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Abstract 

Based on a dispersive approach, we apply the inverse amplitude method to unitarize 
the one-loop SU(2) and SU(3) Chiral Perturbation Theory. We find that this unita
rization technique yields the correct complex analytical structure in terms of cuts and 
poles. As a matter of fact, we obtain the poles associated to the p(770) and K*(982) 
resonances. We obtain their masses and widths within a 15% error, when using the 
present chiral parameter estimates obtained from low energy experiments. However, 
by fixing the actual mass values of both resonances we obtain a parametrization of the 
1r1r and 1r K phase shifts up to the first inelastic threshold, which yields the correct 
values of their widths. With this fit we have also calculated several phenomenolog
ical parameters, including the scattering lengths, which can be of interest for future 
experiments. 
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1 Introduction 

Even though QCD has been repeatedly confronted with experiments and it yields a remark
ably good description of the strong interaction, the low energy hadron physics has to be 
modelled phenomenologically. This is due to the fact that the usual perturbative approach 
in the coupling constant cannot be applied to QCD below energies of the order of 1 GeV. 
Most of the phenomenological results were based on PCAC and the so called Cur~ent Alge
bra. However, in 1979, Weinberg [1] showed how to reobtain many of these predictions by 
means of an effective lagrangian. 

The fields in such a lagrangian are the light mesons, (pions, kaons and etas) which are 
understood as the Goldstone Bosons (GB) arising from the spontaneous breaking of chiral 
symmetry. Such a lagrangian should be built as an expansion in derivatives, but respecting 
the symmetry patterns of QCD, namely, the chiral symmetry breaking. Indeed, the first 
term in the expansion is fixed by the symmetry requirements and accounts for the Current 
Algebra results. The main advantage of this procedure is that the next terms in the expansion 
produce further corrections, which depend on several phenomenological parameters but are 
always consistent with the QCD symmetry constraints. More than ten years ago, these 
techniques were developed to the one-loop level in a set of papers by Gasser and Leutwyler 
[2, 3], where they showed how to derive Green functions involving light mesons, as functions 
of their momenta, their masses and those few phenomenological parameters. 

By fitting these parameters from a small number of low energy experiments it is then 
possible to obtain succesfull predictions for many other processes. A great deal of papers 
have appeared in the literature following this approach which is known as Chiral Perturbation 
Theory ( ChPT). 

While we were preparing this work some partial higher order calculations [4] have ap
peared in the literature as well as a complete two loop calculation of 1r1r scattering [5], which 
will be needed in order to analyse new and more precise data to come from DAq>NE and 
Brookhaven. For a general review of the present status of experimental data on pion physics 
and. f1,1ture prospects, we refer the reader to [6]. 

Nevertheless, there are some intrinsic limitations when applying ChPT, namely, the fact 
that the amplitudes calculated within the chiral approach are only unitary in the perturbative 
sense. That is, up to the next order in external momenta. Such a breakdown of unitarity 
is most severe at high energies, consistently with the approximation, although it can also 
occur at moderate energies [7]. As a result, it is not possible to reproduce resonant states, 
which are one of the most characteristic features of the strongly interacting regime. Many 
different methods have been proposed in order to improve this behavior and thus to extend 
the applicability of ChPT to higher energies; among them: The use of Pade approximants 
[8], the explicit introduction of resonances [9, 10], the large N limit [11] (N being the number 
of GB) or the inverse amplitude method (IAM) [7, 8, 12, 13]. 

This work is devoted precisely to the last method, which can be justified within a disper
sive approach, and it has been shown that it can easily reproduce the two lowest resonances: 
the p(770) resonance in 7r7r scattering [8] and the K*(892) resonance in 1r K scattering [12]. 
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But not only that, the lAM is also able to improve considerably the fit to experimental data 
even in those channels where there are no resonances. This fit provides a remarkably good 
parametrization up to high energies, that can be used for other processes. Indeed, in a pre
vious work [14], the authors showed how it can be used together with a simple unitarization 
prescription to obtain succesful results on 11---+ 1r01r0 up to 700 MeV. 

Of course, it is also possible to obtain very good parametrizations [9, 10] of 1r1r or 1r K 
elastic scattering up to very high energies, by including all resonant explicitly, which can be 
very useful for further analysis. However, our aim with the lAM is to be able to reproduce this 
phenomena just with the few phenomenological parameters present in the ChPT lagrangian. 
In this way, the resonances can be regarded as real predictions of the model. 

The purpose of this work is to study how high in energies the lAM can still yield good 
results and what are its limitations. In view of its remarkable success, fitting resonances at 
energies as high as 890 MeV, we would also like to know whether it is possible to reproduce 
further resonance states. It is clear that the best candidates are the lightest resonances 
whose dominat decay modes are 1r1r or 1r K. We have listed them in Table 1, where we can 
see that some of them, as the f 0 (980), are not much heavier than other resonances that the 
lAM reproduces amazingly well. In case these resonances were not accomodated after our 
unitarization, it would be interesting to understand why. 

Name I,J Mass Width Dominant decays 

p(770) 1,1 768.8 ± 1.0 150.3 ± 1.0 71"71", 100% 

fo(980) 0,0 980 ± 10 40 to 400 
71"71", (78.1 ±2.4)% 

K k, (21.9 ± 2.4)% 
!2(1270) 0,2 1275 ± 5 185 ± 20 71"71"' (84. 7 ±2.6)% 
K*(892)± 1/2,1 891.59 ± 0.24 49.8 ± 0.8 1rK, ~ 100% 
K*(892)0 1/2,1 896.10 ± 0.28 50.5 ± 0.6 

Table 1: Lightest resonances with 1r1r or 1r K dominant decay modes. Data taken from 
[15]. 

Finally, we would like to comment another motivation of the present work, which at first 
may not seem very related with the main topic. The philosophy of the chiral approach has 
also reached other fields of particle physics. That is the case of the strongly interacting 
symmetry breaking sector (SISBS) of the Standard Model [16]. The scalar sector of such 
a model displays the same symmetry breaking pattern as a two flavor massless QCD. It is 
then possible to build an effective lagrangian, for the electroweak Goldstone Bosons, much 
as we commented bef6re for QCD [17]. In this case the GB are not physical, but using 
this lagrangian it is possible to obtain predictions on the scattering of longitudinal weak 
bosons [18] at future colliders like LHC. Indeed, there are already experimental proposals to 
measure the chiral parameters of the effective elctroweak parameters at CMS [19]. Most of 
the works on the SISBS make use of the so called Equivalence Theorem [16], which allow 
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us to read the observable amplitudes, in terms of longitudinal gauge bosons, directly from • 
those with GB. This theorem has been recently proved in the chirallagrangian formalism 
[20] and seems to be severely constrained by the lack of unitarity. At this point is when 
the unitarization procedures come into play. But now it is crucial to know whether a given 
unitarization prescription is applicable and reliable, since what we are now looking for are 
real predictions and not elaborated fits to still unavailable data. 

In Section 2 we review some basic aspects of exact and perturbative unitarity and we 
define the partial waves in elastic scattering. Section 3 introduces the lAM, first with a 
derivation from Dispersion Theory and then by studying the constraints to its applicability. 
Section 4 and Section 5 are organized in the same way, although they refer to SU(2) and 
SU(3) ChPT, respectively. Indeed in both them we first apply the lAM to ChPT with 
the chiral parameters obtained from low energy experiments in order to study the lAM 
predictive power; next they present an lAM fit to the data. For the best SU(3) fit we 
present the unitarized results for the scattering lengths and some other phenomenological 
parameters. Then, in Section 6, we study the analytic structure on the complex plane of 
the lAM amplitudes. In Section 7 we present the conclusions. There is also one Appendix 
where we give the elastic scattering formulae used in this work, as well as a discussion on 
perturbative unitarity. 

2 Partial waves, phase shifts and unitarity. 

When dealing with strong interactions, it is usual to project the amplitudes in states of 
definite angular momentum J and isospin I. The new amplitudes are called partial waves 
and they can be written as follows . 

