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Abstract 

The main subject of this thesis is the geometry of quantum groups and quantum 

spaces. The main tool used is the Faddeev-Reshetikhin-Takhtajan description of 

quantum groups. A few content-rich examples of quantum complex spaces with 

quantum group symmetry are treated in details. In chapter 1, we review some of 

the basic concepts and notions for Hop£ algebras and other background materials. 

In chapter 2, we study the vector fields of quantum groups. A compact realization 
of these vector fields as pseudodifferential operators acting on the linear quantum 
spaces is given. In chapte1· 3, we describe the quantum sphere as a complex quantum 

manifold by means of a quantum stereographic projection. A covariant calculus is 

introduced. An interesting property of this c&!culus is the existence of a one-form 

realization of the exterior differential operator. The concept of a braided comodule 
is introduced and a braided algebra of quantum spheres is constructed. In chapter 

4, we consider the more general higher dimensional quantum complex projective 

spaces and the quantum Grassman manifolds. Differential calculus, integration and 

braiding can be introduced as in the one dimensional case. A sufficient condition 
for the existence of a one-form realization of the exterior differential operators 6, 6 
is given and is applied to the case of complex projective spaces and quantum Grass­
mannians. FinaHy, in chapter 5, we study the framework of quantum principal 

bundle and construct the q-deformed Dirac monopole as a quantum principal bun­
dle with a quantum sphere as the b.ase and a U(l) with non-commutative calculus 
as the fiber. The first Chern class can be introduced and integrated to give the 

monopole charge. 
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Introduction 

Quantum groups were discovered in Leningrad by studying the quantum integrable 

1 + 1 dimensional systems, using the method of quantum inverse scattering [1, 2). In 

the Hamiltonian approach to the inverse scattering method (2, 3), one introduces 

the pair of first order differential operators, 

d 
L=--U 

dx ' 
d 

M=--V 
dt ' 

(0.1) 

where U(x, ~). V(z, ~) are matrices with matrix elements being functions of the 

basic field variables (e.g. f/1, f/1" for the nonlinear Schodinger system) and their 

spatial derivatives, and ~is a complex parameter. Given the Hamiltonian H and 

a Poisson bracket{,}, one requires that the equation of motion (EOM) admits the 

Lax representation 

EOM # [L,M) = 0. (0.2) 

The Poisson bracket , written in terms of the matrix U(z, ~) is of the form 

{U(z, ~H' U(y,p)} = [r(~- p),U(z,~)®J +I ®U(y,p))6(z- y), {0.3) 

where 

{A' B}i~:: {Ai' B~} {0.4) 

and r( ~) is the classical r-matrix with spectral parameter ~ satisfying the classical 

Yang-Baxter equation (CYBE), 

(rt2(~- p), r13{~) + r23(p)) + (rt3(~), r23(p)) = 0. (0.5) 

In a quantum theory, one often uses a lattice to regularize the theory, therefore it 

is preferable to consider the above classical system on a one dimensional spatial 

lattice with lattice sites labelled by integer n. Define Ln(~) by 

l
rn+l 

ezp "" dxU(z,~) ~ Ln(~) + (6z)2
, (0.6) 

then (0.3) becomes 

{Ln(~)' Lm{p)} = (r(~- p), Ln{~) ® Lm(p))Onm• (0.7) 
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This formula has the remarkable property that (0. 7) still holds after replacing Ln (A) 
by Ln+tP)Ln(A). This suggest that we are dealing with a group comultiplication 

(loop group) that is compatible with the Poisson structure. It was this property that 

led Drinfeld to the notion of a Poisson-Lie group and thus revealed the mathematical 

structure of Poisson-Lie groups behind the theory of solvable lattice models. Upon 

quaniization, Sklyanin, Takhtajan and Faddeev found that the operators Ln(A); 
satisfy the commutation relations 

Rn(.\- p)(Ln(A) ® 1)(1 ® Ln(P)) = (I® Ln(p))(Ln(.\) ® I)Ru(.\- p), (0.8) 

where R(A) is the quantum R-matrix satisfying the quantum Yang-Baxter equation 

(QYBE), 

Rtl(A -p)Rt3(A)Rl3(1') = Rl3(p)Rt3(A)Ru(A -p) (0.9) 

and the matrices Ln(A) have commuting matrix elements for different lattice sites. 

(0.8) reduces to (0. 7) in the classical limit of h -+ 0: 

I • i • • . • 
JdLn(.\}j, Ln(l')l J-+ {Ln(.\)j, Ln(l'}l }, (0.10) 

k{R(.\)- I)-+ r(.\). (0.11) 

Remarkably, (0.8) also has the property that the matrix product Ln+t (A )in (A) satis­

fies the same Poisson bracket (0.8) also. This "comultiplication structure" suggests 

an underlying structure of bialgebra compatible with the quantum algebra (0.8) 
specified by the matrix R(A) and eventually led Drinfeld and Jimbo (4, 5, 6, 7] to 

identify the relevant algebraic structure as a quasi-triangular Hop£ algebra eventu­

ally. As such, quantum groups are deformations of their classical counterparts, the 

algebra of functions Fun( G) over a Lie group G respectively its dual, the universal 

enveloping algebra U(g) of a Lie algebra g. The standard !-parameter deforma­

tions of the classical groups and the universal enveloping algebras were given in [8]. 
The one-parameter deformation of the universal enveloping algebra was also con­

structed by Drinfeld and Jimbo from the point of view of quantization of Co-Poisson 

universal enveloping algebra (dual to the algebra of functions on the Poisson-Lie 

groups). 

From a different point of view, Woronowicz initiated the study of quantum 

groups as nontrivial examples of non-commutative geometry. If M is a topological 

X 

space, then the algebra G00(M) of all complex-valued continuous functions over M 
which vanish at oo is commutative and is a C"-algebra. The converse statement is 

also true: if A is a commutative C"-algebra, then A is isomorphic to G00(M) for 

some locally compact topological space M. This is the Gelfand-Naimark theorem. 

When A is non-commutative, such a M does not exist. However, from the point 

of view of category theory, it is convenient to introduce non-commutative spaces as 

objects of the category which is dual to the category of C"-algebras. The theory 

of group structures on non-commutative spaces is quite old [9, 10, 11). It was 

Woronowicz who revived the interest in this subject. He proposed a useful set 

of axioms [12) for compact matrix quantum (pseudo) groups and which turn out 

to have a very rich structure and representation theory. In (13, 14), Woronowicz 

introduced covariant differential calculi on quantum groups. Differential calculi on 

linear quantum spaces were later constructed by Wess and Zumino [15). See for 

example [16, 17, 18, 19, 20, 21, 22, 23] for many interesting constructions of the 

differential geometry on quantum groups and quantum spaces. 

Quantum groups as "symmetries" of quantum spaces were first proposed by 

Manin (24, 25]. The suggestion of quantizing spacetime is not new, see for example 

[26, 27] for early attempts. On the other hand, the idea of a quantum symmetry with 

a quantized spacetime as carrier is new. It is very attractive and naturally attracted 

a lot of activities from the physics community: extensive work has been carried out 

on the q-deformation of the Lorentz [28, 29) and the Poincare [30, 31] group. The 

corresponding "Lie algebras" have also been constructed [32, 33). In addition to 

the q-deformation, there exists also the IC-deformation of Poincare algebra [34). 
Woronowicz and Zakrzewski made some natural and reasonable requirements on 

how a deformation of the Lorentz group SL(2,C) should look like and gave a 

complete classification from a Hop( •-algebraic point of view [35]. The classification 

of deformed Poincare groups has been worked out recently [36). Wave equations on 

Euclidean spaces [37J and on the quantum Minkowski spaces are studied (38). The 

introduction of gauge symmetry was a very important step in physics. The QFT 

of strong, weak and electromagnetic interactions are modefled as gauge theories 

nowadays. However, it is likely that a new understanding of gauge symmetry is 

necessary for the ultimate goal of unification of all forces and a lot of attempts were 

made in constructing quantum group gauge theories [39, 40, 41]. 
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It is commonly believed that our usual description of spacetime using the lan­
guage of a smooth manifold is only a low energy classical approximation and will 

very likely be modified at short distances by quantum gravity effects. The use of 

a spacetime continuum is a basic and fundamental assumption in Einstein's geo­

metric theory of gravity. This assumption, however, is tested experimentally only 
for distance much larger than the Planck length. It is natural to expect that one 

needs some new spacetime structures at small scales for a quantum theory of grav­

ity. This belief is reinforced by the fact that quantum field theory of gravity is 

plagued by ultraviolet divergences which is not removable by the usual procedure of 

renormalization: Some alternative descriptions have been suggested, notably string 

theory !42) and non-commutative geometry !43, 44). As an example of the frame­

work of non-commutative geometry, the effects of electroweak unification on the 

nature of spacetime is studied in !45) by Lott and Connes who proposed a minimal 

two-point internal space and thus provided a geometric origin of the Higgs mecha­

nism: the Higgs field appears as the component of the gauge field in the direction 

of the internal space. See !46) for a review of the prescription for particle physics 

model building in the non-commutative geometric framework, outstanding prob­

lems in this framework and many references. In particular, it is not clear how to 

incorporate the physics of quantum gravity using the language of non-commutative 

geometry. 

Quantum groups and Hop£ algebras make their appearance in many different 

branches of physics and mathematics. In physics, they occur as symmetries of 

lower dimensional theories such as spin chains and solvable lattice models (see for 

example !47)), and as hidden symmetry of WZNW models and conformal field theory 

!48, 49). In some two dimensional CFT !50, 51), Mack and Schomerus found the 

more gen~ral quasi-Hop£ algebra symmetry at certain values of the parameter space, 
generalizing the usual Hop£ algebra symmetry. On the mathematical side, quantum 

group have stimulated a lot of interesting topics such as representation theory, knot 

theory and non-commutative geometry. 
It will be very interesting to understand the role of quantum group symmetry 

in higher dimensional physics. The main theme of this thesis is a study of the 

geometry of quantum groups and quantum spaces, with the hope that they will be. 

useful for the construction of quantum field theory with quantum group symmetry. 

xii 

In this context, we study the realization of quantum group symmetries, we construct 

the q-deformed Dirac monopole as a quantum principal bundle and we study a few 

other content-rich examples of non-commutative geometry. It is hoped that these 

simple models of quantum spaces may capture some of the interesting features of 

the spacetime at the Planck scale. 

xiii 



Chapter 1 

Hopf Algebras 

We review in this chapter some of the most basic concepts and constructions of 

Hopf algebras and quantum groups. 

1.1 Basic Definitions 

Definition 1.1.1 (Bialgebra) 
A bialgebra A over the field k is a unital algebra and a coalgebra. i.e. with also the 

two maps, co multiplication A : A ...,. .A® .A and counit_t : A _. k such that 

for any a, b E A. 

(Ll ® id) o Ll(a) = (id® Ll) o A( a), 

(t®id) o Ll(a) = (id®t) o Ll(a) =a, 

A(ab) = Ll(a)Ll(b), Ll(l) = l ® 1, 

t(ab) = t(a)t(b), t(l) = 1. 

Definition 1.1.2 (Hopf Algebra) 
A Hopf algebra A is a bialgebra together with a map S : A ...,. A such that 1 

a1S(a2) = S(at)a2 = lt(a), 

where 1 is the unit of .A. 

(1.1) 

(1.2) 

(1.3) 

(1.4) 

(1.5) 

1Here we use the Sweedler'a notation (52) A(o) = E1ol(t)®0;(2) = oo)®o(2) for simplicity. 

Definition 1.1.3 (Quasi-triangular Hopf Algebra) 
A quasi-triangular Hopf algebra A is a Hopf algebra together with an invertible 

element n E A® A satisfying the relations 

where 

(Ll®id)'R = 'Rt3'R231 

(id®Ll)'R = 'Rn'R23, 

(rotl)(a) = 'Rtl(a)n-1, 

T :A®A ..... A®A, 

a®b H b®a 

is the permutation map and 

'Rn = r;®ri ® 1 

(1.6) 

( 1. 7) 

( 1.8) 

(1.9) 

( 1.10) 

etc. if we denote n = r; ® r;. n is called the universal R-matrix of A and satisfies 

the quantum Yang-Baxter equation 

n12n13n,a = n,3n13n12 (1.11) 

as a consequence of the definition. 

Definition 1.1.4 (•-Hopf Algebra) 
A •-Hop/ algebra is a Hopf algebra together with an •-involution satisfying 

((3a)" = p•a-, \1(3 E k, (1.12) 

(ab)" = b"a", (1.13) 

A( a") = ( • ®*)A( a), 

t(a•) = t(a)", 

(S(a•)t = s-1(a), 

where p• is the •-conjugation of (3 E k. 

Definition 1.1.5 (Dual Pairing of Hopf Algebras) 

(1.14) 

(1.15) 

(1.16) 

Two Hop/ algebras U and A are called dually paired if there exists a non-degenerate 

2 



inner product < ·, · >: U ®A-+ k such that 

< x,ab > = < X(t),a >< X(2),b >, 

< xy,a .> = < x,a(t) >< y,a(2) >, 

< Iu,a > = t(a), 

< x, l,A > = t(x), 

< S(x),a > = <x,S(a)>, 

where x,y E U and a,b EA. 

1/U and A are •-Hop/ algebras, then we require also 

< x",a >=< x,(S(a))" >". 

Let U be a Hopf algebra and 

p :U-+ MN(k) 

( 1.17) 

(1.18) 

(1.19) 

( 1.20) 

( 1.21) 

( 1.22) 

( 1.23) 

be anN x N faithful representation of U. We can define a new Hopf algebra A, dual 

to U in the following way: A is generated by the N2 matrix elements A~ satisfying 

p(x) =< x, A~ > (1.24) 

for x E U. Since p is faithful, A~ is well defined. The multiplication in A is 

determined by the coproduct in U through (1.24). As for the other Hopf structures, 

it is 

i i " L\(Ai) = A,.®Ai, 

t(A~) = 6J, 
S(A~) = (A-1

)}. (1.25) 

1.2 Quasi-triangular U and the Dual Pair (U, A) 

When U is quasi-triangular, we have 

L\'(x) = 'RL\(x)'R-1
, Vx E U, ( 1.26) 

3 

where 'R is the universal R-matrix and one can determine the multiplication in A. 

It is convenient to introduce the f¥2 x N 2 numerical R-matrix for the representation 
p, 

R~,. = (p~®p!)('R) =<"'R,A~®A! >, ( 1.27) 

then 

0 = <'RL\(x)-L\'(x)'R,A~®At> 
= < 'R,A~®A! >< L\(x),Aj®Ar >- < L\'(x),A~®A! >< 'R,Aj®Aj > 

< x, R~,.Aj Aj'- A!A~Rjl" > . (1.28) 

Since x is arbitrary, we have(8) 

r~ik A'!' A"= A" Ai R'!'" • "mn 1 I n m Jl 1 

which can be written compactly in tensor product notation as 

where 

i.e. 

etc .. The QYBE becomes 

RnAtA2 = A2A1Rn, 

Rn = (Pt ®p2)(R), 

At= A®.I, A2 = l®A, 

(Rn)1, = R1,, (At)1, = A~6f 

RnRt3R23 = R23Rt3Ru. 

It is convenient to introduce the numerical .R-matrix, 

R=PoR, 

where P~j = oiot is the permutation matrix. Explicitly 

k1, = Ri~. 

4 

( 1.29) 

(1.30) 

( 1.31) 

(1.32) 

(1.33) 

(1.34) 

(1.35) 



And the QYBE becomes 

RnR23Rn = R.23RuR23· ( 1.36) 

The numerical R-matrix for q-deformation of classical groups is given in [8J, for 

example, it is 

R~n = 6~6~(1 + (q- 1)6t} + >.6~6~8(1 > k), for GL9 (N), ( 1.37) 

where 8(1 > k) is equal to 1 if I> k and is zero for I :5 k. 

GL9(N) R-matrix properties 

For ease of reference, we list here also some other useful properties of the GL9(N) 
R-matrix. The numerical R-matrix for GL9(N) is 

R~n = 6~6~(1 + (q- 1)6f) + >.6~6~8(1 > k), (1.38) 

where the indices run from 1 toN. The step function 8(1 >. k) is equal to 1 if I> k 
and is zero for I :5 k. q is any nonzero complex number. R12 satisfies 

where 

RuR23R12 = A23AuA23, 

Ru(q-1) = i/;/(q), 
"tj A ltl Ai'j' II> ji R,, = R;;. R,,,, = R1,, 

i' = N- i + 1. 

The quantum t:;,;, .. ,;N is given by 

(i1 i2~··iN = ( -q )l(11) 

(1.39) 

(1.40) 

(1.41) 

( 1.42) 

( 1.43) 

when (iti2 ... iN) is a permutation of (12 ... N):,(iti2 ... iN) = u(12 ... N) and is zero 
otherwise. Here l(u) is the length of the permutation u. It is 

~N .. ·~2~tl12 ... N = qt:n ... Nlo = RtoR2o ... RNot: 12 ... N. ( 1.44) 

The characteristic equation is 

R- fl.-l =>.I ( 1.45) 

5 

and the spectral representation is 

R = qP+- q-lp_, 

where 
1 • 1 • 

P+ = --
1
(R+q- 11), P_ = --

1
(-R+ql). q+q- q+q-

One can introduce the inverse of (R- 1 ){1~ with respect to the indices i, j, 

~;; _ R.iiq2!1-1l _ R. iiq21~-il 
~I- I~ - I~ • 

which satisfies 

~·~(k1 )~" = (k1 )'i.~~" = 6'6" •J .t •J tl I •. 

It satisfies the interesting "trace" properties (sum over the index k), 

;r,.ik - ~iq2i-t 
...,jk- u; ' 

~~} = ~q2(N-i)+t. 

(1.46) 

(1.47) 

(1.48) 

(1.49) 

( 1.50) 

(1.51) 

