integrals with respect to nonlinea1· 

quantum group transformations. 

20 

Chapter 2 

Geometry of the Quantum 

Spheres~ 

2.1 Introduction 

Quantum spheres can be defined in any number of dimensions by normalizing a vec

tor of quantum Euclidean space(16). The differential calculus on quantum Euclidean 

space(38) induces a calculus on the quantum sphere. The case of two-spheres in three 

space is special in that there are many more possibilities than the one obtained from 

the general construction. These have been studied by P. Podle8[39, 40, 41, 42) who 

has also shown how to define a noncommutative differential calculus on them. In 

this chapter we study in detail a particular case of Podle5 spheres which is one of 

those special to three space dimensions. In this case the algebra of functions on 

the sphere is a subalgebra of the algebra of functions on SU9(2) and the differential 

calculus on the sphere can be inferred from a differential calculus on SU9(2). We 

can also define a stereographic projection (43) and describe the coaction of SU9('1) 

on the sphere by fractional transformations on the complex variable in the plane 

analogous to the classical ones. The quantum sphere appears then as the quantum 

deformation of the classical two-sphere described as a complex manifold. 

All formulas and derivations of the results in this chapter can be easily modified. 

with a few changes of signs, to describe the quantum unit disk and the coaction 

of SU,( 1, 1) on it, as well as the corresponding invariant anharmonic ratios. This 

provides a quantum deformation of the Bolyai-Lobachevskil non-Euclidean geome

try and of the differential calculus on the Bolyai-Lobachevskil plane. We shall not 

write here the modified equations appropriate for this case, which can be guessed 
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very easily, but we would like to mention that the commutation relations between · 

the variables z and .i for the unit disk are appropriate for a representation of :: and 

z as bounded operators in a Hilbert space. This is to be contrasted with the case 

of the quantum sphere where z and z must be unbounded operators. In a perfectly 

analogous way all formulas and derivations for C P,( N) in the next chapter can be 

easily modified, with a few changes of sign, to describe a quantum deformation of 

various higher dimensional non-Euclidean geometries. Again we shall not do this 

explicitly and leave it as an exercise for the reader. A different deformed algebra of 

functions on the Bolyai-Lobachevskil plane has been considered in (44]. 

2.2 The Complex Quantum Manifold s; 
In (39] Podles discovered a family of quantum spheres. They are compact 1 quantum 

spaces with the quantum symmetry of SU,(2). That is, the algebra X of functions 

on the quantum spheres is covariant under an SU,(2) transformation. 

By studying the representations (1.75) and (1.76) of the universal enveloping 

algebra of SU,(2) with the coproduct (1.68) and (1.69) as in the classical case, 

one finds the quantum Clebsch-Gordan coefficients (45] one uses to compose or 

decompose representations. 

A classical sphere can be specified in terms of Cartesian coordinates as x 2 + y2 + 
z2 = r 2

. The vector (e+,e0,-e_) = (-j;(x + iy),z,-"Ji(x- iy)) transforms as a 

spin-! representation under SU(2). In the deformed case we can use the quantum 

Clebsch-Gordan coefficients to find commutation relations covariant under the linear 

transformation of the vector ( e+, eo, -e_) = (E., E0 , E_.) as a j = I representation 

of SU,(2) (46]. It is 

~[~I m-m' 
~ ] 

9 

E,..•Em-rn' = a Em (2.1) 

for a E Rand 

~[ .:. -Jtl 
~ t E,..E_,.. = -1. (2.2) 

fork E R, k > 0. 

We have in addition to q two free parameters a and k, where k can always be 

scaled to a fixed number. Only a labels inequivalent quantum spheres. With thl' 

1 Thal_is, the algclna of functions is unital. 
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•·involution q· = q, e:j. = e_ and e0 = e0 (Ej = -E_ 1 and E0 = Eo) it gives a 

c· ·algebra. It is 

e+e- - e_e+ + .\e~ = IJfo, (2.3) 

qeoe+ - q-1e+eo = IJf+, (2.4) 

qe_eo- q-1eoe- = IJf- (2.5) 

and 

e~ + qe_e+ + q-1e+e- = s, (2.6) 

where,\= q- q-•, 11 = (2J-•12[4]'12a and s = (3]'12k > 0 ((n] = ';:,,_-," ). 

A· particularly interesting case is when this algebra is equivalent to the quotient 

SU,(2)/U(I) (47, 48]. The classical U(l) 2 is represented as a subgroup of SU,(2) 

by 

( ~ u~•), (2.7) 

where u· = u-•. It can be checked that this is an SU,(2)-matrix. SU,(2) trans

forms under right multiplication by this matrix as 

( ~ ~ ) - ( ~ ~ ) ( ~ u~• ) , (2.8) 

which is again an SU,(2)-matrix by taking U to commute with cc, /3, -,, !J. 

The algebra of functions X on the quanium sphere s: = SU9(2}/U(l) is the 

subalgebra of the algebra of functions on SU9 (2) which is invariant under this 

U( I) transformation. It is therefore generated by, say, cc-,-• and !J{J- 1• (The 

SU9(2) is three-dimensional and U( I) is one-dimensional, hence the quotient is 

two-dimensional.) This is also formally equivalent to the algebra of e+, e_, e0 for 

p = ,\ and s = I with the identification e0 = 1 + (2]/3-,, e+ = q-1[2]'12ccfJ and 

f_ = -(2]'12-,6. This is the case we will consider in the following. (Strictly speak

ing. the algebra of functions on SU9(2) contains only polynomials of the generators 

o. f], """(, 6, so SU9(2)/U( I) is the set of polynomials of cc{J, {J-,, -,6, which is equal to 

t ht> set of polynomials of eo, e+, e_.) 

Let 

z = cc-,-• (2.9) 

and 

.i = -6/3-•. (2.10) 

'Since U( I) io one-dimensional there i• no commutation relations to deform. 
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Figure 2.1: stereographic projection 

They are the stereographic coordinates. Classically one gets the stereographic c< .. 

ordinates of a point on the sphere by means of a projection from the north pole l • 

the complex plane (Fig.2.1 ). 

Another equivalent description of s: is CP9(l), which is obtained from the 

complex quantum plane with coordinates { x, i, y, y} (see Chap.3) by considering 

the subalgebra generated by the inhomogeneous coordinates 

-I z = xy , - --1-z = y X. (2.11) 

Since everything about SU9 (2) is well known, we can derive all properties of the 

sphere from the identification (2.9) and (2.10). 

The commutation relation is 

zi = q-2.iz + q-2 - 1, (2.12) 

or equivalently 

(1 + z.i) = q-2(1 + .iz); · (2.13) 

and the •-involution is z• = .i. Eq.(2.12) differs from the usual quantum plane by 

an additional inhomogeneous constant term. 

The SU9(2)-transformation on SU9(2) induces rotations on the sphere. In terms 

of the coordinates z, .i it is the linear-fractional transformation, abbreviated as the 

fractional transformation: 

z -+ (az + b)(cz + dt 1
, .i -+ -(c- d.i)(a- bzt1 , (2.14) 

(
a b) · 

where c d E SU9(2) and a, b, c, d commute with z and .i. Eq.(2.12) is covariant 

under the fractional transformation. 
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2.3 Patching a Sphere 

Classically the stereographic projection maps all points on the sphere except the 

north pole to the complex plane. The consequence is that the algebra of (smooth) 

functions on the sphere is a smaller algebra contained in the algebra of (smooth) 

functions on the plane. Clearly those functions on the plane which do not have a 

unique finite limit at infinity in all directions are not corresponding to continuous 

single-valued functions on the sphere. For example, all polynomials of z, i are not 

functions on the sphere. 

There are two different ways to cover the whole sphere. One way is to take 

two complex planes corresponding to the stereographic projections from the north 

pole and the south pole, respectively. Points in the two patches are identified as 

the same point on the sphere if their coordinates satisfy, say, zw = 1 and iw = 1, 

where w, w are the coordinates on the other patch. While classically a manifold 

can be understood as a collection of points via patching, the quantum space can 

only be understood from its algebra of functions. (Sometimes the patching can be 

described as the intersection of the two algebras on each patch (49), but it obviously 

does not apply to this case.) The other way is to adjoin the point at infinity to the 

complex plane and restrict the algebra of functions on the plane to those with a 

unique finite limit at infinity. 

In the deformed case the algebra generated by (z, z), or any subalgebra of it, 

does not have the correct classical limit of the algebra of functions on a sphere. 

However it is known that the c·.aJgebra X generated by (e+,e0 ,e_) does have 

the correct classical limit and can be taken as the algebra of functions on the 

quantum sphere (39). In terms of (z, .i) it is e0 = 1 - q(2)p- 1, e+ = -I2JII2zp- 1 and 

e_ = -(2JII2p- 1.i, where p = 1 + .iz. Hence the algebra generated by p- 1, zp- 1 and 

p- 1z can also be taken as the algebra X of functions on s:. (We always assume 

that the algebra is unital, so the unit 1 is always a generator that we do not have 

to mention explicitly.) It is easy to see that in terms of w = z- 1 and w = ;-• it is 

the same algebra generated by p;;,1, wp;;,1 and p;;,1w, where p., = 1 + ww. It is this 

algebra that we will consider in the following, e.g., for the integration on s:. 
Note that the element p- 1 commutes with z,.i in a very simple way: p- 1z = 

q-2 zp- 1 and p- 1z = q2.ip- 1• So the appearance of the inverse does not complicate 

the algebra and one of the benefits of using (z,.i) instead of (e+,eo,e-) is that 

we need to remember only one simple commutation relation (2.12) instead of four 

(2.3·2.6). 
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2.4 Covariant Differential Calculus 

The differential calculus 3 for s: can also be obtained from that for SU9(2). The 

3D calculus on SU9 (2) induces a two-dimensional left-covariant calculus on s:. 
while the 4D calculus induces a three-dimensional one. We will consider the former 

in terms of the stereographic coordinates since it has the right dimension. It is 

equivalent to the unique left-covariant two-dimensional calculus on s: obtained by 

Podle5 in 142]. 

The commutation relations obtained from the 3D calculus are 

zdz = q-2dzz, zdz = q2dzz, 

zdz = q-2dzz, zdz = q2dzz, 

(dz)2 = (dz)2 = 0, dzdz = -q-2dzdz. 

(2.15) 

(2.16) 

(2.17) 

Derivatives can be defined based on the knowledge about differential forms. 

When acting on functions, the exterior derivative dis identified with d = dz8 + dilJ. 

The Leibniz rule and J2 = 0 then imply 

az = 1 + q-2za, 

bz = q-2 zb, 
aa = q-2{Ja. 

az = q2za, 

bz = 1 + q2za, 

(2.18) 

(2.19) 

(2.20) 

When acting on functions, the derivatives a,b.can be realized by q>.-•p- 1z and 

-q>.-•p-•z, respectively. (It can be checked that a (b)has the same commutation 

relations with z,z as q>.-•p- 1% (-q>.-•p-1z) does.) It turns out that the exterior 

derivative can be realized by 

=: = qp-1(dzz- dzz), (2.21) 

as 

(dw) = >.-'l=:,w]±, (2.22) 

where 1·,·]± is the commutator (-)or anticommutator ( + ), for even or odd differ

ential forms w, respectively. (Functions are considered as even forms.) 

Eqs.(2.15-2.20) are covariant under the fractional transformation (:!.14), wl.ich 

implies 

dz ~ dz(q- 1cz + d)-1(cz +d)-•, 
a~ (cz + d)(q-1cz + d)a, 

(2.23) 

(2.24) 

3 Podlei studied and ci118Sified alllefl-covarianl and bicovarianl difTcrcnlial calculi ou 'IIIRul.um 

spher<"S in (10. 50, 42). 
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where the second line is obtained by requiring the exterior derivative to be invariant. 

The •-involution is defined by 

where 

(dz)" = dz, 

a· = -q-2[} + ( 1 + q-2)zp-•, 

[J· = -q2a+(1 +q2 )p-•z, 

p = 1 + zz. 

(2.25) 

(2.26) 

(2.27) 

(2.28) 

The inhomogeneous pieces on the right hand side of Eqs.(2.26) and (2.27) origi

nate from the nontrivial measure for the integration on the sphere, in contrast with 

another possible iiwolution which corresponds to a flat complex plane: 

(dz)" = dz, 

a·= -q,fJ, 

tr = -q-2a. 

(2.29) 

(2.30) 

(2.31) 

The latter involution is not covariant under the fractional transformations, but 

covariant under another transformation: 

z ~ az+m, 

z ~ az+m, 

where a, a, m, rn commute with z, z and 

ail= aa, qmrn- q-•,nm = >.(aii- 1), 

rna = q-2am, mii = q-2iim, 

rna = q2am, rna = q2iim. 

(2.32) 

(2.33) 

(2.34) 

(2.3.5) 

(2.36) 

The •-involution on a, m coincides with the bars. A Hopf algebra structure on 

the algebra of a, a, m, m can be easily derived. Its classical limit is the algebra 

of functions on the group of rotations, scaling and translations on the complex 

plane. The induced transformations on dz, dz and a, b can be derived and the same 

calculus is also covariant under this transformation. 

Back to the quantum sphere. Since we have Eqs.(2.15-2.28) we can forget about 

how we got them and take them as our definition of the differential calculus on s:. 
The covariance of the calculus can be checked directly. 
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There is a symmetry of the calculus 

z +-+ i, dz +-+ di, 

{) ..... tJ, q ..... q-•, 

which is induced from a symmetry on s:: 

( 

0 {3) ( 6 _..,) 
"f 6 --+• -{J 0 I q-+q-•. 

(2.37) 

(2.38) 

~2.39) 

Now we discuss the complex structure on the differential calculus. The existence 

of the complex structure relies on the property of our differential calculus that 

the holomorphic and antiholomorphic parts of the functions and forms are not 

mixed by the commutation relations. This implies that we can define 6 and 6 by 

d = 6 + 6 as the decomposition of the exterior derivatives to the holomorphic and 

antiholomorphic parts. Explicitly, 

(6, z) = dz, (6, z) = 0, (2.40) 

[6,z] = 0, [6,z] = d.i, (2.41) 

6dz = dz6 = 0, 6di = diS = 0, (2.42) 

{6,d.i} = 0, {6,dz} = 0, (2.43) 

[J2 = 62 = 0, (2.44) 

{6,6} = 0, (2.4.5) 

where {-, · }, [·,·)are the anticommutator and commutator respectively. 

Like the total exterior derivative d, the differentials 6 and 6 can be realized by 

~ = qdzp- 1 i and -~· = -qdzp-1 z, respectively, as in (2.22). While e = 0 = ~· 2 , 

it is 

:=:2 = q).dzp-2dz, (2.46) 

which is central in the calculus so that J2 = 0 = 62 = li2 and 6li + !J6 = 0 are 

correctly realized. 

It is interesting that there exist in the calculus elements realizing the differentials 

d,6 and 6, in contrast to Woronowicz' work (32, 28), where an additional one-form 

X satisfying X 2 = 0 has to be adjoined to the calculus to realize the differential 

d. This is also a slight generalization to Cannes' formulation where the differential 

d is realized by an operator F with F2 = 1. Another interesting fact is that ::02 is 

also invariant and so can be thought of as the Kahler form or the measure on s;. 
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The coincidence of the close relation between the differential and the Kahler form 

shows that our quantization is closely attached to the geometry. This interesting 

story about:=: is generalized to CP9(N) in the next chapter. 

The action of the universal enveloping algebra on SU9 (2) induces its action on 

s:. It is more convenient for s: to use the generators 

and 

with 

z+ = x+9Hn, 
z_ = qHnx_ 

I I ··;-· 1t = H 9 = 9 -1 I 

z+ • = z_, u· = 1t. 

Their commutation relations are the following: 

'HZ+- q4Z+'H = (1 + q2)Z+, 

z_u- q41tZ_ = (1 + q2)Z_, 

9z+z- - 9-•z_z+ = 1t. 

(2.47) 

(2.-11>) 

(2.49) . 

(2 .. 50) 

(2.51) 

(2.52) 

(2.53) 

They are viewed as right-invariant vector fields on the sphere and they generate 

infinitesimal fractional transformations (rotations) on the sphere. The actions are 

given by 

Z+z = q2zZ+ + q112z2, 

z+z = 9- 2:Z+ + q-3n, 
1tz = q4z1t + (1 + q2)z, 

1tz = q-4 z1t- q-4( 1 + q,)z, 

Z_z = q,zZ_- q•t,, 

z_: = q-2:Z_ - 9- 31lz2• 

(2.54) 

(2..'i5) 

(2.56) 

(2 .. 57) 

(2.58) 

(2.59) 

With the generators viewed as Lie derivatives, their actions can be extended to 

forms and derivatives by assuming that they commute with the exterior derivative 

d. 
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2.5 The Poisson Sphere 

The commutation relations of the previous sections give us, in the limit q -+ I. ~ 

Poisson structure on the sphere. The Poisson Brackets ( P.B.s) are obtained as usual 

as a limit 

(f,g) = lim fg; gf, q2 = eh = I +II+ lh 1J. 
h-o 11 

(:UiO) 

where we use+ for f,g both odd and -otherwise. For instance, the commutation 

relation (2.12) gives 

and therefore I 51] 

Similarly one finds 

and 

zi = (1 - h)iz- h + lh2
] 

(.i,z)=p. 