1 11 iiJ(s) = 
32

]{7r _
1 

d(cosO)PJ(cosO)T1(s,t) (1) 

where ]{ = 2 or 1 depending on whether the particles in the process are identical or not. 
The acceptable isospin values also depend on the process, namely I= 1, 2, 3 for 1r1r elastic 
scattering and I = 1/2, 3/2 for 1r ]{. For both reactions the definite isospin amplitudes T1 
are obtained from a single function. In the first case: 

T0 (s, t, u) 
T1 (s, t, u) 
Tz(s, t, u) 

- 3A(s, t,u) + A(t, s, u) + A(u, t, s) 
A(t,s,u)- A(u,t,s') 

A(t, s, u) + A(u, t, s) 

whereas for 1r ]{ scattering we can write: 

3 1 
T1 jz(s,t,u) = 2T3jz(u,t,s)- 2T3jz(s,t,u) 

(2) 

(3) 

In order to deal with both processes on the same footing, we will label the particles 
in the reaction as a and /3, so that, for instance, the Mandelstam variables will satisfy: 
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s + t + u = 2(M; + Mg). Hence the threshold will be at Sth = (M01 + M!3) 2
• As it is 

well known, whenever s > Sth, and below inelastic thresholds, the unitarity of the S-matrix 
implies that: 

(4) 

where u 01 [3 is a factor that comes from the integration over the two particle phase space. 
Explicitly: · 

"•P( s) = ~,..-(-1 -_ -( M_a_:_M_!3_)2-) -(-1 _-( M-01-~-M-!3-)2-) 

As a consequence of Eq.4, the partial wave .can be parametrized as follows: 

tiJ(s) = 1 
eic5IJ(s) sin8u(s) 

<701{3(8) 

and 8 IJ ( s) is called the I J phase shift. 

(5) 

(6) 

We have already mentioned that ChPT is organized as an expansion in derivatives. At the 
amplitude level, these derivatives transform into the meson external momenta and masses. 
That is, we obtain the partial waves as follows: 

(0) (1) (2) tu=tu +tiJ +tiJ + ... (7) 

where, for the cases we are now dealing with, t}~ is O(p2
), t}~ is O(p4

), etc ... (the~e are also 
some logarithms, but they are irrelevant for the present discussion). In practice, we can 
only obtain the few first terms of the series above, and then it is easy to realize that our 
amplitude cannot satisfy exactly the unitarity constraint in Eq.4. Nevertheless, they satisfy 
the unitarity condition perturbatively. In other words: 

Imt}~ 
Imt}~ 

lm(t}~ + t}~) 

0 

(8) 

As we have alredy commented, the O(p2
) were given by Weinberg [1] and they corre" 

spond to the so called low energy theorems. For pion elastic scattering the calculation to 
one loop was carried out by Gasser and Leutwyler using an SU(2)L x SU(2)R invariant 
effective lagrangian [2], although they also extended the formalism to SU(3)L x SU(3)R by 
considerding the strange quark [3]. These calculations include the dependence on the chi
ral parameters (called li for SU(2) and Li for SU(3)) and the physical masses M1r, Mx, MTJ 
and decay constants F1r, F K, FTJ. The precise calculation for 1r K scattering can be found in 
[21, 22], although we have found that those formulae should be slightly modified to satisfy 
Eq.8. We will comment on that later. Finally we want to point out that very recently it has 
appeared the complete calculation of the O(p6

) contribution to elastic 1r1r scattering [5]. 
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3 The Inverse Amplitude Method 

3.1 Derivation from Dispersion Theory 

Let us briefly review the standard derivation [7, 12] of the inverse amplitude method in ChPT. 
Most of this discussion will be used later in order to understand the different approximations 
performed at each step, how they limit the applicability of the method and whether it is 
possible to avoid some of them. 

From very general considerations, the amplitudes obtained from a relativistic Quantum 
Field Theory should present a characteristic analytical structure when the real variable 8 is 
promoted to a complex variable. Indeed, the production threshold for the reaction implies 
the existence of a cut in the complex plane which, starting at 8 = 8th, extends to infinity all 
over the positive real axis. Then, by crossing symmetry, it can be shown that there should be 
another left cut along the negative axis. Therefore, we can apply Cauchy's Theorem to our 
complex amplitudes and obtain integral equations that are known as dispersion relations. 
For instance, a three times subtracted dispersion relation for an exact amplitude is nothing 
but: 

2 83 100 ImtiJ(81)d81 

tiJ(8) =Co+ C18 + C28 +- 13( 1 • ) + LC(tiJ) 
7r (Ma+M~)2 8 8 - 8 - ZE 

(9) 

Where we have not written explicitly the left cut (LC) contribution. The minimum number 
of subtractions needed depends on how the amplitude behaves at -infinity-inorder to ensure -- -
the vanishing of the contributions coming from closing the integral contour. In our example 
we have chosen three subtractions since we are mainly going to use O(p4

) ChPT amplitudes 
which at high 8 behave as 8

2
. But our arguments remain valid for O(p6

) amplitudes when 
using four times subtracted dispersion relations, etc ... 

As it should be, the partial waves obtained from ChPT do present both cuts. Indeed 
the chiral formalism allows us to calculate both the subtraction constants C0 , C1, C2 and the 
integrand inside Eq.9. Following with our notation we have: 

t (O) 
IJ 

t (l) 
IJ 

ao + a18 
3 00 I t(l)( l)d I 

b b b 2 8 J m IJ 8 - 8 LC( (1)) 
0 + 18 + 28 +- . + t[J 

7r (Ma+M~)2 813(8 1
- 8- zt:) 

Where we have expanded the subtraction constants in terms of M~/ FJ. 

(10) 

The lAM is based on the fact that the function 1/tiJ displays the very same analytic 
structure of tiJ, apart from some possible pole contributions. For later convenience, we will 
make use of G( 8) = t}~2 /tiJ, which is nothing but the inverse amplitude multiplied by a 
real number; thus we are keeping its analytic properties and we can write a very similar 
dispersion relation: 

83 100 ImG( 81)d81 

G(s) =Go+ G18 + G282 +- 13 ( 1 . ) + LC(G) +PC 
7r (Ma+M~)2 8 8 - 8 - ZE 

(11) 
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where PC stands for possible pole contributions. The advantage of using G( s) is that, by 
means of Eqs.4 and 8, we can calculate exactly the integral over the right cut, since then: 

I G 
_ t(o)2 ImtiJ _ t(o)2 _ I t(1) 

m - - IJ - - IJ a- - m IJ I tiJ 12 
(12) 

Note that we are always denoting by tiJ the exact amplitude, which is unknown, although 
we know its analytic properties. In contrast, the expressions fort}~ and t}Y, etc ... have been 
calculated explicitly. 

As we did before, we can also expand the Gi subtraction coefficients in powers of ~r;; FJ, 
and then rewrite the subtraction relation for G( s ), which now reads as follows: 

t(0)2 
IJ 

3 00 I t(1)( ')d I 

~1 m IJ s s - LC(t}1)) +PC 
7r (Ma+M13 )2 s'3(s'- s - i€) J 

(13) 

where we have approximated ImG :::::: - Imt~Y on the left cut. But, neglecting the pole 
contribution, and comparing with Eq.10, what we have just found is nothing but: 

or, in other words, 

(0)2 
tiJ '""i(O) t(1) -t-- IJ- IJ 

IJ 

t(0)2 
t '"" IJ IJ - (0) (1) 

tiJ - tiJ 

(14) 

(15) 

Which is the well known lAM result, that we are going to use throughout the present work. 
Incidentally, Eq.15 can be written as the formal [1, 1] Pade approximant of the perturbative 
ChPT amplitude. 

3.2 The applicability of the Inverse Amplitude Method 

Let us go again through all the approximations that we have made in the previous section, 
in order to comment how they will constraint its applicability: 

3.2.1 The left cut 

We have already pointed out that in Eq.13 we have replaced the G(s) left cut integral by 
that of -t}Y(s). As we have shown in the preceeding discussion (Eq.12), that is only valid 
over the right cut. Indeed, on the left cut we cannot write the chain of equalities that we 
have written in Eq.12. Nevertheless, we still can use the ChPT result as an approximation: 

(o)2 ImtiJ (1) 6 
ImG = -tiJ I l2 :::::: -ImtiJ + O(p ) 

tiJ 
(16) 
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And thus we get 

LC(G) = jo lmGIJ(s')ds' ~ -jo lmt}Y(s')ds' = -LC(t(I)) (17) 
-oo s'3(s'- s- i€) -oo s'3 (s'- s- i€) IJ 

Notice that, in order to obtain the I J phase shifts, we are going to calculate tiJ( s) for real 
s > 4M1!". That means that the denominator ( s'- s- i€) inside the integrals is never going to 
be very small, which somehow will wash out the error we make when we approximate lmG. 
Nevertheless, with the inverse amplitude method we will not get the same function of the 
logarithms in u and t that we obtain with plain ChPT. We expect this effect to be rather 
small since the logarithms are dominated by power like contributions. 

3.2.2 The pole contribution 

When passing from Eq.13 to Eq.14, we have neglected the contributions coming from zeros 
in the amplitude, that will appear as poles of the inverse function. There is no way to know 
a priori whether or not a partial wave will vanish for some s value and in practice we can 
only guess their existence by inspection of our results. Nevertheless, in case they existed, 
their contribution can be taken into account with a subtraction in these points. As far as 
from our results we have never found any hint of such a pole, we have not developed further 
this possibility. 