Similarly, one can introduce the inverse of Rff with respect to the indices i,j, 

which satisfies 

~~~~ = (k'){tq2(1-l) = (k'){tq2(k-j) 

,y,ri Ajt. _ Ari ,y,j~ _ no~~ 
...,,;rt;1 - rt,;'lf;1 - u1u, 

and the "trace" properties (sum over the index k), 

Generators for U 

\lli.t./c = 6\q-2(N-i)-t 
J J , 

,y,ki - ~iq-2i+t 
'~tkj- u; . 

It is convenient to introduce the N x N matrices L± with entries in U by 

L+ = <'R.,id®A>, 

L- = < n-1,A®id >. 
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(1.52) 

(1.!>3) 

(1.54) 

(1.55) 

(1.56) 



The commutation relations(8) follow immediately from the QYBE, 

For example, 

R12Lt Lt = Lt Lt R12, 

RuL; Lj = Lj L; Rn, 

RnLt Lj = L'j Lt Rn. 

0 = < 'Rn'R.13'R.23- 'R.,J'R.iJ'R.n,id®A1 ®A,> 

= RuLf Lt - Lt Lf Rn. 

The Hopf structures follow from the properties of 'R. also, 

£\(L*) = L* ® L*, 

t(L*) = /, 
S(L*) = (L*t1

, 

where the notation (M ® N)~ = ML®N} is used. 

1.2.1 Example: U9(su(2)) and SU9(2) 

(1.57) 

( 1.58) 

A typical example of a nontrivial •-dual pair is U = U9(su(2)) and .A= SU9(2). 

The Hopf Algebra U9(3u(2)) 

The quantum enveloping algebra U9(su(2)) of su(2) is the associative unital algebra 

generated by the Drinfeld-Jimbo geherators H, X+, and X_ modulo the commuta-

tion relations 
! qH _ q-H 

(H,X:t:) = ±2X:t:, (X+, X-)= q _ 
9

_, , 

where q is a nonzero real number. The Hopf structures are given by 

£\(H)= H®1 + 1®H, £\(X:t:) = X:t:®q" +q-"®X:t:. 

t(H) = 0, t(X:t:) = 0, 

S(H) = -H, S(X:t:) = -q*1X:t:, 
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( 1.59) 

( 1.60) 

and the •-structure is 

H. = H, x; = x~. 
The universal R-matrix for U is given by 

with 

and 

for integer n. 

oo (1 -2)n 
1?.=qH®H/2L -q 

1 
(qHf2X+®q-Hf2X_)n 

n=O (nhtv· 

2>: 1 
(x)

9 
:= q 

2 
-

1 
, x any complex number 

q -

n 

(nJv! := IT (mJv 
m=1 

The Dual Hopf algebra SU9(2) 

A faithful 2 x 2 representation for U9(su(2)) is given by 

( 
-1 0 ) ( 0 0 ) ( 0 -1 ) 

H = 0 1 ' X+= -1 0 ' X_= 0 0 . 

The numerical R-matrix in this representation is a 4 x 4 matrix, 

(

q 0 0 0) 
R = 

9
-112 0 1 0 0 

0..\10, 

0 0 0 q 

( 1.61) 

( 1.62) 

( 1.63) 

( 1.64) 

(1.65) 

( 1.66) 

where,\ := q-q- 1• GL9(2) is the algebra generated by the matrix elements a, /J, ;, 6 

of the quantum matrix 

A=(a/3) 'Y 6 . 

Eqn.(1.30) then give 

a(J = q{Ja, O"'f = q-ya, a6 = 6a + (q- q-1)/J-y, 

p,., = -y/J, {J6 = q6{J, ;6 = q6..,. 
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( 1.67) 

( 1.68) 



The comultiplication is given by 

t\(~ :) = (~ :)®(~ :) 

and antipode by 

= (a®.a + P®-r a®P + P®o) 
-r®a+o®-r "Y®P+o®o 

s (a P) = (det,rr• ( 
6 

-q-•p). 
'Y 0 -q-y Q 

where det9T := ao- qp-y is central in the algebra and is group-like 

6(det9T) = det9T®det9T. 

It is called the quantum determinant. 
It is consistent to set det,T = I and the antipode becomes 

s (a P) = ( o -q-•p) 
'Y 6 -q-y Q 

and we get SL9(2). 
One can introduce an involution • to SL9(2), 

a• = 6, p· = -q-y, -r· = -q-1 p, o· = Q 

( 1.69) 

(1.70) 

(1.71) 

( 1. 72) 

( 1.73) 

and get SU9 (2). Note that as q -+ 1, R becomes the identity matrix and every­

thing commute. Thus the "classical limit" is given by q = 1. For q ::f. 1, we get 

Fun(SU9(2)), or SU9(2) for short. For q = 1,• is nothing but complex conjugation 
and these relations is the familiar condition Tt = r-• of SU(2). 

The £± Generators 

The 2 x 2 matrices £± are related to the Drinfeld-Jimbo generators as 

. ( q-H/2 -q-I/2 ).X · ) ( qH/2 0 ) 
L+ = . H/2 + • L- = I/2 -H/2 . (1.74) o q q >.x_ q 

And the eqns. (1.89), (1.58) reproduce (1.59), (1.60). The •-structure (1.61) is 

(L:)t = Lf,,, ( 1. 75) 

where the matrix L~ is given by (1.74) and L~1, is given by the same matrix but 
with q changed to 1/q. 
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1.3 The Smash Product 

1.3.1 Action and Coaction 

Definition 1.3.1 (Left A-Module and Module Algebra) 

Let A be an algebra, we say that a vector space V is a left A-module if there is a 
map 

I>:A®V-+V: x®vt-tXI>V1 (I. 76) 

such that 

(xy)~>v=x~>(y~>v), }l>v=v. (I. 77) 

The map 1> is called the left action of A on V. 
If V is an algebra, then we can require a Hopf algebra A to act on it so as to 

respect its algebraic structure. Thus, if in addition to (1. 77), also 

x 1> (uv) = (x{l) 1> u)(x{2) 1> v), x 1> 1 = lt(x), ( 1. 78) 

then we say that V is a left A-module algebra. 

Right A-module and right A-module algebra can be defined similarly. 

Definition 1.3.2 (Left A-Comodule and Comodule Algebra) 
Let A be a coalgebra, we say that a vector space V is a left A-comodule if there "is 
a map L\L : V -+ A® V such that 

(L\®id)L\L = (id®L\L)L\L, (t®id)L\L = id. (I. 79) 

The map L\Lis called the left coaction of A on V. 
If V is an algebra, then we can require a Hopf algebra A to coact on it so as to 

respect its algebraic structure. Thus, if in addition to (1. 79}, also 

L\L(uv) = L\L(u)L\L(v), t\r,(1v) = l.,t ® Iv, ( 1.80) 

i.e. L\L is an algebra map also, then we say that V is a left A-comodule algebra. 

Right A-comodule and right A-comodule algebra can be defined similarly. 
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1.3.2 Smash Product 

Let U and .A be two dually paired Hop£ algebras. We want to construct a new asso­
ciative algebra, their smash product .A>4U. The smash product .A>lU is isomorphic 

to the tensor product .A®U as a vector space, and is equipped with the "twisted" 
multiplication. First, instead of the usual multiplication in tensor product space 

(b®x)(a®y) = ba®xy, ( 1.81) 

where b, a E .A, x, y E U, one can also introduced a twisted multiplication on .A® U 

as 

(l®x)(a®l) =< X(t),a(2) > a(t)®X(2) 

for x E U,a E .A, where 

!:lux= X(t)®X(2)• ll.Aa = a(t)®a(2) 

( 1.82) 

( 1.83) 

are the coproducts on .A and U respectively. This multiplication is associative and 

is induced from the action of U on .A 

x 1> a= ac1J < x, a(2) > . (1.84) 

For simplicity, we will drop the tensor product sign ® and write 

a®x =ax, (1.85) 

the above relation ( 1.82) becomes 

xa = a(t)X(2) < X(t)• a(2) > . (1.86) 

1.3.3 Example: Quantum Group 

Now consider the case that U is quasi-triangular and (.A,U) be a dual pair defined 

by a faithful representation 

p: u -+ MN(k). ( 1.87) 

The relations 

RnAtA2 = A2A1R12 ( 1.88) 

11 

and 

RnLtLt = LtLt Rn, 

RnLi L'j = L'j Li R12 , 

RnLt L'j = L!LtRt2 

have been obtained. 

Using (1.86), one obtains, for example 

L+~Af = A•<L+; A">L+~ n mt I J 

= AkRn; L+~ n lm J • 

In tensor notation, the full set of mixed relations are 

Lt A2 = A2R21Lt, 

L'j A2 = A2R!l L'j. 

Bicovariant Generators 

It will be convenient to introduce the matrix Yi 
Y = L+(L-)-1 

and instead of (1.89),(1.90), we have(53, 54, 55, 56] 

RnY2RnY2 = Y,Rt2Y,Iln, 

YiA2 = A2RnY,Rn. 

( 1.89) 

( 1.90) 

(1.91) 

{1.92) 

(1.93) 

One reason for introducing these generators is that the relations (1.92},{1.93) have 
the remarkable property that they are covariant under the transformation{53) 

A -+ A' A, Y -+ Y, ( 1.94) 

or 

A-+ AA', Y-+ A'-1Y A', (l.9'l) 

where A' is a second copy of the quantum group satisfying (1.30) but is inert to A 
and Y, i.e. the. matrix elements of A' commute with those of A as well as those of 

Y. The commutation relations (1.92),(1.93) are said to be "bicovariant" and the 

matrix elements of Y are bicovariant vector fields on the quantum group .A. 
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1.4 Differential Calculus on an Algebra 

In this section, we want to introduce the notion of a differential calculus on an 

algebra. 

1.4.1 First Order Differential Calculus on an Algebra 

Classically, to introduce a differential calculus, one first has to know what is one­

form. Then one can proceed to construct completely antisymmetrized tensor prod­

uct of one-form and get the exterior algebra, with the wedge product. So the first 

thing we need to know is the properties of first order differential form in the classical 

case. Remember that we have the Leibniz rule 

d(ab) = adb+ (da)b, a,b E Fun(M) ( 1.96) 

and any one-form p can be written in the form p = Lk a~dbk, ak, bk E Fun(M). 

Classically, one also knows that forms and functions commute i.e. b( da) = ( da )b. In 

the deformed case, even the "functions" themselves don't commute, so one shouldn't 
expect this latter condition to be true. (Still, to be a useful calculus, it is required 
to give some sort of commutations. We will see how to do that later.) Therefore we 

will keep the first two properties in our definition of first order differential calculus 

on an algebra. 

Definition 1.4.1 (First Order Differential Calculus) 

Let A be an albegra with unity, r be a bimodule 2 over A and d : A -+ r be a linear 

map. We say that (f, d) is a first order differential calculus over A if 

1. 'v'a,bEA,d(ab)=adb+(da)b, 

~. Any element pEr can be written in the form p = E,a,db,,a,,b~ EA. 

1.4.2 Universal Calculus and General Calculus 

We have the definition. But it is not good for anything until we can actually 

construct "useful" calculus. This can be done in two steps. First, we construct 
2 A bimodule r of .A is a vector space in which the algebra acts on it (or is represented) from 

both left and right. 
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a universal calculus over A, and then we get a non-universal one called general 
calculus (the useful one). 

Universal Calculus 

The universal calculus (A2
, d) on A can be constructed as follows. Introduce 

A2 = ker· c A® A, (1.97) 

where · : A® A -+ A is the multiplication map in A and d: A -+ A 2 defined by 

da = 1®a-a®l. (1.98) 

A2 can be given an A bimodule structure given by 

c(Eak®bk) = L(cak)®bk 
k ~ 

(1.99) 

c~:::a~ ® b~ )c = E a~ ®( b~c > 
~ ~ 

(1.100) 

for any Lk ak ® bk E A2
, c E A. Then d clearly obeys the Leibniz rule since, 

d(ab) = 1®ab-ab®1, 

adb = a®b- ab® 1, (da)b = 1 ®ab- a®b. 

(1.101) 

(1.102) 

Furthermore, it is easy to see that every element of A2 can be represented in the 

:orm Lk a4db~. In this way (A2
, d) is indeed a first order differential calculus over 

A as stated. Note that the construction of universal calculus is canonical and it is 
:onstructed precisely to observe the Leibniz rule. 

3eneral Calculus 

Ne still don't know the relations between adb and (db)a. Why then do we construct 

;uch an object? It is because every first order differential calculus on A can be 

>btained as a quotient of it. The way is to mode out a submodule in A2 to restrict 

he universal calculus to a general calculus. Taking the quotient is equivalent to 
mposing the commutation relations. More precisely, 
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Proposition 1.4.1 Let N be a submodule of A 2 , define r = A 2 / N, 1r be the canon­
ical epimorphism A2 -+ r and d' = 'If 0 d. Then (r, d') is a first Ol'der differential 
calculus on A. · 

For example, if we take N =< adb -. (db)a, a, b E Fun(M) >, then we obtain the 

classical calculus. 

Covariant Properties of Calculus 

When A is a Hop£ algebra, the notion of calculus is more fruitful. 

coaction on A 2 by 

l:!.L : A2 
-+ A® A 2 

: adb ~--+ altlbl2l ® a121db12l• 

l:!.R : A2 
-+ A2 ®.A : adb ~--+ alt)db(t) ® a12)b(2)· 

The first order differential calculus is said to be 

1. left covariant if r;,. a~~:db,. = 0 => l:!.L(E,. a,. db,.) = 0, 

2. right covariant if r;, a,db, = 0 => l:!.R('E~~: a,db,) = 0, 

3. hi-covariant if both. 

Introduce the 

(1.103) 

(1.104) 

Classically, the calculus on a Lie group is bicovariant in the sense that a zero dif­

ferential form remains zero under a left or right group action. 

For Hop£ algebras, Woronowicz (14) gave a way to choose N so that the resulting 

general calculus enjoy some desired properties that must be there in the classical 

limit: 

1. The prescription is to pick a right ideal M o£ A contained in ken, then 

N = ~e( A® M) give a left covariant calculus. 

2. If M is AdR invariant also, i.e. AdRM C M ®A, then the calculus is bico­
variant. 

Here the maps /C and AdR are, 

/C :A® A-+ A® .A, ~e(a ®a')= L aSa(l) ® a( 21, 

Adn: A-+ A®A, AdR(a) = :La(2)®Saolal3l· 

Note that Adn is just T -+ T'- 1TT' in the classical. 
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(1.105) 

( 1.106) 

1.4.3 3-D Calculus on SUq(2} 

For SU9(2), the 3-D 3 calculus are defined [13) by picking the right ideal M E SU
9
(2) 

which is generated by six elements, 

6 + q2a- (1 + l), 72
, P'Y, 

{J2
, (a- 1)'Y, (a- 1){J. 

We choose the basis of the space of the left-invariant 1-forms on P as 

w0 = 6d{J - q-1 {Jd6, 

w1 = 6da- q-1pd'Y, 

w
2 = 7do - q-1ad7. 

(1.107) 

We have the following commutation relations between wi, i = 0, 1, 2 and the gener­
ators of SU9 (2) 

W0
Ci = q-1aw0, wop= q{Jwo, 

w1a = q-2aw1, w1 {J = q2{Jw1, (1.108) 
W2a = q-1aw2, w2{J = qf3w2. 

The remaining relations can be obtained by the replacement a -+ -y, {J -+ 6. The 

relation between exterior differential d and basic one-forms wi is given by 

do= aw1
- q{Jw2, d{J = aw0 - q2{Jw1 

and similarly with o replaced by 'Y and {J replaced by 6. 
The higher order calculus is also determined 

WOWO = 0 ;. W2WO = -q2WOW2' 

w1w1 = 0 , w1w0 = -q4w0w1, 

w2w2 = 0 , w2w1 = -q4w1w2. 

(1.109) 

(1.110) 

~~~----~~~--~ 3 It is called 3-D calculus becauae the dimeMion of the apace of one-forms is 3 in this calculus. 
One can construct another calculus called the 4-D calculus on SU(2) which is bicovariant. That 
one has a dimension of four for the space of one-forms,one too many! 
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We also have the Maurer-Cartan equations 

dwo = q2(1 + q2)wowt, 

dwl = qwow2, 

dw2 = q2( 1 + q2)wlw2. 
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(l.lll) 
Chapter 2 

Pseudodifferential Operators 
Realization of Vector Fields 

In this chapter, we consider the realization of the vector fields of the quantum Lie 

algebra of the quantum groups GL9(N), SL9(N) and S09(N) as pseudodifferential 

operators on the linear quantum spaces covariant under the corresponding quantum 

groups. Their expressions are simple and compact. These vector fields satisfy 

certain characteristic polynomial identities. The real forms SU9(N) and S09 (N, R) 
are also discussed. 

2.1 Vector Fields for Quantum Groups 

As seen in Chapter 1, a quantum group can be described in terms of N x N matrices 

A with noncommuting elements satisfying the equation 

RnA1A2 = AtA2Rn, (2.1) 

with the R matrix appropriate to the particular quantum group. The matrix ele­

ments generate the algebra of functions on the group. We also derived the vector 

fields on the quantum group. It can be described by the matrix elements of a matrix 

Y satisfying the commutation relation 

RuY2RuY2. = Y2RnY2Ru, (2.2) 
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which corresponds to the Lie algebra relations in the classical case. The action of 

the vector fields on the group is then given by the commutation relation 

YiA2 = A2R12Y2Rn. (2.3) 

The quantum group matrices can coact on a quantum space, for instance by 

right multiplication. A point of coordinates x0; is transformed into x; = x0; A{ or, 

more compactly, 

x = xoA. (2.4) 

Keeping the original point xo fixed, the action of a vector field on the quantum 

group induces an action on the quantum space 

Y1x2 = x2R12Y2Rn, (2.5) 

i.e. 
} ·i R•;mY."R·rr 

j Xk = Xm In r jk• (2.6) 

We shall consider the case when a differential calculus covariant with respect 

to the coaction of the quantum group exists on the quantum space. In this case it 

is natural to ask whether it is possible to realize the vector fields Y as pseudodif­

ferential operators satisfying (2.2) and (2.5). We shall show that this can be done 

for the quantum groups GL9(N), SL9(N) and S09(N). Their real forms are also 

considered. 

2.2 q-Determinant for FRT Type Algebra 

For the sake of completeness, we construct and discuss the properties of the q­

determinant for FRT type algebras. The discussion is self-contained. By assuming 

the top form of the associated exterior quantum plane to be unique, we construct 

the completely antisymmetric tensor f and the q-determinant for FRT type algebras. 

Contrary to [57), we don't need to assume the existence of a metric. 

First we recall the definition of the FRT algebra A and the associated quantum 

exterior algebra. FRT algebra is an associative algebra generated by 1 and ti;i i,j = 
1, ... , N which obey the RTT equation (2.1). Projectors can be introduced by 
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looking at the spectral decomposition of the R matrix. In particular, the q-exterior 

algebra is defined by the q-symmetrizer Ps: 

dx,dx2(Ps)12 = 0. (2.7) 

Consider the top forms dx;1dx;2 ••• dx;N. Assuming that it is unique, then one can 

define an N -dimensional tensor f by,1 

dx;1dx;2 ••• dx;N = £;1; 2 ••• ;Ndv 

Like in the classical, our f is completely antisymmetric: 

t· · · · · Rs~++• = 0 IJI2•••JrJr+l ... IN lrlr+l 

from the definition of the exterior algebra. 

Now, we can prove an important property for£, 

Proposition 2.2.1 

for some D E A. 

f• . . ti•ti2 tiN-~. . . D 
IJI2 .. ·'N iJ J2 '" iN - '«JJJ2• .. JN 

(2.8) 

(2.9) 

Proof Consider dx;1dx;2 ... dx;N = f;1;2 ... ;Ndv, multiply both side by t~:t~ ... t~z, we 

get 

dx ·dx· dx· 10..ti1ti2 tiN-dviO..~ .. · ti1ti2 t;N 11 12"' 1N 'CI i1 h"' iN- 'CI <.1112• .. 1N i1 h'" iN' (2.10) 

But the left side is equal to 

Li.A(dxil dx;, ... dxiN ), . (2.11) 

where Li.A is the left coaction of A on the quantum plane 

Li,AXi =Xi@ tf, Li,AdX; = dxi@ tf. (2.12) 

Since 

Li.A(dx;. dx;, ... dx;N) = fiJi2 ... iNLi.A(dv) = £i1n .. ·iNdv ® D, (2.13) 

1The € tensor introduced here has lower indices while the one in Chapter I and Chapter 4 has 

upper indices. The reason is because we have used coordinates z; with lower indices here. The 
two are however identical. 
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where we have used the fact that the top form is unique and so 6..4(dv) = dv ® D 

for some D E A. Comparing the coeficient of dv in (2.10) and (2.13), we obtain 
f.. . . tit ti, tiN - f.. . . D 0 

1112···'N ia h"' iN - JIJ2 .. •JN ' 

We call this D the q-determinant. Notice that equation (2.9) can be written 

compactly as 

ft2 ... NTtT2 ... TN = Dfn ... N· (2.14) 

D has the following properties, 

Proposition 2.2.2 f(D) = 1 and 6(D) = D ®D. 

Proof The first equation is trivial. For the second one, apply 6 to (2.9) 

A(D) til ti2 tiN 10. t"• t"2 t"N fjaj, ... jNLJ. = €isi2 ... iN 1<1 .\2"' I<N 'Of ia ia ... iN 

0 

= Dfl.11c, ... I.N ® t~: t: ... t~: 
= D ® Df.;1;, ... ;N' 

Proposition 2.2.3 D is central in the algebra A. 

Proof First, notice that the FRT algebra admits the representations 

P+(Tt)o = Rtoo p_(Tt)o = Rfit1 

Thus we have2 

ft2 ... NR.Q .. ~ ~ .. R;~ = P-(D)f.t2 ... Nlo, 
----------------------2For example, it is 

cn ... NRoN ... Roa = Cft2 ... Nio = cn ... NRaoR2o ... RNoo 

(2.15) 

(2.18) 

(2.16) 

where c = q and 1 for GL,(N) and SO,(N), respectively. In terms of the compact notation to be 
introduced in the next subsection, thie can be written u 

fU ... NRo,(n ... N) = CCJ2 ..• Nlo = fJ2 ... Nil(J2 ... N),O· (2.17) 
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where / 0 denotes the identity matrix in the zeroth vector space. We also have the 

inverse relation 

t.u ... NRoN ... Rot = p_(Dt1tu ... Nfo. 

Now, consider 

fa2 ... NToD = fn ... NToTtT2 ... TN 

= ft2 ... NR.Q1
1 R.Qi ... R.Q~TtT2 ... TNTo.RoN ... Roa 

= P-(D)fu ... NTtT2 ... TNTo.RoN ... Rot 

= P-(D)DTof.n ... NRoN .. ·Rot 

= P-(D)p-(Dt1 DToft2 ... N 

= DToft2 ... N· 

Hence t~D = Dt~. 0 

2.2.1 q-Determinant for Bl~ovariant Vector Fields Y 

Recall that the bicovariant vector field matrix Yi is d«!fined by 

Y/ =< ~1 'Ru, A~® id > 

and satisfy 

R21YtRnl'2 = 1'2R2tYtR12, 

or equivalently, 

(2.19) 

(2.20) 

(2.21) 

(2.22) 

Rnl'2Rnl'2 = 1'2Rnl'2R12. (2.23) 

Following (56), it will be convenient to introduce an associative •-product by 

Yi • Y2 • · · · • Yi. := < 'R.21 'R.n, A1A2 ···A,® id > 

= (Rii RjJ · · · Ri1YtRt~o · · · Ru) · 

· ( R;J R;J · · · R211'2Ru · · · R23) · · · 
·(R;~ 1 ,v,._1 R,_1,)Y..,, 

then (2.22) can be rewritten in the FRT form 

RuYt •1'2 = Y2 • YtRn. 
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(2.24) 
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And so one can define the q-determinant 

(n ... NYi • Y2 • · • • • YN = Det9Y(n ... N, (2.26) 

which is central and group-like. Remember that in chapter 1, we introduced the 

numerical R-matrix that gives the commutation relations between two quantum 

matrices in the fundamental representation 

R!!n =< 'R,A~®A~ >. (2.27) 

For higher tensor product representations: A1A2, A1A2A3, ... ,A1A2A3 ···Am one 

can introduce the corresponding numerical R-matrix (56], 

RJ,U - <'R,A1®Au > 
= R11m 'R1 1(m-!) ... R1•1 

· R21m 'R2'(m .. l) ... R2•a 

'Rn•m 'Rn•(m-1) ... Rn·1 

where 

A1 ::: A(1'2' .. ·n'l ::: A1•A2• · · · An•, Aa::: A(u .. .,.) ::: A1A2 ···Am 

satisfy 

R,,aA,Aa = AaAIRI,li 

and R1,u satisfies the QYBE 

RJ,aRI,mRa,m = Ra,mRI,mRI,II· 

Eq. (2.26) can be rewritten compactly as 

cn ... NY(12: .. N) = Det9Y(12 ... N, 

where we have introduced the notation 

Y(u .. -N) = Y1 • Y2 • • • • • YN 

(2.28) 

(2.29) 

(2.30) 

(2.31) 

(2.32) 

in the same way as in (2.28). For simplicity, we will sometimes write Det9Y as 

DetY. For arbitrary I= (1'2' .. · n'), II= (12 .. · m), we have 

Y1• Yi1 = RJ,}iYIRI,liYII· (2.33) 
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2.3 GLq(N), SLq(N) and SUq(N) 

2.3.1 GL9(N) 

The calculus for the quantum plane covariant under GL,(N) is well known(58]. The 

coordinates x; in the plane satisfy the commutation relations 

1 • 
X1X2 = q- X1X2R12 (2.34) 

and the derivatives oi satisfy 

i i ... i, I 
ox; = 6; + qR;1x,a (2.35) 

and 

0201 = q-1 Rno2o1. (2.36) 

All indices run from 1 toN and R is the GL9(N) matrix, which satisfies the char­
acteristic equation 

R_2 = 1 + ~.R. ~ = q- q-1. 

