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Pure Permanent Magnet Harmonics Corrector Ring 

R.D. Schlueter, D. Humphries, and J. Tanabe 
Lawrence Berkeley Laboratory, Berkeley, California 94720 

Abstract-A concept for creating any desired har
monics mix in a pure permanent magnet (PM) cor
rector ring is presented. Useful for nulling various 
harmonics simultaneously, such a device is versatile 
for many accelerator applications. The harmonic mix 
can be changed without redesign or replacement by a 
new ring or parts and, if desired, can be accomplished 
in-situ via remote control of rotor motors. Harmonics 
suppression of greater than a factor oflOO or even 1000 
are possible; exact functional dependencies of harmon
ics suppresion capability versus magnet geometry are 
given. Sensitivity to positioning and corrector ring 
PM errors are given, and shown to be themselves nul
lable. 

I. INTRODUCTION 

Presently, much effort is put into designing magnets 
with tight harmonics specifications. In the case of electro
magnets this entails laborious attention to iron/ coil design 
geometry and often tedious and costly experimentation 
of end chamfers and designs. In the case of permanent 
magnets, block quality, sorting, and, positioning must be 
carefully controlled. Furthermore, in both instances these 
factors limit the attainable level of field quality achievable. 

The theory of pure PM design in two dimensions has 
been described thoroughly [1,2]. Here we present a con
cept utilizing a PM corrector ring, insertable at any de
sired location in the beam path, capable of providing any 
desired harmonic mix. The present application is to null 
the harmonics of the Q2 septum quadrupole for SLAG's 
B-factory. Herein, the PM material with Jl = 1 is repre
sented by magnetic charge sheets on surfaces [3,4]. 

II. FIELD FROM HOMOGENEOUSLY 
MAGNETIZED PM CYLINDERS 

In 2-D, the field at location z = x+iy due to a cylinder 
of permanent magnet material of radius r c centered at 
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Dept. of Energy, Contract No. DEAC03-76SF00098. 
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Fig. 1. 2-D geometry for a arbitrarily positioned and 
oriented PM cylinder (beam axis is into paper, <P is 
magnetization direction w.r.t. horizontal, 6 is the 
integration angle w.r.t. horizontal, and(}:: 6- <P) 

Zc = z + Reif3 with uniform magnetization Br = Breit; is 
given by [5] (See Figure 1): 

B*(z) = Br 12
"" rc cos(} d6 = Breit; (_!L_) 2

' ( 1) 
211" 0 z-zo(6) 2 Zc-z 

where Br cos 8( 6) is the equivalent magnetic charge den
sity at the point OD the cylinder surface Zo ( 6) = Zc + r cei6 , 

0 ~ 6 < 21r. The derivation is given in the appendix. 
The integrated field, I*(z) = f~oo B*(z)dZ, along an 

axis ( Z) parallel to that of a lone cylinder of length L is 

oo B L 2 oo n-1 
I *( )=Lb n-1-~L~ i~ z - nZ - +1 e , 2 zn 

n:1 n=1 c 

(2) 

where the infinite series on the right is the multipole ex
pansion of Eq. (1) about z = 0. 

Using two independently rotatable cylinders each of 
length L/2 placed end-to-end, arbitrary net magnetiza
tion orientation and strength are achievable by rotation 
and counter-rotation, respectively, of cylinders in a pair. 
The effective magnetization orientation of the cylinder 
pair is adjustable by rotating both cylinders an angle <P. 



""' PM cylinder pairs annular mounting ring 

Fig. 2. Pure PM harmonics corrector ring {beam axis at 
z = 0 is into paper at center of ring) 

The effective strength iBrL of the cylinder pair is ad
justable by subsequently counter-rotating cylinders an in
cremental angle ±q: 

iBrL =cos qBrL (3) 

ForM cylinder pairs spaced uniformly in azimuth (see 
Fig. 2) /3m = m21rjM, 0 :5 m :5 M- 1, with net mag
netization directions tPm and strengths lm, the multipole 
expansion coefficients about z = 0 of the integrated field 
become 

M-1 

bn = kn L: e-i(n+l)P ... Pmi 
m=O 

- BrLnrc2 • ..._ 
h L - e'"'"' 'll ere "n = 2,Rn+1 , Pm = Em . 