3.2.3 Multiplying by t}~ 

This is apparently the harmless assumption in the reasoning above, although it dramatically 
affects the results of the lAM. In fact, it can happen that t}~ = 0. This is not the case for 
the (I, J) = (0, 0), (1, 1), (2, 0) channels in 7r7r scattering nor for (3/2, 0), (1/2, 0), (1/2, 1) for 
1r ]{. However, any other partial wave vanishes at O(p2 ). That means that our formula in 
Eq.15 is no longer valid. 

Nevertheless, we can try to generalize our previous derivation of the method, in order 
to include those channels whose leading order is given by O(p4

). It is indeed possible, and 
we only have to go through the very same steps, although now we would write a dispersion 
relation for t}~. But let us remember that the main improvement of the approach is that we 
are calculating exactly the integral of lmG(s) over the right cut. However, for that purpose 
we obviously need some imaginary part, and by looking at Eq.8 we can see that t}~ = 0 
implies that lmt}Y = lmt}~ = 0. Therefore, unless we have a calculation up to O(p8

), the 
corresponding imaginary part will vanish. Therefore when following the derivation of the 
lAM if t}~ = 0 the best we can get is plain ChPT again. As we have already commented, 
just very recently it has appeared an O(p6

) calculation of 1r1r scattering [4, 5]. Therefore, 
at present we can only expect to obtain a real improvement with our approach in the six 
channels listed above. In particular, the lAM in the (0, 2) channel yields again the ChPT 
result. With the present status of ChPT calculations we cannot even think about trying to 
reproduce the !2(1200) resonance. But that could change in the future. 
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3.2.4 Elastic unitarity 

In order to obtain ImG in the right cut, Eq.12, we have made another approximation, which 
is to use of the elastic unitarity condition of Eq.4. As a matter of fact, the right cut is 
indeed composed of many superimposed cuts, each one corresponding to a different inelastic 
intermediate channel. As a consecuence, Eq.4 is only true below the first inelastic threshold,· 
and the real unitarity condition for a generic partial wave t would read: 

Imta,/3-+a,/3 =I: a-A I ta,/3--.A 1
2 0(s- SA) (18) 

A 

where the sum is over all the physically accesible intermediate states that we have called 
A. The o-A factor is precisely the phase space corresponding to the that state A. Therefore 
e = 1 whenever sis bigger than the A threshold (denoted SA), otherwise e = 0 (Note that 
some authors absorb the e function on the phase space factor, but we have preferred to 
make it explicit). 

As far as we are neglecting electromagnetic interactions, the first inelastic channel in 7r7r 

is the four pion intermediate state, which opens at 550 MeV. Similarly, for 1r I< is 1r J{ 1r1r, 

whose threshold is ~ 910 MeV. Strictly speaking, only for energies below these values, the 
elastic approximation that we have used is exact. Within ChPT these processes are O(p6

), 

which would allow us to neglect them against the O(p4
) contributions at low energies. One 

of our motivations, however, is to study the lAM at high energies (of the order of 1 GeV) and 
therefore in that regime such a reasoning does no longer hold. Nevertheless, the contribution 
of these intermediate states is also supressed by the four particle phase space in Eq.18, so 
that we still expect the lAM to provide us with a good approximation. 

There will also be other inelastic channels with more pions, opening at higher energies, 
but they will be even more supressed in the chiral expansion and by phase space. 

Unfortunately, there are intermediate channels, within the energies that we are interested 
in, which are not supressed neither by the chiral counting nor by a many body phase space. 
Indeed, at an energy of approximately 985 MeV, the inelastic I< I< threshold opens up. 
Unfortunately, the process 1r1r ---t J{ J{ has a non vanishing O(p2

) contribution and its phase 
space factor in Eq.18 is the O"af3 that we have already met in Eq.5, although with Ma = 
M,13 = MK. Therefore, for energies above the two kaon threshold we have to reconsider the 
derivation of the lAM. Let us illustrate with 7r7r scattering how inelastic effects affect our 
result. 

As the starting point, for s > SJ<:f(, we have a new unitarity relation: 

Imt = O"n I t 1
2 +o-KK I tK 1

2 (19) 

where we have denoted by t the generic tiJ pion elastic scattering amplitude and by tK the 
I J partial wave of the process 7r7r ....... J{ f<. 

Once again we introduce the auxiliary function G = t(0
)2 jt, whose imaginary part, always 

for s > SJ<:f(, is now 

(20) 
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The above equation differs from Eq.12, in the term coming from two kaon intermediate 
production, that we will also have to take into account when computing the integral over 
the right cut. In contrast, on the left cut we will again approximate ImG c::: - Imt(l), much 
as we did in the elastic regime. 

Following the very same steps of our previous derivation, we arrive to 

t(0)2 c::: t(O) - t(l) - 83 roo (JK [( . (t(0)2( s') I t K( s') 12 - t~)2 ( s')) ds' 
tiJ 1r 14M'fr s'3(s'- s- u:) I t(s') 1

2 
(21) 

.6.(s') 

In the above equation there are terms that we cannot calculate, as for instance, the exact 
tK amplitude. Nevertheless, we could try to approximate the integrand using ChPT. In that 
case, we find that .6.( s') c::: 0 + O(p6

), so that one is tempted to neglect the whole integral. 
Apparently, it will be the same approximation that we used in the left cut. However, the 
actual values of s that we use in our calculations are such that the denominator can amplify 
the error in our approximation (notice that, if it was it not for the E in ( s'- s - iE) we would 
get a divergency). As a consequence, we cannot expect that the simple approximation of the 
integral by the ChPT result will always yield good results. 

The main advantage of using the lAM is that we are calculating exactly on the elastic 
cut, but that is no longer true on the inelastic cuts. Indeed, the method can miss relevant 
physical features associated to inelastic thresholds. That is indeed the case in pion scattering 
since, as it can be seen in Table 1, at these energies there is one resonance, the f 0 (980), whose 
nature is closely related to the ]{ R threshold. 

Taking into account that the inverse amplitude technique is able to reproduce the other 
two lightest resonances in 7r7r and 1r ]{ scattering, it seems very surprising that it is not able 
to reproduce the f 0 (980). Naively, one would expect that, since it works that well up to 900 
MeV, just 80 MeV more should not spoil completely the goodness of the approach. However, 
we will see that there is not even a hint of a resonant behavior in the scalar channel around 
985 MeV. One could maybe be tempted to conclude that the lAM only reproduces vector 
resonances. We do not think this is correct and, indeed, we will see later that we obtain the 
appropriate analytical structure as far as it is not due to the kaon threshold. 

At this point we want to remark the importance of understanding why and when the 
method does no longer yield the right results. Let us remember that we are also thinking 
in possible applications of this unitarization procedures to the electroweak chiral effective 
lagrangian, whose reference model is the Standard Model with a heavy Higgs. In such case, 
one would expect to see a broad resonance precisely in the scalar channel and we want to 
have a unitarizati<m procedure that we can trust when it predicts such a resonance. 

We do think that the above discussion in terms of inelastic thresholds explains why 
the lAM fails so abruptly. The reason is not that the ChPT amplitudes become a worse 

. approximation at higher energies, indeed it is connected to the fact that the f 0 (980) resonance 
is related, in a fundamental way, with the kaon threshold. 

Nowdays, the f 0 (980) resonance parameters are understood in terms, not of a single 
pole, but two [24, 25]. Once the amplitudes are extended analytically to the whole complex 
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s plane, the existence of two superimposed cuts on the positive real axis, implies that we have 
four different Riemann sheets. In our case, the cut produced by the two pion intermediate 
state is responsible for the appearance of two sheets, which are labelled according to the sign 
of the center of mass momenta: 

(22) 

The same happens for the cut produced by two kaon intermediate states, although now the 
labelling is done with the sign of 

k2 = ~Js2 - 4Mt· - 2 ,'( {23) 

The usual convention is to label the four sheets by the signs of (Imkb Imk2 ), so that sheet 
I has ( +, + ), sheet II ( -, + ), sheet III ( -,-) and sheet IV ( +,-). Notice that, with our 
previous notation, k1 "' <:Yn and k2 "' CYK.f(, SO that a choice of sign for k1 and k2 implies 
a choice of sign for ern and <:rKf?· In this way it is easy to see that the unitarity relation 
Eq.l9 is only satisfied over the right cut when coming from the upper plane in the first sheet. 
That is the reason why the other sheets are called "unphysical", although they also contain 
important physical information. Namely, poles can only appear in these sheets and from 
the point of view of complex analysis, they determine (together with the cut structure) the 
values of the amplitude at any point of the complex plane. As a matter of fact, resonances 
are produced by poles located near the real axis, and in the case of f 0 (980), it has been shown 
that its physical parameters can be accomodated with a pole in the second sheet and another 
one in the third. The first one has been clearly established at Mu = 988±10-i(24±6)MeV 
[24]. However, the location of the other pole is not so clear, since it changes considerably 
depending on how general the representation of the amplitude is taken in the analysis, one 
finds Mru = 978- i28MeV [24] or Mur = 797- i185MeV [25]. 