Using (2.37) and the above commutation relations, it is easy to verify that 

Construction 2.3.1 (Realization for GL9(N)) 
The differential operator 

Yi = q-26j + q-1 ~a;x; 

satisfies (H.5}, 

~Yi = R121'2R1282 
and (H.H}. 

Characteristic Equation 

Let I' be the rescaling operator in the plane 

I'= 1 + q~x;ai, 

which satisfies 

J'X; = q2XiJ't OiJ' = q2Jt0i. 
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(2.37) 

(2.38) 

(2.39) 

(2.40) 

(2.41) 



It is obvious that p commutes with the elements of Y. 
It is very easy ~o verify that the matrix given by (2.38) satisfies the identity 

(Y- p)(Y- q-2 ) = 0, (2.42) 

where matrix multiplication is implied. This is a special example of polynomial 

characteristic equations satisfied by quantum vector fields(59J. In general these 

equations are of higher order but for the realization (2.38) we see that the polynomial 

is quadratic in Y. 
The invariant quantum trace of the k-th power of the matrix Y is defined as 

tk = TrD-1Y", (2.43) 

where Dis the diagonal matrix (l,q2, ... ,q21N-tl). The t.'s commute with the matrix 

elements of Y. In general only the first r of them (k = l, 2, ... , r) are independent 

and they generate the center of the Y algebra (2.2), where r is the rank of the 

group(8]. For Y given by (2.38) all tk are simply functions of p. For instance, 

etc., where 

ft = (Nj- l +I' = q-2 t0 - q-2N + p, 

t2 = q-2t1 - pq-2N + 1'2, 

t3 = q-2t2 - p2q-2N + 1'3, 

(Nj = 1 + q-2 + q-4 + ... + q-2(N-tl. 

GL9 (2) characteristic equation 

For GL9(2), denote 

then (2.2) gives explicitly, 

y = ( 1lt 11+), 
11- 112 

1ltY+- Y+Yt + ..\q-111+112 = 0, 

11t11- - 11-111 - ..\q-111211- = 0, 

11211+ = q211+112. 
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(2.44) 

(2.45) 

(2.46) 

(~ 

11211- = q-211-112. 

111112 = 1121lt. 

11+11- - 11-11+..\q-1112(1lt - 112) = 0. (2.47) 

Using these, it was discovered by Professor B. Zumino (54] that a characteristic 

identity exists for this algebra, 

Y 2 
- Pt Y - P2 = 0, 

where 

Pt = TrD-'Y = 111 + q-2112, 

P2 = m( t2 - fD = 11+11- - q-2111112 = -q-2 DetY. 

Using (2.44), (2.48) reduces to (2.42) if 

DetY =I' 

holds for our realization (2.38). This is in fact true, first we have the lemma 
\ 

Lemma 2.3.1 

DetYx = q2xDetY, DetY8 = q-2aDetY. 

Proof First we need 

Yrxo = xo~rYrRro 

(2.48) 

(2.49) 

(2.50) 

(2.51) 

(2.52) 

for any I= (12 · · · m). This is true for I = (1). Assume it is true for I and II, then 

Ywxo = Yr• Yuxo 

= RiJrYrRr.rrYrrxo 

= Ri,h Yr Rr,11xo~.rr Y11 R11,o 

= xoRf.}1 ~~ Yr RroRr,11 ~.11 Yrr R11,o 

= xoRf.h~r~.«YrRr,rrRroYrrRrr,o 
= xo~.rr~rRf.}rYrRr,rrY11RroR11,o 

= xo~.(III)YwRcw),o· (2.53) 
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Hence 

DetY XolJ2. .. N = Et2···N l'it2 .. ·N)Xo 

Et2 ... NxoRo,(t2 .. ·N) l'it2 .. ·N) R(t2 .. ·N),o 

= q2xoDetY Eu ... N. (2.54) 

We have used the fact (2.16) 

lt2 ... NR(J2 .. ·N),O = q/olt2 .. ·N = lt2 ... NJ1o,(J2 .. ·N)· (2.55) 

The proof for DetYa = q-2aDetY is similar. 0 

Proposition 2.3.1 For the particular representation {!1.98) of the }' matrix, it is 

DetY = 1-'· (2.56) 

Proof Remember that DetY is central in theY algebra. Now, since the quantum 

traces t,, k = 1, 2, · · ·, r generate the center of theY algebra and t, is a polynomial 

of /l of degree k, we have 
N 

,PetY = L OnP.", (2.57) 
n=O 

where the numerical coeficients an are functions of q and N. Due to lemma 2.3.1, 

DetY I p. commutes with X and a, we have 

DetY = ap. =a+ >.qax ·a, (2.58) 

where a is a constant. We claim that a= 1. First recall the definition of DetY 

D Y . (V )iti2""jN 
lj,j, .. ·iN et = f;,;, ... ;N I(J2 .. ·N) ith .. ·iN• (2.59) 

where 

l'it2 .. ·NI = (Rii Ri1 · · · R'j~YtRtN · · · Ru)· 

·(R;31 R;.1 ... R;~Y2R2N ... R23) ... (RiV~t NYN-tRN-1 N )YN. (2.60) 

Using 

Yf = q-26} + q-1 >.a; xi = 6} + >.R~~x,81 , (2.61) 
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one can easily extract the constant term in (2.60) 

(
v );,;, ... ;N _ cit ci2 ciN + 
I(J2 .. N) ith .. ·iN - 0 it 0 h • • • 0 iN . • • I (2.62) 

where • · · is a polynomial of X and a with at least one X ·and one a in each term. 

Substituting into (2.59), 

f;1; 2 ... ;NDetY = 1f;1; 2 ... ;N + • · · (2.63) 

Comparing with (2.58) shows that a = l. 0 

2.3.2 SL9(N) 

The quantum subgroup SL9(N) can be obtained from GL9(N) as followsi55J. For 
the quantum matrices one uses the standard quantum determinant det9 A and de­

fines a new matrix 
T = (det9A)-tfN A (2.64) 

having quantum determinant equal to one. For the vector fields, one uses the 

determinant DetY and defines a new matrix of vector fieldsl55, 56J 

Z = (DetYttfNy (2.65) 

having determinant one. The number of independent elements of the matrix Z is 
N 2 - 1, as in the classical case. 

Construction 2.3.2 (Realization for SL9(N)) 

z = p.-1/Ny (2.66) 

realizes the SL9(N) vector fields as pseudodi.lferential operators in the quantum 
plane. 

2.3.3 Real Forms U9(N) and SU9(N) 

If jqj = 1 the calculus given by (2.34-2.36) for the quantum plane can be given a 

reality structurel58, 60J by requiring x; to be real 

Xi• =Xi (2.67) 
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and by defining conjugate derivatives as 

li" = -q2i' li 1 (2.68) 

where we have introduced the notation 

i'=N+l-i, i=l,2, ... ,N. (2.69) 

Here we consider instead the case when q is real and the complex conjugates 

of x; and of IJi are new independent variables. The complex conjugation * is an 

involution which inverts the order of factors in a product. It will be convenient to 

give them new names, i.e. we set 

xi·= xi (2. 70) 

and 
a;·= -8;. (2.71) 

The commutation relations of these new variables can be obtained immediately from 

{2.34-2.36) by complex conjugation. Using the symmetry property 

we see that 

and 

• .. Dlrl 
R~ = fiiJ• 

x2x1 = q-1 Rnx2xt. 
•jA d R•jtA•Ir 
X 0; = -o; + q jj,Q/X 

fJ1/h = q-1bllhh.n. 

(2.72) 

(2.73) 

(2.74) 

(2.75) 

Eq.(2.74) can be written in a form more analogous to {2.35) if one introduces the 

matrix 

which satisfies 

l{li! = (kl)•\q2(j-r) = (R-I)ri.q2(i-•) 
Jl IJ IJ t 

R
•kj,r,ir _ .r,kjR•;, _ clrtr 
li'*'J•-'*'li ;,-o,o,, 

111:: = 6~q-2(N-r)-1 
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(2.76) 

(2.77) 

(2.78) 

and 
'llj~ = 6;q-2(r-l)-1. (2.79) 

It takes the form 

a· .. ;_ d -2i' + -l.rd/•4!> ,x - o;q q "¥;kX Ut. (2.80) 

where i' is given by (2.69). 

To complete the algebra of the complex calculus, we must now give commutation 

relations between the variables x;,IJi and their conjugates xi,fJ;. A consistent set is 

given by 

and 

x;x; = q(R-1);'x•x', 
a;x; = q(k1){tx"a', 

A. -l·k/ • o;x; = q R;;x,.a, 

~;a·· - q-1n·;·l1· a' u J- jl :1: • 

(2.81) 

(2.82) 

(2.83) 

(2.84) 

Consistency can be checked by verifying that all these relations braid correctly with 

each other. 

Having the complex calculus we can now ask how the vector field realization of 

(2.38) acts on the conjugate variables. It is not hard to verify that 

x2Yt = Rn'Y-JRI21x2 (2.85) 

and 

Yth2 = lhk12'Y-JR!i· (2.86) 

On the other hand, by complex conjugation, (2.5),{2.39), (2.85) and {2.86) give 

t • t • 
%21'. = RnY2 Rnx2, 

t A • • t • Y1 02 = IJ,RnY2 Rn, 
t • -I t • Yt x2 = x2R12 ~ Rn 

and 
t • -I t • a2Yt = R12 ~ R12a2, 
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(2.87) 

(2.88) 

(2.89) 

(2.90) 



where yt is the hermitian conjugate of the matrix Y 

(Yt)i· = y;i" = q-26~ _ q-1 >.xifJ. 
1 • 1 )t 

(2.91) 

which satisfies the equation conjugate to (2.2) 

RnY2t RnY2t = v,t RnY2t Rn, (2.92) 

as well as the commutation relation with Y 

RnY2Ri2
1 Y,t = v,•R.nY2R1i. (2.93) 

Until now, we have considered two GL9(N) groups complex conjugate of each 
other, i.e. a truly complex GL9(N)(61, 62, 63). The quantum group can be restricted 
to U9(N) by imposing on its matrices the unitarity condition 

At= A-1 (2.94) 

and to SU9(N) by further normalizing the matrices as in (2.64) so that they have 

quantum determinant equal to one. 
The vector fields of the U9(N) subgroup can be defined as the elements of the 

Hermitian matrix 
u = yyt, (2.95) 

Indeed, it is very easy to check that U commutes with the Hermitian length 

£ = x;x; = x;xt (2.96) 

(Y and yt separately do not), i.e. the U vector fields leave £ invariant. U is a 

perfectly good matrix of vector fields and satisfies equations similar to (2.2) and 
(2.5) 

and 

RnU2RnU2 = U2RnU2Rn, 

UtX2 = X2RI2U2RI2 

(2.97) 

(2.98) 

x2U1 = RnU2Rnx2, (2.99) 

as a consequence of the equations for Y and yt given above. Notice that 

lUj = q-26; + q-1 >.a•xj- q-• >.xifJj - >.28; cfJit (2.100) 
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which will be useful to us later. 
Finally we observe that, if we want to reduce the vector fields to the number 

appropriate to SU9(N), we must normalize U, i.e., take the matrix 

zzt = U/(DetU) 11N. (2.101) 

Lemma 2.3.2 It is 

DetU = pp". (2.102) 

Proof By use of the same techniques as in lemma 2.3.1, one can verify that with 

U:YYt 

then 

Ur = YrYl 
for any I= (12 · · · m). Hence 

t 12 ... NDetU = En ... NU(J2 .. ·N) 

0 

= E12 .. ·N Y(I2 .. ·N)l(~2 .. ·N) 

= tn ... NDetY Det(Yf) 

= pp"En .. ·N· 

(2.103) 

(2.104) 

(2.105) 

In addition to commuting withY;', the rescaling operator pin (2.40) commutes 

with x', iJ; and therefore with (Yf)~ and 

p" = 1- q>.fJ;x'. (2.106) 

On the other hand p" commutes with (Yf)}. X;, a•. Yl and satisfies 

p"x' = q-2x•p·, tJ,p· = q-2p•a,. (2.107) 

Clearly pp" commutes with£, therefore so does zzt. Z and zt satisfy equations 
analogous to (2.2),(2.92),(2.93). Using this fact one can show that 

Detzzt = (DetZ)(Detzt) = 1. (2.108) 

Notice that the vector field matrix zzt is Hermitian, which is the natural reality 
condition for SU9(N). 
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Construction 2.3.3 (Realization for SU9(N)) 

zzt = U/(JJJJ")1fN (2.109) 

provides the pseudodifferential operator realization for the SU9(N) vector fields. 

2.4 SOq(N) and SOq(N, R) 

We shall call T the quantum matrix of S09(N), instead of A. In addition to 

RnT1T2 = T1T2Rn, (2.110) 

they satisfy the orthogonality relations [8J 

T'gT = g, Tg- 1T 1 = g-1
, (2.111) 

where the numerical quantum metric matrices g = g;; and g- 1 = gif can be chosen 

to be equal g;; = gii. The S09(N) fl matrix satisfies also orthogonality conditions 

(R• -1)ij _ im Ain _ funi nj 
1<1 - 9 .11."'m~o9nl - 91<m'"'ln 9 • 

as well as the usual symmetry relations 

R•;; ""' kl =It;;· 

The S09 (N) vector field matrix, which we shall call Z, satisfies 

RnZ2RnZ2 = Z2RnZ2Ru, 

Z1T2 = T2RnZ2iln, 

(2.112) 

(2.113) 

(2.114) 

(2.115) 

as well as an orthogonality constraint in one of the two equivalent forms(54, 56] 

(z R• z )i' 1-N 9ij 2 12 2 kl = q g,.,, 

( Z2RnZ2)~g"1 = q1-N gii. 

(2.116) 

(2.117) 

Eq.(2.116) or (2.117) reduces the number of independent vector fields from N 2 to 

N(N - 1 )/2 as in the classical case. 
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The projector decomposition of the R matrix for S09(N) is 

R. = qP+ _ q-1 p- + q1-N po, (2.118) 

Here p+ is the traceless part of the symmetrizer, p- is the antisymmetrizer and 

P0 is the trace operator. It is related to the metric by 

(P0)~ = vgii9kt, 
~ 

(2.119) V = (qN _ f}(ql-N +-q-1)' 

The coordinates x; of. the quantum Euclidean space satisfy the commutation rela­

tions 

X/rXI(p-)n = 0, 

or in one of the two equivalent forms3 

XkxrR~J = qx;x; - ~Lg;;, 

(R• -1)kl -1 + ' N-2L XkXI ij = q X;Xj Aq 9ij 1 

where the length L is defined as 

L =a-x ·x, 

X • X :: X1oX191ol = XkXIo and 

Q = 1 
1 +qN-2' 

(2.120) 

(2.121) 

(2.122) 

(2.123) 

(2.124) 

As a consequence of (2.121), the length L commutes with all the coordinates, 

Lx; = x;L. (2.125) 

Since g;; -:f. g;;, we need a convention to raise and lower the indices, we adopt 

m; = g;;m1, mi = giim1. (2.126) 

3 Due to the S09(N) characteristic equation for the numerical R matrix, 

k~- (k- 1 )~1 = >.(616{- g11gtr) 

and 
R~gtl: 91-N giJ. 
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A calculus on quantum Euclidean space can be obtained by introducing deriva­

tives ai which satisfy 
i i · • ik I a Xj = 6; + qRj,xka (2.127) 

and 
(P-)~a'ak = o. (2.128) 

Explicitly, the latter is 

aka,R.n = qaiaj- J..l:lg;;, (2.129) 

or equivalently 

a "'(R·-1)kl -l!>{} ' N-2A kUI ij = q Ui j- 11q U9ij, (2.130) 

where the Laplacian 

6. = aa . a = a8;8j (2.131) 

commutes with all derivatives, 
6.8i ={}ill. (2.132) 

One can define a rescaling operator 

A= 1 + qJ..xi8i + qN )..2 Ll:l, (2.133) 

which satisfies 

A - 2 A 8iA - 2A8; Xi- q Xi 1 - q . (2.134) 

A useful relation is 
8iL = q2L8i + q2-Nxi. (2.135} 

The action of the vector fields Z on S09(N) induces in the standard way an 

action on Euclidean space analogous to (2.5) 

Zi . R·imznR·tr ;Xk = Xm In r jk• (2.136) 

For q real, the quantum Euclidean space can be endowed with a reality structure 

as follows. For the coordinates one imposes the reality condition 

x;• = giix; = xi. (2.137) 

Let us now define derivatives 8; in terms of the conjugate derivatives by 

fJ; = g;;8i = -qN ai·. (2.138) 
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The complex conjugate of (2.127) can be transformed to the form 

fix; = 6; + q-1(k1 >~txk8' 

and that of (2.129) to 

A • • -1 it -1 • • • aka,( R )i; = q aiaj + >.l:lgij, 

where 

A= aqN-28 · 8. 

(2.139) 

(2.140) 

(2.141) 

The relation betw~n the derivatives {}i and their complex conjugates or the 8i can 

be writtenl64) in the nonlinear form 

8i = A-1(6J +qN-1J..axi8;)lP, 

which can be shown to satisfy (2.139). Using (2.142}, one can show that 

8iaJ = qil{;a•a'. 

(2.142) 

(2.143} 

We wish to find a realization for the vector fields Z. of S09(N, R) as pseu­

dodifl'erential operators on Euclidean space. It must satisfy (2.136}, (2.114}, the 

orthogonality relations (2.116, 2.117) and the reality condition for S09(N, R) 

zt=z. (2.144) 

One way to find the appropriate expression is to proceed in analogy with (2.100} 

by writing similar terms but adjusting the coeficients so that all relations required 

of Z are satisfied. It turns out that the correct formula is 

z; = q-26} + q-1 >.a;x;- q1-N >.x;8;- >..2 Lai8;. (2.145) 

In fact, using the relations given above for the calculus on Euclidean space, one 

can verify that Zj satisfies (2.136) as well as 

aizt = R{~z:~~a· (2.146) 

and 
fi zi = flii zm fl'" 8, 

k lm n kr • (2.147) 
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Combining (2.136), (2.146) and (2.147), one finds that Z satisfies also (2.114). 

It is very easy to see that Z, as given by (2.145) satisfies the reality condition 

(2.144) if one observes that (2.145) can be written in the more symmetric form 

q2 Zj = c5j + q).IJiXj + q>.x;"{Ji• + aqN ).28iXkX/,.*I)i• 

by using (2.135). 

Finally, the orthogonality condition is 

g;;Z~R~Zj = q1-Ng,.,. 

Using (2.145), it is easy to get 

Zj R"im _ 1-N z"r 
9ij m kn - q 9kr n• 

where the quantity z~ 

z~ = q2c5~- q>.fr Xn + qN-1 >.x• 8n- >.2 Ur 8n 

is obtained from z~ by exchanging 

x +-+ z = x, a +-+ a, 
1 A ... 1 q ._. q- , R .-. n- , 9 +-+ 9. 

(2.148) 

(2.149) 

(2.1 50) 

(2.1 !i1) 

(2.152) 

(2.153) 

Note that this operation exchanges (2.127) with (2.139), (2.129) with (2.140) and 

leaves (2.143) invariant and is therefore a symmetry of the quantum Euclidean 

space. We claim 

Lemma 2.4.1 
I • I 

Z,.Z;:' = 6". . (2.154) 

Proof It can be easily checked by direct computations and making use of the 

following useful equalities 

>.fJ,.xm = (qN _ 1)(q1-N + q-1) + >.q-NxmfJm, 

fJn = q-2A-11Jn + >.qN-3A-1f::t.xn, 

i = qN-2£, 

f!. = q2N-4A-1f::t., 

A= A-1• 

37 

(2.155) 

(2.156) 

(2.157) 

(2.158) 

(2.159) 

0 

Combining all these, we have 

Construction 2.4.1 (Realization for S09(N, R)) 

z; = q-26j + q-1 >.aix;- q1-N >.xifJ;- >.2 LIJifJ; (2.160) 

realizes the SO,(N, R) vector fields as pseudodifferentia/ operators in the quantum 
Euclidean space. 

It is remarkable that Z as given by (2.160) satisfies even the orthogonality re­

lations (2.116) and (2.117), without need for any further normalization as was nec­

essary in (2.66) and (2.101). This is due, apparently, to the fact that the SO,(N) 
R matrix already satisfies orthogonality relations. 

On the other hand, if one does not impose (2.137) and doesn't identify 0;, as 

given in (2.142), with the complex conjugate derivative ai• by (2.138), then (2.144) 

will not be true. However, (2.160) would still give a realization of vector fields for 

the complex quantum group S09(N) on Euclidean space. 