(dz,z) = zdz, (d.i,z) = zd.i, 

(dz, .i) = -idz, (di, .i) = -.idz 

(dz,dz) = d.idz. 

(:Uil) 

(:2.62) 

(2.63) 

(2.6·1) 

(2.65) 

In this classical limit functions and forms commute or anticommutc according to 

their even or odd parity, as usual. The P.B. of any quantity with itself vanishes. 

The P.B. of two even quantities or of an even and an odd quantity is antisymmetric, 

that of two odd quantities is symmetric. It is 

d(f,g) = (df,g) ± (f,dg), (2.66) 

where the plus (minus) sign applies for even (odd) f. Notice that we have enlarged 

the concept of Poisson bracket to include differential forms. This is very natural 

when considering the classical limit of our commutation relations. 

In the classical limit, Eq.(2.22) becomes 

(::::,/) = df, (2.67) 

where 

:::: = e- e· (2.68) 

and 

~ = dzip- 1
, ~· = dzzp- 1 (2.MJ) 
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arc ordinary classical differential forms. Now 

cE. = 2did;;p- 2 (2.70) 

and 

::::2 = 0. (2.il) 

As before, the variables z and .i cover the sphere except for the north pole, while 

w = 1/z and til= 1/z miss the south pole. It is 

(w,w) = ww(1 + ww). (2.72) 

The Poisson structure is not symmetric between the north and south pole 4
• All 

P.B.s of regular functions and forms vanish at the north pole tv= w = 0. Therefore, 

for Eq.(2.67) to be valid, the one-form:=: must be singular at the north pole. Indeed 

one finds 

and 

e- dwtil - dw 
- I+ WIO w. 

C = dww _ dw 
I +tuw w 

tudw- wdw 
.=. = ww(l + ww)' 

On the other hand the area two-form 

dwdw = n 
d:::: = 2(1 + ww)2 -

is regular everywhere on the sphere. 

(2.73) 

(2.74) 

(2.75) 

The singularity of:=: at the north pole is not a real problem if we treat it in the 

sense of the theory of distributions. Consider a circle C of radius r encircling the 

origin of the w plane in a counter-clockwise direction and set 

w =rei', til= re-i'. (2.76) 

Using (2. 73), we have 

J- J wdw - wdw 4 . .:.= - 11'1. 
I +ww 

(2.77) 

As r -+ 0 the integral in the right hand side tends to zero because the integrand is 

regular at the origin. The Stokes theorem can be satisfied even at the origin if we 

modify Eq.(2.75) to read 

d:::: = n- 4ll'i6(w)6(w)dwdw. (2.78) 

4 A different deformation of the two-sphere with the symmetry z - w = 1/: i• described in 

(52). Out it• covariant differential calwlua ia unknown. 
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It is 

so that 

I n = 41Ti 
ls• 

{ E=O 
ls• 

(2.79) 

(2.80) 

as it should be for a compact manifold without boundary. Notice that the additional 

delta function term in (2. 78) also has zero P.B.s with all functions and forms as 

required by consistency. 

2.6 Braided Quantum 2-Sphere 

In this section we consider the braiding of several copies of s: (53). There exists a 

general formulation (54) for obtaining the braiding of quantum spaces in terms of 

the universal 'R-matrix of the quantum group which coacts on the quantum space. 

Using this formulation the braiding commutation relations are obtained directly for 

the variables z and z. (An alternative derivation of the same braiding relations 

proceeds by first computing the braiding of two copies of the complex quantum 

plane on which SU9(2) coacts and then using the expressions of the stereographic 

variables z and z in terms of the coordinates :r,y of the quantum plane 

-I z = xy , .z = tr'x. (2.81) 

Please see Chap.3 for the generalization of this approach to the braiding of C P9(N).) 

The braiding can be extended to the differentials dz and dz. In Sec.2. 7 a braiding 

property of the SU9 (2) invariant integral on the sphere is given. It is shown that it 

can be used to compute the integral. 

The braiding of two quantum spheres is not symmetric with respect to the 

exchange of the two spheres. It can be extended to the case of an arbitrary number 

of spheres given in a certain order. 

Classically, a function of k points on a manifold M is an element in X0 k where 

X is the algebra of functions on the manifold. In the quantum case the analogous 

object will be a function of {xl•1}, where i = 1, .. ·,dim(M), a= 1, .. ·,k and 

xl•l is the i-th component of the coordinate for the a-th point on the manifold. 

Because all k points are on the same manifold, the coordinates for all points are 

transformed simultaneously. For our case of the quantum sphere, this means that 

all zl•l,zl•l are transformed by the same SU9(2)-matrix through (2.14). However, 

for this transformation to be really a symmetry of the system of k points on the 
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same sphere!, we require that the algebra of {zl•l, zl•l}~=• be covariant under this 

transformation. This requirement will not be satisfied if one takes the coordinates 

zl•l, .zl•l to commute with z16l, zl6l for a f. b (which is equivalent to saying that 

a function of k points is an element in X0 k) because the algebra of SU9 (2) is 

noncommutative. The correct (covariant) choice is the braided algebra which w•~ 

are going to show below. 

For the case of four braided spheres one can construct a quantum analogue 

of the classical anharmonic ratio (cross ratio) of four points on a sphere. This 

quantity, which belongs to the braided algebra of the four spheres, is invariant 

under the coact. ion of SU9(2) as realized by the quantum fractional transformations 

on the stereographic variables. It commutes with its •-conjugate. This is described 

in Sec.2.8. The existence of the invariant quantum anharmonic ratio seems very 

remarkable. 

Classically, ilnharmonic ratios are the building blocks of all projective invariants. 

Here, they oru•n the way to a development of quantum projective geometry (see 

Chap.4) which may be relevant for the study of nonlinear field theory u-models. 

Let us now look at the general rule of braiding (54) for two ordered (possibly 

different) quantum spaces x.,x2 with (possibly different) left coactions 

Llt: xi_. .A®Xi. i = 1,2, (2.82) 

defined for the same quantum group .A. For II E x, and w E x2 we define the 

commutation relation in the braiding of X1 and X2 by (54) 

vw = 'R( w(l'l, vl''l)wmvm, (2.83) 

where we use Sweedler's notation 

Llt(f) = ,,,., ® /(2). (2.84) 

(The prime on the upper index is used to indicate that the attached element is 

not in Xi but in .A.) Here 'R E U ®U is the universal 'R-matrix for the quantum 

universal enveloping algebra U dual to .A with respect to a pairing (·,·)and 

'R(a,b) = (n,a®b), 

where (X® Y, a® b) = (X, a)(Y, b). 

(2.85) 

The same formula (2.83) can be used for any number of ordered quantum spaces 

as long as for each space there exists a left-coaction of .A. 
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The covariance of (2.83) follows (1.64) and (1.100). To check the consistency of 

(2.83) by braiding, i.e., by permuting three elements into a certain order via two 

different procedures, we have to use 

and 

'R(J g, h) = 'R(f, h(J))'R(g, h(2)). 

'R(J, gh) = 'R(/(1). h)'R(/(2)•9) 

'R( I, f) = 'R(f, I) = t{f). 

These are consequences of (1.57-1.58) and general properties of the pairing. 

and 

One can extend SU9 (2) by introducing a- 1,d-1 satisfying 

aa-1 = a-1a = I, dd-1 = d- 1d = I, 

c(a-1) = c(d- 1) = 1, 

a-1• = d-1, d-1· =a-t 

~(d- 1 ) = (c®b+d®dt 1 

00 

= L( -l)"(d-1c)"d-1 ® (d- 1b)"d-1 • 

"=0 

The transformation for z and the braided copy z' can then be written as 

where 

fo 

! .. 

n=oo 

z .... L f,.z", 
n:=O 

bd- 1
' 

n=oo 
I "" I tn Z --+ ~ JnZ , 

n=O 

(-l)"-ld-2(cd-l)n-1, n 2:: 1. 

• 

(:2.86) 

(2.Si) 

(2.88) 

Consider the algebra A generated by. {I, z} and its braided copy A' generated 
by {1, z'}. Eq.(2.83) gives 

00 

zz' L 'R(fm,J,.)z'"'z". (2.89) 
n,rra=O 

To calculate 'R(f.,., /,.), we notice that, for example, (2.86-2.88) give 

'R(a, aco)'R(a-•, a121) = 'R(a, a)'R(a-•, a) = I 
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and so 

(
q-1/2 0 ) (q-1/2 0 ) 

'R(a-',T)= 0 ql/2 • 'R(T,a-•)= 0 ql/2 • 

-· (ql/2 0 ) -1 (ql/2 0 ) 
'R(d 'T) = 0 q-t/2 • 'R(T,d ) = 0 q-t/1 . 

It is not hard to prove that for any functions f, g of a±t, b, c, d±1• 

and 

'R(bf,g) = 0, 'R(/, cg) = 0, 

'R(cf,g) = 0, if g has nob, 

'R(g, bf) = 0, if g has no c 

'R(~ 1 ./(a, b, c, d)) = f(q'~' 1 12, 0, 0, q± 112), 

'R(f(a, b, c, d),~·) = /(q'~''/2, 0, 0, q±t/2) 

together with (2.90),(2.91) with d±1 replaced by a'~' 1 • 

One then gets 

Therefore 

'R(ft.ftl 

'R(h,fo) = 

num.J .. ) 

q2, 

-~q. 

0, all other n, m. 

zz' = q2z'z- >.qz12• 

(2.90) 

(2.91) 

(2.92) 

Similarly, we consider the braiding betweenA = ( (I, z}) and A = ( {1, z} ). It is 

and 

"" 
"" -n Z-+ L- g,.z ' 
n=O 

9o = -ca-•, 

g,. = 9-2(n-l)(ba-•)"-•a-2. II 2:: I 

'R(g,, It) = q-2, 

-~q-•. 'R(go, /o) 

'R(g.,.,J,.) = o. all other n, m. 
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Therefore 
00 

zz = :L n(g,..fnlz"'z" (2.!1:1) 
n,m=O 

gives 

zz = q- 2iz- ~q- 1 • (2.91) 

Hence we have re-discovered the commutation relation between z and z for s: as a 

braiding relation. 

Since i' transforms like z it follows immediately that the braiding between A 
and A' is given by 

zi' = q-2:z'z- ~q- 1 • (2.95) 

For consistency with the •·involution of the braided algebra the brliding order 

of z, i, z' and i' has to be z < z' < i' < i after we have fixed z < z' and z < z 
as in (2.89) and (2.93). It is crucial that we braid separately A = ( {I, z}) with 

A' and A', and .A= ({l,z}) with A' and A' instead of simply braiding the whole 

algebra ( {I, z, i}) with ( { 1, z', z'} ). Otherwise we will not be able to have the 

usual properties of the •·involution (e.g.(/(z)g(z'))" = g(z')" /(z)") for the braiding 

relations. 

The differential calculus can also be defined on the braided spheres by imposing 

the Leibniz rule on the exterior derivatives d and d' so that d' acts on z' and z' in 

the same way d acts on z and i, and 

together with 

dz' = z'd, dz' = z'd, 

d'z = zd', d'i = zd' 

dd' = -d'd. 

Then (2.92),(2.95) and their •-involution will imply commutation relations between 

functions and forms of different copies of the sphere. As a consequence, the area 

element of the second copy /(' = dz'di'(l + z'z't 2 is central in the whole braided 

algebra, while/( = dzdz(l + zzt2 is only central in the original copy (z, z). 

2. 7 Integration 

The integration (-) : X -+ C on the quantum sphere is defined by the requirement 

that it is invariant under the SU9 (2)-transformation 

~ 1. ( z) = (a ® :: + I> 0 I )( c ({.) : + d 0 I ) -I , (2.%) 
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b.L(i) = -(c® I- d® z)(a ®I- b0 ,W 1
• (2.!17) 

namely, 

t<•'l(JI21)s: = I (/)s: (2.!18) 

for IlL(/) = /(1'1 ® Jl21 as in Sweedler's notation. This is equivalent to 

(0/(z,z))s: = ((0)(/(z,z))s:, 0 E U (2.99) 

or 

(0/(z,z))s:==O, O=Z+,Z-.7-l. (2.100) 

The in variance of the integration iH sufficient to fix itself up to a normalization, 

which can be taken as (l)s: = l. Like everything else, the integration on s: can be 

induced from the integration on SU9(:!) as 

(/(z,z))s: = (./(o-y-1, -6/J-1))su,(2)· (2.101) 

The inviuiance of OsU,(l) implies the invariance of Os: under the SU9 (2) transfor· 

mat ions. 

It is instructive to see other ways to derive the integration on s:. One way to 

do it is to consider integrable functio~s J, for example p-1 for a positive integer I, in 

(2.100), which will then give recursive relations for (p-")s:· It can easily be solved 

(p-')s: = II: l]q (lh:· I~ 0. (2.102) 

Another way is to use the cyclic property 5 which follows (2.98) and properties 

of the quantum group. Without going into details we give the cyclic property: 

< f(z,z)g(z,i) >=< g(z,z)/(q-2z,q2z) >. (2.103) 

It is also possible to look at the integration as the integration of forms f : 
0 2(X) .:... C, where !l2(X) is the second order differential calculus on X. Then the 

requirement is the Stokes theorem 

J dw = 0. (2.104) 

'Similar cyclic properties have been found by H. Steinacker(55J for integrals over higher dimen· 

sional quantum spheres in quantum Euclidean spaces. 
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This condition is manifestly invariant under the transformation and it is also strong 

enough to determine this integration 6 up to normalization. The relation between 

these two integrations is given by the measure 11 

I p.f = (/)s:, IE X, (2.105) 

up to normalizations. If the measure is invariant, the integration Os~ obtained 

from J in this way will also be invariant. In our case the measure is proportional 

to:=?, or to dzp- 2dz, which is invariant. 

With a different measure one obtains from J an invariant integration on another 

space. For the same algebra X with the •-involution given by (2.29-2.31), the 

integration on X should be that for a Hat quantum plane: 

Jdzdi 
(/)c• = 21ri /, /EX. (2.106) 

The Stokes theorem i1uplies that it is invariant under translation: 

{8/)c• = {lJ/)c• = 0 (2.107) 

for integrable functions f. 
Therefore the integration on the sphere and that on the plane is related to each 

other by 

(/)s: = {p-2 /)c• (2.108) 

up to normalizations. 

It is interesting that there exists another way, which has no classical analogue, 

to determine the integration. _consider braided copies of X. Because z' and 5' are 

always on the same side of the variables z and i in the braiding order (z < z' < 
i.' < i), the integration on z',i', has the following property: if 

f(z',i')g(z,i) = Eg;(z,z)/;(z',z'), (2.109) 

then 

(f(z', z'))s>g(z, i) = "'g;(z, z){/;(z', i'))s?. 
q ~ q 

(2.110) 

This can be shown using (2.83) and the invariance of the integral under the SU9(2) 

coaction. However, 

t<z', .z')(g(z, zlls: f. E<g;{z, zJ>s:Mz', .z'). (2.111) 

60uc has to ftx the set of integrable function• iu ad\·~uce. 

:Js 

The above property (2.110) can be used to derive explicit integral rules. For 

example, consider the case off( z', z') = 'i' p'-•, where p' = I + i.' z' and g(z, z) = :. 
Since 

i'p'-"z = q2zz'p'-" + q 1 - 1"~([n + 1)9 -ln)9p')p'-", n? 0, 

where !n)9 = 9:,":
1
1

, using (2.110) and < z'p'-" >= 0 we get the recursion relation: 

In+ l)q < p'-" >= !n)q < p'-ln-1) >, II? I, (2.112) 

which leads to (2.102). 

2.8 Anharmonic Ratios 

Let us first review the classical case. The coordinates x, yon a plane transform as 

(:)~(: !)(:) (2.113) 

by an SU(2) matrix T = (: ~). The determinant-like object xy' - yx' defined 

for x, y together with the coordinates on a second plane x', y' is invariant under the 

SU{2) transformation. On each plane we define z = xfy so that 

z- z' = y- 1(xy'- yx')y'- 1. 