As we will see later, our approach is not able to reproduce any of these poles. The first 
one is above kaon threshold and is responsible for the resonance itself. It is located very near 
the real axis and thus we cannot expect the .6. ::: 0 ChPT approximation to be valid. Naively 
one could expect to be able to reproduce the other pole, because its real part is below the 
kaon threshold. It would have been nice to obtain such a pole in order to shed some light on 
its real position. Unfortunately, being below the inelastic threshold is not enough, since it is 
also located on the "unphysical" sheet of the kaon cut, which we are not able to reproduce. 
From our point of view, these are the reasons why the lAM fails to accomodate the f 0 (980) 
resonance. But the lAM is able to reproduce the other analytical features which are not 
associated to the kaon inelastic cut. Indeed, we will se in Section 6 that it yields a pole in 
this channel which, even though it does not produce a resonance, is necessary to describe. 
the experimental data. 

3.2.5 O(p4 ) approximation 

Throughout the derivation of the lAM we have been using, for simplicity, the chiral am
plitudes up to O(p4 

). Nevertheless, it is possible to extend the argument to include higher 

11 



order terms, as for instance the O(p6
) contributions. In that case we would have started 

from a four times subtracted dispersion relation for the two-loop calculation. Once more, 
the integral over the right cut would be related to the one for G(s) = t}~2 /iu. Working out 
the expansion of the subtraction constants, we would then arrive to 

t(0)2 
i rv JJ 
IJ - t(O) t(l) + t(1)2jt(O) t(2) 

IJ - IJ IJ IJ - IJ 

(24) 

which again is nothing but the formal [1,2] Pade approximant, that satisfies exactly the 
elastic unitarity condition. 

As we have commented in the introduction, while we were preparing this work, two new 
papers have appeared with O(p6

) calculations of 1r1r scattering within SU(2) ChPT [4, 5]. 
We have not used these results, since, as we have already seen, they will not help us to 
overcome any of the preceeding objections to the lAM. However it is quite likely that, had 
we used them, the parameters of the fits that we will present in the next sections would had 
been slightly modified. 

4 1T1T scattering in SU(2) ChPT 

The inverse amplitude method was first applied [8, 14] to 1r1r scattering without the strange 
quark. In that case, the massless limit displays an spontaneous symmetry breaking from 
SU(2)L x SU(2)R to SU(2)L+R, which is nothing but the usual isospin. The O(p4 ) expression 
for 1r1r scattering was obtained in [2, 26], and it is written in terms of four phenomenological 
parameters 1!, Z2 , 13 ,14 as well as the mass and pion decay constants, M1r and F1r that had 
already appeared in the low energy theorems. In this section we will review how the method 
is able to reproduce the p resonance. We will show some results for recently proposed new 
parameters in order to test the lAM predictive power, but we will also present a unitarized 
fit to the data. As a novelty we will use not only the J = 0 phase shifts, but also those with 
J = 2, in order to obtain in the best fit with the lAM. In this new calculation, we have also 
estimated the error bars of the unitarized parameters. 

4.1 Results using low-energy parameters 

Let us now illustrate what happens if we apply the lAM on the ChPT amplitudes using the 
values of the chiral parameters obtained only from low energy experiments. It is wen known 
that the lAM is able to extract from this low energy data the right qualitative behavior at 
high energies, including some resonant states. However, we want to see quantitatively to 
what extent the main features are reproduced. 

In order to simplify the comparison with previous works on the subject, we have chosen 
M1r = 139.57 MeV and F1r = 93.1 MeV. The values of the chiral parameters are not so clear, 
since in general they have considerable error bars. In Table 2, we have listed the different 
combinations of parameters and methods that we have taken from the literature to obtain 
Fig.1. 
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Method 

ChPT I -0.62±0.94 I 6.28±0.48 I No resonances 

Inverse -0.62±0.94 6.28±0.48 715 MeV 
Amplitude -1.7±1.0 6.1±0.5 675 MeV 

Table 2: Sets of parameters and methods used in the text. Those in the first two lines 
come from Kz4 decays [27]. Those in the third, from data on Kz4 and 1r1r together with 
some unitarization procedure ref.[28]. Mp is calculated with the central values. 
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Figure 1.- Phase shifts for 1r1r ~ 1r1r. The dotted curve is plain ChPT with the fi 
in the first line of Table 2. The other two curves are both the result of the lAM: the 
dashed one has been calculated again with the same parameters whereas the continuous 
one corresponds to the fi in the third line of Table 2. The data comes from: [29] (Lj.), 
[30] (¢>,0), [31] (x),[32] (o), [33] (<1), [34] (*)and [35] (•). The results with SU(3) 
ChPT would have been exactly superimposed on these curves. The straight line stands 
at 6 = 90°. 
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As it had already been shown in [8, 14], from the curves for the I = 1, J = 1 channel 
in Fig.1, it can be clearly seen that the lAM correctly yields a p-like resonance. The value 
of its mass is obtained from the point where the curves cross the 8 = 90° value and it lies 
within a 10% to 15% error of its real value. In this way, the p resonance can be regarded 
as a prediction, within that 10% to 15% error, of the lAM with ChPT and the parameters 
obtained from some low energy data. 

It is also evident that the fit of the I = 2, J = 0 channel is correct up to much higher 
energies. In Table 2 we have also included the values of Mp corresponding to each choice of 
parameters. For all the cases we have set Z3 = 2.9, Z4 = 4.3 following reference [2), as it is 
usual in the literature, since any change in this parameters is related with the actual values 
of M1r and F1r. 

The only feature of 1r1r scattering that is evidently missing from the unitarized results is 
the f 0 (980) resonance in the I= 0, J = 0 channel. As we have already seen in the previous 
section, this fact is connected with the faliure of the whole approach to properly reproduce 
the kaon inelastic cut. But let us first obtain a better fit to the data. 

4.2 U nitarized fit 

Now that we have an amplitude that correctly describes the right cut, while keeping at the 
same time the correct polynomial form from ChPT, it seems natural to tune the parameters 
in order to obtain the correct Mp [8, 14). Note that, in principle, fixing the correct mass does 
not imply that we get a good fit to the data. It could happen that even though the phase 
shift crosses 1r /2 at the right Mp, the slope of the curve at that point is incorrect, or in other 
words, that the width is wrong. In order to differentiate the parameters thus obtained from 
those coming from plain ChPT we will call them l~, Z2 • With the help of the chirallimit for 
the (1,1) ChPT amplitude, it is easy to see that this channel is almost only sensible to the 
following parameter combination: Z1 -12 . We just then have to tune this combination until 
we get the Mp listed in Table 1. We get: l1 - l2 = -5.95 ± 0.02. In Fig. 2 it can be seen 
that the results are remarkably succesful. As we will see later, we also get the right p width. 

Once that difference is fixed, we just have to determine one parameter, say G,, and use 
the Z1 - Z2 value t6 obtain the other. It is then tempting to try to repeat the same procedure 
and fix one ii by tuning the f 0 (980) mass. In practice, however, we already know that the 
lAM is not able to reproduce the f 0 (980) resonance, so that we will have to determine one 
of the ii parameters by other means. 

In previous studies [8, 14) the unitarized fit to the other phase shifts was used in order 
to estimate the values of Z1 and Z2 . But, asit was commented above, the data in the (0,0) 
channel is not as good as that of (1,1). The same happens for the (2,0) channel, where 
the curves are not very sensible to small variations in the ii parameters. Therefore, in the 
present work, we have also used the J = 2 channels (mainly the one with I= 0) to further 
constrain the parameter range. Let us remember that for these channels we have t}~) = 0 
and, as we have already discussed in Section 2, the lAM leads again to the ChPT result, 
although we are now using the ii parameters. That is why we will only use low energy data 
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Method Mp (input) 

Inverse 
-0.5 ± 0.6 5.4± 0.6 768.8± 1.1 MeV 155.6±1.8 MeV 

Amplitude 

Table 3: Parameters and results of the one-loop lAM when Mp is fixed to its actual 
value. 

in these channels, up to ~ 600MeV, although in other channels we are using data at higher 
energies. 