Equivalently, in matrix form: 

b = [K][T]p, 

(4) 

(5) 

where [K] is a diagonal matrix consisting of the elements 
kn, [1] is a matrix with elements Tn,m = e-i(n+l)P ... , and 
p is an M -element vector quantifying the net orientation 
and strength of each of the M cylinder pairs. 

III. CREATING AN ARBITRARY MULTIPOLE 
MIX FOR FIELD CORRECTION 

To produce a given b, the required pis given by 

P = [1]-l[K]-lb. (6) 

where the elements of rTJ- 1 and [K]-1 are 

T.-1 = ei(n+l)P ... / M. K-1 = { 1/ kn if n = ~ {7) 
m,n ' n,l 0 otherwise 

Thus required orientation and strength of the m cylin
der pairs are given by 

2 

n 

Let error fields in a magnet be characterized by the 
multipole expansion a la POISSON Code6 format: 

N=N .... ., N ( )N-1 
r(z) = i L: CN !_ 

N=N1 rp rp 
{9) 

where the complex CN [G-cm2] = SNeia.N. Setting bn=N 
of Eq. {8) equal to the negative of the N error coefficient 
isNeia.N frf of Eq. {9), theN-pole error term of any ac
celerator magnet may be nulled in an adjacent coaxial 
harmonics corrector ring consisting of M cylinder pairs of 
effective length iN L and magnetization orientations de
fined by tPmN, given by 

NsN 2 (rRc)2 (rRp)N-1 
lN L = -;:;:- M N Br and (10) 

tPmN = (N + 1)/3m +aN- i := (N + 1)/3m +¢oN" 

To null a single multipole term N1, the effective length 
iN1 L of all M cylinder pairs in the corrector ring are iden
tical. Nulling of an arbitrary number of multipole terms 
is accomplished by a vectorial superposition, per Eq. {8). 
Effective lengths imL of the M cylinder ~airs are then 
different, but none are larger than L L:Z~N;" • ., iN: 

N=N,.,.., 
Lemei4>,. = L L: iNei4>mN. {11) 

where the "N" are the muiipole error terms to be nulled. 
Nulling an N-pole term in the corrector ring will in 

turn introduce higher order multi pole errors, per Eqs. (10) 
and (4): 

B lNLMr2 oo nei4>oNrn-1 ( z )n-1 
[ •( ) r e ~ P = 

z = 2 L...J _Rn+l ;:-
n=N+vM p 

(12) 

where v = 0, 1, 2, ... , oo. The first N~o .. , Nma,; terms of 
Eq. (12) (i.e., with v = 0) are the negative of those that 
were to be nulled from Eq. (9). The corrector ring should 
consist of more cylinders than the highest harmonic com
ponent to be nulled, i.e., Nma,; < M, otherwise nulling 
the highest terms would introduce lower harmonics. Field 
contributions from the newly introduced error terms start 
with the n = N + M term and are relatively small com
pared with the original N-pole error term (i.e., where 
v = 0) that was nulled. For each of the nulled error terms 
N, at lzl = rp the ratio f of newly introduced error terms 
to the corresponding nulled term is: 



The largest term is where N = 1, and occurs when 
v = 1 ifrp/R < ((1+M]/(1+2M])1/M (~ .96for M = 16), 
yielding a reduction factor 

(14) 

IV. PRACTICAL DESIGN ISSUES 

A. What level of harmonics reduction is possible? 

The number and radial placement of cylinders necessary 
to achieve a desired level of harmonics reduction follows 
from Eq. (14). 

For the Q2 magnet, assume original B field quality at 
the normalization radius rp = 4.5 em is good to 10-2 in 
all harmonics, and that we desire to make it 10-4. For 
specified stay clear radii r1 = 5.0 em and r2 = 6.4 em, 
choosing for scenario ( i) M = 16, R = 5. 7 em, and 
re = 0.7 em, appropriately orienting cylinders would null 
the N=1 harmonic (as well as others) and would intro
duce a new N = 17 term that contributes a field equal 
to 39% of that of the original N = 1 term at rp. For 
scenario (ii) let M = 16, R = 5.9 em and rc = 0.5 em, 
yielding f = 22%. Correction strength capability goes as 
r~,-:-1/RN+l; thus theN= 1 term strength correction 
capability of scenario ( ii) is only 48% of that of scenario 
( i) and marginally less for higher harmonics. Scenario ( ii) 
yields a harmonics reduction factor of 5, still far short of 
the factor of 100 sought. 