It now follows that with x;, y; for i = I, 2, 3, 4 as coordinates on four copies of the 

planes, 

(z,- z.)(z,- z4r1(z3- z4)(:3 - z.)-1 

(x1Y2- Y1x2)(x4y2- y4.r2r 1(.r4y3- y4x3)(.r1YJ- Y1x3r• 

is invariant because all the factors Y;- 1 cancel and only the invariant parts (x;yi -

y,xj) survive. Therefore the anharmonic ratio is invariant. 

Permuting the indices in the above expression we may get other anharmonic 

ratios, but they are all functions of the one above. For example, 

(z2- z3)(z2 -.z4)-1(z1- z4)(z3- zJ)- 1 = (z2- z.)(z2- z4)- 1(z3 - z4)(z3- z1r 1- I. 

The coordinates of the SU9 (2) covariant quantum plane obey 

.Ty = qyx, 

:I!) 



an equation covariant under the transformation (2.113) with 1' now being an SU0 (2) 

matrix. As explained in Sec.2.6. braided quantum planes can be introduced by using 

(2.83). Let V be the i-th •copy and W be the j-th one, then IY<' have fori< j, 

XiYi = qy;xi + q>.x;yi, 

XiXj = q2XjXj, 

YiYi = q2Y;Yi, 

YiXj = qx;Yi· 

In the deformed case we have to be more careful about the ordering. Let the 

deformed determinant-like object be 

(ij) = XiYi- qyiXj, 

which is invariant under the SU0 (2) transformation, and let 

where z; = Xiy; 1. 

Using the relations 

fori< j and 

(ij) = Zi- Zj = q- 1yi- 1(ij)y_;-J, 

Yi(ij) = q(ij)y;, 

(ij)y; = qy;(ij) 

y;(jk) = q3(jk)yi, 

(ij)yl = q3yk(ij) 

for i < j < k, we can see that, for example, 

A= (12JI24)- 1(34JI13J-I 

is again invariant. Similarly, B = [12J[23)- 1(34J(I4)-1 as well as a number of others 

are invil.ri11nl.. 

To find out whether these invariants are independent of one another, we now 

discuss the algebra of the (ijJ's. 

Because (ijJ = (ik) + (kjJ and (ijJ = -(jiJ the algebra of (ijJ for i,j = I, 2, :3,4 is 

generated by only three elements (12), (23),(34). It is easy to prove that 

(ijJIHJ = q1[k1JiijJ 
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if i < j ::; k < I. 
It follows that we have 

[ijlliklljkJ = q4(jkl!ikJiijJ (2.114) 

for i < j < k, and 

[121!34) + (141!23) = (121!24) + (241!23). 

Using these relatio-ns we can check the dependency between the different anharmonic 

ratios. For example, let C = (131!23)- 1(241!14)"1, and D = [J.II!13)- 1(23J(24j-•, both 

invariant, then 

B- 1 AC = li4JI3W 1[23JI24)-1(134)[23J- 1(241)(14)- 1 

(14J(34)- 1 (23J(2W 1 ((24JI23J-1 (341)(14)- 1 

"" I, 

where we used the relation (34JI23J- 1(24J = (24JI23J-1[34J which follows from (2.114), 

and 

q2 B- D-1 = ((12JI34JI23)-I -(24JI23)-1(13))[14)-1 

= <I12JI34JI23J-I - (24JI23r 1<I12J + (23IJ)(14J-• 

([12JI34) -[12J(24)- (24J(231)(23)- 1(14j-• 

( -(14J(23))(23)- 1(14)- 1 

-I. 

In this manner it can be checked that all products of four terms (ijJ, (kl), (mn)- 1, 

(prJ-• in arbitrary order, which are invariant, are functions of only one invariant, 

say, A. Namely, all invariants are related and just like in the classical case, there 

is only one independent anharmonic ratio. It can be checked that the anharmonic 

ratio commutes with all the i;'s and so commutes with its •-complex conjugate, 

which is also an invariant. 

~I 



Chapter 3 

Geometry of the Quantum 

Complex Projective Space CPq(N) 

In the previous chapter the quantum sphew was described as a complex quantum 

manifold. The braiding of several copies .,f the quantum sphere was introduced 

and quantum anharmonic ratios (cross ratios) of four points on the sphere were 

defined which are invariant under the fractional transformation which describes 

the coaction of the quantum group SU9(2) on the complex coordinates z, i on the 

quantum sphere. In this and the next chapters we will extend these results on the 

one·dimensional complex projective space CP~(1) "' s: to higher dimensions. In 

this chapter we will define the quantum projective space CP9 (N) (56) in terms of 

both homogeneous and inhomogeneous complex coordinates and study the differ

ential calculus on it. C P9 ( N) is shown to be the quantum deformation of a Kahler 

manifold with the Fubini-Study metric. In Sec. 3.2 we consider the Poisson limit. 

Then, in Sec. 3.3 we introduce the braiding of several copies of C P9 ( N). In the 

next chapter we will study the projective geometry on C P9(N). 

The algebra of functions on complex projective space has been considered by a 

number of authors, see for example (57), (58) and (59). What we have shown here 

is that a rich construction of differential geometry and projective geometry can be 

carried out: on this space. It is not hard t.o P.XI.Pnd most of the results of this chapter 

to the case of quantum Grassmannian manifolds (60). 
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3.1 CPq(N) as a Complex Manifold 

3.1.1 SUq(N + 1) Covariant Complex Quantum Space 

For completeness, we list here the formulas we shall need to construct the complex 

projective space. Rememb<'r that the SU9(N + 1) symmetry can be represented 161] 

011 the complex quantum space c~"~+l with coordinates Xi, i;, i = 0, I' ... ,{\' which 

satisfy the relations 

XiXj = q-l it;JxkX/, 

iix1 =q(ir
1 )~~x1i1 

and 

xi xi = q- 1 ilf~x1x1 • 

(3.1) 

(3.2) 

(3.3) 

Here q is a real number, R~ is the GL9(N +I) kmatrix (16) with indices running 

from 0 toN, and xi= x; is the •·conjugate of Xi. The Hermitian length 

L = xiii (3.4) 

is real and central. The kmatrix satisfies the characteristic equation 

<il- q)(k + q-1
) = o. (3.5) 

Derivatives Di, bi can be introduced (the usual symbols 8", fJh are reserved below 

for the derivatives on C P9(N) ) which satisfy 

and 

Dix1 = 6; + qR~'x•D'. Di;} = q(ir 1 J:~xkD1 , (3.6) 

D. ·i 6;+ - 1(R._ 1 )11 ·lD- D- -l.i.tl D- (3-) ;X= l q kiX lo ;x;=q '>'j;Xk I .1 

D; Di = q-1 R{~Dk D1, 

DiD- . - q-l.i.kiD- D' } - "'li k ' 

- - -I - kl - -DiDi = q Ri1ntDr. 

(3.8) 

(:!.9) 

(:1.1 0) 

Here we have defined 
<i>~, = Rftq2(i-l) = kftq2(k- j)' (:l.ll) 

which satisfies 
4>•i ( jl-1 )jk = ( ir 1 )'i.4>il = 6' 6k 

I) tl I} rl I I 
(3.12) 

4:3 



and (sum over the index k) 

Using 

and 

.i..i.k _ nqli+l 
'<')k -OJ ' 

.i..ki _ ciql(N-i)+l 
"'kj - oj • 

k~(q-'l = !R-'l{Z!9l 

- ij - kl Rk, = R,i, 

one can show that there is a symmetry of this algebra: 

and 

q-+q-•, 

x; -+ kq_,;.x;' 

.x; -+ l:r;, 

D; -+ A:-1 92; fJ; 

fJ; -+ 1-• D;, 

(:1.13) 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

(3.18) 

(3.19) 

(3.20) 

(3.21) 

where It and I are arbitrary constants. Exchanging the barred and unbarred quan

tities in (3.17-3.21), we get another symmetry which is related to the inverse of this 

one. 

Using the fact that L commutes with z;,.fi, a •-involution can be defined for Di 

(D;)" = -q-1;'L"D;L-", (3.22) 

where 

i' = N- i +I (3.23) 

for any real number n. The •-involutions corresponding to different 11 's arc related 

to one another by the symmetry of conjugation by L 

a-+ LmaL-m, 

where a can be any function or derivative and m is the difference in the 11 's. 

The differentials ~i = dx;,(i =(~;)"satisfy 

- kl 
x;{j = qR;j~kXh 

-ic _ (R._')ikc _, 
X~~ - q jl~kX 
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(3.24) 

(3.25) 

(:1.26) 

and 
- kl 

~'~i = -qR,i~k~'' 

('~j = -q(ir'li~~ke· 

All the above relations are covariant under the transformation 

X;-+ XjT/, i -+ (r-' )~.fj' 
D'-+ (T-')i.Di jj.-+ fJq1i'Tiq-1i' 

J t I J I 1 

~;-+~iT/, (i ... (T-'JW. 

where Tj E SU9 (N + 1). 

(3.27) 

(:3.28) 

(3.29) 

(:l.:J(I) 

(3.31) 

The holomorphic and antiholomorphic differentials 6, 6 satisfy the undeformed 

Leibniz rule, 62 = 62 = 0 and S:r; = :ri6 etc. 

3.1.2 Algebra and Calculus on CPq(N) 

Define for a= I, ... , N,' 

Zo = z01x., z" = x"(.fo)-'. (3.32) 

Since 

XoXo = qx.xo, zofi0 = x0z0 (3.33) 

and 

xoi" = q-'.x"zo, (3.34) 

it follows from (3.1) and (3.2) that 1 

z.z. = q- 1 k.6zcz., (:3.35) 

z"z6 = q-1(R-')b:z.z•- >.q-'6:, (3.36) 

where Rb: is the G'L9 ( N) kmatrix with indices running from I toN and >. = q-lfq. 

Since 

dz. = x01 (~. -~oz.), dz" = ((" - i"(!)(x0r' (3.37) 

1The leiters a,b,c,e etc. run from Ito N, while i,j,l:,l run from 0 lo N. 
2Due to our conventions in this chapter, lo compare the N = I case with the results in Chap.2, 

one has lo make a change of varillbles t - i. 
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and 

Xo~o = q1 ~oxo, xof:l = f:l Xo, 

it follows from (3.25) and (3.26) that 

and 

z.dzh = qfr.tdz,z., 

i"dzh = q- 1(R- 1 l6:dz,z•, 

dz.dzh = -qir,.i,dz,d::. 

di0 dz6 = -q-1(k 1)b:dz,di'. 

(:3.38) 

(3.39) 

(3.40) 

(3.41) 

(3.42) 

The derivatives a•, [J. are defined by requiring 6 :;= dz.a• an•.'· 6 :: di" tJ. to be 

exterior differentiations. It follows from (3.39) and (3.40) that 

and 

a·zh = i56 + qKt:z,a•, 

a·.zh = q-tcR-t):~.z·ae, 

a.zh = qt:!z,a., 
a.z.6 = 6! + q- 1(k1 )~!.z'a., 

a6fJ• = q- 1 k_!a•ac 

aaah = qt~:a,ae, 

where the t matrix is defined by 

tdb = fi.o~q2(c-h) = Kt4l(d-•l. 

(3.43) 

(3.44) 

(3.45) 

(3.46) 

(3.47) 

(3.48) 

(3.49) 

Similarly as in the case of quantum spaces the algebra of the differential calculus 

on CPq(N) has the symmetr~: 

q ..... q-1, (3.50) 

z ...... rq-2" z•, (3.51) 

-· Z -+ .!Z0 , (3.52) 

8" ..... r-tq2•fJ. (3.53) 

and 
a ...... s-la•, (:1.5·1) 
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where rs = q1
. Again we also have another symmetry by exchanging the barred 

and unbarred quantities in the above. 

Also the •·involutions 

and 

where 

and 

z: = _fG t 

dz; = dz• 

aa· = -q2~-2•'p~a.p-". 

a'= N -a+ 1 

N 

p = 1 + L:z.i0
, 

o=l 

(3.55) 

(3.56) 

(3 .. 57) 

(3.58) 

(3.59) 

can be defined for any n. Corresponding to different n's they are related with one 

another by the symmetry of conjugation by p to some powers followed by a rescaling 

by appropriate powers of q. 

In particular, the choice n = N + 1 gives the •-involution which has the cor· 

rect classical limit of Hermitian conjugation with the standard measure p-IN+I) of 

CP(N). 

The transformation (3.29) induces a transformation on C Pq(N) 

z ...... (Tg + Z6T~r 1 (f!l + z,T:J. (3.60) 

One can then calculate how the differentials transform 

dz. -+ dzhM!, dz•-+ (M1)6dz6
, (3.61) 

where M! is a matrix of functions in z. with coefficients in SUq( N + 1) and ( M1 )b = 
( M!)". Since 6, 6 are invariant, it follows the transformation on the derivatives 

a· ..... (M- 1)686
, <a·r ..... <~l"HM'r 1 J~. (3.62) 

The covariance of the C Pq(N) relations under the transformation (3.60), (3.61) and 

(3.62) follows directly from the covariance in c:+l. 
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3.1.3 Kahler Two-Form 

Similar to the case of a quantum sphere, the quantization of the diffcrential calculus 

on C P9 ( N) is closely connected to the geometry. 

The exterior derivatives can be realized by an element already in the calculus: 

6w = A- 1 [{,w):l:, hw = -r1 [C,w)±, 

where 

e = -q-16pp-1 

and the sign is + (-) if w is odd (even). 

In the same way 

=:=e-c 
realizes d = 6 + 6. 

(3.6:J) 

(3.64) 

(3.65) 

Consistent with the nilpotency of 6, 6 and d, we have e = {"2 = 0 and :=:2 central. 

It is easy to see that all the quantities :=:2, 6{" and 6e differ from one another only 

by numerical factors. This shows that the object 

K =6C =Se (3.66) 

is central and satisfies 6/( = 61\ = 0. Moreover, it can be checked that it is also 

invariant. We will call this the Kahler two-form. 

Motivated by the classical role played by a Kahler form, we define the metric 

9a6 on C P9 (N) by 

/( = dz.g.&di6• (3.67) 

It is 

9.& = q- 1p-2(p6.6- q2z"z6). (3.68) 

which in the classical limit (q .... 1) is exactly the Fubini-Study metric. The inverse 

satisfying 

g'c 9ca = 9atl6 = 6.6 (3.69) 

can also be found: 

i< = qp(66c + z6zc)· (3.70) 

Using the metric (3.68) we can define another bMis of one-forms {(",{a} by 

{" = dz., {. = 9.&di6, (3.71) 
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so that 1\ = ~·{ •. The commutation relations in this basis are: 

{"~6 = -q~~{c{d, 
{.e6 = -q-1(.k-1 )~{ce4 • 

e.e6 = -qkg:eced. 

(3.72) 

(3.7:!) 

(3.74) 

which is the same a., the commutation relations (3.41-3.42) for dz. and dz• under 

the replacement d::• +-+ {. = 9.&di6 (dz. = { 0 by definition). 

As in the classical case, since the Kahler form /( is invariant, one can take gN 

as the volume form (measure), which is found to be proportional to 

p-(N+IIJzN ... Jz1dz1···dZN. (3.75) 

Similar constructions exist also for the complex quantum space C:'+l· A general 

sufficient condition for the existence of one-forms realizing the holomorphic and 

antiholomorphic exterior derivatives on a complex quantum manifold is presented 

in (56, 60), where the central invariant Kahler form also exists. Whenever such a 

Kahler form exists, one can use it to define the metric and a Hodge • map. It will 

be shown in Chap. 5 that one can use these data to define the connection, curvature 

two-form, Ricci tensor and scalar curvature. 

The integration on CP,(N) (56, 60) ca.n be obtained in analogous ways as for 

the sphere in Sec.2.7. The discussion on the patching of C P,(N) is similar to that 

of s:. Here an appropriate definition of the algebra should be made such that it is 

equivalent to SU9(N + 1)/U,(N) (57). 

3.2 Poisson Structures on CP(N) 

The commutation relations in the previous sections give us, in the limit q -+ I, a 

Poisson structure on CP(N). As usual, the Poisson Brackets (P.B.s) are obtained 

as the limit 

(/,g)= limh-o LJ.pl, q = eh = I+ h + WJ. 

It is straightforward to lind 

(z., Z6) = %0 %6, a< b, 

{ 

-6 
-~ ZaZ t 

( =·. z ) = ?( I + .... , :<) II = b 
- L-c=l -c- ' 

a#b 
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(3.76) 

(3.77) 

(3.78) 



l z.dzh + 2zhdz., 

(z., dzb) = 2::.d::., 

z.dzh, 

{ 
-z"dzh, 

(z" I dzh) = -2 L~t z<dzu 

a<b 

a= b, 

a>b 

a#b 

a=b 

and those following from the. •-involution, which satisfies 

(/,g)"= (g",f"). 

