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ABSTRACT 

We calculate critical exponents for the Ising model using 

universality in the form of "twisted fans" previously introduced in 

Reggeon field theory. The universality is with respect to scales 

" induced through renormalization. Exact twists are obtained at i3 = 0 

in one loop for D = 2,3 with v = 0.75 and 0.60 respectively. In 

two loops we obtain v ~ 1.32 and 0.68. No twists are obtained for 

~ , however. The results for the standard two loop calculations are 

also presented as functions of a scale. 

Work supported in part by the U. s. Energy Research and Development 

Administration (ERDA). 
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The possibility of applying the n-loop expansion to the calculation 

of critical indices in solid state physics·directly in the dimension D 

of interest was proposed and carried out by Parisi to two loops, with 

optimistic results1 The method requires the introduction of a 

massive theory to avoid severe infrared massless problems. The same 

approach followed in the high energy scattering theory of Gribov's 

Reggeon calculus 2 ' 3 led to a proposal that universality be employed 

as a working tool to detennine approximations to critical exponents 

using the concept of "twisted fans" 4 The idea is simple. Consider 

a critical exponent function ~(g) defined with the aid of a wave 

function renonnalization constant Z which depends on the renormalized 

dimensionless coupling g. At the critical coupling gc defined by 

setting the Gell-Mann - Low function p ( gc ) = 0, ?f (g ) must 
c 

be independent of a change of the momentum renormalization points of 

Green's functions, generically denoted by 2 
pl'f • This is so because at the 

phase transition correlations are of infinite range and universality 

demands that tt be independent of any finite scale 5 The only effect 

is a finite reno:nnalization of Green's functions which does not affect 

the scaling laws. This ceases to be true, however, if g :/: gc since 

correlations are then not of infinite range and 't 2 
can depend on pN . 

Defining 'r = p 2/m2 
~ N m being a mass scale, and expanding r and p 

in powers of g we have 

(1) 
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~(~, T) -- (2) 

In the exact theory , p = 0 at g = gc ( l ) and. ~ = "/ [gc ( ]") , f l 
then becomes independent of J . If either g -:f. gc ( 1) or the sums are 

truncated, ~oth r and p will depend on :r 
Now consider plotting ~ vs. 't for fixed J using g as a 

parameter along the curve. In the full theory the curve will start at 

the origin and pass through p = 0 at r =t(, where p, (gc) > 0. 

As J is varied a series of curves with the same property results, 

resem~ling a fan which twists at the point The 

idea is then to arrange approximations which possess this universality 

property of the exact theory as far as possible. In so doing, one is 

essentially maximizing the information at one's disposal at a given order. 

The utility of such an approach can be seen in cases where p does not 

have a zero in a given order. This in fact happens in two loops, both 

in solid s~te physics 1 and in the Reggeon calculus 3 • Nonetheless 

4 twisted fans are obtained in the latter case to high accuracy 

Several points should be kept in mind. First, several scales 1· .J 
can in general be introduced into the renormalization procedure; the 

demand of universality with respect to all these parameters provides 

maximal information. Although the exact theory should respect invariance 

with respect to 

one may have to 

any simultaneous variation of the }. , in finite order ., 
settle for an approximate invari arice, e.g. along a ray 

i' 
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in the { J3} space. Presumably one could .. try to maximize the degree 

A 
of invariance, perhaps obtaining reliable bounds, by varying the direction n 

of the ra..y. A sophisticated use of the method would involve minimizing 

.a suitably defined velocity 
.... 
v of the t~ist as a function of 

1\ 
n It 

should therefore be clear th,at the absence of a fan in a given approx-

imation with a fixed assumption about the direction of the ray does 

not a-priori mean that the method has failed. 

Next, it may or may not be profitable in a given order to estimate 

higher order terms with Pade approximants; indeed the presence of 

approximate universality could be employed as justification for using them. 