More effective in the radially restricted Q2 case is in
creasing the number of rotors. For scenario (iii) let 
M = 32, R = 5.7 em, and rc = 0.7 em, resulting in 
f = 1/58. For scenario (iv) letting M = 32, R = 5.9 em, 
and rc = 0.5 em, gives f = 1/176. For the latter design, 
which more than meets the harmonics reduction criteria, 
cylinder packing factor 2reM/27rR = 0.86, leading to a 
1.6 mm spacing between cylinders. 

For some instances of quadrupole magnet correction, 
N = 1 and N = 2 terms need not be nulled, in which 
case minimum harmonic reduction is ,.., three times better 
than that of the above scenarios (See Eq. (13).) In cases 
that are not so radially restricted, much greater harmonics 
rejection factors are attainable via decreasing rpf R (e.g., 
for M = 16 and rpf R = 0.5, f ~ 1/4000), though at the 
expense of hkmonic strength nulling capability. 

B. What magnitude of harmonic can be nulled? 

The length of cylinder pairs to achieve a desired har
monic strength nulling capability follows from Eqs. (10) 
and (11). Assume a level of qN% Nth-harmonic at rp must 
be nulled, i.e., NsN/rp = 0.01qNNJSN1 /rp, where Nf is 

3 

the fundamental harmonic and the N are the harmonics 
to be nulled. We have 

0.01qNNJSN, 2 (R)
2 (R)N-1 

~L= - -
rp MNBr rc rp 

(15) 

For the Q2 magnet, 2s2/rp = 55800rp G-em. Assume for 
instance that harmonics N = 1, 3, & 4 with magnitudes 
qN = 1%, 0.5%, and 0.25%, respectively at rp = 4.5 em, 
must be 'nulled and other harmonics are negligble. For 
the parameters of scenario (iv) and with Br = 10,000 G, 
required lengths from Eq. (15) are: £N=1L = 2.19 em, 
£N=3L = 0.573q3£N:1L, and £N:4L = 0.564q4£N:1L. 
From Eq. (11), if the regular/skew mixes were such that 
all three 4Jm,. were identical for some m, the required 
effective length of that longest cylinder pair would be 
3.2 em. 

It is not feasible to use the harmonics corrector ring to 
null the high order allowed harmonics occuring in a PM 
device (e.g. the N = 18 harmonic of a 16-block PM Q2 
quadrupole); these can be nulled or made negligible rather 
by spacing of the PM blocks [1] (an 11% space penalty), 
by employing finer block segmentation (e.g. 24 blocks in 
the Q2 magnet itself), and/or by reducing the ratio rp/r1. 

It remains then, to be sure to conservatively estimate 
the magnitude of uncorrected harmonics (i.e., q% of the 
fundamental) so that the capacity, i.e., the length L of 
the designed corrector ring to null them is sufficient. 
In general, for a given corrector length L, there is a 
tradeoff between attainable harmonics reduction factor 
f (Eq. 13) and nullable harmonic magnitude NsN/rp 
(Eq. 10). Larger M and Rfrp lead to a better harmonics 
reduction ratio f, but lower the maximum nullable har
monic magnitude (assuming Mrc is constant). Nonethe
less, as illustrated above, both impressive rejection ratios 
and large abS<?lute magnitudes of nullable harmonics are 
simultaneously attainable. 

C. What if the harmonic mix to be nulled changes? 

If the mix of harmonics to be nulled is known and ex
pected to remain invariant, a corrector ring can be de
signed using cylinders of different lengths per Eqs. (11) 
and (10). Alternatively, inverting the same matrix of 
Eq. (5), cylinders of different radii squared r~m (or Br, 
were they available) could likewise be employed. Invert
ing a different matrix, variable radial position Rm could 
also be employed to null harmonics. 