(:U9) 

(3.80) 

(3.81) 

The P.B. of two differential forms f and g of degrees m and 11 respectively 

satisfies 

. (!,g)= {-l)'""+l(g,f). (3.82) 

The exterior derivatives 6,6, d act on the P.B.s distributively, for example 

d(f,g) = (d/,g) ± (f,dg), (3.83) 

where the plus (minus) sign applies for even (odd) f. Notice that we have extended 

the concept of Poisson Bracket to include differential forms. 

The Fubini-Study Kahler form 

1\ = dz.g•~ dz6 (3.84) 

has vanishing Poisson bracket with all functions and forms and, naturally, it is 

closed. 

3.3 Braided CP9(N) 

The braiding of the quantum plane C:'+l induces a braiding of C P9(N). 

Let the first copy of the quantum plane be denoted by :r;, i' and the second 

by x:, i". A consistent and covariant choice of the commutation relations between 

them is 

I- on'kf I :r;xi- q iixkx, 

xixj = q0 (.k-•)~~xi,i 1 

(3.85) 

(3.86) 

and their •·involutions for arbitrary numbers o:, /3. If we choose o = -/3 then the 

Hermitian length L will remain central, l,f1 = /' L for any function /' of x', i:'. 
llowever. L' does not commute with .r,;i'. 
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Assuming that the exterior derivatives of the two copies satisfy the Leihniz rule 

6'/ = ±/6', l/f = ±Ji.'. 

6/' = ±/'6, 6/' = ±/'6, 

where the plus {minus) signs apply for even {odd) f and J', and 

61/ = -6'6, 66' = -6'{1, 

66' = -6'6, 661 = -616, 

(:!.87) 

(3.88) 

(:1.89) 

(:1.90) 

we obtain the commutation relations between functions and forms of different copies 

hy letting 6,6,6' and 61 act on {3.85) and {3.86). As usual, the commutation relations 

between derivatives and functions of different copies can also he derived from the 

commutation relations between differential forms and functions using the Leibniz 

rule of the exterior derivatives and the identifications 6 = dx;Di ,6 = dii lJ; for both 

copies. 

From the above we derive the braiding relations of two braided copies of C P9(N) 

in terms of the inhomogeneous coordinates. They are independent of the particular 

choice of o and /3. We have 

z.z~ = qi'l:t(z:- q- 1 Azc)::., 

z1"zh = q-•c.k-•)::zcz'•- q-1>.6: 

(3.91) 

(3.92) 

and their •-involutions as well as the commutation relations between functions and 

forms of different copies following the assumption that their exterior derivatives 

anticommute. 

The braiding can be extended to an arbitrary number of ordered copies of 

CP9(N). 
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Chapter 4 

Quantum Projective Geometry 

We will show in this chapter that many concepts of projective geometry have an 

analogue in the deformed case. We shall study the collinearity conditions in Sec.4 .I, 

the deformed anharmonic ratios (cross ratios) in Sec.4.2, the coplanarity conditions 

in Sec.4.3. hi Sec.4.4 we will show that the anharmonic ratios are the building 

blocks of other invariants. 

4.1 · Collinearity Condition 

Classically the collinearity conditions for 111 distinct points in C P( N) can be given 

in terms of the inhomogeneous coordinates {z:IA = I, 2, · .. , m; a = I, 2, · · ·, N} as 

(z;- z~){z~- z~)- 1 = (z~ - z-f)(zf- zft•, 

where A =/: B, C =/: D = 1, · · · , m and a, b = 1, · · · , N. 

(4.1) 

In the deformed case, the coordinates { :~4 } of 111 points must be braided for the 

commutation relations to be covariant, namely, 

z;zf = qk,~(z~ -q-1>.z:)z:, A$ B, (4.2) 

as an extension of (3.91). Eq.(3.92) can also be generalized in the same way, hut 

we shall not need it in this section. This braiding has the interesting property that 

the algebra of CP9 (N) is self-braided, that is, (4.2) allows the choice A= Ji. l'his 

property makes it possible to talk about the coincidence of points. Actually, thl' 

whole differential calculus for braided C P9 ( /\')described in Sec.3.3 has this properly. 

Another interesting fact about this braiding is that for a fixed index a the 

commutation relation is identical to that for braided s: 
z;::~ = lz~:; -q>.::z~\ A$ B. ( •1.:1) 
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Since there is no algebraic way to say that two "points" are distinct in the 

cldormed case, the collinearily conditions should avoid using expressions like (z:

:~)- 1 • which are ill defined. Denote 

(AB). = z:- z~. (4.4) 

The collinearity conditions in the deformed case can be formulated as 

{AB).{CD)b = q1{CD).[AB)b, \la,b (4.5) 

and A < B $ C <D. By (4.2) this equation is formally equivalent to the quantum 

counterpart of (4.1): 

(AB).(CD);1 = {AB)b{CD);', (4.6) 

where the ordering of A, B, C, D is arbitrary. The advantage of this formulation is 

that (4.5) is a quadratic polynomial condition and polynomials are well defined in 

the braided algebra. 

Therefore the algebra Q of functions of m collinear points is the quotient of 

the algebra A of m braided copies of C P,( N) over the ideal I = {/ ag : \1 J, g E 

A; \fa E CC} generated by a which stands for the collinearity conditions ( 4.5), i.e., 

o E CC = {{AB).{CD)b- q1{CD).(AB)•: A< B $ C < D}. 
Two requirements have to be checked for this definition Q = A/ /to make sense. 

The first one is that for any f E A and o E CC, 

fo = "£cz;f;, \If E A, (4.7) 

for some J; E A and o; E CC. This condition ensures that the ideal I generated 

by the collinearity conditions is not "larger" than what we want, as compared with 

the classical case. 

In fact, it is sufficient (for formal manipulations, at least) to consider only B = 

C = 111- I,D =min either (4.5) or (4.6). That is, we need only two points to fix 

a line. 

We now check that (4.7) is satisfied. Obviously we only have to consider the 

cases f = zf, for arbitrary E and c. Let cz(AB).b = {AB).[CD)b- q1[CD).[AB)b 
for C = rn- I and D = m. Using (4.2) one finds, after considerable algebra, for 

B $A< C < D, 

z~cz(AC)bc = q1 R~6R!%cz(AC)hJz:. (4.8) 

For A $ B ~ C < D, one finds similarly 

z~o(AC)b< = lil!~R!%(o(AC)h/z: + q- 1 >.o(AB)hJ[AB)9 ). ( ·1.!1) 
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Hence (4.7) is proven for 8 $C. Using 

[C D].a(AC)~>< = (k1 ):b(.ll-1 )!!a(AC)h1[C D], (4.10) 

for 8 = D and 

[8D).a(AC)&c = q-2(k1 J:Wl-1)!!a(AC)hJ[BD), (4.11) 

for 8 > D, together with the above two equations we immediately see that ( 4.7) is 

satisfied for f = z~ with B ~ D. Therefore the first requirement is satisfied. 

The second requirement is the invariance of I under the fractional transformation 

(3.60). While this can be directly checked for (4.5), it is equivalent but simpler to 

consider another expression of the collinearity conditions: 

[AB]; 1[A8)b = [CD);1[CD)6, (4.12) 

where the ordering of A, B, C, D is arbitrary. Again we only have to consider the 

independent cases of B < A = C = m - 1 and D = m. It can be shown that the 

fractional transformation has 

(AB).-+ U(Bt1(AB)•M!(A)V(At1
, (4.13) 

where U(B) = Tg + z~T;, V(A) = Tg + qzfT6 and 

So 

M!(A) = (T!~- q- 1 T~r:') + qz:(T!T~- q- 1 T~T:). (4.14) 

[AB);1[A8)6-+ 

V(A)([A8JcM:t 1([A8J.M:)V(At 1 

V(A)([A8Jc[AC); 1[AC)cM:t 1([AB).[AC); 1[ACJ.M:)V(A)- 1 

V(A)([ACJcM:t 1([A8),[AC); 1t 1([A8),[AC); 1)([AC).M6)V(A)- 1 

V(A)([AC)cM;)- 1([AC).M6)V(At1
, (4.15) 

(where we used (4.6) for the second equality) which equals the transformation of 

[AC]; 1[ACj •. This means that the relations [A8); 1[A8J•- (AC); 1(ACJ• = 0 are 

preserved by the transformation. 
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4.2 Anharmonic Ratios 

Classically the anharmonic ratio of four collinear points is an invariant of the pro· 

jective mappings, which are the linear transformations of the homogeneous coordi· 

nates. In the deformed case, the homogeneous coordinates are the coordinates .r, 

of the GL9 (N +I )·covariant quantum space, and the linear transformations are tlw 

GL9 (N +I} transformations which induce the fractional transformations (3.60) on 

the coordinates z. of the projective space C P9(N). 

We consider the following anharmonic ratio of C P9(N) for four collinear points 

{z~IA = 1,2,3,4} .. 

[A1).[A4);1[84).[81);1
, (4.16) 

where A, B = 2, 3. We wish to show that it is invariant. Using (4.13) and denoting 

r(A) = (1A).(14];1, which is independent of the index a according to the collinearity 

condition, we get 

[A8). -+ U(8t1(r(A)- r(B))P.(A)V(A)- 1
, (4.17) 

where P.(A) = -[14)6M!(A). Then the anharmonic ratio (4.16) transforms as 

(Al).(A4);1(84).(B1); 1 -+ U(W1r(A)(l- r(A))-1(1- r(B))r(B)- 1U(1) 

= r(A)(l- r(A))-1(1- r(B))r(Bt 1 

= (A1).(A4];1(B4].(B1];1
, (4.18) 

where we have used z!r(A) = r(A)z! for any A ;::>: 1, which is true because we 

can represent r(A) as (1A).(14); 1 with the same index a and then use z![A8). = 
q2[A8).z!. 

Because of the nice property ( 4.3), we can use the results about the anharmonk 

ratios of s: ( which is a special case of C P9(N) with N = 1 but no collinearity 

condition is needed there) in Sec.2.8. Note that all the invariants as functions of 

z: for a fixed a in C P9( N) are also invariants as functions of zA = z: in s:. The 

reason is the following. Consider the matrix Tt defined by 

Tg =a, ~ = /3, 
T0 = -y, r: = 6, 

(4.1!1) 

(4.20) 

where a,{3,-y,6 are components of an SU9(2)·matrix, Tf = I for all b :f. O,a and 

all other components vanishing. It i~ a G £,9( N + I )·matrix, but the transformation 
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(3.60) of z~ by this matrix is the fractional transformation on s: with coordinate 

z" = z~. 
Therefore, by simply dropping the subscript a, the anharmonic ratio ( 4.16) 

becomes an anharmonic ratio of s:. On the other hand, since all other anharmonic 

ratios of s: are functions of only one of them, their corresponding anharmonic ratios 

of CP9(N) (by putting in the subscript a) would be functions of (4.16) and hence 

are invariant. Therefore we have established the fact that all invariant anharmonic 

ratios of C P9( N) are functions of only one of them. 

4.3 Coplanarity Condition 

In the above we have seen that the collinearity condition is imposed by taking the 

quotient of the algebra of inhomogeneous coordinates over an ideal generated by 

(4.5). This is analogous to what one does to obtain s: as the quotient of Sl/9(2) 

over U(l) in Sec.2.2. In general, by taking the quotient of the algebra over an 

ideal we obtain the algebra for a submanifold. However, there is another way 

to formulate the collinearity condition. It will allow easy generalizations to the 

coplanarity conditions. 

4.3.1 Homogeneous Coordinates 

Consider in terms of homogeneous coordinates two points xA and x 8 defining a line. 

Classically a point on this line can be given as 

:rf = /lAXr + /lBXr, i = o, ... N, (4.21) 

for some /lA and /lB· 

In the quantum case, we interpret llA and /lB as operators corresponding to the 

"observables" 1 when one measures the location of a point on this line. 

The commutation relations between /lA. /lB and those between the p"s and x". 

:r 8 are to be determined by the requirement that xc defined in ( 4.21) shall satisfy 

the correct commutation relations among different components of xc and those with 

xA, :r 8 according to (3.1) and (3.85). 

The transformation of xc should be the same as xA and x 8 , namely it transforms 

linearly under GL9(N + 1). This is achieved by simply assigning /lA and /lB to be 

invariant. 

'Strictly speaking only the ratio of I'A and J•s ran be an ob..,rvable in the projcrtivP 'parr. 

.16 

The fact that one can adjoin #JA and #JB in a consistent and covariant way is 

almost equivalent to the consistency and covariance of the collinearity condition 

(4.5) above. The latter can be obtained from the former. From (4.21) we have 

zf = U.4Zr + UBZf, (4.22) 

where u A = (x~t• #JAX~ and similarly for UB· Since x~ = #JAX~ + #JBXC, it follows 

that UA + UB = I. Choose a certain number for the index i in (4.22) one can solve 

for uA (or UB) in terms of the z's. Choosing another number fori gives another 

solution. Equate the two solutions; one gets the collinearity condition (4.5). 

The same procedure can be carried out for not only lines but also planes, or 

higher dimensional subspaces spanned by a finite number of points. 

Consider the r-dimensional subspace spanned by r + 1 points { x"} Aet where I 
is a set of r + 1 different numbers. Define 

XB = L ~~~XA 
AEI 

(4.23) 

for some B > I, namely, B > A Cor all A E I. Here and later we shall skip the 

lower indices when no confusion can arise. 

The requirement B > I comes fro"m our convention that for all the coplanar 

points (all points lying on the same hyperplane) we label them in a certain order 

and we always choose the first r + I of them as the reference points and all others 

are referred to by their corresponding p's. 

To get the commutation relations for the p's, we impose appropriate commuta· 

tion relations for :r8 . 

First, according to (3.85), for :r8 to commute correctly with xA, A E I, we let 

forCE I. 

:r"p~ = q2o/l~XA, C < B, 

xA ~~~ = q0 (qll~XA + ,\ LC<A ~~~xc), 

xA~~~ = ~~~xA, C > B 

(4.24) 

(4.2.5) 

(4.26) 

It turns out that ( 4.26) is also sufficient to guarantee that x 8 commutes with 

xA correctly for A < I, i.e. A is smaller than any number in I. For A > B, we find 

XAilg = #lgXA. (4.27) 

However it is not possible to do this for other possibilities of A. Hence we are 

allowed to have additional points which are not on the same hyperplane with .r 8 

lmt they have to be labelled outside the range reserved for the hyperplane. 
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For two points x 8 and xc with I < B < Con the same hyperplane to commute 
correctly with each other we need 

PZP~ = q20Jl~pg, D < E, 

I'ZPb = qo+lPbPZ. 

,,gp~ = ''~llZ + qo .\pgp~, D > E. 

(4.28) 

(4.29) 

(4.30) 

The last requirement is for the components of x 8 to commute correctly among 
themselves. It is 

,,g,,z = qo+~llZP~. c < D. (4.31) 

This concludes our attempt to adjoin the p's to the algebra of {xA)AeT· Similarly 

the •-involution of the p's can also be adjoined together with the p's to the algebra 
of {xA,xA}AeT· 

Since the labels A, B, C, ···only need to be ordered, they can be real numbers 

and so we can have uncountably many points on a hyperplane. Let S be the set of 

all labels of points on a hyperplane. In the above we took the smallest r + 1 numbers 

in S as the set of labels I for the reference points of the hyperplane and the algebra 

of functions of all the points {xA}Aes is generated by {xA}AeT and {p~J!if' 1 . 
Had we made a different choice of/, we would get another algebra which in 

general involves more complicated commutation relations for the p variables. But 
it is simply a change of variables. 

Another choice of I that would lead to a simpler algebra is to take I to be the 

largest r + I numbers in S. Let us use v instead of ll for this choice. Eq.(4.23) is 
now replaced by 

x 8 =2:v!xA 
AEI 

{4.32) 

forBES, B < I. The algebra for this case can be obtained from (4.24-4.31) by 

replacing p by 11, "<" by ">" and ">" by "<". 

4.3.2 Inhomogeneous Coordinates 

In this subsection we will get the coplanarity condition as a generalization of the 
collinearity condition ( 4.5 ). 

From the previous subsection, for r + 1 points spanning an r-dimensional hy
perplane, we have 

.B " 8 A - = ~ UAZ I 

AEI 
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where u~ = (xg)- 1 v~x~ and L:AefU~ = 1. By a change of variables for u~. and 

letting I = {I. 2, · · · , r, r + I}, B = 0, it is 

r 

(Oij; = 2:r;(j(i + l)j;, (4.:H) 
j:l 

where (ABj; = zt - zf and the r's are independent linear combinations of the u ·s. 