2.5 A Few Remarks 

1. In the differential calculus on a quantum space, one naturally introduces the 

differentials of the coordinates 

6 =dx;. 

For quantum Euclidean space, they satisfy the commutation relations 

e,.e,(P+>~J = o, e,.e,(P0Jn = o, 

x;{; = q{,x,.Rn, 
ajej = q-1cR-1me.u. 

(2.161) 

(2.162) 

(2.163) 

(2.164) 

According to (2.137) it is natural to introduce variables e; related to {;• by 

et =u;;i; = t (2.165) 
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The complex conjugate of (2.163) can be written as 

. . .. , 
{;:r; = q:rl{IR;;· (2.166) 

It was shown(64) that the ei can be related to{; by a (nonlinear) transforma­

tion which was given explicitly there. It turns out that that transformation 

can be written very compactly as 

• N lo {; = uq A{lZ; , (2.167) 

where A is given by (2.133). In this form one can easily verify that f. satisfies 

all desired relations. For instance (2.166) follows immediately from (2.134), 

(2.136) and (2.163). The requirement that complex conjugation be an invo­

lution restricts u to be a phase, lui = 1. Vice versa, if one knows the correct 

expression fori,;, one can infer from it the formula for Zf. 

2. All of the above equations are "covariant". This means that they go into 

themselves by coaction transformations. For instance, for all equations for 

GL,(N) from Eq.(2.1) to (2.39), it is easy to see that the transformation 

A-+ AB, :r-+ :rB, 8-+ s-18, 

Y -+ n-1 Y B, :r;8; -+ :r;li 

(2.168) 

(2.169) 

leaves them invariant. Here the matrix elements of B are taken to commute 

with everything (which is the reason for using the word coaction) but B is 

itself a quantum matrix, satisfying the analogue of Eq.(2.1). It holds similarly 

for the complex conjugate sector of GL9(N), 

At-+BtAt~ x-+Btx, 8-+8(Bt)-1 , (2.170) 

yt -+ B'Y'(Bttt, IJ;x;-+ a;x; (2.171) 

(the relation (Bft1 = (B-1)f is used). Analogous transformation laws leave 

invariant the SL,(N),S09(N) equations as well as their respective real forms. 

3. The realization of vector fields for GL9(N) and SL9(N) given above is equiv­

alent to that given earlier(65). The formulas given here are simpler because 
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of a more convenient choice of notations and definitions. For instances, we 

use a right coaction and a corresponding more convenient lower index for 

the coordinates :r; and upper index for the derivatives 8;. The same applies 

to a comparison between the formulas written above for SO,(N) and earlier 

ones(64). The reader should have no dificulty in establishing the correspon­

dence between the conventions of these different references. 

4. A realization of vector fields for the orthogonal group in terms of pseudodif­

ferential operators on quantu·m Euclidean space has been given by Gaetano 

Fiore(66). He uses the explicit description of the quantum Lie algebra by 

Drinfeld and Jimbo, instead of (2.114), (2.116) and (2.117) and gives explicit 

realizations for the vector fields in that basis. Ours is an alternative solution of 

the same problem which has perhaps the ad~antage of being more symmetric 

and also covariant, as explained above. 
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Chapter 3 

Quantum Complex Sphere s~ 

In this chapter, we introduce complex coordinate to the two dimensional quantum 

sphere of Podle8 (67, 68, 69, 70} by means a stereographic projectiou. The coaction of 

SU9(2) on the sphere is given by fractional transformations on the.• complex variable 

in the plane, analogous to the classical ones. Left covariant differential calculus is 

introduced. To cover the whole sphere, we need at least one more coordinate patch. 

The quantum sphere appears then as the quantum deformation of the classical two­

sphere described as a complex manifold. We also discuss a very interesting property 

of the calculus: the admission of a one-form realization of the exterior differential 

operator. 

3.1 The Algebra s; and the Patch c+ 
A family of quantum 2-spheres was introduced in (67}. There, the algebra of func­

tions over the sphere is generated by 3 coordinates, subjected to a condition that 

reduces the number of independent generators to 2. The case of c = 0 is of special 

interest(7l}. In this case, the algebra over the spheres: is the c·-atgebra gener­

ated by the elements b+ = ")'b,b_ = a{J,~ = a6, (where a,{J,")',6 E SU9 (2)) with 

commutations 

(l - ~)b_ = q-2b_(I - ~). 

(I - ~)b+ = q2b+(1 - ~). 

q-2b_b+ = q2b+b-- A(~- 1), 
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(3.q 

where A= q- q- 1 and constraint 

b~ = ~ + q-1b_b+. (3.2) 

The •-algebra structure is b± = -q'~' 1 b'F, bj = b3 • q is a real number. 

One can construct a stereographic projection to rewrite this algebra in terms of 

coordinates of the complex plane z, z. Define 

z = -qb_(1 - 63}-1 = Q")'-t' 

z = b+( 1 - ~)-1 = -6{3-1' (3.3) 

which is the projection from the north pole of the sphere to the plane with coordi­

nates z, z. It is easy to derive the commutation relation 

zi = q-2zz + q-2 - 1 (3.4) 

and the •-structure 

z" = z. (3.5) 

We will denote the •-algebra generated by z and z subjected to the commutation 

relation (3.4) and •-structure (3.5) by c+. Note that the relation (3.4) for the patch 

c+ differs from the usual quantum plane (see for example (58}) by an additional 

inhomogeneous constant term. 

The inverse relations to (3.3) can also be obtained easily. It is 

where p is defined as 

and satisfies 

b+ = p- 1z, 
b_ = -qzp-1, 

1- b3 = qlp-l, 

p = 1 + zz 

pz = q2zp, 

pz = q-2zp. 
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(3.6) 

(3.7) 

(3.8) 



One can check directly that Eq.(3.4) is covariant under the fractional transfor­

mation, with (: ! ) E SU9(2), 

z-+ (az + b)(cz + d)-1
, z-+ -(c- dz)(a- bzt1

, (3.9) 

which is induced from the SU9(2) coproduct, interpreted as a left transformation. 

Here a, b, c and d commute with z and z. 

3.2 Differential Calculus 

In Refs.(68, 69, 70], differential structures on s: are studied and classified. In 

this section, we give a differential calculus on the sphere in terms of the complex 
coordinates z and z of the patch. Just as the algebras of functions on c+ can be 

inferred from those of SU9(2), so can be the differential calculus. 

For SU9(2) there are several well-known calculi[13, 14): the 3D left- and right· 

covariant differential calculi, and the 4D+ 1 4D_ hi-covariant calculi. The 4D bi· 
covariant calculi have one extra dimension in their space of one-forms compared 

with the classical case. The right-covariant calculus will not give a projection on 
c+ in a closed form in terms of z, z, which are defined to transform from the left. 

Therefore we shall choose the left-covariant differential calculus. 

It is straightforward to obtain the following relations from those for SU9 (2): 

and 

zdz = q-2dzz, 

zdz = q-2dzz, 

(dz)2 = (dz)2 = 0, 

zdz = q2dzi, 

zdz = q2dzz, 

dzdz = -q-2dzdz. 

We can also define derivatives a, li such that on functions, 

d = dza + dzli. 
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(3.10) 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

From the requirement ll = 0 and the undeformed Leibniz rule for d together with 
Eqs. (3.10) to (3.12) it follows that: 

az = 1 + q-2za, az = q2za, 

liz= q-2zli, liz= 1+ q2ztJ, 

and 

ali= q-2lia. 

(3.15) 

(3.16) 

(3.17) 

It can be checked explicitly that these commutation relations are covariant under 
the transformation (3.9) and 

dz-+ dz(q-1cz + dt1(cz + dt1, 

lJ-+ (cz + d)(q- 1cz + d)a, 

which follow from (3.9) and the fact that d is invariant. 

The •-structure also follows from that of SU9(2): 

(dz)• = dz, 

a• = -q-2li + (1 + q-2)zp-l, 

a· = ,_q2a + (1 + q2)p-l z., 

where the •-involution inverts the order of factors in a product. 

(3.18) 

(3.19) 

(3.20) 

(3.21) 

(3.22) 

The inhomogeneous pieces on the RHS of the Eqs.(3.21) and (3.22) reflect the 

fact that the sphere has curvature. Incidentally all the commutation relations in 
this section admit another possible involution: 

(dz)" = dz, 

a·= -q2li, 

rr = -q-2a. 

(3.23) 

(3.24) 

(3.25) 

This involution is not covariant under the fractional transformations and cannot be 

used for the sphere. However, it can be used when we have a quantum plane defined 

by the same algebra of functions and calculus. We shall take Eqs. (3.10) to (3.22) 
as the definition of the differential calculus on the patch c+. 
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Symmetries 

It is interesting to note that there exist two different types of symmetries in the 

calculus. The first symmetry is that if we put a bar on all unbarred variables (z, 

dz, a), take away the bar from any barred ones and at the same time replace q by 

1/q in any statement about the calculus, the statement is still true. 

The second symmetry is the consecutive operation of the two *-involutions 

above, so that 

a-+ -q,rr = q4a _ q,( 1 + q,)P-1 z, 

a-+ -q-2a• = q-4{J- q-2(1 + q-2)zp-l' 

(3.26) 

(3.27) 

with z, z, dz, dz unchanged. This replacement can be iterated n times and gives a 

symmetry which resembles that of a gauge transformation on a line bundle: 

8 -+ a<nl = q4"8- q2{2nJ,p- 1 z (3.28) 

= q4np2"1Jp-2n, 

[}-+ tJ!n) = q-4n[J _ q-2(2nh,,zp-1 

= q-4nl"[}p-2n, 

where (n)9 = ~,":11 • For example, we have 

a<nl z = 1 + q-2 zlJ(n). 

Making a particular choice of a, a is like fixing a gauge. 

(3.29) 

(3.30) 

(3.31) 

(3.32) 

Many of the features of a calculus on a classical complex manifold are preserved. 

Define 5 = dz8 and 6 = dz[} as the exterior derivatives on the holomorphic and 

antiholomorphic functions on c+ respectively. We have: 

(5,z) = dz, {5,zJ = 0, 

[6,z] =' o, [6,z] = dz, 

d = 5 +6. 
The action of 6 and 6 can be extended consistently on forms as follows 

5dz = dz5 = 0, 

{5,dz} = o, 
6dz = dzo = o, 
{6,dz} = 0, 

f!2 = 62 = 0, 

{5,6} = 0, 
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(3.33) 

(3.34) 

(3.35) 

(3.36) 

(3.37) 

(3.38) 

(3.39) 

where {-, ·}, !-, ·J are the anti commutator and commutator respectively. 

3.2.1 One-form Realization of the Exterior Differential Op­

erator d 

The calculus described in the previous section has a very interesting property. There 

exists a one-form :=: having the property that 

::::1 =F IE = >.df, (3.40) 

where, as usual, the minus sign applies for functions or even forms and the plus sign 

for odd forms. Indeed, it is very easy to check that 

::::=e-e· 
e = qdzp-1z 

satisfies Eq.(3.40) and 

-· .:. =-.:::::.. 

It is also easy to check that 

d:::: = 2qdzp-2dz 

and 

::::2 = q>.dzp-2dz. 

(3Al) 

(3.42) 

(3.43) 

(3.44) 

(3.45) 

Suitably normalized, d:::: is the natural area element on the quantum sphere. Notice 

that ::::2 commutes with all functions and forms, as required for consistency with the 

relation 

J2 =0. (3.46) 

The existence of the form:::: within the algebra of z,z,dz,dz is especially inter­

esting because no such form exists for the 3-D calculus on SU9(2), from which we 

have derived the calculus on the quantum sphere (a one-form analogous to:=: does 

exist for the two bicovariant calculi on SU9(2), but we have explained before why we 

didn't choose either of them). It is also interesting that d:::: and ::::2 do not vanish (as 
the corresponding expressions do in the bicovariant calculi on the quantum groups 

or in the calculus on quantum Euclidean space). 
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The one-form 3 is regular everywhere on the sphere, except at the point z = z = 
oo, which classically corresponds to the north pole. This is discussed in (72) where 

we argue that the pole singularity at that point can be included by allowing forms 

with distribution valued coeffcients. The area element t!3 is regular everywhere on 

the sphere. 

3.3 Patching Two Quantum Planes 

The variables z and z cover the sphere with the exception of the north pole. In 

analogy with the classical case, we can introduce new variables w = z- 1 and w = 
z- 1 which describe the sphere without the south pole. These variables satisfy the 

commutation relation 

ww = q-2ww + (q-2
- l)ww2w (3.4 7) 

and the •-structure 

w·=w. (3.48) 

It is clear that (3.47) is covariant under the transformation 

w-+ (dw + c)(bw + at1, w-+ -(aw- b)(ctii- dt1
• (3.49) 

Notice that the commutation relation (3.47) is different from that satisfied by z and 

z; our way of quantizing the sphere is inherently asymmetric between the north and 

the south pole. 
( 

The calculus in z and z induces a calculus in w and w. It is not hard to derive 

the commutation relations for this w, w calculus as well as the mixed commutation 

relations. For example, we have 

and 

wdw = q2dww, 

8ww = 1 + q2w8w 

dzw = q-2wdz. 
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(3.50) 

(3.51) 

(3.52) 

Denote by c- the •-algebra generated by the variables w and w, subjecting to 

(3.47) and (3.48). The coordinates w, ware related to the coordination b*, b3 by 

where Pw is defined as 

b+ = wp;}, 
I­b_ = -qp;, w, 

b:J = p;,J, (3.53) 

Pw = 1 + WW. (3.54) 

The relations (3.6) (respectively (3.53)) defines a •-algebra homomorphism be­

twe~n the algebra s: and c+ (respectively c-) and the sphere s: is covered by the 

two patches C* with the transition relation 

wz = zw = 1. (3.55) 

Singularity 

Since w and w are functions of z and %, Eq.(3.40) is valid for functions and forms 

in w and w, with the same::::. In terms of w an~ w the one-forms { and {* are given 

by 

e = -w-1dw(l + wwt1, e· = -(1 + wwtidu;u;-t, (3.56) 

Clearly they are singular at the north pole w = w = 0. This polar singularity 

is an intrinsic feature of our asymmetric quantization ~d of our calculus. This 

asymmetry is also apparent when we go to the classical limit of the Poisson sphere 

(73J and it seems to be unavoidable in our approach (72J. A different description 

of Podle8 spheres was given in an interesting paper by Stovfcek(74J. He shows that 

the sphere can be understood as the patching of two complex quantum planes. His 

choice of variable is symmetric between the two plaues, but the coaction of SU9(2) 

is very complicated in terms of his variable. Also, Stovlcek does not consider the 

non-commutative calculus on the sphere. 

We believe that the singularity can be controlled by allowing distributions, rather 

than just functions as the elements of our algebra and as coeffcients of differential 

forms. This point of view is explained in (72) for the limit of the Poisson sphere 

so as to avoid the need to develop the concept of distribution in the framework of 

noncommutative algebra. 
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3.4 Right Invariant Vector Fields on s; 
In this section we want to define vector fields on s: which generate the fractional· 

transformation mentioned above. We will see that these vector fields can be inferred 

from those on SU9(2). 
First let us recall some well-known facts about the vector fields on SU9 (2) (see 

for example Ref.l53)). The enveloping algebra U of SU9(2) is usually SlLid to be 

generated by the left-invariant vector fields HL,XL± which are arranged in two 

matrices L + and L-. The action of these vector fields corresponds to infinitesimal 

right transformation: T --+ TT'. What we want now is the infinitesimal version 

of the left transformation given by Eq.(3.9), hence we shall use the right-invariant 

vector fields HR,XR±· Since only the right-invariant ones will be used, we will drop 

the subscript R hereafter. 

The properties of the right-invariant vector fields are similar to those of the left­

invariant ones. Note that if an SU9(2) matrix T is transformed from the right by 

another SU9(2) matrix T', then it is equivalent to say that the SU119(2) matrix r-1 

is transformed from the left by another SU1t9(2) matrix T'- 1
• Therefore one can 

simply write down all properties of the left-invariant vector fields and then make the 

replacements: q--+ 1/q, T-+ T- 1 and left-invariant fields-+right-invariant fields. 

FRT Basis 

Using the matrices: 

( 
q-H/2 

M+= 
0 

q-1/2 >.X+ ) _ ( qH/2 0 ) 
qH/2 I ' M = -q1/2).X_ q-H/2 • 

the commutation relations between, the vector fields are given by, 

RuMi Mi = MiMi Ru, 

RuMi Mj = Mj Mi Ru, 

RuMi Mj = Mj' Mi Ru, 

(3.57) 

(3.58) 

(3.59) 

(3.60) 

while the commutation relations between the vector fields and the elements of the 

quantum matrix in the smash product of U and SU9{2) are, 

T1Mi = MtnuTt. (3.61) 
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T,M;z = M;zn;lT~t (3.62) 

where Tis a SU9 (2) matrix, n = q- 112R and R is the GL9(2) R-matrix. Clearly 

M+, and M- are the right-invariant counterparts of L + and L-. The commutation 

relations between the M's and the T's tell us how the functions on SU9(2) are 

transformed by the vector fields H,X+,X-. 

Basis suitable for the Patch 

It is convenient to define a. different basis for the vector fields, 

and 

z+ = X+qH/2, 

z_ = qH12X_ 

I I ,•:-1 'H = H 9 = 9 -1 • 

They satisfy the commutation relations 

and 

'HZ+- q4Z+'H = (1 + q2)Z+, 

z_ 'H - q4'HZ_ = (1 + q2)Z_ 

qZ+Z- - q-1 z_z+ = 'H. 

(3.63) 

(3.64) 

(3.65) 

(3.66) 

(3.67) 

{3.68) 

Using the expressions of z,z in terms of o,{J,"(,6, one can easily find the action of 
these vector fields on the variables z, z, 

and 

Z+z = q2zZ+ + q112z2
, 

Z+z = q-2:zz+ + q-3/2, 

'Hz= q4z'H + (1 + q2)z, 

'Hz= q-4:z'H- q-4(1 + q2)z, 

Z_z = q2zZ_ - q112 

z_z = q-2zz _ _ q-3/2z2. 
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(3.69) 

(3.70) 

(3.71) 

(3. 72) 

(3.7:V 

(3.74) 



It is clear that a •-involution can be given: 

z+· = z_, 'H."= 'H.. (3.75) 

Since all the relations listed above are closed in the vector fields and z, i (this 

would not be the case if we had used the left-invariant fields), we can now take 

these equations as the definition of the vector fields that generate the fractional 

transformation on s:. We shall take our vector fields to commute with the exterior 

differentiation d. This is consistent for right-invariant vector fields in a left-covariant 

calculus and allows us to obtain the action of our vector fields on the differentials 

dz and dz, as well as on the derivatives a and fJ. For instance (3.69) gives 

Z+dz = q2dzZ+ + q112(dzz + zdz) (3. 76) 

and 

az+ = q2Z+a + q_3
,

2(1 + q2 )za. (3. 77) 

It is interesting to see how :=: and tE transform under the action of the right 

invariant Vt'ctor fields or under the coaction of the fractional transformations (3.9). 

Using (3.69) to (3.74) one finds 

z+::: = :::z+ + q-112dz 

and 

1(3 =::.'H.. 

These equations are consistent with (3.40). For instance, 

Z+(..\dz- 3z + z3) = q2(..\dz- 3z + z3)Z+ 

+q112(..\dz2 - 3z2 + z23)- q-112(dzz- q2zdz). 

(3.78) 

(3.79) 

(3.80) 

(3.81) 

Eqs. (3.78) and (3.79) imply that tE commutes with Z* and 'H., as expected for 

the invariant area element. 

For the fractional transformation (3.9) one finds { -+ {' where 

e-{ = -q(dz)cd-1(1 + cd-1 zr1 (3.82) 

and a similar formula for {". The right hand side of (3.82) is a closed one-form, 

since (dz)2 = 0, so one could write 

{'-e = -qd(loSq(l + cd-1z)) (3.83) 
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with a suitably defined quantum function log9 • At any rate 

de'= d{ (3.84) 

so that the area element two-form is invariant under finite transformations as well. 

Pseudo-differential Operators Realization 

It is natural to ask whether one can realize the vector fields Z+, z_, 'H. as pseudo­

differential operators acting on c+. The answer is yes. Introduce the differential 

operators, 

and 

C = 1- ..\q-1z{), 

D = 1 + ..\qzfJ 

B = 1- ..\q-1z8 + ..\qzfJ- ..\2q-2pfJ8. 

(3.85) 

(3.86) 

(3.87) 

One finds the following realizations of Z+, z_, 'H. as pseudo-differential operators, 

which satisfy Eqs. (3.66) to (3.75): 

and 

q3/2 z+ =:(z2{) + q2{JB-1 )C-1, 

-q312z_ = (q2z28+oB-1)D-1 

'H.= 1- B-2 
~· 

Equivalently, 

q-1 p28 = (Z_zZ+ - q4 Z+zz_ + q112(1 + q2)Z+)B 

and 

q- 1/a = (q4Z+zz_- z_zz+- q112(1 + q2)Z-)B. 

