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LAMB SHIFT IN HYDROGENLIKE IONS*

Peter J. Mohr
Department of Physics and Lawrence Berkeley Laboratory

University of California, Berkeley, Caiifornia 94720

I. INTRODUCTION

_ Recent progress in the measurement of the Lamb shift

S = E(2Sy2) - E(2Py2) in hydrogenic atoms and ions has been made
in two directions.” An experimental value with a substantial
increase in precision over previous values has been obtaincd for
atomic hydrogen,l and experimecntal values have been obtained for
many higher-Z hydrogenic ions.»2 Quantum electrodynamics makes
unambiguous predictions for the Lamb shift in these systems, so
that a comparison between the theoretical and experimental values _
provides an important test of the theory. To aid in such a compar-’
ison, we compile here theoretical values for the varidus contribu-
tions to the Lamb shift for Z in the range 1 - 30. Compilations
for small Z are given elsewhere,4'7 but we include here some addi-
tional corrections which are significant at higher Z.

I1. SELF ENERGY

Recently;»the self-energy radiative correction of order o has

-been evaluated numerically to all orders in Za for the 2S,» and

2Py, states for Z = 10, 20, 30, ..., 110.7 The method of evalua- -
tion is based on the expansion of the bound electron propagation
function in terms of the known Coulomb radial Green's functions.

- In order to display the results for the self-energy contribution

to the Lamb shift Sgp = AE(2S12) - AE(2P12), if is convenient to
isolate the known low-order terms by writing®: ' :
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_:TABLE 1. Calculated Values of GSF(Za)-

Z GSE(Za)

10 - 20.13(34)
20 - 17.674(28)
30 - 15.776(11)
40 - 14.1376(62)
50 ' - 12.6650(28)
_a Za)t ol -2 Ko(2,0) , 11 1
SSE == g mc [ln(Za) - In Ko (2.1) tort 5
11 1 3 21 2 -2
+ 3m(1 + 18 ~ 3 In2) (Zo) 4(Za) 1n*(Za) (1)
299 . 2 -2 2 N
+(240 +4»1n2)(Za) In(Za)~2 + (Za) GSE(Zaj].

Values of the remainder Ggg(Za), corresponding to the calculated
values of Sgp, for Z in the range 10 - 50 appear in Table I. To
obtain values for Ggp(Za) for all Zin the range 1 - 30, we fit the
"interpolation function :

a+b (Zo)In(Za) " ? + ¢(zZa) ’ (2). 

to the calculated values of Ggg(Zo) at Z = 10, 20, and 30.7 The
corresponding interpolated values of Ggg(Zo) appear. in Table II.
The numbers in parentheses with each entry in the table are error
estimates which take into account the uncertainty in the calculated
values of Ggg(Za) and the uncertainty associated with the inter-
polation procedure. ' -

ITI. VACUUM POLARIZATION

Evaluation of the energy level shift associated with the
vacuum polarization of order a is facilitated by considering the
expansion of the vacuum polarization potential in powers of the
external Coulomb potential. Only odd powers of the external
potential contribute as a consequence of Furry's theorem.

The first term in the expansion gives rise to the modification
of the external potential known as the Uehling potentiallo’ll

S A} e - 12 . L 21
U = - 5 he [ dte” - D35+ g ) ew (20K

" (3)

The corresponding contribution to the Lamb shift is



oo

€

QUu 043V adi2

Page 3

W .
(Ul -Cud, =%(Z°‘) mcz[-%+6iﬂ(2a)

T s | ()
0 (za)%In(Za) "% + (ZOL)ZGU(ZOL):I.

The first three terms in. the square brackets in (4) give the known
contribution of the Uehling potential for small Za.® We have
numerically evaluated the expectation values of U(r) which appear
in (4). The results are given in Table II in terms of the function
Gy(Za) which is defined by (4).