Choose a set H of r different integers from I, 2, · · ·, N. Consider the r equations 

(4.33) fori E /\. Ld I(= {o11 o,, ... ,o,}, M/ = (j(j + 1)(0 , and M? = (Oilo,· 
Then 

r;=M?(M- 1 )~, j=1,2, .. ·,r, (4.34) 

where M-1 is the inverse matrix of (Mj)iJ=•· 

To find the invcr!•e matrix of M, we note that the commutation relation between 

two entries of M is almost the same as that for a GL9(r)-matrix. Let {g;; i = 
1, 2,· · ·, r} be defin··oi as a quantum hyperplane: 

gigi = qgigi, i < j (4.3.')) 

and T be a GL9 (r)-matrbc which commutes with all the gi's. Then the commutation 

relations for Mj is identical to those for g1Tj (i not summed over). With the help 

of this identification 

Mj =g1Tf, (4.36) 

we find 

(M-1 )~ = (git•(r-·)~. {4.37) 

It is known (16) that 

(r-• );· = (-q)i-; "(-q)''~'r• ... ri-• ri+• ... rr (det (T))- 1 
J L-.J "• o1-1 "J+I a,. q ' 

~eP 

where Pis the permutation group of r-1 objects, l(u) is the length of a permutation 

u and det 9(T) is the quantum determinant 

det 9(T) = t;1; 2 ... ;,T;~ · · · T[., 

where 

(~.~ ....... = ( -q)'l~l 

for u being a permutation of r objects and 0 otherwise. 

Even though M is not a GL9 (r)-matrix we define 

dct 9{M) = (;, ... ;,M;1, • • • MJ •. 
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M··l is then found to be 

(M- 1 )~ = ( -l)i- 1
t;;,. ;,M;~ · · · M/,- 1 Mt,:: · · · M[.(dct.(.H)t 1

• 

Hence by (4.34) 

(-I )1 -
1 r; = det,(M(j))(det,(M(0)))- 1, 

when• 

det,(M(J.)) = t; ... ; M0 M 1 ••• Mi-• Mi+~ ... M~ 
I r IJ IJ IJ IJ+I lr 

(so that det 9(M(O)) = det 9(M)). 

Since this solution of T is independent of the choice of II, by choosing another 

set 1\' we have another matrix M' and (-J)HT; = det9(M'(j))(det9(M'(0)))-1. 

Theref·>re we get the coplanarity condition 

det,(M(j))(det,(M(0)))-1 = det9(M'(j))(det9(M'(O))t 1 (4.38) 

for all J = I,···, rand any two sets of indices J( and /('. This is obviously equivalent 

to 

det9 (M(j))(det9(M(k))t1 = det9(M'(j))(det9(M'(k)}t 1 (4.39) 

for all j,k = 0,· · · ,r. 

If N ~ 2r then one can choose /( < /(',i.e., any element in /( is smaller than 

any element in I(', then one can show that 

det 9( M(O) )det9 ( M'(O)) = q' det,( M'(O))det9 ( M(O)) 

and a polynomial type of coplanarity condition is available: 

det9(M(j))det9(M'(k)) = q'det9(M'(j))det9(M(k)). (4.40) 

The algebra of functions of r + I coplanar points is therefore the quotient of the 

algebra generated by {zA}~=o over the ideal generated by(4.40). 

4.4 Other Invariants 

The anharmonic ratios are important because they are the building blocks of invari

ants in classical projective geometry. For example, in the N-dimensional classical 

case for given 2( N + I) points with homogeneous coordinates { xn, inhomogeneous 
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coordinates {z~1 } where A= 1.···,2(N + 1), i = O,I,···,N and a= l,···,N, we 

can construd an invariant 

dd(xl ¥2 ... :rN ;rN+l)Jet(xN+1 :rN+J ... x2(N+II) 
I= ' 4

' ,. • ' '... (441) 
det(xl, .:r2, .... ;rN .. :rN+1)det(:rN+1 .. :rN+3, ... , x2(N+II)' . 

wiH"rt' tit/ ( _, .. ·lo. · · · • _, .. ·•" ) is th(· dell~nninant of the matrix .11; = .r/'. i. 1 = 0. · · · . :\'. 

which equals the determinant of the matrix 

( 

I .. · I ) .Ao A, 
~~ ~' • Zt' 
. . . . . . 

z~• .. · z~" 

(4.42) 

multiplied by the factor x:• · · · x:", which cancels between the numerator and 

denominator of I. It can be shown that this invariant I is in fact the anharmonic 

ratio of four points z, z', zN+I, zN+2, where z (z') is the intersection of the line 

fixed by zN+l,zN+l with the (N- I)-dimensional subspace fixed by z1, ... ,zN 

(zN+3
1 
••• 

1 
z2(N+II). 

For the case of N = 2 (see Fig.4.1 ), I is the ratio of the areas of four triangles: 

I = 6123 6458 I ( 4.43) 
6n• ~3ss 

which is easily found to be 

I=~m 
A4FJ' 

the anharmonic ratio of the four points A, B, 3,4. 

(4.44) 

It is remarkable that all this can also be done in the quantum case. We have 

already formulated the condition for N points to share an (N - I)-dimensional 

subspace and we will construct an invariant / 9 using the quantum determinant. 

Furthermore, we will show how to describe the intersection between subspaces of 

arbitrary dimension spanned by given points. It can be shown that the invariant 

/ 9 is indeed an anharmonic ratio in the same sense as the classical case. These are 

the topics of this section. 

First, the interst ~lion of two hyperplanes is represented by 

xA = L ~~~xB = L v~xc, 
BEl CEI' 

where the ordering is I < A < 1'. For xA to have the commutation relation (3.1 ), 