However, the beauty of the counter-rotating cylinder 
pairs scheme is its flexibility; arbitrary cylinder pair net 
magnetization strength and orientation allow changing 
the mix of harmonics to be nulled without resorting to 
ring or parts replacement. Alternatively, several correc
tor rings of a standard cylinder pair design can be utilized 
to null a different error harmonics mix in a series of nomi
nally identical magnets. Furthermore, this robust scheme 



provides for self-correction as shown in the following sec
tion. The counter-rotation scheme can also be employed 
with blocks having other shapes, e.g. with square PM 
cross-sections inside a machined cylindrical sleeve to fa
cilitate rotation, and/or with a different geometrical ar
rangement of tuning blocks. 

A uniform temperature excursion will not alter the har
monic mix of either an accelerator magnet or its com
panion corrector ring, though it causes a field magnitude 
change in both of equal percentage. Thus it will not affect 
harmonic corrector ring performance. 

D. Would corrector ring shielding affect performance? 

Corrector ring shielding creates additional {virtual) 
field sources as images of the originals. A dipole or 
PM cylinder of strength and orientation Pm = £me1~m 
at location Re'fJ.,. in a device with an infinitely per
meable annular shield of radius R. centered at z = 0 
will produce an image source of strength and orientation 
tm = Em(R./ R)2ei(2fJ.,.-~ ... ) at R,e1/Jm, where R, = R~/ R 
and where it is assumed that rc/ R $ 0.1. 

Nulling an N-pole term in the shielded corrector ring 
will introduce further error terms, in addition to those 
given by Eq. {12). Using the tPmN given in· Eq. (10), 
Eq.(8) gives the coefficient for a single nulled multipole 
in terms of the uniform effective length EN and reference 
orientation t/JoN: 

(16) 

Error terms created due to image sources, from Eq. (4) 
are: 

(17) 

where v = 0, 1, 2, ... , oo. Field contributions from the 
image source related error terms start with the n = M-N 
term and are relatively small compared with the original 
N -pole error term that was nulled. For each of the nulled 
error terms N, at lzl = rp the ratio f of image source 
induced error terms to the corresponding nulled term is: 

00 

f = L (ncnfrp)/(NcN/rp) = (18) 
n=vM-N 

e-i2<PoN f ("M- N) (.!!:..)2(vM-N-1) (rp)vM-2N. 

v=l N R. R 

The largest terms are those for which 11 = 1 and they in
crease with N. Thus one must choose M and radii R, R., 
and rp such that the,rejection ratio f is sufficiently small 
for the highest order terms to be nulled, as is the case for 
scenario iv above. 

4 

V. POSITIONING SENSITIVITES AND 
IMPLICATIONS FOR HARMONICS 

Harmonic mix sensitivities due to a perturbation 6P in 
(1) radial position Rm of the mth rotor pair, 
(2) azimuthal position /3m of the mth rotor pair, 
(3) angle tPm of magnetization of the mth rotor pair, 
(4) length Lm of the mth rotor pair, 
(5) cosine of separation angle '1m between magnetiza

tion directions of the two cylinders comprising the 
mth rotor pair, -

(6) cylinder radius squared r~ of the mth rotor pair, or 
(7) remanent field strength Br of the mth rotor pair, 

is given by (using Eq. (2)): 

6Pdl*(z) = ~ {g (.!.?_)n-1 B L (rem )2 
dP ~ n Rm r.,. m Rm 

where for 

P: 

Rm 
fJm 
tPm 
Lm, 9n =: 
COSTJm 

r2 
Cm 

Brm 

( -n[n + 1]/2)( 6Rmf Rm) 
( -n[n + 1]/2)6/3m 
(in/2)6t/Jm 
(n/2)(6Lm/ Lm) 
( n/2)6 cos '1m 
(nf2)(6r~ • .Jr~ ... ) 
(n/2)(6Br.,./Br.,.)· 

(19) 

The kernel of Eq. (17) in brackets {} are merely new 
inen/rp terms which themselves are nullable via new 

EN L, tPmN contributions, calculated from Eq. (10), which 
when added to the previous summation in Eq. ( 11) yield 
new Lm and tPm· Thus, the corrector ring is capable of 
self-correction! 