Thus, the values given in Table 3 are just a conservative estimate of the range where one 
parameter, namely Z2 , yields a reasonable fit of the data in the (I, J) = (0, 0), (2, 0), (0, 2) and 
(2, 2) channels. The corresponding values for Z1 are then obtained from Z1 - Z2 . The results 
are shown in Fig. 2, where the continuous line corresponds to the central ii values and the 
shaded area to their uncertainties, all them listed in Table 3. Notice that the shaded area 
has always been obtained by varying just one parameter within its estimated error. Then 
the other one is fixed from Z1 - Z2 • 

In Fig.2 it can be seen how it is not possible to fit the f 0 (980) resonance with SU(2) 
ChPT and the lAM. It is clear that, even though the actual value of the h00 phase shift may 
not lie very far from the unitarized prediction, the qualitative behavior of the curves in this 
channel is not correct above 800MeV. 

With the ii fit we can obtain the total Breit-Wigner width of the p resonance from: 

M;-s 
fp = M tanh11 (s) 

p 

(25) 

Indeed we have computed it for different values of s around M; (although not too close 
since the tanh function is very unstable numerically near the resonance). The result is 
r P = 155.6 ± 1.8Me V, which is quite close to the experimental result (see Table 1) and 
consistent with previous calculations using the lAM (see [8] and references therein). This 
value is nevertheless slightly high, but we will see that it is possible to obtain the right value 
when using SU(3) ChPT. 

As we have already commented, this result is not at all trivial, since fitting the right 
mass does not ensure a correct description of the resonance. Therefore, even though we are 
now using the Mp experimental value, the fp width is again a prediction of the lAM. Notice, 
in contrast, that when trying to fit the data by considering explicitly the resonance fields 
in the lagrangian, one has to introduce both the mass and the width of each resonance. Of 
course with that procedure one can get extremely good results, even at high energi~s [9, 10], 
although the price is a larger number of phenomenological parameters. 
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Figure 2.- Pion elastic scattering phase shifts DIJ obtained from the lAM fit to the 
correct Mp. The shaded areas cover the error bars of the fitted parameters with the 
constraint l1-l2 = -5.95±0.02. The dotted straight lines stand at 8 = 90°. Remember 
that the J = 2 partial waves have to be calculated as in plain ChPT. Indeed, the dashed 
lines in those channels correspond to plain ChPT with the parameteres in the first row 
of Table 2. The symbols for the experimental data are the same as in Fig.l. The 
corresponding curves within SU(3) ChPT would almost superimpose. 
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5 SU(3) Chiral Perturbation Theory 

The extension of the ChPT approach to include the strange quark, was done once more, by 
Gasser and Leutwyler [3]. In this case, there are eight Goldstone bosons, which are identified 
with the three pions, the four kaons and the eta. In principle it is possible to calculate 
the amplitudes of any process involving any combination of these particles. However, the 
breaking of chiral symmetry is larger in the case of the strange quark and thus the masses of 
the kaons and the etas are larger than M1r. Therefore the thresholds for these reactions are 
much higher than in pion scattering, which in practice restricts severely the effectiveness of 
the approach. 

Nevertheless, the lowest two particle threshold apart from 1r1r scattering is that of 1r I< 
elastic scattering at 630MeV, which is still within the applicability range of ChPT. The 
calculation of this amplitude to O(p4

) was performed by Bernard, Kaiser and MeiBner [21, 22] 
who also gave the O(p4

) result for 1r1r within SU(3) ChPT. In the literature, these formulae 
have sometimes appeared with some minor errata which have been corrected in the DA<I>NE 
Physics Handbook [23]. However, even those formulae do not satisfy perturbative unitarity 
(see Appendix). Following the work in [21] we have rederived an expression which does satisfy 
that requirement, and we have included it in the Appendix, toghether with a discussion on 
how it is obtained and its unitarity properties. 

In the SU(3) case the phenomenological parameters are the masses of the pseudo
Goldstone Bosons, together with the corresponding decay parameters that, as it is usually 
done, we have set to: 

M1r = 139.57MeV Mx = 493.65MeV M71 = 548.8MeV 

F1r = 93.1MeV (26) 

There are also twelve one-loop parameters, which now are customarily denoted as Li(p,) 
(all them but L3 and L7 depend on the renormalization scale [3]). However only a few of 
them actually contribute to the amplitudes of the processes considered in this section. As 
a matter of fact, only Li, L7,, L3, L~, L~, Lf,, L8 appear in 1r I< in scattering, whereas in pion 
scattering only the following combinations are present: 

(27) 

(28) 

Again, and in order to simplify the comparison with previous works, we have fixed the 
following values: 

(29) 

according to reference [3]. To use a very precise value of these parameters is not very relevant 
since they are related to the different masses and decay constant that we had already fixed. 
Hence, in practice, the only relevant parameters for 1r1r and 1r I< scattering in SU(3) are 
Li,L2 and L3. 
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The lAM was first applied to SU(3) ChPT by the authors in [12], were we showed that it 
is possible to reproduce not only the p(770) resonance but also the K*(892). Our aim in this 
section is first to to study the predictive power of the method, whether it can accomodate 
further resonant states, or why it cannot. Then we will present a simultaneous fit to 1r1r 

and 1r K scattering to the p and K* masses. The new features of this analysis is that it 
uses the corrected ChPT expressions for 1r K scattering which now truly satisfy perturbative 
unitarity (see the Appendix) and the fact that we also use the data on the J = 2 1r1r scattering 
channels. We will also estimate the error bars on the best fit parameters and we will use it 
to obtain numerical values for some interesting phenomenological parameters. This fit will 
also allow us, in section 6, to study the analytical structure of the lAM amplitudes in the 
complex s plane, as well as to unitarize the 11 --+ 1r1r one loop ChPT cross section. 

5.1 Results using low energy parameters 

Let us then start, as we did in the previous section, with the inverse amplitude results using 
parameters that have been obtained from low energy data. In Table 4 we list different choices 
of parameters and methods together with their results for the p and K* masses. As in the 
case of SU(2) ChPT the lAM is able to predict from low energy data the existence of both 
resonant states. Remarkably, the masses are obtained again within a 10% to 15% error. 

In Fig.3 we show the result of applying the lAM to 1r K scattering, with the parameters 
given in Table 4, which have been obtained from low energy data. In contrast with plain 
O(p4

) ChPT, it is evident that the lAM is not only able to accomodate the K* resonance 
but also to reproduce the right qualitative behavior for the (I, J) = (3/2, 0) channel. 

We do not display the results for 7r7r scattering in SU(3) because they will almost su
perimpose with those in Fig.l. In9.eed, the li parameters in lines 2 and 3 of Table 2 were 
obtained, respectively, from the L~, L;, L 3 in lines 2 and 3 of Table 4 [27, 28], by means of: 

2 ( r ( liK ll7r) 967r 4L1 M.,) + 2L3-
24 

- 3 

487r2 (4Lr(M)- liK - 2v7r) 
2 ., 12 3 

log (~D a= ~.K (30) 

As a matter of fact, we have calculated independently the 1r1r elastic scattering in SU(2) 
and SU(3). Using the above equations to relate the parameters in both cases, and below 
kaon threshold, we have obtained the same results up to numerical differences (~1%), which 
would be unobservable in the figures. That is a nice check of our programs. Therefore, Fig.1 
is also the result for 1r1r scattering in the SU(3) formalism, but now with the parameters in 
Table 4. 
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Figure 3.- Phase shifts for elastic 1r K scattering. The dotted curve is plain ChPT 
with the Li parameters in the first line of Table 4. The other two curves are both 
obtained from the lAM: the dashed one again with the same parameters and the con
tinuous one with those in the third line of Table 4. The experimental data comes 
from:[36) (•), [37) (*), [38) (o), [39) (0), [40) (D) and [41) (6.). The straight dotted line 
stands at 8 = 90°. 

Method 

ChPT o.65±o.28 1.89±0.26 1 -3.o6±o.92 1 

Inverse 0.65±0.28 1.89±0.26 -3.06±0.92 717 MeV 847 MeV 
Amplitude 0.6±0.3 1.75±0.3 -3.5±1.1 680 MeV 804 MeV 

Table 4: Different sets of parameters and methods used in the text. Those of the first 
two lines come from K14 decays [27). Those of the third line come from data on K14 and 
1r1r together with some unitarization procedure (for details see ref.[28]). The quoted 
values of Mp and MK· are calculated with the central values. 
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5.2 Unitarized fit 

As it happened in the SU(2) case, we now have an expression for the amplitude that behaves 
correctly with respect to unitarity and that presents the right form in the low energy limit. 
Therefore, we can try to use the actual p(770) and K*(892) masses, given in Table 1, in 
order to get a good parametrization of 1r1r and 1r K phase shifts. Once again we remark that 
nothing ensures that fitting the right masses will give us the right description of phase shifts, 
since, among other things, the widths of the resonances could be wrong. 