we let 

~~~~~~ = qJo-111~/1~ 
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Figure 4.1: The invariant I as a cross ratio of A, 8,3,4. 

for B E I and C E /'. 

The quantum determinant of the matrix ( x1' )fj=O• where there are N + I vectors 

labelled by A0 , ···,AN, is defined by · 

del9(xA.o, · · ·, xAH) = tr0r1 ... ,NX~0 X~ 1 • • · x~;. 

Under a simultaneous transformation x"· -+ Tx"• Cor all i, where elements ofT 

commute with components of z, the determinant is transformed by 

det,(x)-+ det9(T)det,(x). 

If one interchanges two neighboring vectors in the matrix, since(/ +qR)~1L.kf ... 
0, det,(x) changes by 

det,(···,x",x 8
,·· ·) = -q*lo-lldet,(··· ,x8 ,x",···) 

for J1 < B (+)or A> B (-).Note that det,(x) vanishes if A= B. 

The invariant /9 of 2N + 2 points is defined lo be 

I,= (1,2, ... ,N,N + 1)(1,2, .. ·,N,N +2t' X 

x(N + 2,N + 3, .. · ,2N + 1,2N t 2)(N + 1,N + 3, ... ,2N + 1,2N t 2t'. 

ll'hcre we denote (A 0 ,· ··,AN)= tld 0(.T·40 .· · · ,r-~"') 
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Consider the line fixed by zN+t and xN+l. It has an intersection with the 

hyperplane spanned by x 1, • • ·, x"' at 

N 
A N+l + N+l _ '\' i X = VN+tX IIN+2X - L_./JiX, 

i=l 

N < A < N + l. Similarly it has an intersection with the hyperplane spanned by 
xN+3, ... , x2N+2 at 

2N+2 
8 N+l + N+2 '\' i X = /lN+tX IJN+~X = L,. V;X , 

i=N+J 

N +2 < B < N +3. 
Now 

(l,···,N+l) = det9(p.j' 1p1x1
,::2 , ... ,xN+I) 

N 
- -IJ t ('\' . i 2 N+l) - p. 1 e 9 L..p.,.r,x, .. ·,x 

i=l 

= Jlj' 1dei,(VN+lXN+l + VN+2XN+2,x2,· ··,xN+l) 

= pj' 1det9(VN+2xN+2,x2,· • · ,xN+I) 

= p.j'1v.IV+2(N + 2,2, .. · ,N + 1). 

Similarly, 

{I,· .. , N,N + 2) = -q0
-

1p.'j1VN+t(N + 2,2, .. · 1 N + 1), 

(N + 2,N + 3, ... ,2N + 2) = (-q0
-

1)NviJI+2p.N+l(N + 1,··· ,2N + 1) 

and 

(N + l,N +3, .. ·,2N +2) = (-qo-t)N-tviJHilNH(N + 1, .. ·,2N + 1). (4.45) 

Therefore, 

I -· _, 
q = IIN+2"N+tllN+lllN+2' 

Note that 

IA(N + !Jr'IA(N + 2)1 = -(x~+2t 1 v;;i~211N+tX~+l 

and similarly 

ID(N + I W'IB(N + 2)) = -(x~Hr• P.'N~2IIN+•x~+t. 
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Thus 

I,= [A(N + 2)1-'[A(N + l)l[B(N + lW'[B(N + 2)1, 

where we have used 

x~+l/JN+J = q0- 1 !JN+JX~+I, 

.t~+liJN+2 = q-10iJN+2X~+I 

and the same for the v's. Hence /9 is indeed the anharmonic ratio for the four 

points A, B, (N + 1), (N + 2). 

64 

Chapter 5 

Quantum Riemannian Geometry 

An algebraic formulation of Riemannian geometry on quantum spaces [621 is pre· 

sented, where Riemannian metric, distance, Laplacian, connection, and curvature 

have their counterparts if the space is equipped with a •-involution and a Hodge 

• map. This description is also extended to complex manifolds. Examples include 

the quantum sphere, the complex quantum projective space and the two-sheeted 

space. In addition to the possibility of applying it to describe physics at the Planck 

scale, this formulation can be used for Kaluza-Kiein theories to build models with 

the extra dimensions corresponding to quantum spaces. 

5.1 Introduction 

In [631 Chamseddine, Felder and Frohlich developed the notions of Riemannian mel· 

ric, connection and curvature in the framework of the non-commutative geometry 

of Connes [21. In their formulation the Hilbert space representation is a prercqui· 

site. The purpose of this chapter is to propose a purely algebraic formulation of 

Riemannian geometry on quantum spaces. It is hoped that it will be suitable for 

physicists to build physical models. The question of mathematical rigor is left for · 

future study. 

In Sec.5.2 we describe thi~ algebraic formulation of Riemannian geometry on 

quantum spaces and complex quantum manifolds. It is applied to the quantum 

spheres: (Chap.2) in Sec.5.3. In particular the explicit expression for the quantum 

distance is worked out. A comment on its relation to Connes' work is made. The 

complex projective space C P,(N) (Chap.3) is considered in Sec.5.4, and the two

sheeted space [631 in Sec .. ).5. 
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5.2 Riemannian Structure on Quantum Spaces 

In Sec.5.2.1 we give the convention and assumption about the differential calculus 

for this chapter. 

5.2.1 Differential Calculus on Quantum Spaces 

A quantum space is specified by a unital, associative, non-commutative •·algebra 

A generated by {l,x",I;} over the field k = C, where the x•'s are the coordinates 

on the quantum space, and the I;'s are non-commutative constants, including for 

example the generators of the algebra of functions of the quantum group which 

specifies the quantum symmetry on the quantum space. A is called the algebra of 

functions on the quantum space. 

To talk about differential geometry on the quantum space, we should have A 
extended to the differential calculus !1(A) generated by { l, x•, ~·, x., I;}, where 

the commutation relations among the generators are given so that one knows how 

to rewrite a product of elements in !1(A) in any preferred order of the elements. 

(But the comm.utation relations between {0 and X6 are not necessary.) The ~··s 

are differential one-forms and the x. 's are the derivations dual to them so that 

the exterior derivative is d = { 0 Xo when acting on functions. The •-involution on 

functions is also extended to all elements in !1(A) and it always reverses the ordering 

of a product. All constants, namely the unity or I;'s, should vanish under d. 

All the commutation relations should never mix terms of differential forms of 

different degrees so that !1(A) is graded. The action of dis (da) = (d, a] = da- ad 

for even a (including elements in A) and (da) = {d,a} = da +ad for odd a. The 

Leibniz rule follows from this definition. We take the convention that (da)' = d(a') 

for even a and (da)' = -d(a-') for odd a. That is, dis anti-self-conjugate: d" = -d. 

We also require the nilpotency of d, namely, dd = 0. 

5.2.2 Riemannian Metric, Vector Fields and Tensor Fields 

A general coordinate tran~iormation is specified by x• -+ x'•, where x'• = x'"(;r) 

are elements in A. (Einstein's summation convention applies to the whole chapter 

unless otherwise stated.) This transformation induces the transformation of~·. For 

example, if 

{" = I:;Jt(x)dg;'(x), (5.1) 
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then 

~· _. r· = E mx'Jdgi(x'J, 

where 'a' is not summed over. Re-expressing f• in terms of~· and using commu· 

tation relations between x• and ~· one can re-write the formula above as 

~d-+ f" = ~6M6 "(x) 

for a certain matrix M6 • of elements in A. 
Since the transformation is not supposed to change the exterior derivative, i.e .. 

d = ~·x.-+ d' = e'"x~ = d, sox.-+ M-1
•

6x•· 
A Riemannian metric g46(x) is an invertible matrix of elements in A which 

transforms like a rank-two tensor (to be defined later): 

g••-+ g'•• = M;•g«~Md•, 

where M;• = (M:)", and is also Hermitian-symmetric: 

(g"6)· = l•. (5.2) 

Note that this symmetry is preserved by the transformation. lu the classical case 

there is no need of the •·involution (complex conjugation) in (5.2) if all coordinates 

are real. But if one is allowed to use complex coordinates, for example, (x, y) -+ 

(x + iy, x - iy), then (5.2) is a reality condition for the Riemannian manifold. 

The existence of the inverse of g•6 is assumed and it is denoted as 9a6 so that 

g"6gk = 6: = 9cb96o. The transformation of 9o6 follows this definition. 

A covariant vector field is a set of elements {a.} in A which transform like {X a}: 

a.-+ M; 1•a •. 

Similarly, {{J"} is called a contra-variant vector field if it transforms like{~"}: 

p• -+ p• Mb •. 

Note that a = ~·o. and {3 = f3•x. are both invariant: a -+ a, {3 -+ {3, so that 

we can simply use a,/3 to denote the vector fields {a.} and {{3"} in a coordinate

independent way. 

Similarly we can define rank-two tensors of different types according to their 

transformations: 

a••-+ M;•a<dMd 6, 

a
0

6 -+ M.-lca/Md 6, 

a".-+ M;•a<d(M6-
1d)•, 

Oa6-+ M;;1'a<d(M6-Jd)', 
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where M;• = ( M< • )". Just like in the commutative case, the positions of indices of 

a tensor tell you the way it transforms. In these formulas, the ordinary contraction 

of indices is of this type: '\., When indices are contracted as /'. •·involution is 

involved. 

Furthermore the Riemannian metric g_. can be used to raise or lower indices: 

o• = o;g&.., (·'i.:J) 

o 0 = g_.(o6)", (.'i.-1) 

ad= g•<oc6• (5.5) 

0 0 6 = 0 0 <gcb, (.'i.6) 

and so on. Because of eq.(5.2), if we raise and then lower an index we will get back 

to the original object. It can also be ·checked that (o")",86 and o.,86 are tensors if o 

and {J are vectors. The contraction of indices of tw:l tensors can make a new tensor. 

But sometimes the contraction of indices has to be accompanied by appropriate 

•·involution. 

As o•fJ. is invariant for any two vector fields o and {J, we can always use the 

Riemannian metric to define the inner product (-, ·) between vector fields o, {3 as 

in the classical case. For example, 

{o,/3) = {e"o.,{61J6) = o;{{",{6)/36 = o:g"6/36. 

(o, /3) = (o• X•• f36X6) = o•(x., X6)/J6" = o•g.6/36". 

In both cases, {o,/3) = ({J,o)". 

The magnitude of a vector [ol2 = (o,o) is real: lol2
" = [o[2, due to eq.(5.2). 

The invariant operator 

'il2 = x·x. = x:gobx6 (.'>.7) 

is called the Laplacian. It can be used to define the equation of motion for a scalar 

field til with mass m as 

(V2 + m2)t = 0. 

The non-commutativity forbids any tensor of rank higher than two. Therefore 

physical laws, if written as equations of motion, can only be written in terms of 

scalars, vectors, and rank-two tensors. Fortunately all major classical physical laws 

are governed by tensorial equations of rank less than or equal to two. On the other. 

hand if the physical laws are written in terms of differential forms, there is no limit 

to the degree of the forms. 
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Given a Hilbert space representation of the algebra A on 1{, one can define LIH' 

"distance" between two states s, s' (as generalized points) as [21 

D(s, s') = sup{ls(f)- s'(/)[: llld/12
11 $ I ,J E A}. (!j.:;) 

The definition of [df[2 is based on the metric gob and therefore the metric possesses 

the classical geometrical meaning. The norm II · II is defined by 

An algebraic version of quantum distance can also be given without mentioning 

Hilbert space representations. An example is given in Sec.5.:J. 

5.2.3 Connection 

As defined in [631, a connection 'il acts on f E A as d: 'il f = df, on ~· by the 

connection one-forms w6 •: 

v~· = e ®.A w6. 

and on a one-form o = {"o. by the Leibniz rule: 

'ilo = (V{")o.- {"®.A (do.) 

-{"®.A (Vo)., 

(.5.9) 

where (Vo). = da • . - w. 6o6. The tensor product ®.A is defined so that of ®.A f)= 

o ®.A f{J iff E A. 
For (Va). to be a covariant vector the connection one-form has the transforma· 

Lion 

w. 6-+ M.-•cwc d Md6- M;;lcdM< 6. 

For the Leibniz rule to hold on the inner product: 

d(a,/3) = V(o,/3) = (Vo)"/3. + a"('il{3) •• 

we define 

(Vo)" =do"+ o6w6 •, 

which also ensures that (Vo)• is a contra-variant vector. 

The covariant derivation of o in the direction of the vector field P is 

1'ilpa)" = (/3,{Va)"). 
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The equation of geodesic flows is therefore 

('V0 o)" = 0. 

To define the action of 'V on rank-two tensor fields we consider the scalar I = 
o;-y"6f36- Because I is a scalar field, we have the equation: 'VI = dl. By the 

undeformed Leibniz rules of '\7, we should have for the left hand side (omitting the 

symbols ®A) 

'\7(o:,.·6/36) ('Vo):""Y"6Pb + a:('\7/")"b/36 + o:-r•b('\78)6 

= (da.- w. 'a,)"-y•bpb + o:('\7-y)•bpb + a:-y"6(df36- wb '{3,), 

and for the right hand side 

d(a:-r"6/3b) = d(a:h•bpb + a:d-y"b/36 + a:1"6dfl6· 

Identifying them we find 

('V-y)"6 = d-y•6 + -r"'w/ + (w. ·r,.cl.. 
which also ensures ('V-y)"6 to be a rank-two tensor. 

Suppose one has the physical law ('Va)• = p•, it is equivalent to ('Va). = {3. if 

('Vg)•6 = dg•b +w•b +(wba)• = 0, (5.11) 

which is called the metricity condition. 

If dg"6 = 0, we have from the metricity condition (w"6)" = -w6•, where w•b = 
g"'w, 6. 

The torsion T" is the covariant vector defined by (63j 

T" = (d- rn o '\7){" = d{"- ew6 •, 

where m is the multiplication map m(a 0 /3) = a/3. 

In the classical case Eq.(S.ll) and 

T" = 0 (5.12) 

plus the reality conditions imply that the connection one-form w. 6 is uniquely fixed 

by the metric g•b. The general expression for the analogous reality condition in the 

quantum case is so far unknown. The difficulty is that the general transformation 

will spoil the reality of a non-invariant quantity. One has to invent appropriate 

conditions for each particular case according to its algebraic properties. 

For the quantum complex Hermitian manifold defined later, the situation is 

much simpler. Just like its classical counterpart, Eq.(5.11) alone determines the 

connection uniquely. 
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5.2.4 Curvature 

The curvature two-form is a rank-two tensor defined by 

R.6 = Jw.6- w. 'w, 6. (5.13) 

Using (5.11), one can show that 1 

(Ro6)" = J4,. 

It is easy to check that the Bianchi identity and consistency condition are sat

isfied: 

dR.b - w. • R. b + R."w. b = 0, 

dT" = { 6Rb"· 

Classically, in order to have the scalar curvature and Ricci tensor one usually 

just strips the differential forms from the curvature two-form R. 6 to get R. 6 cd and 

then contracts b, d for Ricci tensor, and contracts in addition a, c for the scalar 

curvature. However in the deformed case this kind of operation is not covariant 

under general transformations. 

Another more elegant way of defining the classical scalar curvature and the Ricci 

tensor is to use the Hodge •. In the quantum case, the Hodge • is required to satisfy 

• (fag)= l(•a)g, Vl,g E .A, a E O(.A) (5.14) 

and 

( •a)" = •(a"), Vo E O(.A), (5.15) 

so that the scalar curvature defined as 

'R. = (-1)0
+1 • ({"(•R.6){b) (5.16) 

is invariant under general transformations (D is the dimension of the space) and 

real ('R." = 'R.). The integral 

I {"(•R.b){b (5.17) 

is a candidate for the action of a gravitational theory on the quantum space. 

1 Note that the •-involution reverses the order of everything in a product, including one-forms, 

which may cause sign changes. In the classical caae since Rat is a tw<>-form, (Rat)" = -R., = R,., 
whcrr u •• is thr complex conjugate of n ... 
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Similarly one can try to define the Ricci tensor as 

n.6 = •(( •R:)ece6
). 

There are, however, many other inequivalent expressions that are covariant under 

the general transformations. For example, it is equally justified to define the Ricci 

tensor as 

n: = •(e.n•R/)). 
This ambiguity in the Ricci tensor makes the scalar curvature better suited for 

physical applications. 

One can define the operator 6 = - • d• for a quantum space, and nat.nrally one 

will define the Laplacian by 'il2 = -(d+6)2
, which is equivalent to -6d when acting 

only on functions if 65 = 0. In such cases the metric is determined by tl1e Hodge • 

according to (5.7). 

5.2.5 Complex Manifolds 

We define complex quantum manifolds (more precisely, Hermitian manifolds) to 

be an associative •-algebra .A generated by { 1, z•, .i1 } together with its differential 

calculus !l(.A) generated by {l,z",z1 ,dz",d.i1 ,8.,8a} with the following properties: 

l. d = 6 + 6, where 6 = dz•B. and 6 = b4di1 2 (when acting on functions) with 

66 = 66 = 0 and 66 = -66. 6 and 6 should observe the Leibniz rule separately, 

and (flo)" = ( -l)P6( o") for any form o of degree p. 

2. The generators of the algebra are divided into the holomorphic part { z•) and 

the anti-holomorphic part {Z4 = (z")"). The one-forms {dz"} and {dz5 } are 

all independent. 

3. Denote n+(.A) = {dz"o. : a. E .A} and n-(.A) = {oadz5 
: Oa E .A). 

The commutation relations between one·forms ... nd functions in .A satisfy 

!l*(.A)A = .A!l*(.A). That is, !l*(A) do not get mixed by the commuta· 

tion relations. 

4. The metric g46 = (g'•)• is given. The connection one-forms w! and w4 ' = 
(w:)" are assumed to be w: E n+(A) and Wa' E n-(.A). The Leibniz rule 

holds for the connection 'il and we have 'il dz• = dz6 ®...t w6 • and 'il dz1 = 

-dz' ®.A w, a. 

10bviously here 6 is the holomorphic part of d rather th&n - • d• defined in the previous 
Sl'CI ion. 
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The coordinate transformations are restricted to the holomorphic transforma· 

lions only. Holomorphic transformations are defined as those which map ;;• to 

holomorphic functions f"(z) and z1 = (z")" to (f"(z))". The properties of a com· 

plex manifold imply that this transformation induces the map dz" --+ dz6 M6 • where 

M. 6 is holomorphic, namely, 6M. 6 = 0. Similarly, we have dz1 --+ (dz6M6 ")" = 

(M. 6)"dz' where ( M. 6)• is anti·holomorphic, 6(M. 6)" = 0. 

All the formulas we had before for Riemannian manifolds can be easily modified 

for a complex manifold with the understanding that the indices are only summed 

over the holomorphic or anti-holomorphic part. 

With the fourth property of a complex manifold, Eq.(5.11) says 

dl6 +wlal6 + l<wc6 = 0. 

Since d = 6 + 6 we can separate the equation into fl+(.A) and n-(.A), and so the 

connection can be directly solved: 

w: = -g.l(6gtb). (5.18) 

Only the holomorphic transformations will be consistent with this solution. (That 

is, the transformation of the connection induced from the transformation of the 

metric by these expressions will be the same as (5.10) only for holomorphic trans· 

formations.) 

From Eq.(5.13) the curvature two-form can now be expressed directly in termsr

of the metric as 

R! = 6w! = -6(g.l6gl6). (5.19) 

The curvature two-form gives the scalar curvature according to (5.16) with the 

indices restricted to the holomorphic or anti-holomorphic part. The scalar curvature 

for a complex quantum manifold is 

1?. = (-1)0 +1 • (dz"(•R.,)dz'). (5.20) 

The definition of the Ricci tensor is not unique. 

The condition (5.14) for the Hodge • can be weakened to be no more than an 

ordering prescription: 

•(f(z)og(Z)) = f(z)(•o)g(z). 

Due to the extensive use of the •-involution in the quantum case, we see that the 

complex structure helps to admit a Riemannian structure. 
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5.3 Quantum Sphere s; 
The Riemannian structure on a quantum space with a quantum group symmetry 

can be required to respect its quantum symmetry. 

In this section we consider the quantum sphere described in Chap.2 as an ex· 

ample of both Riemannian manifolds and complex manifolds. 

5.3.1 S~ as a Complex Manifold 

In this subsection we will treats: as a complex quantum manifold. 

Metric And Connection 