3.5 Braided Quantum Sphere 

(3.88) 

(3.89) 

(3.90) 

(3.91) 

(3.92) 

We first review the general formulation (75) for obtaining the braiding of quantum 

spaces in terms of the universal R-matrix of the quantum group which coacts on 

the quantum space. 
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3.5.1 Braiding for Quantum Group Comodules 

Let A be the algebra of functions on a quantum group and V an algebra on which 

A coacts on the left: 

AL :V --. A®V 

v ...... v(J'l ® vl2l' 

where we have used the Sweedler-like notation for 6L(v). 
Let W be another left A-comodule algebra, 

AL:W -+ A®W 

w ..... w<t') ® wl2l. 

It is known(i'5) that one can put V and W into a single left A-comodule algebra 

with the multiplication between elements of V and W given by 

vw = n(w(J'l, 1P'l)wl2lvl2l. (3.93) 

Here n E U ® U is the universal R-matrix for the quantum enveloping algebra U 

dual to A (with respect to the pairing < ·, · >) and 

It satisfies: 

n(a,b) =< n,a®b >. 

n(/(1)•9(t))/(2)9(2) = 9(1)/(s)n(/(2)•9(2)), 

n(/9, h)= nu, h(s))n(g, h(2)), 

n(f,9h) = nu1s,, h)n(/(2)19). 

n(l, f) = nu. 1) = E(/). 

(3.94) 

(3.95) 

(3.96) 

(3.97) 

Take 3 elements v, ii E V, wE W, notice that if the multiplication on Vis given 

by 
vii = en( v(t'>, v(l'>)v<2>,p>, (3.98) 

where e is a proportional constant, then 

( vii)w = en( ii(l')' vl1'l)v<2lvl2)w 
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= en( ii(l')' v(l'>)n( wll')' v<2'l )ii<2>w<2lv13) 

= en( ii(l')' vll'l)n(wll')' v<2'>)n( w<2'l' v<2'l)w<3li;l3lvl3) 

= en( w(l'l' vl1'>)n( w<2'l' v(l'>)n(v<2')' vl2'l)wl3lvl3lvl3) 

(due to Yang-Baxter equation) 

= n( wll'). v<1'l)n( w<2'l' v(l'l)w<3lv<2>v<2l 

= n( w(l'l' ii(l') )vwl2>v<2l 

= v(iiw). 

Similarly, for elements v e V, w, w e W, if 

ww = c'n( w(l'l' w<1 ') )w<2lwl2)' (3.99) 

then v(ww) = (vw)w. In many cases of interest, one consider algebras with multi­

plication given by (3.98) and in these cases, the multiplication (3.93) is associative. 

One can check that (3.93) is left covariant 

6L(vw) = AL(v)6L(w). 

1 It is because 

AL( vw) = n(w<t'), v(l'l)wl2)(t')v(2)(l') ® wl2)(2lv(2)(2) 

= n( W{l') (l)• V(l') (l))W(l') (2)V(l') (2)@ W(2)V(2) 

(since (id®6L) o AL = (6® id) o AL ) 

= vii') (t)W(t') (t)n(wlt') (2)• vll') (2)) ®wl2lvl2) 

------------------
1 If on the other hand, one start with two right .A-comodule algebras, 

liR:V - V®.A 
v ..... vlll®v(2'1, 

liR:W - W®.A 
w ..... wlll®wl2'1, 

Then the multiplication 

vw = wl•lvlll7l(vl2'), wl2'1) 

(3.100) 

(3.101) 

(3.102) 

is associative (under the corresponding assumption), right covariant under t:.R and makes V and 

W together as a right .A-comodule algebra. 
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(due to property (3.94) of 'R.) 

= v<l'lw(l'ln( w!2)(1'1, v!2)(1'1) ® w!2)(2lv!2)(2) 

= v<1'lw(l'l ® v<2lw(2) 

tlL(v)tlL(w). 

For A = SU9(2), it is 
n(Ti r,k) _ 9-112R· ki 

J' I - Jl• 

where R is the G£,(2) R-matrix. For example, 

(
q1/2 0 ) 

n(a, T) = 0 9
-t/2 ' 

(
q-1/2 0 ) 

'R.(d,T) = 0 9
112 • 

where >. = q- q-1• 

n(b,T) = (~ 

'R.(c,T) = (~ 
~). 
>.q-1/2) 

0 • 

The braiding formula (3.93) can be used for any number of ordered A-comodules 

{Vn}~=l so that it holds for v E Vm and wE Vn if m < n. 

3.5.2 The Braided Sphere 

Since we know how z, z' and .i1 transform, we can use (3.93) to derive the braided 

commutation relations(76). We will not repeat the derivation here but will only give 

the results 

zi = q-2zz- >.q-1, 

zz' = q2z'z- >.qz12
, 

zz' =: q-2z'z- >.q-1 • 

(3.103) 

(3.104) 

(3.105) 

For consistency with the •-involution of the braided algebra the braiding order of 

z, z, z' and z' has to be z < z' < .i' < .i after we have fixed z < z' and z < .i 

as assumed in (72). It is crucial that we braid separately A = ( { 1, z}) with A' 

and A', and A = ( { 1, .i}) with A' and A' instead of simply braiding the whole 

algebra. ( { 1, z, z}) with ( {1, z', .i'}). Otherwise we will not be able to have the usual 

properties of the •-involution (e.g. (f(z)g(z'W = g(z')• /(z)•) for the braiding 

relations. 

55 

Anharmonic Ratio 

Let z;, i = 1, 2, 3, 4 be four braided spheres with commutation relations 

z;z; = q2z;z;- >.qzJ, i $ j, (3.106) 

one can verify that the anharmonic ratio (12)[24)-1(34)[13)-1, (12J(23J-1(34J(14J-1 , as 

well as a number of others are invariant under the projective transformation 

z;-+ (az; + b)(cz; + dt1• (3.107) 

It is natural to ask whether these invariants are independent of each other. A 

detailed analysis has been carried out in (72) and the answer is that all the invariants 

are related and can be written as a function of any one of them. There is only one 

independent anharmonic ratios, exactly the same as in the undeformed case. 

This interesting quantum projective invariant in the algebra of four braided 

spheres was first discovered by Pei-Ming Ho. Its existence was later explained by 

Professor Zurriino. They have also worked out the similar projective invariants for 

the higher projective space OP,(N) (77, 78). 

Extending to the Differential Algebra 

The differential calculus can also be defined on the braided spheres by imposing the 

Leibniz rule on the exterior derivatives d and d' so that d' acts on z' and z' in the 

same way d acts on z and .i, and 

together with 

dz' = z'd, d.i' = z'd, 

d'z = zd', d'i =it! 

dd' = -d'd. 

Then (3.104),(3.105) and their •·involution will imply commutation relations be­

tween functions and forms of different copies of the sphere. As a consequence, the 

area element of the second copy K' = dz'd.i'(1 + .i'z't2 is central in the whole 

braided algebra, while K = dzdi(1 + .iz)-2 is only central in the original copy 

(z, .i). 
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3.6 Integration 

We want to determine the invariant integral < f > of a function f(z, z) over the 

sphere. 
/ 

Using the Definition 

A left-invariant integral can be defined, up to a normalization constant, by requiring 

invariance under the action of the right-invariant vector fields 

< xf(z,'i) >= 0, (3.108) 

for X= Z+, Z_, 'H. 
Using 'Hand Eqs.(3.71) and (3.72) one finds that 

< zk~1g(zz) >= 0, unless k =I. (3.109) 

(Here g is a convergence function such that zkz1g(zz) belongs to the sphere.) There· 

fore we can restrict ourselves to integrals of the form< f(zz) >. 

Eqs.(3.69) and (3. 70) imply 

and 

Z+P = pZ+ + qtf2zp 

Z -1 -lz -3/2111 -1 +P = P + - q tfqZP · 

From < Z+(zp-1) >= 0, I~ 1, one finds easily the recursion formula 

[I+ 1)9 < p-1 >= [1)9 < p-l+t >, I ~ 1, 

which gives 
-1 1 1 I 

< P >= [I+ 1)
9 

< >, ~ O. 

Similarly 
zz 1 1 

< '•.- .. >=((l)q -(1+1)9)< 1 >, l~l. 

We leave it to the reader to find the expression for 

(zz)t > 1 > k. < ~ .. - - \.1 t -
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(3.110) 

(3.111) 

(3.112) 

(3.113) 

(3.114) 

(3.115) 

As an application of the stereographic projection, we can define an integration 

on the complex quantum plane C9 by inserting an appropriate measure factor p2 • C9 
has the same algebra (3.4) and differential calculus (3.10) to (3.17), but a different 

•-structure (3.23) to (3.25). Classically, it holds fa dzdzj21rij(z, z) = !52 p2 f(z, z) 
Motivated by this, we define an integration over the quantum plane as, 

f f(z, 'i) =< p2 f(z, z) > . lc4 

(3.116) 

We need to check that this integration is translationally invariant, namely, 

f 8/ = f fJJ = 0. It follows immediately from (3.91), (3.92) and the definition 

(3.116). Formally, we have 

and 

f 8! =< /8! >=< z+ ... >- < z_ .. · > lc4 

f fJJ =< p28f >=< z_ ... >- < z+ ... >, lc, 

(3.117) 

(3.118) 

which are both zero since the integral on the sphere is defined by < 0 f >= 0 for 
0 = Z±, ?t. So the integral defined by (3.116) is translational invariant. 

Using the Braiding 

We can also compute the left-invariant integral by requiring its consistency with 

the braiding relations. 

Since z' and z' are always on the same side of the variables of their braided copy, 

z and z, in the braiding order (z < z' < z' < z), the integration on z',z', has the 
following property: 

if 

then 

/(z',z')g(z,z) = L:g;(z,z)/;(z',z'), 
i 

< f(z',z') > g(z,z) = L:g;(z,z) < /;(z',z') >, 
i 

where < · > is the invariant integral on s:. However, 

f(z',z') < g(z,z) >:/: L: < g;(z,z) > f;(z',z'). 
i 
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The above property (3.119) can be used to derive explicit integral rules. For 

example, consider the case of f(z', z') = z'p'-n, where p' = 1 + z'z' and g(z, z) = z. 
Since 

Z'p'-nz = q2zztp•-n + ql-ln A(ln + 1)9 - (n)9p')p'-n, n;::: 0, 

where (n)9 = 9;,n:
1
1

, using (3.119) and < z'p'-n >= 0 we get the recursion relation:· 

(n + 1)9 < p•-n >= (n)9 < p•-(n-l) >, n;::: I. (3.120) 

This agree with the first method. 

Notice that one can also compute the same integral by using the "cyclic prop­

erty" of the quantum integral 2 

< /(z, z)g(z, i) >=< g(z, z)/(q-2z, q2z) > . (3.121) 

2Similar cyclic properties have been found by H. Steinacker(79) for integrals over higher dimen­

sional quantum spheres in quantum Euclidean apace. 
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Chapter 4 

Quantum Complex Projective 

Space 

In this chapter, we define the quantum projective space CP9(N) in terms of both 

homogeneous and inhomogeneous complex coordinates and we study the differential 

calculus on it. C P9( N) is shown to be the quantum deformation of a Kabler manifold 

with the Fubini-Study metric. 

4.1 CPq(N) as a Complex Manifold 

4.1.1 SU9(N ...:...1) Covariant Quantum Space C:'+1 

First, let us define the complex quantum space c:+t from which the projective 

space can be obtained. c:+l is the algebra Spanned by the coordinates X; and its 

complex conjugate x;, i = 0, 1, ... , N which satisfy the relations 

-1 .kl 
X;X; = q R;;XkX/, 

x;x; = q(k1)!txkx1, 

x;x; = q-1 ilf:xkf'. 

(4.1) 

(4.2) 

(4.3) 

The indices run from 0 to N, instead of from 1 to N + 1 because in the next section, 

we w_ill.introduce the inhomogeneous coordinates z0 for C P9 ( N) and we want the 
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indices a of z0 to run from 1 to N, instead of from 2 to N + L The later is not 

suitable for a compact R-matrix description. 

q is a real number and .nn is the GL,(N + 1) R-matrix (8) with indices running 

from 0 to N. The complex conjugate coordinate xi is related to the coordinate x; 

by a •-involution 

xi= xi. (4.4) 

It is trivial to check that the Hermitian length 

L::x;fi (4.5) 

is real and central 

Lx; = x;L. (4.6) 

Differential Calculus 

As usual, the differential calculus can be introduced by imposing commutation re­

lations between the functions and forms. We propose the differentials~;= dx;,(i = 

( {;)" to satisfy 

and 

-., 
x;{; = qR;;{~cxr, 

xj~; = q(il-1 >~te.x' 

e;e; = -qli~Je.e, 
eje; = -q(k1>}te.e'. 

We will discuss the possibilities of other choices later. 

(4.7) 

(4.8) 

(4.9) 

(4.10) 

To introduce derivatives Di, D; acting on the "functions", 1 we require the ex­

terior derivatives 6 = {;D;,6 = (ilJ; 6n the holomorphic and antiholomorphic func­

tions satisfy the undeformed Leibniz rule, 62 = '62 = 0 and 6x; = x;6 etc. These 

imply 

D1x; = 6j + qR~tx,.D1 , Dixi = q(k1 ){~x"D1 , 

[);X)= 6~ + q- 1 (h-1 )~;x"lJ,, D;x; = q-~~~~x.D, 
1The usual symbols 8" ,8, are reserved below for the derivatives on CP,(N). 
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( 4.11) 

(4.12) 

and 

D' Di = q-1 R{~D~ D1, 

DilJ; = q-1~~JD~D', 
- - . -1 -.,- -D;D; = q R;;D•D1• 

The matrix 4>~ is defined as 

which satisfies 

;,;; _ R-iiq2{i-r) _ R-;;
9
2t•-n 

't'k/- //c - //c I 

~ri.(k1)ik _ (k1)ri.~jk _ 6'6" 
IJ i/ - •J il - I • 

and (sum over the index k) 

.i..i~ _ ciq2i+l .i..lci _ ciq2(N-i)+1 
't'jlc - u; ' 'i'lcj - u; . 

(4.13) 

(4.14) 

(4.15) 

(4.16) 

(4.17) 

( 4.18) 

Because we have chosen to run the indices from 0 toN+ 1, ( 4.18) is slightly different 

from the formulas in chapter 1. 

Symmetry and •-involution 

Using 

and 

R~(q-1) = (R-1 >{t(q) 

-;; -., 
R~c1 =R,1 , 

one can show that if we do the following replacement 

and 

q-+ q-1, 
x;-+ kq-2ixi, xi-+ lx;, 

{; -+ kq-2i(i, (i -+ I~; 

D;-+ k-t 92ilJ;, D;-+ 1-1D;, 

(4.19) 

(4.20) 

( 4.21) 

(4.22) 

(4.23) 

(4.24) 

. where k and I are arbitrary constants, then all the commutation relations just go 

back to themselves and the replacement (4.21)- (4.24) is hence a symmetry of the 
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algebra. Exchanging the barred and unbarred quantities in ( 4.21) - ( 4.24 ), we get 

another symmetry which is related to the inverse of this one. 
Since L commutes with x;,xi, a •-involution can be defined for Di 

(D;). = -q-2;'L"D;L-", (4.25) 

where 

i' = N- i + 1 (4.26) 

for any real number n. The •-involutions corresponding to different n 's are related 

to one another by the symmetry of conjugation by L 

a-+ LmaL-m, 

where a can be any function or derivative and m is the difference in the n 's. 

Finally, all the above relations are covariant under the transformation 

x;-+ x;T/, -i (T-t)i -; 
X -+ ;X 1 

Di -+ (T-1 )}Dj I [), -+ D;q2i'T/q-2j' I 

{;-+ {;T/1 e• _.. <T-J ,~ej. 

where Tj E SU9(N + 1). 
One can check that 

L{; = q2{;L, 

which will be useful to us later. 

4.1.2 Complex Projective Space CP9(N) 
' 

Define for a= 1, ... ,N1 the inhomogeneous coordinates 2 

z4 = x;1xo1 Z4 = X0 (x0t 1
• 

As a consequence of (4.1, 4.2) 1 we have 

ZoZb = q-1 k:tzcZ81 

2The letters a,b,c,e etc. run from 1 toN, while i,j,l:,l run from 0 toN. 
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(4.27) 

(4.28) 

( 4.29) 

( 4.30) 

(4.31) 

( 4.32) 

( 4.33) 

z"zb = q-1(k1 )&;z.z•- >.q-16:, (4.34) 

where R't,~ is the GL9(N) h.-matrix with indices running from 1 toN and>.= q-1/q. 
The formulas 

and 

-0 -0 xox" = qx"xo, xox = x xo 

xox" = q-1x"x0 

are very useful to obtaining (4.33) and (4.34). 

Differential Calculus 

( 4.35) 

(4.36) 

The commutation relations for the calculus can be induced from that of C~+l. It 
is obvious that 

dz<> = Xo1({o- {ozo)1 dz" = ceo - Z0eo)(x0t 1 

and 

xo{o = q2{oXo1 xo{11 = (Oxo. 

Using these and (4.7) and (4.8)1 we have 

and 

Z0 dZb = qk:tdz.z., 

z"dzb = q- 1(R- 1 )b;dz.z"1 

dz4 dZb = -qk:tdz.dz. 

dz"dzb = -q-1(k1 )&;dz.dz". 

(4.37) 

(4.38) 

(4.39) 

( 4.40) 

(4.41) 

(4.42) 

One can introduce derivatives {)<>, fJo by requiring 6 = dz0 {)
0 and 6 = dz4 fJ0 to 

be e:·terior differentiations, i.e. 62 = 62 = 0 and satisfy the Leibniz rule. It follows 

from (4.39) and (4.40) that 

[J<> Zb = 6: + q R:; z.{)" 1 

~-6 _ -1(R"-t)k-cge u z - q •• z u 1 
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(4.44) 



fJa Z& = qt:: z.fJ., 

11 -6 _ c6 + -1(R·-1)e6-c11 
UaZ - u0 q 00 Z U0 , 

trlJ' = q-1 ire! a· a· 
and 

aa[Jb = qt:n.O". 

where the t matrix is defined by 

.o.ca _ b..cq2(c-6) _ R• acq2(d-a) 
'~'d6- Il.bd - 6d 0 

Symmetry and •-invoiution 

The algebra of the differential calculus on C P9(N) has the symmetry: 

q-+q-1, 
Za -+ rq-2G zG. -o 

Z -+ SZ0 , 

dza -+ rq-20dz0 , dz0 -+ sdza 

and 

lJ' -+ r-llafJa, [Ja -+ s-laa' 

(4.45) 

(4.46) 

(4.47) 

( 4.48) 

( 4.49) 

(4.50) 

( 4.51) 

(4.52) 

( 4.53) 

where rs = q2• And also another symmetry by exchanging the barred and unbarred 
quantities in the above. 

One can define a •·involution 

z: = %4
, 

dz; = dz0 

and 
aa• = -q2n-2o'pnfj

0
p-n, 

where 

and 

a'= N- a+ 1 

N 

p = 1 + E Z0 Z0 

G"'l 
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(4.54) 

(4.55) 

( 4.56) 

(4.57) 

( 4.58) 

for any n. The different choice of involution for different n's are related to one an· 

other by the symmetry of conjugation by p to some powers followed by a rescaling by 

appropriate powers of q. In particular, the correct classical limit of Hermitian conju· 

gation with the standard measure p-(N+J) of CP(N) is reproduced by •·involution 

with the choice of n = N + I. 

Covariance 

The transformation for Za is induced from ( 4.28) on c:+t, it is 

Za -+ (7;? + Z&T~t1(~ + z.T;). 

The differentials transform as 

dza-+ dz&M!, dza-+ (Mt)6dz6, 

(4.59) 

( 4.60) 

where M! is a matrix of functions in z,. with coeff.cients in SUq(N + 1). It is 

computable from (4.59) but we don't need to know their explicit from. It is (Mt)b = 
(M!)*. The transformation on the derivatives are 

. lJ4-+ (M-1)68•, (IJ't-+ (a&)"((Mttl)~. (4.61) 

It follows from the fact that 6,6 are invariant. The covariance of the CPq(N) 
relations under the transformation (4.59), (4.60) and (4.61) follows directly from 

the covariance in c:+t. 

4.1.3 Other Choices for the Defining Relations for c:+l 
One may ask why do we choose to define the C:'+l algebra and calculus as in section 

4.1.1. Keeping the other relations the same, one can use the alternative 

and 

X-ix·- q-1R·;•x x·' J - jl k • 

t -I(R·-~)•'t X i .. j = q jjo,I:XI 

instead of ( 4.2) and ( 4. 7). We have 4 different choices: 
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(4.63) 



Type: Defining relations Braiding order 

Type lA: ( 4.2) and ( 4. 7) di<i<x<dx 
Type IB: ( 4.62) and ( 4. 7) i<di<dx<x 
Type IIA: (4.62) and (4.63) dx<x<x<dx 
Type liB: ( 4.2) and ( 4.63) x<dx<dx<x 

We have also listed the corresponding order that will yield the commutation re­

lations. Since Type II is essentially the same as Type I (with a replacement 

x -+ x,dx -+ dx, one goes from lA to IIA, IB to liB), we will only discuss the 

other choice IB here. It is easy to check that in IB, we still have x;L = Lx;. But 

instead of (4.31), we have 

e;L = Le; + >.qx;6L (4.64) 

or equivalently 

x;6L = q-26Lx;. (4.65) 

This doesn't fit with the construction for the one-form realization that we are going 

to introduce in the next section. Interestingly enough, with the same definitions 

(4.32) and (4.37) for z;,zi,dz;,dzi, we get exactly the same relations for the CP9(N) 
as in section 4.1.2. In particular we have the same one-form realization (see next 

section) 

pz0 = q-2zop, pdzo = dz0 p (4.66) 

and 
, = -q-16pp-1, ij = q"$pp-1. . (4.67) 

We choose to work with Type I because the corresponding relations for C:'+t 

have nicer property. But there is really no difference at the level of proje.ctive space 

CP,(N). 
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4.2 One-Form Realization of Exterior Differen­

tial Operators 

Let us first recall that in Connes' non-commutative geometry(44], the calculus is 

quantized using the following operator representation for the differentials, 

dw = Fw- (-l)"wF (4.68) 

where w is a k-form and F is an operator such that F" = F and F 2 = 1. 3 In 

the bicovariant calculus of Quantum Groups[l4], there exists a one-form q with the 

properties q• = -q, q2 = 0 and 

df = (q,f]:l: (4.69) 

where [a, b]:l: = ab ± ba is the graded commutator with plus sign only when both a 
and b are odd. 4 It is interesting to ask when will such a realization of differentials 

exist? And what will be the properties of this special one-form? Instead of studying 

the operator aspect, we will first consider these questions in the simpler algebraic 

sense. 