When dealing with the SU(3) chirallagrangian we have more parameters and the way 
they appear in the amplitudes is more complicated. Let us first start with the 1r1r scattering 
partial waves in SU(3). As we have already commented, they only depend on 2L;: + L3 and 
L;. Even more, the (1,1) channel only depends on 2L1 + L3 - L;, (which is renormalization 
scale independent) and will be fixed with MP. Once more and in order to avoid confusions 
with the ChPT low-energy parameters, we will denote the paremeters of our fit by Lr;. 

Let us then start by fixing the p(770) mass to its actual value. In so doing we get 
A A A 3 

2L; + L 3 - L; = ( -3.11 ± 0.01)10- (31) 

As a consistency check we see that it is within a 1% of -3.14 10-3 which is obtained from 
the ii parameters of the SU(2) case, with the help of Eq.30. 

Using the value in Eq.31, it is enough to determine L~ in order to extract 2L;: + L3 , 

in complete analogy with the SU(2) case. Once again we use the other channels (I, J) = 
(0, 0), (2, 0), (0, 2) and (2, 2) to determine the best L; value, which indeed is the same that 
we would have obtained from the Z2 SU(2) parameter by means of Eq.30. It can be found 
in Table 5. Hence, the best SU(3) fit of the 1r1r phase shifts, yields almost the sameresults 
as those obtained with SU(2). In practice, the very same Fig.2 remains valid for SU(3) and 
that is why we are not displaying it twice. Nevertheless, when computing the Mp within the 
SU(3) formalism, we obtain a much better value than in SU(2), which was about 5 MeV 
too high. It is also listed in Table 5. 

Up to the moment we have just determined L; and 2i;: + L3 . In order to obtain L;: 
and L3 separately, we simply have to fix the correct K*(892) mass in the I = 1/2, J = 1 
1r K channel, by varying the L3 value. However, the K*(892) has an added subtlety when 
compared with the p(770), namely, that the mass splitting between charged states is of the 
order of 5 MeV. This is an small isospin breaking effect that we have not included in our 
approach. Therefore, we have used an average mass M K• = 894.0 ± 2.5 MeV with an error 
bar that includes the mass of any K*(892) state, no matter what its charge may be. That 
uncertainty has also been taken into account in the L£ error estimates. 

Once we have L3 , we use L~ and Eq.27 to obtain l;:. The parameters of this fit have 
been collected in Table 5, together with r p and rK.' which can be considered as predictions 
of the approach. Notice, however, that in this case, the width of the K*(892) resonance is 
obtained only up to a 20% error, which nevertheless we consider a reasonably good result in 
view of the whole fit in that channel. 

Concerning the parameters, it can be noticed that, as expected, they do not lie very 
far from those in Table 4, which were obtained from low energy data. Indeed, they are 
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Method L~(M1)). 103 L;(M1)). 103 ~ 3 
L3 ·10 rp rK. 

Inverse 
0.41±0.20 1.48 ± 0.33 -2.44± 0.21 149.9± 1.2 MeV 41.2 ± 1.9 MeV 

Amplitude 

Table 5: Parameters and results of the SU(3) lAM when Mp = 768.8 ± l.lMeV and 
M K• = 894.00 ± 2.5 MeV are fixed to their actual values. Notice that for K*(892) we 
have chosen an average mass between its different charge states. 

compatible inside the error bars. Even more, they also seem to be consistent with other 
parameters that have been obtained from the lAM applied to the form factors of the ]{ -+ 

1r1rlv decays [13], which are very well know experimentally: 

L~ (M1)) = (0. 74 ± 0.14)10-3 L;(M1)) = (1.07 ± 0.18)10-3 L3(M1)) = ( -2.45 ± 0.52)10-3 

(32) 
(notice that in that reference they are using slightlly different definitions, as FK = F1r, so 
that the parameters do necessarily differ. See also the Appendix.) 

Nevertheless, it would not make any sense to try to reduce the error bars of these param
eters. We consider that the approach that we have been following here can only be consistent 
within a few: percent error level. If one would like to have a better accuracy it would be nec
essary to take into account higher order ChPT corrections, probably electromagnetic effects 
(at least for the mass splittings) and the whole approach should be modified following the 
comments that we made in previous sections. 

In Fig.4 we show the results of the SU(3) lAM fit to the resonance masses, in terms of 
elastic scattering phase shifts, which we think deserve some comments: 

• First notice that, again, we are not showing the curves for 1r1r scattering since they are 
exactly those in Fig.2. The differences only appear above the two kaon threshold, since 
in the SU(3) formulae we are also considering internal loops of kaons and etas, which 
modify the unitarity condition. Indeed, we have also computed the phase shifts with 
the lAM, but obtaining the imaginary part of the amplitude above threshold from the 
modified unitarity condition in Eq.19. There is no improvement in the results. That 
should be expected from the discussion in Section 3.2.1, since such a procedure does 
not reproduce the ]{ R cut. Hence, the J0 (980) resonance is out of reach even with 
this "improved" approach. 

• In the 1r ]{-+ 1r ]{case we can extend the graphs up to 1100 MeV, or even more, since 
the first inelastic threshold is ]{ T] production at 1040 MeV and, in contrast to the 
1r1r case, there is no nearby resonance. Indeed, the next resonant state in 1r ]{ elastic 
scattering is K0(1430), very high to affect dramatically our results at 1100 MeV, but 
also to be correctly reproduced by the lAM method. Nevertheless, the existence of the 
]{ T] threshold can be noticed in the I = 1/2, J = 0 channel, as a small bump in the 
curves at precisely 1040 MeV. 
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Figure 4.- 1r J( elastic scattering phase shifts OIJ obtained from the lAM fit to the 
correct Mp and MK·. The shaded areas cover the error bars of the fitted parameters 
with the constraint 2LJ. + L3 -L2 = ( -3.11 ± 0.01 )10-3. The dotted straight line stands 
at o = 90°. The symbols for the experimental data are the same as in Fig.3. 

• The shaded area in the !{*(892) channel is not only due to the averaged mass for 
!{*(892) with 2.5MeV error, but also to the fact that we have to determine several 
parameters to get the right mass, in contrast with the p(770) case, when we only had 
to fix one. 

Obviously, the calculation for 1r J{ scattering cannot be checked with SU(2) as we did for 
1r1r ---+ 1r1r. However, we have explicitly checked that the ChPT amplitudes that we obtain 
satisfy perturbative unitarity. As it is explained in the Appendix, previous calculations 
[22, 12], including ours, did not respect this condition, although by a very small amount. 
That is why the values of the best parameters for this fit are slightly different those of our 
previous work [12]. 

Phenomenological parameters 

Once we have a good parametrization of 1r1r and 1r J{ elastic amplitudes, we can use it 
to obtain the values of some relevant phenomenological parameters. First we can calculate 
the scattering lengths, which determine the strength of the interactions at low energy. De
spite our lAM fit makes use of high energy data, we expect that it will reproduce the low 
energy behavior since in the low energy limit it reduces to the chiral expansion, which at 
O(p4 ) already yields ~quite good values (see Tables 6 and 7). However, as far as the lAM is 
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non-perturbative we are also taking into account higher order effects, that will modify the 
numerical results. Indeed, some of these lengths have already been calculated with the lAM 
and it yields slightly better results than plain ChPT [13]. We have made aga~n the calcula
tion with our fit, but as far as we have an estimate of the error bars in the Li parameters,
we will be able to give theoretical error estimates for the scattering lengths and the slope 
parameters (they are mostly dominated by the error in L2 ). 

Before giving the results, it is convenient to recall that usually the definition of the 
scattering lengths is used with two different normalizations. Namely: 

(33) 

for 1r1r scattering, where q is the C.M. momentum q2 = s/4- M;, and 

RetiJ(s) = v; q2
J (a5 + b5q2 + O(q4

)) (34) 

for 1rK scattering, where now q2 = [s- (MK + M.n.)2][s- (MK- M-nY]/4s. 
Finally, the predictions of our fit for the 1r1r and 1r K scattering lengths are given in Tables 

6 and 7. Notice that they are expressed in units of M1r in order to compare with previous 
results. As it can be seen in these tables, all the values are compatible with experimental 
data, and in general they only differ very slightly from the O(p4 ) ChPT results, usually in 
the right direction toward the central value. However, the experimental error bars are still 
too big to arrive to any conclussion. Nevertheless, very recently it has appeared a two loop 
calculation of 1r1r scattering within SU(2) ChPT, that estimates ag I"V 0.217 or 0.215 and 
ag- a6 I"V 0.258 or 0.256, which are precisely the values obtained with our lAM fit. This fact 
gives support to the idea that the lAM somehow takes into account higher order terms even 
at low energies. 