'1'~., tw~sitions in successive orders may oscillate, probably 
" ,' .. : _,. 

depending on the existence or non-existence of a zero of iJ in those 

orders. Fourth, in -a given order a twist may only be approximate. At 

least in the Reggeon calculus infrared divergences of the massless theory 

prevent the limit I.,. oo from being valid in perturbation theory 

though it must be valid in the complete 1 6 7 theory ' ' . Use of Fade 

approximates can also restrict the available range in l' Fifth, 

more than one critical exponent 1f. . . a exists the fan will be a multi-

dimensional construct in \ ~~ "~ ) 

Finally, our use of universality seems similar in philosophy to 

that of Ref. 8, although the details are quite different. 

,.&..4 
We now describe the calculation, carried out in ~Euclidean ~ 

4 

if 

theory 
1

'
6

' 7 • Details will be presented elsewhere9 The unrenormalized 

proper vert;~;: function f1 (N ,L) for N • fields and L +2. fields are 

used to define parameters in terms of which we will re-express the theory. 



These are the renormalized mass m, the dimensionless renormalized 

coupling g, and the + and ··l wave function renormalization constants 

7,1 and z2 , defined by 

rcz,ol ( p~>l. = 0 
-,.t p = 

( 3) 

.!!.. r(Z,o) ( P') I . 
_, 

= 2, -rAp~ p'= 'f2-J 
(4) 

rcz,t) ( P,) I -=: Ct l )_, - • 2. 
NP(J

3
) 

(5) 

,p l'f1o) ( p, ) I -2 4-D - l, bt 3 --
NPtJ,) 

( 6) 

The p( 4,0) renormalizati.on point is defined by the symmetric "decay" 

2 
condition p 1 = 3pN = -3pj (j = 2,3,4) where pN = 

the renormalization point for r< 2
•
1

' , P3 and P4 

the A.2. . . ' 2 'f line with momentum -2pN ; we define pN = 

) 4m
2 

. To obtain 

are joined to form 

J
3

m
2 

for this 

function. Ot~er .normalizations are of course possible and should be 

investigated. We have in fact found that a more symmetric normalization 

r (2 1) , r(l1,0) of ' coupled with the above "decay' normalization of 

produces less satisfactory ~esults. 

We define for i = 1,2 

c. (4 l'·) ' .,, ~ -- (7) 

r,.r'-

(. 

:· 

L 
i 

;:. 
I 

:··. 

I? 
;. 
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and 

I 
l~) ~. 

(8) 

The derivatives are to be evaluated at fixed J. and fixed bare coupling Ao 
. J 

<X. has dimension m
4
-D). The critical exponent functions)/ and~ are 

then 

{ 9) 

( 10) 

The corresponding Callan-Symanzik operator for r (N ,L) . 6 
16 

(11) 

We set 

r, (J) • 

1)-~ 

rcr- D) J dxd~ rAt 8l t-lC ·:i·e> lt~l f I+ 1 .x ~ ~ ] 
(lfr >" c Xtj + !;iC T x ~) ,.., olt L lx':l + 1:\H lti) 

(13) 

(14) 
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where 

D-~ 

l [ ll x ,x, (lC3 t t~) -t "'~~ (x 1 -t o1. >C2 )] 1 , 15, 

[lx 1-tiC'I. -t x~ )(X, tx ~ ) - x: ] j 

and « = 1,9 for FA,FB respectively. I 1 corresponds to the one 

. r{2 1) n(4 0) 
loop graphs 1n ' and a· ' ; r

2 
corresponds to the two loop 

• r'\ { 2 0 ) i ce 
graph 1n r · ' ; I A corresponds to the "ice-cream" two loop graphs 

. r'( 2 ,l) d r( 4,o) h th 3 1 . ·r (4,o) . d' t 1n an w ere e . pN eg 1n 1s a Jacen to 

the ice-cream, and r;ce corresponds to the ice-cream graph in r< 4,o) 

with the 3pN leg not adjacent to the ice-cream. We obtain 

c, (t~, rj) = -t ~ I 1(J3 >- ,c, c~, 1,) + ' 1 
{ t r:e (T'S) 