4.2.1 A Special One-Form 

Let us first look at an example. 

Example 4.2.1 (SO,(N) quantum space) {8, 6./) 
The quantum matrices T of S09(N) satisfy in addition to 

RnTtT2 = T1T2Rn, ( 4. 70) 

also the orthogonality relations{B] 

T 1gT = g, Tg-1T 1 = g-1
, (4.71) 

3The appropriate setting is a Fredholm module (11, F) where all these relations take place in 
the Hilbert space 1{. 

4 For the 3D left or right covariant calculus of SU,(2)(13), such a one-form doesn't exist and 
has to be introduced aa an additional one-form. 
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where the numerical quantum metric matrices g = g;; and g- 1 = gii can be chosen 

to be equal g;; = g'i. The coordinates z; of the quantum Euclidean space satisfy the 

commutation relations 

• kl 
Xt.XtR;; = qx;x;- ,\o(x · x)g;; 1 (4.72) 

where L :::: x · x = x,.x,gk1 = x,.x" and o = t+q~-2. The diffeJ·entials of the coordi­

nates {; = dx; satisfy the commutation relations 

It can be verified that 

• kl 
z;{; = q{~x1R;;, 

Lx; = x;L1 Ldx; = q2dx;L. 

Hence f1 = -q-1dLL- 1 satisfies 5 

Adf = [,,!I±· 

Generalizing the idea, we have the following construction: 

Construction 4.2.1 (Suficient condition) 

(4.73) 

(4.74) 

( 4. 75) 

Let A be an algebra generated by coordinates x;. (O(A),d) be a differential 

calculus 6 over A. If there exists an element a E A, constants r 1 s such that 

ax;= rx;a, adx; = sdx;a, Vi, (4.76) 

then 

Adf = [,,!I± ( 4. 77) 

with 

" 'I = ---daa-1• 
1- s/r 

(4.78) 

The normalization constant ,\ is introduced such that ,\f ( 1 - s / ,. ) is well defined as 

r 1 s-+l. 

&The existence and construction of this one-form is first discovered and pointed out to the 

author by Professor B. Zumino. 
8By this we mean an A bimodule O(A) generated by z,, dz; with commutation relations spec· 

ifled such that ( dl) = 0, graded Leibniz rule and d2 = 0. 
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Proof 

0 

adz; = sdx;a ::} dadx; = -sdx;da 

::} (daa-l,dx;l+ = 0 . 

ax; = rx;a ::} dax; +adz; = rdx;a + rx;da 

::} rdaa-1x; + sdx; = rdx; + rx;daa- 1 

::} [(1- sfrt1daa- 1 
1 X;I = dx;. 

It is not hard to prove that q2 = dq = 0. We give a few examples. 

Example 4.2.2 (SU9(N + 1) covariant quantum spaces C:'+l) {8} 
The SU9(N + 1) symmetry is represented in the complex quantum space c:+t with 

coordinates x; 1 xi and differentials {;1 (i 1 i = 01 11 ... 1 N. They satisfy the relations: 

-1 -~, 
x;x; = q X/cXIRijl 

-i (R--1 );" -I 
X Xj = q jtXt.X 1 .,, 

x;{; = qR;;{~cx, 
xi{;= q(kl)}'e,x' 

where R is the GL9(N + 1)R matrix. The Hermitian length 

L = x;i1 

satisfies 

Lx; = x;L1 Ldx; = q2dx;L. 

Hence 

'I= -q-1dLL-1
• 

Example 4.2.3 (GL9(N) quantum group) {8, 55} 

( 4. 79) 

(4.80) 

( 4.81) 

(4.82) 

(4.83) 

{4.84) 

(4.85) 

The algebra is generated by the elements of the quantum matrix T = (Tj);,;=I, ... N 

and the differentials dTj. The quantum determinant L = det9T satisfies 

LT; =T!L 
J J I 

LdT! = q2dT! L J J 
(4.86) 

and 
'1 = -q-1dLL -t. ( 4.87) 
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4.2.2 One-form Realization of the Exterior Differential for 

a *-Algebra 

In the same manner as in the construction in section 4.2.1, we have the following: 

Construction 4.2.2 ( •-Algebra) 

Let A be a •-involutive algebra with coordinates z;, i; and differentials dz; = 6z;, dz; = 
cSz; such that i; = zi, dz; = (dz;)". If there exists a real element a E A and real 
unequal non vanishing constants r, s such that 

then, as easily seen, 

and 

az; = rz;a, adz;= sdz;a, Vi, 

>.6/ = ('7,/]:1:. 

>.6J = (ij,/]:1:, 

__ >._6aa-•, 
'1 = 1- sfr 

>. 6aa-• 
ii=1-r/s 

>.df = (8,/]:1:, 8 = '1 + ij, 

where ± applies for odd/even forms /. 

Notice that (4.89) and (4.90), and therefore (4.88), imply that 

ra6a = s6aa, r6aa = sa6a. 

Kahler Form 

( 4.88) 

(4.89) 

(4.90) 

(4.91) 

(4.92) 

It can be proved that '7* = -ij and so;:=:• = -2. It holds that 172 = 1]2 = 0. However 

:=? = '1ii + ii'1 = >.6ij = >.611 will generally be nonzero. Note that 

>.d8 = (2, 2)+ = 22?. (4.93) 

Define 

/( = 6ij = 6'1 (4.94) 

then 
1 

(4.95) /( = -d8. 
2 

71 

It follows that dK = 0 and /(" = /(. Thus in the case K ::/; 0, we will call it a 
Kiihler form and /(" 7 will be non-zero and define a real volume element for an 

integral (invariant integral if/(" is invariant). /( also has the very nice property of 

commuting with everything 

/(z0 = z0 /(, Kdz0 = dz.J(. ( 4.96) 

We see here an example of Connes' calculus (44] of the type F 2 ::/; 0 rather than 
p2 =0. 

Quantum Sphere s: 
In the case of s:, The element p = 1 + zz is introduced which satisfies 

pz = q2zp, pdz = dzp. 

T~erefore, we get 
'7 = qdzp-1 z, ;; = -qd'ip-1 z 

and K is just the area element 

/( = 6'1 

= -q3dzd'ip-2• 

One can introduce the Kahler potential V defined by 

/( = 6cSV. 

It is 
00 2.1:-t 

V = E<-1t-•-q-z"z" 
k=l (k]q 

and where the quantum number (x]9 is defined as 

q2"' -1 
(z)9 = q2 -1 · 

(4.97) 

(4.98) 

(4.99) 

(4.100) 

(4.101) 

( 4.102) 

7 n = complex dimension of the algebra. We consider only deformations such that the Poincare 
series of the deformed algebra and ita claaaical counterpart match. 
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Complex Projective Space 

Such a one-form representation for the calculus exists on both C:'+t and C P9(N). 
For c:+t, we saw in the above that 

Lx; = x;L, Le; = q2e;L ( 4.103) 

and 

'7o = -q-16LL-t, iio = q6LL-1
• (4.104) 

In this case, /( is not the Kahler form one usually assigns to C:'+l· Rather, it gives 

C:'+l the geometry of CP9(N) written in homogeneous coordinates. 

Similar relations hold for CP9(N) in inhomogeneous coordinates. It is 

This metric is the quantum deformation of the standard Fubini-Study metric for 
CP(N). It is/(= ci'6V, where the Kahler potential Vis 

00 2k-l 

V-"'(-I)k-l_q_ "' z z ···z z"'···z"•-•z"• 
- L.J [kJ L.J "• "•-• Ill 

k=l 9 1Sas."2•'"•"•SN 

(4.112) 
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Notice that under the transformation (4.59) 

1]-+ '1 + qr16f, f = rg + z~r; 

and so/( is invariant. From (4.60) and (4.108), it follows that 

g"5-+ (M-~)~gcl((Mttl)f; 

9/la -+ (Mf)~gJcM!. 

One can show that the following form dv., in C:'+l 

dv = nf:l (ii£-ll2)nf:l (L-t/2t.) 
z - J=O \ 1=0 \1 

-(N+l)d-N d-Id d i0(-0)-1( )-It = p Z • • • Z Z1 • • • ZN • \ X Xo \0 

is invariant. Using this, one can prove that 

dv. = p-(N+lldzN · · · di1dz1 • • • dzN 

(4.113) 

(4.114) 

( 4.115) 

(4.116) 

(4.117) 

(4.118) 

is invariant also and is in fact equal to KN (up to a numerical factor). The factor 
p-IN+l) justifies the choice n = N + 1 for the involution (4.56). 

Having a quantum Kabler metric one can define connections, curvature, a Ricci 
tensor and a Hodge star operation. We shall not do it here because there seems to 

be no unique way to define these constructs. Still, once certian choices are made, 

the full differential geometry can be developed. See (80) for a very nice discussion 
of the quantum Riemannian case. 

4.3 Integration 

We now turn to the discussion of integration on CP9(N). We shall use the notation 

< f(z, i) > for the right-invariant integral of a function f(z, i) over C P9(N). It is 
defined, up to a normalization factor, by requiring 

< Of(z,i) >= 0 ( 4.119) 

for any left-invariant vector field 0 of SU9(N + 1). We can work out the integral 
by looking at the explicit action of the vector fields on functions. This approach 
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has been worked out for the case of the sphere but it get quite complicated for 

the higher dimensional projective spaces. We shall follow a different and simpler 

approach here. First we notice that the identification 

x;/L112 =T/', x'/L1 12 =(T- 1 )~, i=0,1, ... ,N ( 4.120) 

reproduces (4.1)-(4.5). Thus if we define 

< f(z,i) >=< /(z,z)I,.=(Tf)-STf,r=(T-S)~/(T-S)~ >su0 (N+I)• (4.121) 

where < · >su,(N+l) is the Haar measure {12) on SU9(N + 1), then it follows 

immediately that (4.119) is satisfied. 8 Next we claim that 

< (z!)'s(z1 )is · .. (zN)'H(zN).iN >= 0 unless i1 = iJ, ... , iN =iN· (4.122) 

This is because the integral is inval'iant under the finite transformation (4.59). For 

the particular choice Tj = 6Jai, with lail = 1,ll~ai = 1, this gives 

za -+ (aa/ao)za ( 4.123) 

and so (4.122) follows. 

In {12], Woronowicz proved the following interesting property for the Haar mea­

sure 

< J(T)g(T) >su,(N+l)=< g(T)J(DTD) >su,(N+t)• ( 4.124) 

where 

(DTD)~ = DlT!Dj (4.125) 

and 
D~ = q-N+2'o\ 

1 ~ J 
( 4.126) 

is the D matrix for SU9(N + 1). It follows from (4.124) that 

< f(z, i)g(z, i) >=< g(z, i)f('Dz, v-Iz)>, (4.127) 

where 

V: = o:la, a,b = 1,2, ... ,N. (4.128) 

sA similar strategy of using the "angular" measure to define an integration has been employed 
by H. Steinacker [81) in constructing integration over quantum Euclidean space. 
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, Introducing 

Pr = 1 + E;cl ZaZa, (4.129) 

one finds from (4.33) and (4.34) that 

p.za = { ZaP• r < a 
-2 q ZaP• r;::: a 

(4.130) 

p.p. = p,p. (4.131) 

and 

zaza = q-2Pa- Pa-l (no sum). (4.132) 

Because of ( 4.122), it is suficient to determine integrals of the form 

< Pl-i1 "'PN-iN >. (4.133) 

The values of the integers ia for (4.133) to make sense will be determined later. 

Consider 

< ZaPI-is '" PN-iNz,. > = <PI-is "'PN-iNz,.(q-2"i") > 

= q-2a <PI-is '"PN-iN(Pa- Pa-l)>, (4.134) 

where (4.127) is used. Applying (4.130) 

L.S. = q2(io+"·+iN) < Pl -is , .. PN -iN Za z,. > 

= q21o <PI-is .. 'PN-iNzaza >, 

where we have denoted 

/,. = i,. +···+iN. 

Using (4.132) we get the recursion formula 

< Pl-i1 ••• Pa-1-io-s+IPa -i •... PN-iN > {I,.+ a), 

=< Pl-i1 ••• Pa-1-io-s Pa -io+l ... PN-iN >(/,.+a- 1),. 

It is obvious then that 

< Pt -is ... p,. -io >=< Pt -is ... p,._l-ia-s-io > . - (a], .. 
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(4.135) 

( 4.136) 

( 4.137) 

(4.138) 



By repeated use of the recursion formula, < Pt-i' · · · PN-iN > reduces finally to 
< Pt-i,-i,···-iN >and 

Therefore 

_,, 1 1 
< Pt >= (It + 1]

9 
< > . 

< P•-i'···PN_;, >=< 1 > nN ~ 
a=t (Ia + aJ

9
' 

( 4.139) 

(4.140) 

For this to be positive definite, ia should be restricted such that Ia + a > 0 for 

a=1, .. ·,N. 

4.4 Braided CPq(N) 

As described in (76] and also in section 3.5.1, it is suficient to know the transforma­

tion property of the algebra to derive the braiding . But as demonstrated in (76], 

it is already quite complicated in the case of one dimensional algebra. Therefore 

although we can derive the braiding for the CP9(N) using the general framework 

of 3.5.1, we will follow a different easier path: first introduce the braiding for C:'+t 
quantum planes and then use it to induce a braiding on the CP9(N)'s. 

Braided cN+t 
. 9 

Let the first copy of quantum plane be denoted by x;, x' and the second by x:, x'' 
and let their commutation relations be: 

• I- R-., I x,xi - T ijxkx,, 

x'xj,;,. v(k 1 )}'x~x1 

(4.141) 

(4.142) 

and their •-involutions for arbitrary pumbers r, v. These are consistent and covari­

ant, as one can easily check. One can choose T = v-1 and the Hermitian length 

L will be central, L/1 = f'L, for any function / 1 of x1,x1
•· However, L' does not 

commute with x, x. In the following, we don't need to assume that T = v-•. 
By assuming that the exterior derivatives of the two copies satisfy the Leibniz 

rule 

6'/ = ±/6', 61
/ = ±{il, 

6/' = ±/'6, 6!' = ±/16, 
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(4.143) 

( 4.144) 

where the plus (minus) signs apply for even (odd) f and j 1
, and 

661 = -616, 661 = -616, 
66i = -616, 661 = -6'6, 

(4.145) 

(4.146) 

One can derive the commutation relations between functions and forms. Identify 

6 = dx;D;, 6 = dxi D; for both copies, one can derive also the commutation relations 

between derivatives and functions of different copies. We will not bother to write 

them down here. 

Braided CP9(N) 

Using (4.141, 4.142), one can derive the braiding relations of two braided copies of 

CP9(N) in terms of the inhomogeneous coordinates 

ZaZ6 = q~6(z~ - q-1 ..\zc)Zu 

z1az6 = q~•c.R-• )g:z.z1
"- q-1 ..\66 

(4.147) 

( 4.148) 

and their •-involutions. Notice that these are independent of the particular choice of 

T and v. Similarly, one can work out the commutation relations between functions 

and forms of different copies following the assumption that their exterior derivatives 

anticommute. We will not list them here. 

See (77, 78) for a detailed discussio~ on the anharmonic ratios for braided copies 

of CP9(N) . 

4.5 Quantum Grassmannians a:·N 
4.5.1 The Algebra 

Let C!, i = 1, 2, .. ·, M, a= 1,2, .. · ,M +N be an M x (M +N) rectangular matrix 

satisfying the commutation relations 

• 'ij 1r I i j • 6 R., c.cd = cac6H"cd, ( 4.149) 

where it~f is a GL9(M) R-matrix, with indices i,j,k,l etc. going from 1 toM and 

~~is a GL9(M + N) fl-matrix, with indices a,b,c,d etc. going from 1 toM+ N. 
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In compact notation, it is 

~2c1c2 = c1c2R.n 

and (4.150) is covariant under the transformation 

C-+ CT, 

(4.150) 

(4.151) 

where Tt is a GL9(M + N) quantum matrix and also under the transformation 

c-+ sc, (4.152) 

where S} is a GL9 (M) quantum matrix. Writing 

C~ = (A~,B!) (4.153) 

with a= 1, 2, · · ·, N, we have 

~2A1A2 = A1A2,«t2, 
A A" R'12B1B2 = B1B2R12 , 

A1B2 = ~1B2A., (4.154) 

where R.~:P is a GL9(N) H.-matrix, with indices a,fJ,-r,6 etc. going from 1 toN. 
Define the coordinates Z~ for the quantum Grassmannians 

z = A-1B. (4.155) 

Z is invariant under the transformation (4.152), while under (4.151), it transforms 

as 

Z-+ (a+ Z-rt 1({J + Z6), (4.156) 

where a, {3, -r, 6 are the sub-matrices ofT 

T =(a {J) 
'Y 6 . (4.157) 

It follows from (4.154) that Z satisfies 

Dt R'." I u.21 Z1Z2 = ZaZ2 12 • ( 4.158) 
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•-structure 

We consider q to be a real number. One can introduce the •-conjugate variables 

(C!)• and impose the commutation relation 

t.e. 

CtR"'-1C C R"-tct 
I 12 1 = 2 12 2• 

(A-t )~~2(A-t h = (A-1 )t~ 2(A- 1 )f. 

BfA;• = A-1 B' u.-• 2 1 12 ' 
s[R.~; 1 B1 "" I t t = B2R1i B2- .U1(AA )2, 

where (/I(AAf)l))jj = 6p-(AA')j. These implies 

z[~1 Z1 = z2k:;1Zl- >.In. 

Explicitly, 

( zt)':'it~izi = Z'(if."-1)0 'Y(Zf)&- >.6°6' 
' 11 P 'Y P6 I p 1· 

4.5.2 Calculus 

(4.159) 

(4.160) 

(4.161) 

(4.162) 

One can introduce the following commutation relation for functions and one-forms 

R.~; 1 C1dC2 = dC,C,Rn, ( 4.163) 

i.e. 

R~2 1 A1dA, = dAaA2~2 , 
R~2 1 BadB, = dBaB2k:2, 

dAaB2 = ~;1 B2dAa, 

AadB2 = ~1 (dB2Aa + >.dA2BaPn). (4.164) 

.where (P12 )~ = 6/6i. Since Z~ = (A-1)1B!, it is easy to derive 

dZ = A-1(dB- dAZ) (4.165) 
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and 

It follows 

Z1dA, = dA2R;;1 Z11 

dZ1A2 = A,R;;1dZt. 

Z1dB, = (dB,ZI - ~Zt(dAZhPu)R~2 • 

"''-t "u R21 Z1dZ, = dZ1Z2R12. 

(4.166) 

(4.167) 

To introduce a •-structure for the calculus, it is consistent to take (dZ~)· = 
d(Z~") 1 this implies 

t • • "-1 t Z1 ~1dZ, = dZ2R12 Z2• (4.168) 

4.5.3 One-Form Realization 

Introduce the matrix 

EJ = C!(Ct)j. ( 4.169) 

It is 

E'=E (4.170) 

and 
... ,_, ""'-1 ... ,_, .. ,_, 
R12 E1 R12 E, = E1 R12 E1 R12 • (4.171) 

Since 

.R;;I(q) = ~l(q-1)1 (4.172) 

one can rewrite (4.171) as 

R~,(q-t )E,,«.,(q-t )E2 = E,k.,(q-1)E,,«.,(q-l ). (4.173) 

This shows that the commutation for the E matrix is like the hi-covariant vector 

fields Y ( c.f. (2.23)) 1 but with q-1 as its parameter. Similarly one also has 

One can show that 

C2E1 = k;;1(q-1)E2k.2(q-1)C21 

dC2E1 = k.2(q-1 )E2k. 2(q-1 )dC2 • 

R'-1E R'-1E E R'-1E R'-1 
l,J J J,l I = I l,J J J,l 
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(4.174) 

(4.175) 

\ 

or equivalently, 

Ri.1E1 • EJ = EJ • E1[(1,1 , 

where the bullet product is defined inductively by 

'-1 nl 
E1• EJ := ErR1,1 EJll.I,J 

(4.176) 

(4.177) 

for any I = (12 · .. m), J = (12 .. · n). Hence one can introduce the quantum 

determinant !56] for the generators E, 

where 

D tE n ... M E 12 .. ·M 
e E = (J2 .. ·M)E 1 

E(I2 .. ·M) := Et • E2 •...• EM 

and E12"·M is the same E tensor (1.43) for GL9 (M). 
Using 

n1 J2 .. ·M n ... M l 
J1.(12 .. ·M),oE = qE 01 

one can show that DetE commutes with Ej: 

12"'MD tEEo E E 12"'M E e = (J2 .. ·M) oE 

E R'-1 Eo J2 .. ·M = (J2 .. ·M) (n .. ·M),O E 

R'-1 EoD'-1 E J)l J2 .. ·M = q (J2 .. ·M),O ''O,(J2 .. ·M) (J2 .. ·M)•'0,(12 .. ·M)f 

= EoDetEE12"'M • 

Denote 

L = DetE. 