We have also calculated the phase of the c' parameter, which measures direct C P violation 
in J{ -+ 1r1r decays [43]. It is related to the s-wave phase shifts as follows: 

(35) 

Our result is: 
(36) 

very close to ¢>( c') = 45 ± 6° which is obtained in plain ChPT [44]. 
Finally, in Fig.5 we show the phase difference 600 - 611 , compared with the hitherto 

available experimental data [34]. The difference between the lAM and plain ChPT at high 
energies is due to the presence of the p resonance. Nevertheless, there are also some differ
ences at low energies, since the dispersive approach is somehow taking into account higher 
order contributions. It is expected that in the near future, there will be much more precise 
data coming from K14 decays at DA<I>NE and Brookhaven [6, 23]. 
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a I 
J ChPT lAM fit Experiment 

ao 
0 0.201 0.216 ± 0.008 0.26 ± 0.05 

bo 
0 0.26 0.289 ± 0.025 0.25 ± 0.03 

a2 
0 -0.041 -0.0417 ± 0.0014 -0.028 ± 0.012 

b2 
0 -0.070 -0.075 ± 0.003 -0.082 ± 0.008 

a1 
1 3.6 . 10 2 (3.744 ± 0.002)·10 2 (3.8 ± 0.2)·10 2 

b1 . 1 0.43·10-2 (1.546 ± 0.003)·10-2 

ao 
2 20 . 10-4 (17.1 ± 3.5)·10-4 (17 ± 3)·10-4 

a2 
2 3.5 . 10 4 (2.8 ± 1.5)·10 4 (1.3 ± 3.1)·10 4 

Table 6: 1r1r scattering lengths. The ChPT results are taken from [27]. The experi
mental data comes from [42] 

a} ChPT lAM fit Experiment 

3/2 
ao -0.043 -0.049 ± 0.004 -0.13 ... -0.05 
b~/2 -0.026 ± 0.003 

1/2 
ao 0.148 0.155 ± 0.012 0.13 ... 0.24 
b1/2 

0 0.087 ± 0.016 
1/2 

a1 0.012 0.0146 ± 0.0012 0.017 ... 0.018 

Table 7: 1r J( scattering lengths. Note that the ChPT results heve been obtained using 
the corrected formulae in the Appendix. The experimental data comes from [21] 
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Figure 5.- 600 - 611 phase shift difference from the lAM fit (solid line) and plain 
ChPT (dashed line). The shaded area covers the uncertainty in the L; parameters and 
the data comes from [34). 

6 The lAM in the complex s plane 

One of the main objections to unitarization procedures is the apparent arbitrariness in their 
predictions, which may differ from one another. In most cases, this methods are nothing but 
a small modification of the amplitudes so that they can satisfy the unitarity constraint in 
Eq.4, while keeping at the same time the good low energy behavior. But that constraint is 
not enough to determine the amplitude completely, so that there are as many unitarization 
techniques as algebraic tricks to implement such a constraint exactly or to get a better 
approximation. 

However, we have already seen in Section 3.1 that, below any other inelastic threshold, 
the inverse amplitude method can be derived directly from the analytic structure of the 
general two body elastic scattering amplitude. Our purpose in this section is to show that 
indeed, apart from satisfying elastic unitarity, it provides the correct analytic structure of 
the amplitudes that is required from relativistic Quantum Field Theory. Such an structure is 
not trivial at all and cannot be reproduced by other unitarization procedures. Both the left 
and right unitarity cuts are already present in plain ChPT, therefore, we will mainly focus 
on the other relevant features of analyticity. Namely, that poles can only occur in the second 
Riemann sheet, and that all resonances have to be related to such poles in the vicinity of 
the real s axis. 

In the previous section we used the most naive criteria to identify resonances, i.e., that 
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the phase crosses the 8 = goo value. However, that is only true for the cleanest cases and in 
general to find 8 = goo does not imply the existence of a resonant state. One just have to 
look at the 1r1r I= 0, J = 0 phase shift data in Fig.2 and notice that even though it obviously 
crosses 8 = goo at about 750 to 850 MeV, the first resonance in that channel, f 0 (980), is 
usually placed at higher energies. 

As a matter of fact the existence of a resonance is reflected in scattering processes as a 
sudden and considerable variation in the phase shift, a rather vague definition. As we have 
already commented, the rigorous characterization of resonances is made in terms of poles 
in the second Riemann sheet of the amplitudes in the s complex plane. Indeed, when a 
resonance is produced by just one of these poles, both its mass and width can be related to 
the pole position by: 

(37) 

provided the width is small enough. In case the resonance is due to more poles, the relation is 
slightly more complicated, but the resonance physical parameters can also be obtained from 
the position of the poles [24). The most realistic case is when the pole is not responsible for 
the whole phase in the real axis, but there is also a so called background phase contribution. 
That is indeed what happens with the fo(gso) resonance whose poles yield an steep rise in 
the phase shift over an existing background 8 ~goo [24, 25). 

In this work we have extended analytically to the s complex plane both the 1r1r and 
the 1r I< elastic scattering amplitudes, that are obtained with the lAM applied to one-loop 
SU(3) ChPT. Notice that the cuts in ChPT come from logarithmic functions, so that we 
have infinite sheets in the complex plane. However, only two of them correspond to the first 
and second Riemann sheets that any amplitude cut should present. Once we have identified 
these sheets we can check whether the resonances that we found in previous sections are 
produced by a pole in the second Riemann sheet and thus whether they have a real sound 
basis. 

We will first analyze the 1r1r ---+ 1r1r process. In Figure 6 we represent the imaginary part 
of the amplitude in the complex s plane for the three channels (I, J) = (0, 0), (1, 1) and 
(2, 0). Notice that when we say complex s plane, we mean that we have parametrized s as 
s = (E + iC)2, where E is the CM energy and is represented in the real axis whereas C 
provides the complex part. (In this way the plots are actually showing the amplitudes on 
the Js plane, but in this way the units are easier to interpret. Anyway we will keep on 
calling it the complex s plane). On the left column we have displayed the results in the first 
Riemann sheet, whereas the second is represented in the right column. In all cases it can be 
clearly noticed the existence of a cut on the real axis on the first Riemann sheet. As we had 
commented before, a right cut is not anything completely new, since it is already present in 
one-loop ChPT, although in that case, the values that the amplitudes take on it are different. 
In contrast, the most striking new feature in the lAM amplitudes is the appearance of poles 
in the second Riemann sheet and how they determine the amplitude shape for the physical 
values of s. 

Indeed, we have found two poles with Ims < 0 in the second Riemann sheet, one in the 
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Figure 6.- Imaginary parts of the 1r1r -+ 1r1r amplitudes in the complex s plane. The 
first row is the (J, J) = (0, 0) channel, the second is (1, 1) and the bottom is (2, 0). The 
left plots correspond to the first Riemann sheet, and those on the right, to the second. 
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Figure 7.- Contour plots of the second Riemann sheets for different SU(3) ChPT 
unitarized amplitudes. From left to right they correspond to the (1, 1) and (0, 0) 1r1r 

scattering channels and the (1/2, 1) 7r K--+ 1r K channel. 

(0, 0) partial wave and another one in (1, 1). Let us start with the second, which clearly 
corresponds to the p resonance. The position of this pole can be obtained from the contour 
plots in Figure 7, and it is found at around ER"' 760- i75. Using Eq.37 we see that it is in 
a good agreeement with the p(770) mass and width parameters given in Table 1. Therefore, 
we can conclude that the prediction of the lAM for the p(770) resonance is completely 
consistent. 

The other pole that can be seeen in 7r7r --+ 1r1r is on the (0, 0) channel. Using the 
parameters of the best SU(3) lAM fit of the previous section, we find that it is located 
at ER "' 440 - i245. This pole is not responsible for the appearance of any resonance, 
since it is very far away from the real axis. However, from purely phenomenological fits to 
pion scattering data it had already been pointed out the existence of such a pole around 
ER "' 408 - i342 MeV [25]. This pole is responsible for the strong interaction in the (0, 0) 
channel that dominates at low energy the two pion interaction. We can now see that even 
in the channel where there is not an apparent improvement, the lAM yields the correct 
analytical structure. 