The magnitude of the corrector ring perturbation
induced harmonics are directly calculable. For the pa
rameters of scenario (iv) and with Br = 10,000 G, Lm = 
5 em, and a perturbation 6P/P = 1% (or 6P = 0.01 rad 
when P represents an angle or 6P = 0.01 when Prep
resents cos TJm), the contribution at lzl = rp of the new 
N = 1 term s1/rp normalized to the Q2 fundamental 
NJ = 2 term is 3.59/251000 = 0.14 · 10-4 for P repre
senting Rm or Pm, and half that amount for the other 
perturbation parameters. 

The largest multipole contribution at lzl = rp for Prep
resenting Rm or Pm, which occurs at the integer nearest 
the harmonic 

2fp 
n=--, 

1- fp 

times as large as theN= 1 term, where fp = rpf R. For 
scenario (iv) rp/R = 4.5/5.9 and (ns)mazflst = 5.5, thus 



the largest harmonic contribution at lzl = rp normalized 
to the Q2 fundamental is 0.77·10-4 for 6R.n/ R.n or 6f3m = 
O.OL Actual deviations of these parameters should be 
much smaller than 0.01 and thus self-correction of these 
harmonics is most likely unnecessary. 

For the other perturbation parameters the largest mul
tipole contribution, which occurs at the integer nearest 

(21) 

times as large as the N = 1 term. For scenario ( iv) 
rpfR = 4.5/5.9 and (ns)ma~/1sl = 1.8, thus the largest 
harmonic contribution at lzl = rp normalized to the Q2 
fundamental is 0.13 ·10-4 for 6<Pm, 6Lm/Lm, 6Br.,./Br"'' 
6r~"'/r~ ... , or 6 cos TJm = 0.01. These contributions are 
negligible compared with the target harmonics level of 
1 · 10-4 and need not be corrected if actual perturbation 
parameters 6P I P or 6P ~ 0.01. 

VI. SUMMARY 

The pure PM harmonics corrector ring described herein 
enables nulling of an arbitrary harmonic mix in an acceler
ator magnet. For the B-factory's Q2 septum quadrupole, 
relatively high harmonic magnitudes ("' 1% @ rp) can be 
nulled with a compact (- 5 em long) corrector. For Q2, 
high harmonics rejection factors (> 100) are attainable 
with reasonable device design complexity (32 PM cylin
ders). For other magnets, harmonics rejection factors of 
over 103 are possible, limited only by the corresponding 
absolute strength nulling capability of a specified correc
tor length. Flexibility for infrequent in-situ harmonics 
mix changing is easily incorporated in the design and is 
accomplished by manual rotation and counter-rotation of 
cylinder pairs. Likewise, several corrector rings of a stan
dard cylinder pair design can be utilized to null a different 
enor harmonics mix in a series of nominally identical mag
nets. Frequent in-situ harmonics mix changing is possible 
via remote control of rotor rotation. Harmonics intro
duced by positioning and magnetization errors are them
selves nullable in this robust device. Finally, the need 
to get the requisite field quality directly from shimming, 
shaping, or positioning the companion accelerator magnet 
is obviated, simplifying fringe field design compensation, 
parts tolerancing, PM quality isssues, etc. 

This concept of an independent arbitrary harmonic gen
erating/nulling device embodied in the inexpensive, flexi
ble, robust, high-strength PM design provides a powerful 
new tool for wide application in accelerator design, tun
ing, and harmonics suppression. 

VII. APPENDIX A: INTEGRAL DERIVATIONS 

Eq. (1) becomes, with 0:: 6- <P; zo- z = Reif3 + rcei6: 

5 

B•(z) = Br 12
"' rc cosO dfJ 

211" 0 z- zo(6) 

= -Br 12
"' re(cos6~<P + si~6sin<P) dfJ. 

211" o Re•f3 + ree•6 (22) 

Defining Z:: reei6 it follows that dZ = iZd6, 2cos6 = 
Z/rc + refZ, 2isin6 = Z/re- re/Z, and 

B•(z) = Bri f cos <P(Z
2 + r~)- is~ <P(Z

2
- r~) dZ 

411" , Z2(Z + Re•f3) 

(23) 

The pole at - ReiP and the double pole at 0 lie outside 
and inside, respectively, the circle Z = reei6 • Thus from 
Cauchy's integral formulas it follows directly that 

r c r c B r 2ei4> B ei4>. ( r ) 2 

= 2(ReiP)2 = -2- Ze - Z 
(24) 
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