It follows from (4.174) that 

CL = LC1 

dCL = q-2LdC. 

(4.178) 

(4.179) 

(4.180) 

(4.181) 

( 4.182) 

Using the general procedure stated in section 4.2 1 we obtain the one-form realization 

on the algebra generated by C! 1 dC! and their •-conjugates, 

'I= -qL-16L. (4.183) 
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To find the one-form realization for the exterior differential operating on the 

complex Grassmannians Z,dZ, we introduce 

xt = (A-1 )~EJ(Af-1){ 

= 6f + Z!(Zf)j. 

It is not hard to check that 

A-1 D' J;'_ D'-1 E A-1 
1 '"21 ""2'"21 = 2 1 , 

Xt,«t2Ai'1 = ,«t2Ai'1 Xt 

and hence 

k.2X2k.2X2 = X2k.2x2k.2· 

Since X commutes like the vector field Y, the quantum determinant 

P := DetX 

= X(J2 .. ·M)fJ2 .. ·M 

is central in the algebra of X. Here, the •-product for X is 

Xr • XJ = R~j1 XrltuXJ, 

(4.184) 

( 4.185) 

(4.186) 

(4.187) 

(4.188) 

as for the vector field Y. Using the techniques as in (1561), one can show that for 

any I= (12 .. · m), 

Xr = A/1 Er(Af-1)r, 

where 

Ar = A1A2 ···Am, A/1 = A;;;1 · · · Ai'1 Aj"1. 

Introducing the quantum determinant det(A-1), det(Af-1) 

det(A-1)f12"'M = A A/··· Ai'1 Aj"1f12"·M, 

det(Af-t)fu ... M = (AH)t(Af-th ... (AI-l)Mfi2···M 

for the "RTT"-like A-1 matrix and Af-t matrix 

;, ( -•)A-tA-t _ A-1A-1;, ( -1) .n.12q I 2- I 2.n.12q t 

f{. 2(Af-1).(Af-1)2 = (Af-1 ).(At-t),R~2 , 
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(4.189) 

(4.190) 

(4.191) 

( 4.192) 

it is straightforward to obtain 

DetX = det(A-1)DetEdet(At-1). 

It is trivial to check that 

and noticing that 

we have 

Bdet(A-1) = qdet(A-1)B, 

Bdet(Af-1) = qdet(Af-1)B 

p = det(A-1)Ldet(Af-1), 

Zp = q2pZ. 

Using (4.166), one can check that 

Together with 

we have 

dZdet(A-1) = qdet(A-1)dZ, 

dZdet(Af-1) = qdet(Af-1)dZ. 

dZL = q-2 LdZ, 

dZp = pdZ. 

As a result, we have the one:.form realization 

'1 = -q-1p-•6p 

(4.193) 

(4.194) 

(4.195) 

(4.196) 

(4.197) 

(4.198) 

(4.199) 

( 4.200) 

for the exterior operator acting on the algebra generated by Z~, dZ~ and their •­

conjugate. The Kahler form 

/( =6'1 ( 4.201) 

is central as usual. 
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4.5.4 Braided GM,N q 

Let Z, Z' be two copies of the quantum Grassmannians G~·N defined by 

Z = A-1B, Z' = A'-18', (4.202) 

where C~ = (A~,B~), c:; = (Aji,B;;) both satisfy the relations (4.150). Let the 

mixed commutation relations be 

QuC1C~ = c;c,.R1,, (4.203) 

where Q is a numerical matrix. For (4.203) to be consistent with (4.150), we can 

take Q to be il'*1. For either of these two choice, ( 4.203) is covariant under 

C -+ CT, C' -+ C1T, (4.204) 

where Thais a GL9(M + N) quantum matrix and also under the transformation 

C -+ SC, C1 -+ SC1
, (4.205) 

where Sj is a GL9(M) quantum matrix. We will pick Q = R! in the following 

AI I I • 
n 12C1C2 = C1C,R12• (4.206) 

Explicitly, it is 

~2A1A~ = A~At~21 
~2B1B~ = n;n1R';,, 

B1 A~ = R~2 1 A~B~o 
A1B; = ~ R~21 B;At + >.B1 A;Pn. (4.207) 

Since 
Z = A-1 B, Z' = A'- 1 B', ( 4.208) 

it follows that 9 

z1z; = ~,z;z1R':,...;. >.z.z,k:,. ( 4.209) 

9Ir we had choeen the other choice Q = k'-l in the above, the relations (4.207) would be 
different, but ( 4.209) would remain the eame. 
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One can introduce a •-structure to this braided algebra, the relation 

f • 1-1 I I • -1 f C1 R12 C1 = C2R12 C2 ( 4.210) 

is consistent and is covariant under 

C -+ CT, C' -+ C1T, ( 4.211) 

and also under the transformation 

C -+ SC, C1 
-+ SC1 (4.212) 

with the same T, S quantum matrix as' explained above. It follows immediately 

Zt bt z1 •11R·"-1zt 'I 
1'"21 I = "2 12 2- A 12• ( 4.213) 

One can also show that the Kahler form K of the original copy (4.201) commutes 
also with the Z1,z't,dZ1,dZ't. 

This concludes our discussion for the quantum Grassmannians, with the case of 
complex projective spaces CP9(N) = G~·N as a special case}0 

Strictly speaking, we have given in this chapter only a local description of the 

complex projective spaces and the quantum Grassmannians, i.e. in a certain coor­

dinate patch. Presumably, there is no dificulty to introduce other patches in the 

picture and this has been illustrated in details in Chapter 3 for the simplest case of 
the sphere. 

10Notice that forM= I, the numerical R-matrix becomee a number: Rj, = q. 
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Chapter 5 

q-Deformed Dirac Monopole 

A m.ljor step towards a q-deformed gauge theory is to find a suitable concept of 

"quantum" fiber bundles. Recently some versions of quantum bundles have been 

proposed [71, 82, 83, 84), where both the base space and the fiber are quantum 

spaces. In [71 J, a detailed formulation for quantum principal fiber bundle is proposed 

and as examples, the q-deformed Dirac monopole for charge 1 and 2 are constructed. 

Essentially, their construction is based on the isomorphisms 

s: = SU9(2)/U(1) (5.1) 

and 

s: = S09(3)/U(1). (5.2) 

However, in the case of charge 1, their trivalizations involve square root of algebra 

elements and are formal. In this chapter, we will construct the deformed Dirac 

monopole on the quantum sphere s: for arbitrary charge n and show that it is a 

quantum principal bundle in the sense of [71]. We also get the monopole charge by 

integrating the curvature over the base s:. 

5.1 Quantum Principal Bundle 

The definition of a quantum principal bundle follows the motto of non-commutative 

geometry, dualize everything and then introduce deformation. We first review the 

definitions of (71]. 
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5.1.1 Universal Calculus 

Definition 5.1.1 {71, Def .f.1] P = P(B, A) is a quantum principal bundle (short: 

QPB) with universal differential calculus, structure quantum group A and base B if 

1. A is a Hop/ algebra 

2._ (P, 6.n) is a right A -comodule algebra; write 6.n(P) = p1 ® p2 E P ®A 

3. B = pA = { u E P : 6.nu = u ® 1} 

.f. (·®id)(id®6.R): P®P-+ P®A is a surjection(freeness condition) 

5. ker- = rhor (exactness condition for the differential envelope) 

where horizontal forms rhor are defined by 

f~oor = P(fg)P ~ fp 

and satisfy -crhor) = 0 identically. The left P- module map- is defined as 

-= (· ® id) o (id ® 6.nlll'2 : fp-+ P ® kert. 

(5.3) 

(5.4) 

In the dual picture, it generates the fundamental (vertical) vector fields on the 

bundle. We will use the same symbol- for the extended map in condition 4. 

Trivialization 

Classically, the trivialization 

r/J: p-+ G, (5.5) 

is given by 

r/J(u)a = r/J(u ·a). (5.6) 

In the deformed case, let A be a Hopf algebra and P an A-comodule algebra with 

invariant subalgebra B. Suppose that there exists a convolution invertible map 

~ : A '-+ P such that 

6.n o ~ = (~ ® id) o 6, ~(1A) = lp (5.7) 

(so ~ is an intertwiner for the right coaction). It is proved in [71) that P is a 

quantum principal bundle. Yfe call P(B,A,~) a trivial bundle with trivialization 

~-
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Connection 

The topological aspects of bundles is embodied in the set of transition functions. 

The notion of a connection plays the same essential role in the differential geometry 

of bundles. A connection defines a covariant derivatives which contains a gauge 

field and specifies how to parallel transport a vector in P along a curve lying in the 

base B. Therefore we have to first be able to define what is a horizontal vector in 

the principal bundle P. A connection II on P is just a prescription to separate the 

tangent space TuP into the vertical subspace VuP and the horizontal subspace HuP 
such that 

1. TuP = VuP e HuP 

2. Hu.11 = R11.HuP1 VuE P,g E G 

This definition is geometric but not practical in computation. To acheive this, it is 

common to introduce a Lie-algebra valued 1-form w E g 0 r• P called the connection 

1-fcirm which satisfies 

1. w(() = {for any { E g 

2. (R..)•w = ad(a-1)w, i.e. w((R..).X) = ad(a-1)w(X) 

for any a E g and any vector field X. 

The relation between the 2 definitions is given by 
. .I 

HuP = {X E TuP: w(X) = 0} (5.8) 

In the dual formulation, one define a connection II on a quantum principal 

bundle pas an assignment of a left :P-submodule rver~ rp such that: 

1. rp = rhor (9 rver. 

2. projection II: rP-+ rver is right invariant i.e. 

6RII = (II 0 id)6R. (5.9) 
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A connection in P is characterized by a right-invariant left P-module map u 
P 0 kert-+ rP splitting the exact sequence 

0-+ r~ao.-+ rp-+ p 0 kere:-+ 0, (5.10) 

i.e. 

-o u = id. (5.11) 

The connection form w : A -+ r p is given by 

w(a) = u(10 (a- e:(a))). (5.12) 

Conversely, u(p0a) = JX~.~(a) for p0a E P0kere:. 

Gauge Field 

Classically, a gauge field is a Lie algebra valued 1-form living on the base. It is the 

pull back of the connection one form by some section u;. Conversely, given a gauge 

field A over an open set U of the base B, let t/J : .,..-1(U) -+ G be a trivialization, 

then 

w = t/J-1
1r• At/l + t/J-1dt/J (5.13) 

give a connection 1-form. 

In the dual we have Let fJ: A-+ rs be a linear map such that ,8(1) = 0. Then 
the map 1 · 

w = ~-l • j 0 fJ. ~ + ~-1 • d~ (5.18) 

~~------·------------1 Here / 1 • 12 is the convolution product of two maps. Given 

/1 :A-+B, i= 1,2, (6.14) 

where A is a coalgebra and B is a algebra, we define It • 12 as a map from A to B by 

(It • 12)(o) = /t(O(I))I2(o(2))· (6.15) 

Similarly, if V is a left A-comodule and /1 :A-+ B, 12 : V-+ B, then It • h is defined as the 
map from V to B by 

(/t • f,)(v) = lt(11Hl)f,(v<o>), (5.16) 

where 
~£(v) = v<-tl®v(o) E A®V (5.17) 

is the left coaction of A on V. 
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is a connection 1-form in the trivial principal bundle P(B, A, ell) with trivialization 
ell. {J is called a gauge field. 

5.1.2 General Calculus 

Let M,. be a right ideal of A2 and Np be a sub-bimodule of P2 • Introduce a 

first-order differential calculus on A and P by 

r,. = A2 fN,., 

where 

N,. = ~e(A 0 M..t) 

and 

fp = p2fNp, 

where the map " : A 0 A -+ A 0 A is given by 

~e(a 0 a')= E aSa'(t) ® a'(2)· 

(5.19) 

(5.20) 

(5.21) 

(5.22) 

Definition 5.1.2 {71, De/ ,J.J) We 1ay that P = P(B, A, Np, M,.) is a quantum 

principal bundle with structure quantum group A and base B and quantum differ­
ential calculi defined by Np,MA if: 

1. A is a Hop/ algebra. 

£. (P, ~n) is a right A-comodule algebra. 

9. B = pA = { u E P : ~nu = u @ 1}. 

.j. ( · 0 id)( id 0 ~n) : P 0 P -+ P 0 A is a surjection (freeness condition). 

5. ~nNp C Np 0 A (right covariance of differential structure}. 

6. -(Np) C P 0 M..t (fundamental vector fields compatibility condition) 

7. ker-Np = fhor (exactness condition). 
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The map -Np is induced by-

-Np(p) = (id011'..t) o-(pu) (5.23) 

where 

11'Np: P2 -+ fp 

and 

11'.4 : kert.-+ kert./MA 

are the canonical epimorphisms and pu E wjV~(p) is any representative of p. (5.23) 

is well defined because of condition 6. of the definition. 

Connection 

A connection on a QPB with general calculus is again determined by a splitting u 

of the sequence 

0-+ fhor -+ fp -!!_f p 0 kerf/ MA -+ 0. (5.24) 

The connection form is given by 

w(a) = u(l ® w,.(a- e(a))). (5.25) 

An element a E rver is called a vertiCGI fprm. If there exists a connection in P 
then any one-form a E fp can be uniquely written as a sum of a horizontal and a 

vertical forms. 

Notice that one can replace the Point (6) of the definition of QPB by the slightly 

stronger condition 171) 

6.' -(Np) = P 0 M,., which we will adopt in our construction . 

5.2 Monopole Bundle: Global 

The monopole bundle that we are going to construct is characterized by an integer 

n and we will refer to it as the charge of the bundle. Let the algebras P, .4, B be 

P = SUq(2), (5.26) 

A = k < Z1' 2,Z_1,, >= U(l), (5.27) 

B = < l,b_,b+,b;, >, (5.28) 
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where b_ = a{J, b+ = -y6, ~ = a6. For charge n, define the following subalgebras, 

plnl = < {p E SU9(2), deg(p) = nk, k E Z} >, 

Alnl = k < Z"/2, z-"12 >, 

where the degree for a monomial in SU9(2) is defined as 

deg(a0 {Jb-yc6d) =a+ c- b- d 

(5.29) 

(5.30) 

(5.31) 

irrespective of ordering. Introduce the right coaction I!:.R : P -+ P ®A defined by 

l!:.n (a (J) = (a®ZI/2 fJ®Z-112) 

7 6 -y® z112 6 ® z-1/2 · 
(5.32) 

It is easy to see that 
B = (PI"l)..t<"'. (5.33) 

As for the calculus on p(n) and A(nl, take the right ideal Mp<•l is generated by 

the six elements 

6 + q2a- (1 + q2),-y2,(J-y,(J2,(a -1)-y, (a- 1)(3 (5.34) 

and 
M ... c., = ,..(Mp~l)) =< {Z-112 +q2z1t2 _ c1 + q2)} >. (5.35) 

The projection ll': P -+A (dual of U(1) C SU(2) ) is an algebra map 

( 
a {J ) ( z112 0 ) 

"' 7 6 = 0 z-1/2 · (5.36) 

For charge n, take Np~ .. , = Np~11 n·(PI"l)2, M..tc"' generated by z-n/2 + q2"Z"I2
-

(1 + q2
"), i.e. Z"l2dZ"'2 = q2"dZ"I2Z"'2 or equivalently NA(n) = NA(l) n (AI"l)2

• 

We have 

Proposition 5.2.1 plni(B, Alnl, Np<nlt M..tcnl) is a QPB. 
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Proof Condition 1-3 of the definition 5.1.2 are obviously satisified. To show 
condition 4, consider the monomial p® Z""l2 e plnl ®AI"! C p(ll ® Al11 fork E Z. 

Since pill is a QPB, there exists L;p;1 ®Pia E Pl1l®pl•l such that -(L;p;, ®p;2 ) = 

p® Z""'2 • Now, -(L;p;1 ®Pia) = L;p;1 Pia ® zdeg(p;al/2
• Therefore, deg(pi2 ) = nk, 

and Pia E p(n) for all i2. Also, deg(p;1 Pia) = deg(p) and p E p(n), so deg(pi, ) E nZ. 

Hence, Pi1 E pin) for all i1. Surjectivity is proved. Condition 5 is obvious because of 

our simple definition of I!:.R. For condition 6, notice that Pl1l(B, Al1l, Np<•lt MAc•d 
is a QPB, so 

ker-Np(n) = (ker-Np(l)) n fp<n) = f~!! n f~) n f~)) = f~~~ (5.37) 

since deg(B)=O. For the same reason, we know that -Np<tl C p(I)®MAc•l· There­

fore, -Np(n) C p(I)®M..tc•l· But -(p1dp,) = PIP~11 ®p~2)- PIP2®1 E p(n)®A(nl, 

for all Pit p;, E p(n), so 

-Np(n) C p(n) ® M..t(n). (5.38) 

Hence we see that p!nl(B,A(nl,Np<,ltM..tlnl) is a QPB. Also, note that the 3D­

calculus respects the •-structure (14). 0 

A possible connection one-form on p(n) is given by 

w(Z""'2) = S((akn)(1J)d(a'")(2) = ~e(1®(akn -1)), 

w(z-kn12) = S((6'")<1J)d(6"")<2l = ~e(1 ®(6"" -1)) 

(5.39) 

(5.40) 

for k > 0, where " is defined in (71]. This w is well defined, since S((a"")(IJ), 

S((6kn)(1J), (a"")(2), (6kn)(2) E p(nJ. This connection was found observing that 

this is the trivial connection 1111 obtained form the triviatization ~( Z"'2 ) = a", 
which is a gauge- transformation of the trivialization (5.54) that we will introduce 

later. Note that the above trivialization does not respect the •-structure even for 

q = 1, nevertheless it is useful to e.g. find a connection; in the 3D - calculus, it 

simplifies to (5.43), and for even n, we would have obtained the samew using (5.54). 

Quite generally, gauge transformations tend to spoil the •-structure (and algebra 

structure, as pointed out in (71)) of a trivialization. 

To prove that w defines a connection, we use Proposition 4.10 in (71). We have 

to show 

l. w(1) = 0 and w(M..t!nl) = 0. 
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2. -Np(n)w(a) = 10 71'A(n)(a- ((a)) for all a E A 

3. 6n ow= (w0id) o AdR 

2. holds since for k > 0, 

-w(zkn/2) = S((akn/2)(1))(akn/2)g: 0 (akn/2)g: _ 101 

= S((a'"'2)(tl)(ak"/2)(2l 0 zkn/2- 10 1 

= 10(Z.,.,2 - 1) 

and similarly for k < 0 as is easily seen from our coaction. For 3., 

6nw(zkn/2) = S(( akn/2)(tJ)d( a'"l2)l2l 0 z-kn/2 zkn/2 

= w(Z'"'2)01 = (w0id)Adn(zknf2) 

(5.41) 

(5.42) 

and similarly for k < 0. As for 1., this is clear since w( z-n/2 + q2n znl2 - ( 1 + q2")) = 
~t(10(6" + q2"a"- {1 + q2"))) E ~t(10 Mp(n)). 

Thus, w is a connection form on the bundle pin) and is given by 

w(zknf2 ) = (kn)
9
-awt, 

w(z-A:ni2 ) = -(-kn)9-2wt = -q2k"w(Z'"'2 ) (5.43) 

if viewed in SU9(2), where (nJ9 = 'i=f· This generalizes the result of (71) for 

n = 1 and 2. Since (wt )" = -wt, w is a •-tnap for q = 1 only. We have used 

wta = q-2awt ,wt-y = q-2-ywt, where wt = 6da- q-t (Jd-y is a left invariant form in 

SU,(2). 
To our knowledge, (5.29) is also a new description of the classical Dirac monopole. 

5.3 General Statements on Patching of Trivial 

QPBs 

Let us first show how in general nontrivial QPB's can be obtained by "glueing" 

together "local" bundles. To avoid repeating ourselves too much, we will give the 

following statements for the case of a general calculus only; the universal calculus 

is recovered by putting MA = NA = Np = 0. We first observe that the conditions 

4. and 7. in definition 5.1.2 are equivalent to the exactness of the sequence (5.24). 
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Lemma 5.3.1 P(B,A,Np,MA) satisfying conditions 1. to 9.,5. and 6.' of the 
definition 5.1.£ is a QPB with general calculus if and only if the sequence (5.£4) is 
exact. 

Proof Exactness of (5.24) at fp is just the condition 7. above. 

Assume first Pis a QPB. Then by condition 4. , for any p0a e P0keH/MA 
there exists Pt 0 P2 E P 0 P with -(Pt 0 P2) = PtP~ 0 p~ = p0 a. Applying id 0 f to 

this equation we get 0 = PtP~f(p~) = PtP2 1 i.e. Pt 0P2 E fp, which shows that- in 

(5.24) is surjective, so it is exact. 