The second non- vanlshlng term in the expan51on is third order

in.the external potential. Wichmann and Kroll have examined the

vacuum polarization in detail and have obtained results from which
one readily finds that the third order term contributesl?

a (Z9® 219 7 (2. sm) -

T g me’ [60 - 35 *\67 ° 3840 m{Za) + . . . (5)
to the Lamb shlft The terms omitted from (5) are higher order in
Zo. :

The total vacuum polarization contribution to the Lamb shift
is thus given by

4 - | L
vp =%LZ_2L_mc2 [- é + 554— n(Za) - 11—0 (zZa)21n(za) "2 “
' 4 (Za)ZGVP(Za)}
where :
G P(Za)’: G, (Za) + .0425 - .1030(Za) + .1(Za)- (7)

The last term in (7) is an approx1mat10n for the uncertainty due to
higher ordel omitted terms

IV, FOURTH ORDER

The contribution to the Lamb shift from the fourth order
radiative corrections is known exactly to lowest order in Za It

~is given by

AN O N e §_7j_'3767__ |
Sko = <n) 6 M |™InZ - A - 1728 T 2 (3) £ m(ze) |- (8)
Recent work on the evaluation of this term is dlSCUSSed in Ref. 6.
The last term in (8) is an appromedtlon for the uncertalnty due to
higher order uncalculated terms.
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V. REDUCED MASS AND RELATIVISTIC RECOIL'“

" The lowest ordcr reduced mass and relat1v1st1c recoil contrib-
utions to the Lamb shift are glven by®

. “,
_a (ZG)“ 2 E) -2 Ko(2,0) ., 23|
St =7 e (- W) [T - Gy | ©
and ) -
_ o (Zo)* A(20)| Linzoy 2 - 2 1n K20 97|
SRR “mTe " (M a0 (2a) 2In F o) 12 (10)

where M is the nuclear mass. We employ the uncertéinty estimate of
Erickson5 for these terms for Z = 1 and the Z-dependent estimate of
Erickson anQ'Yenniel3 ' o

8S = 2(z0)*mc? SRR (11)

“for Z > 1. We also include Salpeter's estimate of. 0.1x Sk for
the uncertainty due to uncaleculated nuclear structure effects in
deuterium.14 ,

Vi. NUCLEAR SIZE

The potential for an electron in a hydrogenlike ion is not a
pure Coulomb potential due, in part, to the fact that the nuclear
charge is distributed over a finite radius. We evaluate the energy
shift due to the differcnce between the finite size potential and
the Coulomb potentlal 8V(r) in first order perturbation theory with
- Dirac wavefunctions. Assuming that the nuclear charge is distributed
uniformly inside a sphere, we obtain :

L W 2| (zo)? 2<ZaR>25 o _

Sstf [i + 1.70(Za) ] 75— me\~x o (12)

for the nucleéf size contribution to the Lamb shift. In Eq. (12)
s = 4/1- (Za) and R is the r.m.s. charge radius of the nucleus. The
expression in (12) neglects terms of relative order (/a) or ZaR/’.

This nuclear size correction Snyg agrees to lowest order in (Zu)
with the nonrelat1V1st1c expre551on in Ref. 13.

It is known that first order perturbation theory gives inac-
curate results for the finite size correction when-Z is large.l5,16 - (
We find that the fractional differencec between the perturbatlon
result and the result obtained by numerically solv1ng the Dirac
equation for a finite nucleus is approximately 3% at Z = 30. We
‘therefore assign an uncertainty ASyg to Eq. (12), where

- 2 _A_R) . : -. y
BSys -@.7(20@ f27 )Shs b (133
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TABLE II. Values for the functions GSE(ZQ), GU(Za), assumed

values fdr,the nuclear charge radii, and Lamb shift values

.

GSE(Za)