Much as it happened in previous sections, the method is not able to reproduce the f 0 (980) 
resonance. As we already commented, this resonance is now believed to be caused by two 
poles: one in the second Riemann sheet, but above the two kaon inelastic threshold and the 
other one below, but in the third Riemann sheet. Following the same steps as before, we 
have also identified these sheets in the 7r7r --+ 1r1r amplitudes and we have been able to take 
a look at all the sheets in search of more poles. Indeed, we have even implemented the lAM 
derived with the inelastic unitarity condition in section 3.2.4. We have not found any pole 
that could hint the existence of such resonance. As we have already explained, we should 
not expect to find anything since the approach is not able to reproduce properly the two . 
kaon unitarity cut and consequently neither its associated sheet structure. 

Let us now address to the 1r I< elastic scattering case. Again, in Fig.8 we have displayed 
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Figure 8.- Imaginary parts of the 1r K -+ 1r K lAM amplitudes in the complex s 
plane. The first row is the (I, J) = (3/2, 0) channel, the second is (1/2, 0) and the 
bottom is (1/2, 1). Again, the left plots correspond to the first Riemann sheet, and 
those on the right, to the second. 
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the imaginary part of the amplitudes for the (3/2, 0), (1/2, 0) and (1/2, 1). Those pictures 
on the left represent the first Riemann sheet and those on the right, the second. Once 
more it is clear the existence of a unitarity cut, but also the appearance of a pole in the 
appropriate channel. In particular, using the third contour plot of Fig.8, we have found a 
pole in ER "' 890 - i20 MeV, which using Eq.37 yields again the mass and width for the 
I<*(892) resonance that we gave in Table 5. 

7 Conclusions 

In this work we have shown how the lAM provides a consistent technique to accomodate 
resonances. Indeed, based on its derivation from Dispersion Theory, we have made a system
atic analysis of its applicability constraints. We have found that it is mainly limited by the 
existence of inelastic thresholds and by the fact that the tree level approximation vanishes 
in some channels. 

We have found that its predictive power, once the chiral parameters are determined from 
low energy data, is of the order of 15% for the masses and widths of the resonances. We 
think this fact gives a sound basis for its application to the strongly interacting symmetry 
breaking sector. 

Moreover, once we force the lAM results to fit the actual resonance mass values, we get 
a remarkably good fit to data which is able to reproduce the experimental data up to the 
next relevant inelastic threshold. Following that procedure, we have given the unitarized 
SU(2) ChPT fit to 1r1r --+ 1r1r as well as that of SU(3) to 1r1r and 1r I< elastic scattering. For 
the first time we have estimated the values of the unitarized chiral parameters together with 
their error bars. These values do not lie very far from those obtained without the lAM, 
and therefore do not spoil the low energy expansion, as can be noticed from the scattering 
lengths that we have given. 

We consider that it would not make any sense to try to reduce the error bars in the 
unitarized parameters within this approach. One has to keep in mind that we have neglected 
higher order ChPT corrections, electromagnetic effects, and that we have used high energy 
data which is very sensible to such effects. It is quite likely that, in order to obtain results 
consistent to a higher degree of accuracy, the lAM in the simple version that has been used 
here, will not be enough. 

Finally we have also shown how the lAM yields the proper analytic structure in the 
complex s plane, in contrast with other unitarization techniques. Indeed, we have found 
that the apparent resonant behavior that is observed on phase shifts, is produced by the 
corresponding poles in the second Riemann sheet, meeting the strict requirements imposed 
by general relativistic Quantum Fiel Theory. 

Therefore, we think that the lAM and unitarization by means of dispersion theory is the 
most natural and economic way to extend the applicability of ChPT. We have seen however, 
that its main limitations come from the existence of inelastic thresholds. Nevertheless, work 
is still in progress in the subject, the lAM has been recently applied to other processes 
and higher order ChPT calculations will be soon available. As far as some other physically 
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relevant features do not lie very far from the present applicability limits, it seems very likely 
that they can be reproduced in the near future. 
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A Elastic scattering amplitudes in SU(3) ChPT and 
Unitarity 

As we have already commented in the text, the chiral lagrangian formalism was extended 
to include the strange quark by Gasser and Leutwyler [3]. Nevertheless, the calculation of 
elastic 1r I< scattering was later performed in [21]. These amplitudes were given in terms of 
physical as well as lowest order masses and decay constants, which are usually denoted by 
Mp, Fp and M~, F0 , respectively (P being either 1r,I< or ry). Of course, the only mesurable 
parameters are the first, and when comparing with experimental observations, one has to 
eliminate those from lowest order in terms of the physical constants. 

Indeed, it is possible to find [3] the relation between M~ and M1r as well as that between 
M~ and MK. Unfortunately, at lowest order there is only one F0

, which is related both to F1r 
and FK. Hence, whenever one finds F 0 in an expression there are two choices: either relate 
it to F1r or to FK. The difference between the two choices will be one order higher in the 
chiral expansion. For instance, if one has an O(p2

) expression with F5, in principle one can 
substitute it by F'.;, FJ.: or F1r · FK. All these choices are the same up to O(p4

). When one is 
working only with pions, the natural choice is the one that leaves all the expressions in terms 
of F1r, but when one is dealing both with pions and kaons, it is not so obvious. However, we 
have found that some of these choices lead to a violation of perturbative unitarity, i.e: 

-·-
lmt(l) = CJ etf3t(o) 2 (38) 

Surprisingly, the usual choice in the literature [22] which is the one we had also chosen in 
our previous work on SU(3) unitarization [12], does not satisfy this constraint. This fact can 
be easily checked by counting the powers of F'lr and FK in the tree level and O(p4

) results. 
Indeed, there is a factor FJ.: / F'.; of difference between both sides of the above equation. 
Numerically that amounts to a (1.22)2 "' 1.5 factor. 

Thus, we have rederived from the original work [21] the amplitudes in terms of physical 
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quantities, so that they satisfy perturbative unitarity. The result is: 

3/2 M; + M'k - s T p u 3 T (s,t,u) 
2

F1rFK +T4 (s,t,u)+T4 (s,t,u)+T4 (s,t,u)+O(s) (39) 

T[(s, t, u) 16~FK (M;- M'f< )(3p1r- 2~tK + PTJ) 

T!(s,t,u) F2~2 {4L~(t- 2M;)(t- 2M'f<) + 2L; [(s- M;- M'f<) 2 + (u- M;- M'f<) 2
) 

1r K . 

+ L; [(u- M;- M'f<? + (t- 2M;)(t- 2M'f<)) + 4L~ [t(M; + M'f<)- 4M;M'f<] 

+ 2L~M;(M;- M'f<- s) + 8(2L~ + L~)M;M'f<} 

T,!' (s, t, u) 4F~Fk { ~ [(s- t) (L1rK(u) + LKTJ( u)- u (M;K( u) + MJ{TJ( u))) 

+ (M'f<- M;) 2 (M;K(u) + MJ{TJ(u))] + t(u- s)[2M;1r(t) + Mj<I<(t)] 

+ ~(M'f<- M;)[I<1rK(u)(5u- 2M'f<- 2M;)+ I<KTJ(u)(3u- 2M'f<- 2M;)] 

+ ~J;K(u) [11u2 -12u(M'f< + M;) + 4(M'f< + M;) 2
] + +J;K(s)(s- M'f<- M;f 

+ ~JJ{TJ(u) ( u- ~(Mj< + M;)) 
2 

+ ~J;1r(t)t(2t- M;) + ~JJ{K(t)t2 

+ ~J;TJ(t)M; (t- ~M'f<)} 

The functions MpQ,LPQ,I<PQ,lPQ,/lP, with P,Q = 1r,I<,'f7, can be found in [3] although 
they should be written in terms of physical quantities. 

We have verified analytically that this amplitude satisfies the perturbative unitarity con
straint. Moreover, we have used that constraint as a check of our programs. 

For completeness, we will also give the SU(3) formulae used in this work for 1r1r scattering, 
because they have also appeared with some minor errata in the literature: 

A(s,t,u) (s-M;) ( ) ) 3 ) F 2 +B s,t,u +C(s,t,u +O(s 
1r 

( 40) 

B(s, t, u) - ~i { ~f J;TJ(s) + ~(s2 - M;)J;1r(s) + ~s2 JJ{K(s) 

+ ~(t- 2M;)2 1;1r(t) + t(s- u) [M;1r(t) + ~MJ{K(t)] + (t +-+ u)} 
C(s, t, u) ;

4 
{ (2L~ + L3 )(s- 2M;)2 + L;[(t- 2M;)2 + (u- 2M;)2]+ 

1r . 

+ (4L~ + 2L~)M;(s- 2M;)+ (8L~ + 4L~)M;} 

We have also checked that this amplitude satisfies elastic unitarity. 
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