+ I, (J1) (I, I } 3)- 3I.(J.,)] J 
2. (lf -J)) 

~ ( ~ j la J l'Cf) -= (DI, -2 ) ~ + f 92 I I CJcc ) T ~ 9 C a ( ~ J J ~ ) 

(16) 

(17) 

+ 14 3 { :_.J. [ r'A~t (J''t )-t !
0
i<t (r~)J t _!__ ti,l:f,. )t } 

d 1. (q -D) 

(18) 

':,.:-
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The apparent poles at D = 4 cancel; all expressions are finite for D ~ 4. 

The results in one loop are easily examined since c1 = ~ = 0 

to that order. Setting p [ gc ( J 4), j 4] = 0 yfelds 

~~ ( ~) .. 'i ('f·DV II (l'.,) 

so that 

We see that we need only set rl = }Cf to obtain a perfect twist 

at p = 0 with critical exponent 

(19) 

(21) 

independent of i Cf • This resUlt is identical to P;.t-isi 's, 
1 

and yields 

., . 1 V = 0.75 forD= 2 and v = 0.60 fo~ D = 3. The best. values are 

V = 1 and 0.64 respectively. 

We learn a lesson at thi!'l point by requiring }
3 

:/: J't ,spoiling 

the perfect twist. The point is, of course, that we are at liberty 

to express the theory in tenns of those boundary values of the I" (N ,L) 

which are the best choices from the point of view of universality. We do 

not need to do so, we want to do so; in this order }'
1 

= J'f reproduces 

the universality present in the exact theory as well as possible. 

The results for the two loop approximation to the D = 3 Ising 

model vi th e:ll are ~resented in Figs. 1,2. Since our momenta 

are Euclidean the perturbative singularities are at j ( 0 ; hence we 

restrict our attention to J) 0 Fade approximates have been used 

for ~ and \) following Parisi. We call these functions ~. and \)p 
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Pade approximates are necessary for the results which follow for V . 

The region in r which we can examine is limited by their poles to 

J i 4. An approximate twist with a spread of about 0.02 is observed 

for Vp yielding 

N -
However no twist is found for 11 in this approximation. 

(22) 

The graphs also directly yield results for the standard two loop 

calculation 1 - obtained by setting a = 0' but demonstrating the 

' variation of the exponents on the sc.ale l We see that Vf is 

relatively stable; we obtain 

(23) 

However 'l is not stable ; we obtain only yt " 0. 03 for J) 0. The 

lower bounds at J = 0 were obtained by Parisi 
1 

Th~ results for 'Vp at D = 2 in two loops are qualitatively 

similar with a twist at ~p = 1. 32 and a variation at Jlp = 0 of 

1.1 ·~ l>p ~ 1. 29 over the range in J allowed by the Pade approximates , 

which in this case is T ~ 0. 4. Again )I has no twist and is quite 

unstable; we obtain only 'lt ) 0. 04. 

We have not investigated the cause of the instability of the 

exponent '1, in any detail, although it is interesting that it is also 

more unstable than ~ in the treatment of Ref. B. After this work was 

1 1 t d i d . t 10 . h. h 1" t t near y comp e e we rece ve a prepr1n 1n w 1c a coup 1ng cons an 

'• 
~:' 

r: 
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rescaling gf = f( ~ )g , Of(gf) = f( ~)~(g) was shown to have 

substantial effects on 'I . {The condition for a. twist -~ ap~ J = 0 

becomes 51J3 1- £-~J/~J = 0 which depends on f if p 'f: 0 ). 

Further examination along these lines coupled with a less restrictive 

assumption on the r~ in . { j~ } space than used here would be interesting. 
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FIGURE CAPI'I ONS 

1. Results for the Fade-approximated Pp vs ),1p in the D = 3 Ising 

model in the two loop approximation. 

2. Results for ~p v~ ~ at D = 3 in two loops. 
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