Z A Gy (Za) R[{fm] LAMB SHIFT[GHz]
1 1 -23.4(1.2) -0.5587 .81(2) 1.057867(13)
1 2 " " 2.10(2) 1.059241(27)
2 4 -22.9(1.0) -0.5493 1.644(5) 14.04205(55)
3 6 -22.49(88) -0.5411 2.56(5) 62.7375(66)
4 9 -22.10(77) -0.5339 2.52(2) 179.791(25)
5 11  -21.72(68) -0.5273 2.4(1) 404.57(10)
6 12 -21.37(60) -0.5213 2.45(1) 781.99(21)
7 14 -21.04(52) -0.5157 2.54(2) 1361.37(47)
8 16 -20.72(45) -0.5106 2.72(3) 2196.21(92)
9 19 -20.42(39) -0.5059 2.90(2) '3343.1(1.6)
10 200 =20.13(34) -0.5015 - 3.02(4) 4861.1(2.7)
11 23 -19.85(29) -0.4974 2.94(4) 6809.0(4.0)
12 24  -19.58(24) -0.4936 3.01(3) 9256.0(5.8)
13 27 -19.31(20) -0.4900 3.03(3) 12,264.7(8.0)
14 28 -19.06(17) -0.4867 3.09(2) 15,907(11)
15 31 -18.81(14) -0.4836 3.19(2) 20,254(13)
16 32 -18.57(11) . -0.4807 3.24(2) 25,373(17)
17 35 -18.338(84) -0.4781 3.34(3) 31,347(20)
18 40 -18.111(63) -0.4756 3.45(5) 38,250(25)
19 39 -17.890(44)  -0.4733 3.41(3) - 46,133(29)
20 40 -17.674(38) -0.4711 3.48(3) 55,116(37)
21 45 - -17.464(34) -0.4691  3.54(8)2 65,259(55)
22 48  -17.259(31) -0.4673 3.60(1) 76,651(56)
23 51  -17.059(28) -0.4656 3.60(5) 89,345(78)
24 52 -16.863(26) -0.4641 3.66(5) 103,482(98)
25 55  -16.672(24) -0.4627  3.72(7) 1.1912(13) x 10°
26 56 -16.485(22) -0.4614 3.73(6) 1.3632(15) x 10°
27 59  -16.302(21) -0.4603 3.80(5) 1.5525(18) x 10°
28 58 -16.123(19) -0.4593 3.78(3) 1.7585(21) x 10°
29 63  -15.948(18) -0.4584 ° 3.93(3) 1.9854(26) x 10°
30 64 - -15.776(17) -0.4576 3.95(4) 2.2303(32) x 10°

ainterpolated value.
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to allow for this error, for model dependence error, and for the
measured charge radius uncertainty AR. ' '

Values we assume for the nuclear r.m.s. charge radii are given
in Table II. Those numbers are representative values based on
values in the compilations of nuclear charge radii deduced from
‘electron scattering data, 17 and from muonic atom transition
energies.18 g

‘,
“F

VII. LAMB SHIFT VALUES

The sum of the contributions listed in the preceding sections
gives the total Lamb shift S. The values are listed in Table II.
We employ the recently recommended valuesl?d R.E& =3.28984200(25) x
10'° Hz and o”! = 137.03604(11). The uncertainty in o produces a
relative uncertainty of 3Aa/a = 2.4 x 10°°% in the total Lamb shift.
The uncertainty listed with each Lamb shift value is the quadrature
sum of the contributing uncertainties and is meant to be considered
on a par with a one standard deviation uncertainty in the experi-
mental value. The theoretical values listed here differ somewhat
from the values compiled by Erickson.®»0 The difference is due
mainly to differences between the values used for the self-energy
contribution. -

Measured values for the n=2 hydrogenic Lamb shifts are listed

TABLE III. Cohparison between theory and direct measure-
ment of the Lamb shift E(2S1,) - E(2P12)

THEORY (lo) EXPERIMENT (10) . REF.

H .. 1057.867(13) MHz 1057.893(20) MHz 1
1057.90(6) 1 202
_ 1057.77(6) "o 21@
D 1059.241(27) MHz - 1059.24(6) . MHz 223
E 1059.00(6) "o 21a
“He* © 14,042.05(55) MHz 14,046.2(1.2)MHz 23 -
o , 14,040.2(1.8) " 243 .
62" 62,737.5(6.6) MHz = 62,765(21) MHz - 25 _ .
. . 62,880(190) " 26 : v
, 63,031(327) " 27
‘1205t 781.99(21) GHz 780.1(8.0)  GHz 28
16g7% 2196.21(92) GHz . 2215.6(7.5) GHz 29
: 2202.7(11.0) " - 30

4See Reference 31 for a discussion of the experimental value.

.



""

-

Page»7'

in Table III. 1In addition to the measurements listed there, we

note the recent work of Kugel et al. who have measured the
separation E(2P3;) - E(2S12) in hydrogenlike fluorine. 32 They
combine their result with the theoretical value of the fine structure
splitting to obtain the Lamb shift value S = 3339(35) GHz.
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