The notation itself suggests that we take n+(X) = X dz and n-(X) = X dz, where 

X denotes the algebra of functions on s:. Let the only possible value Cor an index 

be 0, that is, z0 = z and z0 = i. Also denote g = g00 and g-• = g00. To d<'fine 

the metric g we note that for s: the Laplacian, the SU9 (2)-invariant di!Tcrcutial 

operator of order two, is 

V 2 = -c(1 + zz)288, (.5.21) 

where c is an arbitrary real number. On the other hand, the Laplacian of s: · 
as a complex manifold, the holomorphic-transformation independent di!Terential 

operator of order two, is {}'g{}. Equating these two expressions one gels 

g = q2c(1 + iz)2
• 

Because the factor ( 1 + iz) will appear frequently, we shall denote it in the following 
~ I 

p = 1 + iz. 

Classically any two-dimensional complex manifold is also a Kahler manifold and 

one can locally find a Kahler potential. Analogy can be made here. Define the 

1\ii.hler form to be/( = dzg- 1dz. (It plays a special role in the differential calculus 

as described in Chap.2.) Obviously d[( = 0 for the same reason as in the classit-al 

case. The Kahler potential V defined by .S6V = /( therefore exists. One can solve 

for V in terms of the q-deformed log: 
00 

V = q-•c-'L:Iog9-1(1-p- 1) 

n=O 
00 p-(n+l} 

-4 -I " ;-'-~;--
q c f:'o In + llq-1 • 
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where [n[9 = 9;;:,'. In fact, the Kahler form dzg- 1dz is also the volume form (up 

to normalization). 

Using (5.18) and (5.19), we can immediately find the connection form and the 

curvature two-form: 

woo= -q2(1 +q2)dzp-•z, 

Roo = q4( I + q2)dzdzp-2. 

It is easy to see that the torsion is zero in this case. 

We define the vielbeins on s: as 

e = p- 1dz, e = p-1dz. 

The commutation relations between e, e and z, z are si~ply classical: 

ez = ze, ei = ze, 

ez = ze, ei = ze. 

(5.22) 

(5.2:3) 

(5.24) 

The Hodge • map satisfying (5.14), (5.15) and •2 =±as in the 1=lassical case is 

given by 

(•e) = ie, (•e) = -ie, 
(•1) = ic'-1ee, (•ee) = -ic', (5.2.5) 

where c' is a constant, and the action of Hodge • on any form follows (5.14). 

Now we can define 6 = - • d• and V2 = -!(d + 6)2• 
3 When acting on a 

function f, 

V2/ 
I -.d. df 
2 

= -c'p2(}fJJ. 

Hence c' should be identified with c because of (5.21). This identification further 

justifies our Hodge • structure. 

The scalar curvature is found to be 

n = cq2(1 + q2
). (.').26) 

The Ricci tensor defined by (5.2.4) is 

noo = cq4(1 + q2). (.5.27) 

3 11ere we have a factor or! because we wARt to identify V 2 with (5.21). which is only lhP 

holomorphic part in -(rf + 6)2 . 
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5.3.2 s; As a Riemannian Manifold 

In this section we treats: as a (real) Riemannian manifold. The difference between 

Riemannian and complex manifolds is that the latter is not invariant under general 

coordinate transformations. When indices are contracted for a complex manifolcl 

they are summed over only half (the holomorphic part) of the possible values if 

viewed as a Riemannian manifold. 

Assuming that yfJO = li:J in the Riemannian case (since we had g00 = yf){) in the 

complex case), we get from (5.21) 

lJO = g'i:J = __ c_pl. 
1 + q-1 

Note that since the normalization of g is changed from Sec.(5.3.1), the parameter 

d used in (5.25) should be changed accordingly. 

The equation 'ilg00 = 0 is identical to the one solved earlier for s: as a complex 

manifold and we assign w0 ° to be the same as (5.22). Let 

woo = -(1 + q-2)d.zp-• z, 

which would be the complex manifold connection form w0 ° had we labelled the 

coordinates the opposite way: ZO = z, and z0 = %. It satisfies 'ilg00 = 0. 

Similarly, the curvature two-form ~0 is given by (5.23) and R0° is 
~0 = 6w0° = (1 + q-2 )dzdzp- 2

• 

A straightforward calculation shows 

Roo= ~(I+ q2)l, 

noo = ~(1 + ql)2, 

n =HI +q2)3. 

This is different from (5.26) and (5.27) by constant factors. The reason is that the 

Riemannian structure of s: as a Riemannian manifold is concerned with the general 

transformations and that of s: as a complex manifold is concerned only with the 

holomorphic transformations. Unlike the situation in the classical case, with only 

the holomorphic description of the complex manifold s: one will never be able to 

know its Riemannian strudure due to the non-commutativity of the algebra. 
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Distances on s: 
Now we consider the "distance" between "points" on s:. As mentioned earlier. 

(5.8) can be used to define a number called the distance between any two states. 

Before finding the distance we display a representation of s: which shows clearly 

the correspondence between states and points. The basis of the II ilbert span· i, 

labelled as lk,O) fork= 0,1,2,···,oo and 0 E I0,2lr). (It is an irreducible repn·

sentation given in 139] for s: supplemented with an additional label 0. It is also 

equivalent by Fourier transform to an irreducible representation given in 132] for 

SUq(2).) The algebra is represented in the following way: 

So we have 

. z!k,O) = ei8(q-u- 1)1/llk- 1,0), 

zlk,O) = e-i8(q-21k+ll -1)11llk + 1,0). 

plk,O) = q-ulk.O). 

Roughly speaking, 0 corresponds to the azimuthal angel on s: and :;:~: corresponds 

to the cosine of the polar angle. 

However, for what follows it is not necessary to specify the representation. The 

only thing we need is Sp(p), the spectrum of p, which follows the commutation 

relations 

zp = q-2pz, zp = q2pz 

and p = 1 + zz ~ I. It is easy to see that Sp(p) = {q-1• : k = 0, 1, 2, · · · }. Hence 

in the following 0 is interpreted as the collection of all parameters except k, which 

labels the eigenvalue of p. 

Now we consider the distance between the two. states lk,O) and lk',O). In the 

classical limit, it is just the radius n) times the difference in their polar angles: 

D(p, p') = IF(z(p), z(p))- F(z(p'), z(p'))l, 

where F(z,z) = ~cos-• (:!:;:) = sin- 1(p-11l). For convenience we shall suppress 

the index 0 of a state from now on. It is fixed for all considerations below. 

Given the distance function F, we can always decompose F as F = f(p)+h(z, z). 

where h = L:::"=t f,.(p)z" + g,.(p)z". Since (klhlk) = 0 for all k, if F gives the 

distance between states lk) and lk') then f does, too. But we have to check that 

the magnitude of df is not larger than I. Note that 

ldFI1 = ld/1 2 + ldhll + (CT). 
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where the cross-terms are 

(CTJ = can·9cah) + (tJJ)"g(fJh) + (ohr9can + (i)h)"9(i)fl. 

Since (pi(CT)Ip) = 0, we have 

(plldfi
2

IP) "S (PIIdFI
2

IP) "S ll1dFI
2

jj-::; I, Vp. 

which implies that llld/1211 -:::; I. Hence we only have to consider functions of p for 

our purpose. 

Assume that the distance function is F(p) with ldFI2 = I. Because (op") = 
qA- 1p-'((q2p)"- p")z, where A= q- q-1

, we have 

(8F(p)) = qA-'p- 1(F(q 2p)- F(p))i. (5.28) 

Similarly, 

(fJF(p)) = -qA- 1p-1(F(q- 2p)- F(p))z. (.1.29) 

Therefore, 

ldFI2 = (8F)"g00(8F) + (fJF)"i'JO(fJF) 
4 

= ·-··cq q-2)(J.f(q-2p) + W(p)), 

where W(p) :;= (p- I)(F(q2p)- F(p))2. ldFI2 =I implies that W(p) can only he 

the constant !c-•q-4A2(1 + q-2). Hence, 

F( 2 ) - F( ) =-A (2cq4(p-1))-•n 
q p p I+ q-2 (5.30) 

and so F can be solved as a power series expansion: 

_ _ ___ -n-1/2 

(
I + q-2) 1/2 oo (2n)! 

F(p)- 2cq2 E tnM 1\?f ..• , tnl P · 

This is not the only solution of (5.30). Any function f(p) satisfying /{q2p) = /(p) 

can be added to it and (5.30) still holds. However, due to the structure of Sp(p), 

such functions will not contribute to the distance between lk) and lk'). For q = I, 

c = 4, this solution is the power series expansion of - sin-• (p- 112 ). 

It remains to argue that. that the assumption ldFjl = I is correct. Consider a 

function /(p) with ldfl2 < I. Then F' = f + tF has ldF'I 2 < 1 for ltl sufficiently 

small. And an appropriate phase off can make IF'(k) - F'(k')l > 1/(k)- /(k')l. 

So any f with ld/12 < I is not the distance function. 

Therefore we have the following lemma: 
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Lemma 2 The distance (5.8) between the states lm,8) and In, B) is equal to 

jF(q-2m)- F(q-2")j. 

The distance between the north pole and the south pole on s:, for example. can 

be expressed as 

(
I + q-2) lf1 oo (2n )! 

F(oo)- F{l) = - 2- 2- L ·~- ""' .. ·~· , 
cq n=O 

which can be called the deformed 7r/2. 

The distance between any two points can be obtained, by using the quantum 

group symmetry of SU9(2), from the distance between the north pole {z = oo) and 

an arbitrary point, which we have just calculated above. 

Using the commutation relations of z, z, one can check that 

( 

0 {3 ) = ( zp-•n -qp-•n ) 
.., 6 p-1/2 p-1/2 i 

(.5.31) 

is an SU9{2)·matrix. This matrix transforms the north pole (z = oo) to z. It also 

transforms the point 

z" = (6z'- q-1{3)(-q-yz' +or' 
to z'. The quantum group symmetry tells us that the distance between z and z' is 
the same as the distance between the north pole and z", which is a function of z, z'. 

Therefore we have 

Proposition 1 The distance between (z, z) and (z', z') on s: is IF(p")l, where 

p" = (1 + z"z") =(I+ zz)(1 + z'i')(z- z'J-1(z- z')- 1. 

Note that as they are the coordinates of two points on the same sphere, the 

commutation relation between z and z' should be that of the standard braiding 

(2.92): 

zz' = q2z'z- qAz12 , 

which is covariant under simultaneous SU9(2) transformations on z and z'. This 

implies that z and z" simply commute with each other. (The braiding is also 

formally satisfied by (oo, z"). Divide the braiding relation on both sides by :;; we 

get :;;'z- 1 = q2z- 1z'- qAz- 1z'2z-• which is satisfied by (z,z') = (oo,z") but not by 

(z, z') = (z", oo).) 

A state I-') in the Hilbert space representation of the braided algebra generated 

by {z,i,z',z'} corresponds to two "points" on s:. So the distance between them 

is (sjF(p")ls). This is a modification of Connes' formula {5.8) required by the 

hraiding. 
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Relation to Coones' Formulation 

Here WI! make a comment on the relation of our work to Connes' quantum Rieman

nian geometry I2J by re-formulating the quantum sphere in a way as close to his as 

possibl<'. A sketch of Connes' calculus is in Appendix 2. 

To do so we consider the Hilbert space realization of O(X). The Hilbert space 

representation presented here is composed of two parts. The first part { ltb)} is the 

Hilbert space representing the algebra generated by z, i. An example is given earlier 

in this section. Another example is the GNS construction using the integration 

( · )~. The second part V is a vector space of, say, two-component column vectors 

representing the differential forms. The differential calculus can then be represented 

in terms of the representation ,.. of s: as (for 11 E V) 

lr(dz)jt/J) ®II= .jc(l + q2)lr(p)jt/J) ®TV, 

lr(dz)lt/1) ® v = Jc( I + q2)lr(p)Jtb) ® rlv, 

(
01) (00) . where T = 
0 0 

, rl = 
1 0 

, and they sat1sfy qrrl + q- 1r1T = I for 

I= ( q 
0 

1 ) . The vielbeins e and e (5.24) are represented by the-y-matrices T 
0 q-

and r 1, which satisfy a deformed Clifford algebra. The column vis used to specify 

the direction of a cotangent vector at a "point" on s:. 
Let the Dirac operator be 

V=k(i i) 
-z -i ' 

where k = q>.-1-/c(l + q2). It is chosen such that dz = ID, z) and di = ID, z]. The 

goal is that the exterior derivative is realized by D. 
Since D2 is not central, (dlo) = ID2,o) for a form o is non-zero. The nilpotency 

is achieved by taking the quotient of the algebra over. the ideal called the auxiliary 

fields. They are the differential forms {aiD2,b)c: a,b,c E A}. For our case the 

auxiliary fields are found to be 

a ( ~ 9~ 1 ) 

for all functions a in s:. 
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The calculus is Z 2-graded by 

'Y = ~-- 2(dzdz- dZdz)p-2 = ( I 0 ) . 
0 -1 

The Sf.i9 (2)-invariant integration on two-forms can be defined by the trace 

j a= Tr(-,a]V]-2
), (5.32) 

where! Tr is the trace over the extended Hilbert space {ltb) ® 11}. Although this 

formula resembles that of Coones for 2-dimensional integration 12), according to 

him the power of IVJ-1 in the trace is determined by the spectrum of V. In the 

ciMsical case one gets the classical dimension, but we get zero in this particular 

case. Therefore unlike Coones' integration, (5.32) does not have the cyclic property 

f ofj = f (io. Nevertheless, it can be directly checked that the integration satisfies 

the ' •Jnsistency condition 

j Aux = 0 

for auxiliary fields, and the Stokes theorem 

j do=O 

(5.33) 

(5.34) 

for any one-form o. The Stokes theorem can be used to derive recursion relations 

for the integration of two-forms. Equations (5.33) and (5.34) vanish already on the 

trace over the 2 x 2 matrices and hence remain so for any representation ]tb} of the 

algebra for s:. They determine up to normalization the integration of two-forms. 

Hence it agrees with the integration introduced in Sec.2.7. 

5.4 Complex Quantum Projective Space CPq(N) 

The resu!ts in Sec.5.3 can be generalized to the quantum projective spaces C P9(N) 

described in Chap.3. In Sec.5.4,1 we consider the Hodge • map in a more general 

setting. In Sec.5.4.2 we find the Riemannian structure on CP9(N). 

5.4.1 Construction of the Hodge * Map 

A prerequisite of the Ric!mannian structure is the Hodge • map. In general, if there 

exists for a complex quantum manifold a Kahler form K = dz 0 g.,dz5 which is real 

and central, a Hodge • satisfying {5.14) and (5.15) can always be constructed if 

Sl 



there also exists a basis of one-forms, denoted dz", di' below, such that t., ...• N 

defined by 

is central. 

Let 

dz"' · · · dz"• = t., ...• Ndz"' · · · dz"N 

•(dz"' ··:dz"•) = dz01 ···dz"•f(N-p, 

+(di4' • • • di41 ) = [(N-r di4' ···did'. 

Since /( is central, the property (5.14) is satisfied. Since [( is real, (5.15) is also 

satisfied. Now we consider the Hodge • map of a differential form which is not 

purely holomorphic or antiholomorphic. The idea is to "patch" the holomorphic 

part and the antiholomorphic part together. 

Denote . 

{. = g.,di'. 

Because [( = dz"{a is central, 

f(P = (dz"' • • • dz"•)({ap • • '{a,). 

So we have 

•(dz"' ···dz"•) = (dz"' ···dz"N}(t., .... N{•N ·· ·{ •• .,). 

Similarly, 

•(did' · · · dzd') = (t., .... NTJa,., · · · '7dN)(dzN · · · dz1 
), 

where 

l]d = ({.)" = dz~gu. 

Let Jl( z, i) be the real function defined by the volume form 

/(N = dz 1 ···dzNp(z,z)dzN ... dzi. (5.35) 

Then we define 

• (dz'' · · · dz''dz"l '' · dz"•) = (l6 1 ... 6NTJ,,., '' 'TJ£N)p-l(ta, .. oN{oN '. '{ap+l ). (.').36) 

Roughly speaking, we put the Hodge + of the antiholomorphic part and that of the 

holomorphic part together, and then take out from the middle the volume form 

(5.35). It can be shown that the properties (5.14) and (.'i.l5) holcl. 
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The commutativity of the Hodge • with all functions (5.14) is not necessary 

for the invariance of the scalar curvature. As mentioned in Sec.5.2.5, simply a 

prescription of ordering •(/(z)og(i)) = /(z)(•o)g(z) is sufficient. Its significance 

is that any other prescription of ordering, say, •(/(.i)og(z)) = /(.i)(•o)g(z), gives 

the same result. 

This construction of the Hodge • map is, however, not unique. When one patches 

the holomorphic and antiholomorphic parts as in (5.36), one can choose to put the 

holomorphic part before or after the antiholomorphic part. They are in general 

inequivalent. There is also the freedom to normalize (5.36) by different constant 

factors for different pairs of (p, r). 

5.4.2 Riemannian Structure on CP9(N) 

The algebra of C P9(N) (see Chap.3) is given by the commutation relations 

z"z6 = q-~~~z<zd, 

id z6 = q-•(R-1 )~zciJ- q-1 A6!, 

z"dz6 = qRa~dz<zd, 
i4dz~ = q- 1 (k- 1 )~dz0 iJ, 

where R is the kmatrix of GL9(N) 116). The •·involution is z•· = .i4 • 

The Kahler form /( = dz"g.,dz' for C P9(N) is given by the deformed Fubini· 

Study metric (3.68) 

g.,= 9-•p- 2(p6.~- q2z"i), 

where p = I+ L~=• z•zd. The inverse of the metric is gab= qp(6.~ + zdz6). This 

l(ahler form is not only real and central, but also invariant under the quantum 

group transformation 

z"-+ (~ + z~r:')- 1 (T; + z<Tc"), 

where T~ is an SU9( N +I )·matrix. Consequently its corresponding Hodge • defined 

as above is also covariant under this quantum group transformation. 

The deformed Fubini·Study metric implies that the connection one-form is 

w/ = C!':z'p- 1dzd, 

where C!': = 6.c66d + qN-d6.66cd. The curvature two-form is 

R. 6 = -C!':gc,dz'dzd. 
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The scalar curvature and Ricci tensor are, up to normalizations, 

n oc: 1, n.& oc: 6!. (5.37) 

As in the classical case, this result can also be obtained by arguments based on the 

quantum group symmetry. 

5.5 Two-Sheeted Space 

Using the algebraic formulation of Riemannian geometry, we reproduce in this sec

tion the theory of gravity for the two-sheeted space which was first described in 

(63). In that paper the Riemannian geometry on quantum spaces is formulated in 

terms of Connes' non-commutative geometry. 

The two-sheeted space is the product of a classical 4-dimensional manifold M 4 

and a space of two discrete points Z 2• Denote the two points in Z 2 as a and b. 

The algebra of functions on z, is generated by I and e, where !(a)= !(b)= I and 

e(a) = -e(b) = I. It follows that e is real and 

e, =I. (5.38) 

Acting with the exterior derivative on (5.38), we find 

ede =-dee. 

We also define dede = 0. In addition, e commutes with the coordinates { z"} on 

M 4 and {d:r"}, and de commutes with {z"} and anti-commutes with {dz"}. 

To obtain the results in [63) we assume that the vielbeins and connection one· 

forms can be written as 

E" = dx"e:, 'E5 = de>. 

and 

flAB = dx"(w:8 + ev:8 ) + de(/AB + ekA8 ), 

where e~, >., w:8 , v: 8 , tAB and kA 8 are all real functions of x. The indices A, B 

take values in { 1, 2, 3, 4, 5}, where { 1, 2, 3, 4} correspond to dx" or E•, and { 5} 

corresponds to de or E 5 • 

The Hodge • map defined on £A is the classical one. For example, •(EA E 8 ) = 

~{ABCDF ec E0 EF. This map does not have the property (5.14), hence the La

grangian (5.17) is invariant only under the coordinate transformation restricted to 
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M 4, i.e., z"-+ z'"(z),e-+ e. This is one of the essential differences between our 

formulation and that of (63). 

The integration over the whole space can be decomposed into the usual integra

tion over the four-dimensional manifold followed by the integration 

f E5(a +be)= a lz, 

for arbitrary numbers a, b. (The requirement that Iz, dee vanishes implies the cyclic 

property of Connes' intt'gration in this case: I Q{J =I {JQ.) 