Conversely, suppose (5.24) is exact. Take any p0a = p0(a- f(a)) + p0 f{a) E 
P 0 A . Since -Np is surjective, there exists PtdP2 E fp with -Np(PtdP2) = p0(a­
((a))+ P0MA. Now -(p0f(a)) = p0f(a) and from 6'. -(Np) = P0MA, so 

condition 4. is satisfied. 0 

Assume now we have 3 quantum principal bundles 

Po(Bo,A,No,MA),Pt(BttA,NttMA) C Pot(BottA,Not,MA) (5.44) 

(Pot corresponds to the bundle on the "overlap" Bot of B0 and Bt) and we would 

like to know if Po and Pt can be understood as two patches of a "global" quantum 

bundle P(B,A,N,MA) C Po,Pt C Pot· A natural guess is that P =Po n Pt. In 

this case the coact ions 6Ri : P; -+ P; 0 A certainly must agree in P. If we want a 

connection on P, then we should also have connection forms w; : A -+ fp, which 

agree on the overlap, i.e. Wo(a) = Wt(a) in f.f\1 • 

However, some care must be taken if we want to compare differential forms on 

different patches. First of all, the differential structures on P; must be compatible, 

i.e. we should have No= NotnPJ,Nt = NotnPlandNp = N = N0tnP2 = N0nNt. 

But this is not enough: Suppose we have any 2 differential forms - not necessarily 

connections- Wo E r.l\ and Wt E rp, and find by doing calculations in r.l\, that 

they are equal. One would certainly like to conclude, as in the classical case, that 

they determine a "global" form win rp. This is not evident, it is a condition on 

the calculus. It motivates the following definition: The above calculi on P0 , Pt, Pot 

are called admissible if 

Wo = Wt +not for Wj E rp, (5.45) 
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implies that there exists awE fp such that 

w = Wo +no = w1 + nit n; E N;. {5.46) 

In other words, Wo =WI determines awE rPo n fp, = fp, where the intersection is 

defined as intersection of the cosets. A calculus which does not satisfy this condition 

would be highly unpracticable for global statements. The universal calculus is 

certainly admissible since (Po®P0)n(Pd~P1 ) = P® P impliesfPonfp1 = fp. The 

calculus we will consider on the monopole- bundle will be shown to be admissible 

too, using a fairly general line of reasoning. 

Theorem 5.3.1 In the above situation, p = Po n PI = P( B' A, N, M A) is a quan­

tum principal bundle with base B = B0 n B1 and connection if we have admissible 

differential structures which satisfy -(N) = P ® MA, connection forms w0 = w1 on 

Po resp. P11 and fo11or n f 1,.., = r,. ... Conversely, if P = Po n P1 is a quantum 

principal bundle, then fohor n rlhor = r,.... 

Proof First, ilR(P) E Po® An P1 ®A= P ®A for p E P implies 2. in Def. 5.1.2. 

Further, B = pA =(Po n P1)A = Pt' n Pt =Bon 81. By the above definition of 

the differential structures condition 5. is satisfied, since ilR; : P;. -+ P; ®A do not 

"leave" the bundles. 

Assume fo~~ornrlhor = r,.... SinceWQ(a) = wl(a) and the calculus is admissible, 

this defines w(a) e fp and u(p®a) = pw(a) E fp for (p®a) e P®ken From 

proposition 4.10 in (71) it follows that w is a connection 1- form. Now -u(p®a) = 

p ®a shows that the map- in (5.24) is surjective. 

It remains to show ker- = r,.... Let p1dP2 E fp. Since Po and P1 are quantum 

bundles, -(p1dP2) = 0 implies p1dP2 E fo~~or n f111or = r,. .. by assumption. Now 

Lemma 5.3.1 tells lis that P(B, A,N, MA) is a quantum principal bun~le. 
Conversely, assume P = Po n P1 is a quantum principa!"bundle. Let p1dp2 E 

fo11or n f111or· Then -(p1dP2) = 0. Since fo11or n f111or c rPo n fp, = fp and P is a. 

QPB, this implies P1dP2 E r,. ... The other inclusion fo11or n f111or :::> r,. •• is trivial. 

0 

If there are several "patches" P;, then the above theorem generalizes inductively 

in an obvious way. One can show that if-(Np) = p ® MA, then rohor nrlhor = r,. •• 

follows from fjj,. .. n fj,. .. = r;: .. (universal calculus). More generally, we have 
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Lemma 5.3.2 If P(B,A) is a QPB with universal calculus and we have Np and 

MA satisfying conditions S. and 6'. of definition S.t.e, then P(B,A,Np,MA) is a 

QPB with general calculus. Conversely, if P(B,A,Np,MA) is a QPB and-(n) = 0 
for n E Np implies n E r: . ., then P(B, A) is a QPB with universal calculus. 

Proof First suppose P(B, A) is a QPB; we have to show that ker-Np C r,..,. Let 

-Npb) = 0. This means -{1) E P ® MA = -(Np) by 6' .. So there is an E Np with 

-(n -7) = 0. But Pis a QPB with universal calculus, so it fol.lows 7 E fl: •• + n, 
i.e. 7 e r,. ••. 

The converse statement can be proved similarly. 0 

It is possible to give a trivalization of our monopole bundle. This will be done 

for even "charge" only; for odd charge, the trivializations etc. would only be formal. 

We define two trivial QPBs PJ2
"1 and P1

12" 1, and then show that p{ln)"= PJ2"lnP12
") 

is the monopole of charge 2n. 

5.4 Monopole Bundle: Patching 

We now present the second construction of the Dirac monopoles for general calculus 

as an illustration of the general method above. This will be done for even "charge" 

only; for odd charge, the trivializations etc. would only be formal. 

5.4.1 Universal Calculus 

We define two trivial QPBs PJ2
n) and P12

" 1, and then show that P(2n) = PJ2"lnp1(
2n) 

is the monopole of charge 2n. 

Patches 

For PJ2
"), as motivated by the charge 2 case in (71), we now try to define the base 

8 0 , fiber A{ln) and trivial bundle PJ2
" 1 be specified by their generators as: 

Bo = <{l,b_,b+,~•(~+q2m_l)-1; me Z} >, (5.47) 

Al2n) = < {Z",z-n} >, (5.48) 

PJ2"l = < Bo U {(6-1a)", (a-16)"} > . (5.49) 
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The commutation relations between the generators of Po are induced by SUq(2) 
through the following expressions (67): 

b_ = a/3, b+ = "(6, ba = a6, (5.50) 

where a, {3, "f, 6 are generators of SUq(2) with the well-known relations stated before. 
The commutation relations involving inverses are obtained by multiplying them 
from both sides by inverses of generators. In the classical limit q = 1, Bo becomes 

the algebra of the functions on S2\{south pole}, and b:t: = ±(x ± iy), b3 = z + 1/2, 
where x,y,z are the Cartesian coordinates. Note that a6- {3-y = 1 is equivalent 

to x2 + y2 + z2 = (1/2)2 • The somewhat complicated definition here (see (85)) will 
become clear below. PJ2

") as a trivial bundle is generated by the base B0 and the 

fibers, cp. (5.54). 
Define a coaction IJ.n on PJ2"' such that Bo = (PJ2"1)AC

2
"

1
: 

/J.n(1) = 1®1, 

/J.n(bi) = bi®l, i=-,+,3, 
/J.n((6-1a):t:n) = (6-1a):t:n ® z:t:n. 

The trivialization 41o is defined as 

41o(1) = 1, 41o(z:t:n) = (6-1a):t:n 

which generalizes the trivializatioo in (71). 

Proposition 5.4.1 PJ2"'(B,AI2nl,410 ) is a trivial QPB. 

(5.51) 

(5.52) 

(5.53) 

(5.54) 

Proof To see that we have a trivial QPB, we first have to show that B0 is the 

invariant subalgebra of PJ2
"
1 under the above coaction. This is clear if any Po E PJ2

"' 

can be written as a sum of terms B0(6- 1 a)~". Thus we must be able to commute 

Bo through (6- 1a). Writing down the commutation relations explicitely, one can 
always obtain relations like aBoa-• E Bo. Note that formE Z, q-2ma-mbj"1am = 
q-2m6mbj16-m = (b3 + q2m- It1 (cp. (851) and so in general, 

q-4nk(a-•6)"k(b3 + q2m- 1)-1(6-ta)"~ = (b3 + q4nk+2m- 1t•' k E z. (5.55) 

This shows that B0 , as defined in (5.47) is the invariant subalgebra, and one can 
also see the necessity to include all the generators of B0 • 
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41o is convolution-invertible with 4101(z:t:n) = (6-1a)"'", and is also an inter­

twiner: IJ.n o 41o = (41o ® id) o 6..4, where /J..4(Z") = zn ® Z" is the coproduct on 
Al2nl. So PJ2

") is a trivial QPB. 0 

The discussion on P1
12"1 is parallel to that on pJln), but much easier. Therefore 

we just give the relevant equations: 

Ba = < {1,b_,b+,bJ,(ba -1)-1 } >, (5.56) 
pf2n) = <BtU {("fp-t)n,(/3"(-l)n} >, (5.57) 
Al2nl = < {Z", z-n} >, (5.58) 

IJ.n(bi) = bi ® 1, i = -,+,3, (5.59) 
IJ.n(("f/3-l):t:n) = ("f/3-l):t:n ® z:t:n, (5.60) 

41,(z:t:n) = ( -..,p-•):t:n (5.61) 

and P1(
2
n) is also a trivial QPB. Note again that deg(B1) = 0 and deg(41i(Z")) = 2n. 

Overlap 

The "overlap" PJ~n) of PJ2"1 and Pf2"1 is similarly defined by 

Bot = < BoU {(ba-It1
} >, 

pJ:n) = <Bot U {("fp-l):t:n,(6-la):t:n} > 
(5.62) 

(5.63) 

and so on as above. On PJ~n), both trivializations can be used, with the transition 
function 

'Yot(Z") = 41o(Z")CJ11(Z") = (-q2b31 b~(ba -1)-1)" E Bot· (5.64) 

It should be noted that while these trivial bundles are closed under the •-operation, 

the maps C)i respect this •-structure only for q = 1. This appears to be very hard 
to avoid in this framework, and we accept it here. 

Global Bundle by Patching 

Now define the Dirac - monopole bundle with charge 2n by 

pl2n) = pJ2n) n p,l2n) 0 
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We will now show that for even charges this construction agrees with the one in 

section 2. First, we need the following useful equivalent representation for PJ2
" 1, 

Lemma 5.4.1 

pJln) = {p E< SU9{2)U{(6at1,(a6t1} >: deg(p) = 2kn,k E Z} = i>J2"1, (5.66) 

i.e. the algebra generated by SU9(2) and ( 6a )-1, ( a6)-1, with degrees being multiples 

o/2n. 

Proof To see this, note that PJ2
") C .PJ2

") because 6-1a = (a6)-1a 2 etc. and 

b31 = (a6)-1, so a-"6;1a" E PJ2
"1 also. To see the other inclusion, we first show 

that B0 is also the invariant subalgebra (under the coaction of A(lnl) of PJ2
"
1: we 

have just seen Bo C PJ2
"), and the same commutation relations as above show 

that indeed B0 = (i>J2"))A13n1. But this means that i>J2") is a QPB with tht• same 

trivialization ~0 as above. Thus we know (from 171) Example 4.2) that ~l2"1 = 
Boll>o(A(2n)) = PJ2

"1. 0 

With this, it is easy to see that the P(2n) defined in (5.65) agrees with the one 

constructed in section 2 

Proposition 5.4.2 

p<2nl =< p E SU9(2) : deg(p) = 2nk, k E Z > . (5.67) 

Proof Let Po, Pt E PJ2
" 1 resp. P12

"
1 and Po= Pt· Note that {3, p-•, ')', -y- 1 can be 

commuted through any terms by j~st picking up powers of q. Multiplying a-1 ,6-1 

to the relation a6 = 6a + (q- 1)(W)P'Y appropriately from both sides, one gets 

relations like 6a-1 = a-16 + (q- 1)( ... ) and a-•6-1 = 6-•a-• + (q- 1 )( ... ),i.e. one 

can order thing in any way up to tJrms proportional to (q- 1). 

Let us define a normal form for Pt as follows: bring all {3, ')' to the right of all 

a,6 and order a to the left of 6, picking up terms proportional to (q- I). Then 

replace all terms a6 by (1 + qp-y). Putting ')' to the right of {3, p1 finally has the 

form either a"f3r-y~ + (q- I)( ... ) 1 6"P"-y~ + (q- 1)( ... ) or {3"'-y~ + (q- 1)( ... ) with 

x,y E Z,n E IN. 
Similarly, define a normal form for Po as follows: bring all {3,-y to the right of 

all a. 6' order {3 to the left of ')' and replace all terms {3-y by ( a6 - I) I q. Now order 
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a to the left of 6 picking up terms prop. to (q- 1). Po finally has the form either 

a"'6~pn + (q -1)( ... ), a"'6~-y" +(q-1)( ... ) or cr611 + (q-1)( ... ) with x, y E Z, n E /W. 
Now consider the equation 

Po= Pt· (5.68) 

and put terms in p1 which do not contain inverses to the left side, in normal form for 

p0 (only for monomials which are not proportional to (q -1), say). Then let q = 1 

and consider both sides as classical functions on SU(2). All terms proportional 

to (q- 1) vanish, and all remaining monomials are in normal form on both sides 

and are easily seen to be independent as functions on SU(2). This implies tha.t 

all coeffcients are actually zero, i.e. all terms on both sides are proportional to 

( q- 1 ). (or simply: classical functions defined on both patches are defined globally 

on SU(2)). We can now cancel the greatest common power of (q- 1), put regular 

terms to the left and apply the same argument. This cannot go on forever since the 

right side can be ordered completely, so both sides must be zero eventually, proving 

that Po = p1 E SU9{2). Usfng (5.66), this immediately shows that 

p<2nl =< p E SU9(2) : deg(p) = 2nk, k e Z >, (5.69) 

as claimed. 0 

The essence of the proof is to write things in the form ("class")+(q -1) ("quan­

tum") and to apply classical reasoning to·("class"), which should be a fairly general 

strategy. Proposition 5.4.2 and (5.66) generalize the result of 171) for n = 1. 

5.4.2 General Calculus 

We can now introduce the same induced 3-D calculus on the bundles as in section 

2, i.e. the calculus on the patches P;(2
" 1 is defined by 

N P(2n)N p(2n) 
i'f2n) = i J'(2n) i t (5.70) 

with the same ideals as in section 2. Using - = (id®w)tc-1 in a Hop£ algebra one 

can easily see -(N~ 1 ) = p(t) ® M Al•l, and -(N p(3nl) = P(2n) ® M A(3nl with a similar 

argument as in section 2. So P;(2
n) are trivial QPB with this calculus by example 

(4.11) in 171). 
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It was already shown in section 2 that 

w(zkn) = S((ollcn)(t))d(olb)(l) = ~~:(1 ®(allen- 1}), 

w(z-kn) = S((62/c")(l))d(6Un)(l) = 11:(1 ® (62kn- I)) 

( 5. 71) 

(5.72) 

for k E Nl defines a connection one-form. Any monomials of degree 2nk in P?"1 

can be written in the form 41;(Z2"•)B or B41;(Z2"•), and so one can put w in the 
standard form of a connection one-form in PJ2

") and P1(ln): 

w(a) = ~i 1 (a),B;(a)~;(a) + 41i 1(a)d41;(a);i = 0, 1;a e A<2">, (5.73) 

where ,8; e rl!:! and ,8;(1) = o. 
Now let us show the following 

Proposition 5.4.3 The calculus on P(2n), PJ2"1, P1(ln) is admissible. 

Proof The reasoning is as in the previous proposition. Assume we have w0 ,w1 in 

r p,!••l resp. r J'52•) with Wo =WI in r P.!••l· Since in the 30 . calculus all one. forms 
0 1 OJ 

on SU9(2) and thus on P;(ln) can be written in terms of three left- invariant Maurer 

- Cart an forms w0 
1 w1, w2 which have simple commutation relations 

w0a = q-towo, wop= q,8wo, 

W1Cl' = q-2aw1, w1.8 = ql,Bw'' 

W2Cl' = q-1aw2, w2.8 = q,Bw2. (5.74) 

and similarly with the inverses o-1 etc., we can commute the forms to the right and 

have w0 = f•w•, w1 = g~cwlt (summation implied), so 

f.w• = gkw•. (5. 75) 

As in proposition 5.4.2 put both f• and 9k in their respective normal form ("class") 

+ (q- 1)("quant") and bring all regular terms of gk to the left side. Then putting 

q = 1, the "classical" parts are all independent as one· forms since the WI are and 

therefore vanish. Cancelling ( q - 1) and repeating the argument, it follows that w0 

and Wt are elements of f p(t) and in fact in f p(2n), since the degree is conserved. 0 
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Now we can use theorem 5.3.1 Suppose p e r~~';!, n r~~:~, so p E r p<••>. We can 

expand it as above 

p = fow0 + J.w1 + /2w2
, (5.76) 

with/; e p(ln). But w0 and w2 are horizontal (explicitely: w0 = 62db_ +q-2,82db+­

q- 1(1 + q-2),86db3 and w2 = -"(2db_- q-2a2db+ + q-1(1 + q-2)a"(db3 ), while w1 is 

not. Therefore f, = 0, and p e r~!~) I since all coef.icients of dB must have degree 

2n. So Pl2nl is a QPB with a general differential calculus, with the same connection 

form w restricted to elements a e A<2nl. 

Finally we would like to mention that since the trivializations are not "real" 

for q 'I 1, one might just go ahead and use trivializations such as ~(Z112 ) = a 

which do not respect the •-structure even for q = 1, at least as computational tools. 

Since we know that the "global" bundle with the •-structure does have the correct 

classical limit, this may be an acceptable and useful strategy, and deserves further 

consideration. 

5.5 Two Remarks 

5.5.1 A Note on the Gauge Transformations 

A gauge transformation is a convolution invertible map 'Y : A __. B: 

'Y. 'Y-1 = 'T-1 • 'Y = 1. (5.77) 

Let us define the "primitive charge" of a monomial in Bas (n_- n+), where n:t: 
are the total powers of b:t: appearing in the monomial or equivalently (power of a­

power of cS). This is preserved by the commutation relations, as our previous degree. 

Suppose that 'Y = E~ .. ; 'Y(k) , where each 'Y(k) contains only monomials that have 

primitive charge k. Hence i and j are the minimum and maximum of the primitive 

charges of all monomials in 'Y· Let the convolution inverse of 'Y be denoted in the 

same way: 'Y-t = E{'=it ")'(k)f, So 

j+jl 

1 = ((zn/2). 1 = 'Y • 'Y_, = L 'Y(Iclu (5.78) 
k=i+it 

which implies that i + if = j + jf = 0. The only possibility that this can be true 

is that i = j = -if = -jf, which means that all monomials in 'Y have the same 
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primitive charge n. However, this means in theclassicallimit that 'Y is proportional 
to ei"~. That is, by admitting only finite sums in a convolution invertible 'Y one 

is restricting oneself to a very special, rigid class of gauge transformations. Thus 

infinite series cannot be avoided in general. 

5.5.2 A Note on the Chern Class 

Classically, the monopole charge n is given by an integration over the base of the 

first Chern class 

2~ij$' F = n, (5.79) 

where F = dA+ = dA_. Here A+, A_ are the connection form on the northern and 
southern hemisphere respectively and the global connection form is given in terms 

of trivalizations as 
w = {A++ idrp+, onH+ 

A_+ idrp_,onH-

with ei~~>+.- being the local trivalization. 

(5.80) 

In the deformed case, we have the global connection form w. Suppose it is 
written in terms of trivialization as [71) 

w = ¢1it/J;¢1; + ¢iitd¢1;, (5.81) 

then it is not hard to check that 

dw = ¢ii1(d{J; + {J;{J;)¢1; = dw + ww, (5.82) 

which is in fact the curvature 2-f~rm on p(n) ((86), cp. (71)). Carrying the rPi 
through the dw, we get 

d{J; + /J;{J; :i: q2"dw = q2"(n)9-•dwt (5.83) 

which is again equal for the two patches and explicitely horizontal. It leads us to 
define the deformed Chern class as 

1 1 q2n I 

2
---;F = 

2
---;(d{J; + {J;{J;) = -

2 
.(n)9-•dw . 

lrt . lrl 11"1 
(5.84) 

Consider the base B = s: =< b+,b_,~ >C SU9(2), with the calculus inherited 
from the 3-D calculus on SU9(2). Denote fs = BdB and introduce the set r~· of 2 
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forms on B. Notice that r~· contains elements of the form Bdb;dbi> i,j = -, +, 3. 
Since 

db+ = 'Y2WO- q2fJ2w2, 

db_ = Ot2WO - q2 {J2w2, 

d~ = a-yw0 
- q2 {J6w2

• (5.85) 

So, r~· = Bw0w2 = Bdwt. Because dwt is a central element in Bot, under a gauge 

transformation U E Bot we have F -+ u-t FU = F. 
Notice that w0w2 is manifestly left invariant under the coaction of SU9(2), and 

is the unique top 2-form on B. This allow us to introduce a linear functional 

fs: r~· .... c, 

f adw1 = 21ri <a >su,(2)• Ya E B, (5.86) is: 
where <>sU,(2) is the invariant "Haar" measure on SU9(2)[12). This integral is 
obviously left- and right- invariant under the coaction of 809(3) and unique as 
such. The normalization is choosen to give the correct classical limit. Classically, 
dwt = i/2dfl. 

Therefore the deformed monople charge is obtained as in the classical case 

_21 . { F = 2q2". { (n]q-•dwt = q2"[n]q-•· 
lrl is: lrl is: (5.87) 

This is actually gauge - invariant in the sense that it does not depend on the trivi­

alization chosen, but this appears to be the case only for our particular connection. 
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