Using the metricity condition (5.11) and the torsion-free condition (5.12) one 

can partially solve for the connection. But many components of the connection are 

still free. They should be viewed as independent fields. It turns out that they are 

not dynamical fields because in the Lagrangian (the scalar curvature) they do not 

have time derivatives. Thc,ir equations of motion are simply constraints which are 

solved by their vanishing. 

The action for gravity 1111 this two-sheeted space defined by 

f = f g4(•RAB)EB 
}M,xZ1 

is, after taking out all non-dynamical fields, the same as (63) 

1 =- f (n.- v.-•v,.o">.).,J94~z. 
}M, 

where n4 is the usual scalar curvature of M 4, V, is the usual covariant derivative 

on M. and g4 is the determinant of the metric on M 4• The only new dynamical 

field introduced by the Z 2 structure in spacetime is >.(:r). By changing variables 

>. = exp(u) (63) we get 

5.6 

I = - f ('R.4 - 2o,u8"u).Jii~x. fM, 

General Coordinate Transformations 

The general coordinate transformations (GCTs) mentioned above will not bt- a 

physical symmetry unless the algebra X on the quantum space and its differential 

calculus are covariant. In this section we consider the quantum group of general 

coordinate transformations as a symmetry of a quantum space. The Riemannian 

structure defined in this chapter applied to this quantum space will be invariant 

under the coaction of the GCT group. 
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Consider the N-dimensional quantum space: 

.r;.r;=q:r;.r;, i<j. i,j=l,:1,···,/'1'. (!i.:I<J) 

which is the same as the GL9 (N)-covariant quantum hyperplane, but we will con· 

sider a differential calculus not covariant under GL9(N) transformations. It is 

and 

x;dx; = qdx;x;, i < j, i,j = 1, 2, .. ·, N, 

dx;x;=qx;dx;, i<j, i,j=l,2,···,N 

x;dx; = dx;x;, i = 1, 2, ... , N. 

(5.40) 

( .').41) 

(5.42) 

This can be called the ordering deformation. A consistent •-involution can be 

defined by q• = q- 1 and xi = x;. 

Introduce the notation 

~!!!. = x~~ xi'' ... .rN'-', 

where m = (m.,m2.···,mN) and the m;'s are non-negative integers. Let 

then 

[m,n.] = L:)m;n; -m;n;), 
i<j 

;r!!l;r!!. = q!!!l·!!.l;r!!.;r!!l. 

(5.43) 

(5.44) 

(5.4.5) 

Define the general coordinate transformation as a left coadion 61. : X -+ AG X, 

where X is the algebra of the quantum space and A is the algebra of the quantum 

group of GCTs, by 

6L{x;) = Ea;!!l0 !:!!!.· (5.46) 
!!l 

In order to fix the algebra A we introduce braided copies of X. lah<'ll<'d hy a, 

with coordinates {xl" 1 }~ 1 : 

!•l (bl (b) !•l . I 2 N .r; X; = QX; X; , I < ), l,) = , , .. ·, , 

xl"1xlb) = xl11xl•l, i = 1,2, .. ·,N 

(5.4 7) 

(5.48) 

for arbitrary a, b. For the algebra of two or more braided copi('s of X to he covariant 

under the left coaction of A, A is completely determined: 

a;!!!.ai!! = q•-!!!l.!!.la;!!a;!!!., i < j, 

a;!!!.Ri!! = q-lm..!!lni~a;!!! 
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(5.49) 

(!i.50) 

fori,j=l,2,···,N. 

Define the coproduct on A by 

(6@ id) 0 6L = (id@6c.)o 61-. (5.51) 

The coproduct of the generators a;!!l is an infinite power series,. so it is not 

acceptable to check directly whether the coproduct is a coassociative algebra homo

morphism. 4 However, following the general arguments in Sec.1.6, the coproduct 

is a homomorphism because A is completely fixed by the coaction. Moreover, we 

have 

Lemma 3 The coproduct on A defined by (5.51} is coassocialive: 

Proof 

Therefore 

(6@ id) 0 6 = (id®6) 0 6. 

(((6@ id) o 6)@ id) o 6L 

(6@ id@ id) o (6@ id) o 6L 

= (6®id®id)o(id®6L)o6L 

(6®6L)o6L 

(id@ id@ 6c.) 0 (6@ id) 0 6L 

(id@ id@ 6L) o (id@ 6L) o 6L 

(id@ {(id 0 6L) o 6c.)) o 6L 

(id@ ((6@ id) 0 6L)) 0 6L 

(id@ 6@ id) 0 (id@ 6L) 0 6L 

(id@ 6@ id) o (6@ id) 0 6L 

(((id@ 6) 0 6)@ id) 0 61-. 

(((6@ id) o 6)@ id) o 6L{x;) = (((id@ 6) o 6)@ id) o .6-L(x; ). 

Using (5.46) we find for the coefficient of ;r!!l 

(6@ id) o 6(a;!!l) = (id@ 6) o 6(a;!!l). 

(5.52) 

4The author is indebted to P. Podle8 for pointing out this problem and the importance to · 

introduce the braided copies ao that, aa to be ahown right away, it can still be proven that the 

coproduct is a colissociotive algebra homomOfphiam. 
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,.,., ·~ 

Then by extending the coproduct as an algebra homomorphism to the full algebra 

A, the coassociativity on A is preserved. 0 

The counit is defined as an algebra homomorphism by 

( 
. ) _ { 1 if m; = 6} ( a,m -
- 0 otherwise 

(5.53) 

and e{l) =I. 
The ·only thing we are missing for A to be a Hopf algebra is the coinverse. 

Even classically it is not possible to find explicit expressions for the coinverse of 

the generators of A. For this problem we resort to another description of the GCT 

group. The idea is that we take a few subgroups of the GCT group that generate 

the whole GCT group by iteration. 
To illustrate the idea, we consider the two-dimensional case. Consider two global 

covariant transformations of X. The first is the linear transformation and transla

tion 5 

p1(x;) = M/@ x; + V; ® 1, (5.54) 

where M = ( ~ ~) and V = ( ~ ) . The algebra for M and V is given by 

AB = q-1 BA, AC = qCA, (5.55) 

AF=qFA, BC=q2CB, (5.56) 

BD=qDB, BF=qFB, 

CD= q-1DC, CE = q-1EC, 

DE= q-1 ED, EF = qFE 

(5.57) 

(5.58) 

(5.59) 

and all other commutation relations are trivial, e.g., AD = DA. This group of 

transformations is a subgroup of the GCT group. The commutation relations can 

be easily derived from (5.49-5.50). 

The second transformation is the fractional transformation 

with 

p2(x;) = (e; + d;x;)(a; + b;x;f 1 

b1b2 = q-1b,b, c1c2 = qc2c1t 

b,d, = q- 1d,b.. d,b, = q-1b,d,, 

c1d2 = qd,c, d,c, = qc2d1 

'For the following discussion it is not necessary to include the translation. 
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(5.60) 

(5.61) 

(5.62) 

(5.63) 

(all other relations are trivial). Similarly, this is a subgroup of the GCT group and 

the algebra c~n be derived from (5.49-5.50) 6
• It appears to be a braiding of two 

classical groups. 

It is straightforward to find the Hopf algebras corresponding to these two trans

formations and we will not write them out explicitly. Let us just denote them as 

H; = ( 6;, t;, S;) for i = 1, 2. (For the n-dimensional case, we replace M by an 

n x n-matrix and V by an n-vector. P2 remains the same for i = 1, 2, · · ·, n. Their 

Hopf algebras can be worked out similarly.) 

Given a sequence a = ( o~o o 2, · .. , Ol() of length [( with a; = I, 2, one can define 

the the coaction 

Po = (itf0CK-J)@ Pot<) o (itf0CK-2)@ Po,.._,) 0 .. · (id@ Po,) o Poo· (5.64) 

This coaction corresponds to a group of transformations which is a series of consecu

tive transformations of p1 and P2· It has a Hopf algebra structure H 0 = (60 , ! 0 , So) 

inherited from /11 , H2 : 

6o = 6o 1 ®6o,®···®6oKt 

to= to1 ®t.,;, ® ···®taK' 

So= So, ®So• ® · · · ®S.,K. 

(5.65) 

(5.66) 

(5.67) 

Classically it can be shown that alternating transformations of the first and 

second type generate the GCTs. In the quantum case we can take the definition of 

the group of GCTs as Ho(N) in the limit of N -+ oo for o(N) = (1, 2,1, 2, I, 2, · .. ) 

being a sequence of length N of alternating l's and 2's. Therefore although the 

quantum GCT is strictly speaking not a Hopf algebra, it is the limit of a series of 

Hopf algebras. 

5.7 Conclusion 

In the investigation of quantum spaces presented in this thesis we found that abun

dant geometrical structures (symmetry, differential calculus, complex structure, pro

jective geometry and Riemannian geometry) can be extended to the noncommuta

tive case without losing the classical geometrical intuition. This indicates that the 

notion of geometry is naturally embedded in a much larger setting than the classical 

6 By expandin& {5.60) in power aeries of :t; one can use (5.49-5.50) to obtain commutation 

relations among b;a;', c,a;' and d;a;'. Choal!ing a; to be central we get (5.61-5.63). 
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picture. The natural question is then whether physics has the same generalization 

as its mathematical tools. 

Quantum mechanics of many different particles (48) is relatively well understood. 

For classical gauge field theories on quantum spaces, while a description is estab· 

lished for a quantum principal bundle (47) where the fiber is a. quantum group and 

the base is a quantum space, it is still unclear what the dynamics of the gauge fields 

is except for particular simple examples. An important physical model built upon 

a quantum space (the two-sheeted space) where its classical dynamics is clear is the 

Connes-Lott modelf64). It is remarkable that the Higgs field arises there naturally 

in Connes' formulation. 

Many attempts to formulate quantum mechanics of identical particles (65) and 

quantum field theory (66, 67) on quantum spaces have been made, but their general 

formulation for generic quantum spaces is still unclear. However it is expected that 

new regularization methods may arise as a result of the deformation of spacetime 

[68, 67). 

On the other hand, noncommutative geometry may also play a role in string 

theory 169). At least intuitively any theory incorporating quantum effects of gravity 

should exhibit some fuzziness in spacetime, and therefore may be related to non

commutative geometry. The question of interest is how to utilize noncommutative 

geometry to understand better the mystery of physics at the Planck scale. It will 

be an exciting moment when the answer emerges. 
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Appendix A 

Poisson-Lie Groups and Lie 

Bialgebras 

In this Appendix we briefly intrvduce the relation among quantum groups, Poisson· 

Lie groups and Lie bialgebras. for a more detailed and advanced discussion see I 17]. 

A.l Poisson-Lie Groups 

The covariance of the algebra of a quantum group implies that it is a Poisson-Lie 

group in the Poisson limit, and the consistency of the quantum algebra corresponds 

to the Jacobi identity of the Poisson structure. 

As an example we consider quantum groups with the RTT relation 

R12T1T, = T,T.Rn. (A. I) 

Let q = I + h + O(h2 ) and expand everything in powers of h. The R-matrix is 

R =I+ hr + O(h2
), (A.2) 

where I is the identity matrix I!{ = 616{ and r is called the classical r-matrix. From 

the RTT relation, 

T1T2 - T2T1 = -h(r.,T,T,- T2T1r 12) + O(h2
), 

which in the limit of h -+ 0 gives the Poisson Bracket (PB) 

. T.T,-T,T. I ,, 
(T1 , T,) = hm , = ru, 7, f2l· 

'•-0 -
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This Poisson structure makes the classical group a Poisson-Lie group, which 

simply means that the group multiplication is a Poisson map. The Poisson structurt· 

on two copies of the group is defined by 

Ut ®J;,h ®f~)axa = (J.,J,) ®j;J~ + fd2 ®(f;.J;). (A.5) 

Using the group multiplication · : G x G -+ G, functions on G x G correspond to 

functions on G by the coproduct 

i i k 6(T;) == T• ® T;. (A.6) -

Hence the statement that the group multiplication is a Poisson map means that 

(/(I)@ f(2)t f(t) ® fl2))GxG :: {f, J')(t)@ (/, J')(2) (A.7) 

in Sweedler's notation. For J = Tt and J' == T2, it is 

(Tt ®Tt,T2 ®T2)GxG = (rn,TtT2 ® T1T2J. (A.8) 

Eq.(A.8) can be easily checked by using (A.4) for any r-matrix. 

On the other hand, for (A.4) to be a Poisson structure one has to check the Jacobi 

identity. As one might expect, this is guaranteed by the Yang-Baxter equation 

RnRl3R23 = R23Rt3Rt2• (A.9) 

which contains at its second order in h the classical Yang-Baxter equation 

(rn, rt3] + (rt3• r23) + (rn, r23) = 0. (A.IO) 

(The zeroth and first order terms are trivial.) 

In general, since the coproduct is an algebra homomorphism in a Hopf algebra, 

the Poisson limit of the quantum group is a Poisson-Lie group. While the Poisson 

structure comes as a result of the commutation relations, its Jacobi identity is 

guaranteed by the consistency of the algebra. 

A.2 Lie Bialgebras 

Up to the usual global issue, Poisson-Lie groups are equivalent to Lie bialgebras. A 

Lie bialgebra is a Lie algebra g equipped with the additional structure 6 : g -+ gAg 

satisfying 

(6/\ id)o6 = 0, 

6(!:r,y]) = (6(:r),y] + (x,6(y)]. 
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(A. II) 

(A. I!) 

Given a Poisson-Lie group G, one can define a Lie algebraic structure on g·, 

which is the dual of g = Lie( G), according to 

((df.).,(df,).) = (d(f.,J,))., (A.I3) 

where we have identified g• with the cotangent space at the unite E G. The Jacobi 

identity of the PB implies the Jacobi identity for the Lie bracket. 

The 6 map for g can be obtained from this Lie bracket on g•: 

(X,((dJJ)., (dh).)) = (6(X), (dfd. A (dh).), (A.l4) 

where(·,·) is the pairing between the tangent space and cotangent space ate E G. 
In the above we have identified g with the tangent space at e. 

The Jacobi identity for the Lie bracket on g• implies (A.ll), and the fact that 

the group multiplication is a Poisson map implies (A.l2). Hence we see that Lie 

bialgebra is simply the tangent/cotangent space of a Poisson-Lie group. 

Now consider again the quantum groups with RTT relations. How do we describe 

their classical limit in terms of Lie-bialgebras? They are actually quasi-triangular 

Lie bialgebras. Let r also denote the classical universal r·matrix which is an element 

in g ® g as the second order term of the universal 'R.-matrix in the h expansion. A 

Lie bialgebra (g,6) is quasi-triangular if 

1. I= r + u(r), where a(X ® Y) = Y ®X, is adjoint invariant. 

2. 6(X) = -adx(r), where adx(Y ® Z) == (X, Y) ® Z + Y ®(X, ZJ. 

3. r satisfies ( 6 ® id)( r) = (rt3 1 r23), and ( id ® 6)( r) = (r13, r12). 

The first property comes from the antisymmetry of a P.B. (T11 T2) = -(T2, Tt). 

The second states how r determines 6 as described above and the third ensures the 

classical Yang-Baxter equation. 

The quasi-triangular Lie bialgebra is factorizable if in addition 1 is a non

degenerate bilinear form on g•. This means that one can invert the relation 

(X,·)= {l,w®·) (A.I5) 

for a given X E g to solve for a unique w E g•. Therefore one can decompose any 

X E g uniquely into X= Xt + X2 with (Xtt·) = (r,w® ·)and (X2,·) = (r,· ®w). 

The universal 'R.-matrix in Sec.l.2.1 for SL9 (2) has the corresponding universal 

r-matrix 

,. = ! II @ II + X+ N .C . 
4 

!l:l 

I 

(A.Ifi) 



for SL.(N) it is 
I N-1 

r =- L(A-1);;11;®11;+ :Le;;®e;;, 
2 i,j=l i<j 

(A.l7) 

where A is the Carlan matrix and e;; is represented as 11"(e;;)f = 6f6f in the defin

ing representation. The factorization corresponds to upper and lower triangular 
decompositions. 
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Appendix B 

Connes' Differential Calculus 

In this Appendix we give a sketch of Connes' noncommutative geometry [2]. (See 

[70] for a brief introduction of its application to parlicle physics.) 

B.l Differential Calculus 

Denote the algebra of functions by A and the universal differential calculus by fl( A). 

In Coones' calculus, we also have the Leibniz rule and the nil potency of the exterior 

derivative: 

d(ab) = (da)b + ( -l)d•gl•la(db), 

cP = 0. 

(B. I) 

(B.2) 

The first observation is that if one defines differential forms by a certain operator 

F: 

da = [F,a]:t. (8.3) 

where !·, ·l:t is the commutator for a of even degrees and anti-commutator for odd 

degrees; then the Leibniz rule is guaranteed. But to have cP = 0 we need 

d1a d[F,a] 

{F. IF, a]} 

IF,,a] 

0, 

(0.4) 

(11.5) 

(8.6) 

(8.7) 

which is guaranteed if F2 is a constant. If the constant is non-zero, ont> can always 

rescale it to be I. 
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Coones defines the differential calculus on an (involutivc) algebra A to be given 

by a representation 1r of A on a Hilbert space 1f. and <~n oper<~tor F wit.h th<' 

properties 

F" = F, 

F2 =I 

(13.8) 

( 13.9) 

and IF. 1r(a)) compact for any a E .4. This is called an odd Fredholm module. An 

even Fredholm module is given by an odd Fredholm module with a Z /2 grading 

operator 1 on 1{ such that 

1" = 1. 

12 = 1, 

11r(a) :: 1r(a)1, '<Ia E A, 

yF = -F1. 

(13.10) 

(B. II) 

(13.12) 

(13.13) 

The information about the metric on a manifold is not encoded in the calculus 

defined above, but there is a way to generalize the approach above to include the 

data of the metric in the calculus. To do so, instead of using F we usc a self. 

adjoint operator D, which we call the Dirac operator, on that Hilbert space 1{ in 

the following way (2). First extend the domain of 1r to the universal differential 

calculus !l(A) of A by 

1f(ao(da.) ... (d!ln)) = w(ao)[D, w(a.)) ... (D, 1f(an)). ( 13.14) 

There will be elements in !l(A) which vanish under w, so that elements in !l(A) 

which differ from each other by those elements will have the same representation. 

Therefore it is natural to define the general differential calculus !lv(A) on A to be 

!lv(A) = w(!l(A))/Au.r, (13.15) 

where Au.r = (kenr + d(ker~r)). Since Aux (called auxiliary fields) is a two-sided 

ideal, it is easy to see that this defines unambiguously a consistent differential 

calculus on A. 

B.2 Integration 

Consider the case where the differential calculus is specified by F. The integration 

of a differential form a over A is defined by 

I a= T!·(a) (II. IIi) 
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for the odd case and 

I a= Tr(1a) (lUi) 

for the even case. It can be shown that the Stoke's theorem. holds: 

J da = 0. (8.18) 

In the case when the differential calculus is defined by the Dirac operator D. the 

integration is given by 

j a= Trw(7r(a)IDrd), 

where Trw is the Dixmier trace. 

B.3 An Example 

( 13 .19) 

The simplest example is the two-point set z,. A function on this space is rcprc· 

sented by a diagonal 2 by 2 matrix of complex numbers. The Dirac operator can 

be defined by 

D = ( 0 M•) 
M 0 • 

(B.20l 

where M is an arbitrary complex number. 

Now we can say that the algebra of functions is generated by { 1, e}, 1 where 1 

is the unit matrix and 

e=(~ ~)· 
Define de = (D, e), then we have the commutation relations 

ee = e, 

ede =de( I- e), 

dede= M"M 

and the •-structure e· = e, (de)" =-de. 

(8.21) 

(13.22) 

(13.23) 

(8.24) 

Because ee = e, the most general function of e is just /(e)= a+ be Cor arbitrary 

complex numbers a, b. So any linear functional is specified by two numbers u, v as 

L(f) = ua + vb. The integration of a one-form /(e)de according to Coones' formula 

should be Tr(/(e)deiDI-1 ), which vanishes. To get nonzero integration, one has to 

consider the integration over a zero-form or a two-form. For either case the result 

is proportional to the trace of the 2 x 2 matrix representation of the integrand. 

1 Notice th"t this basis is <liiTncnt from t.lte on• used in Sed>.a. 
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