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ABSTRACT
We calculate critical exponents~for the Ising model using
universality in the form of "tﬁisted'fans" previously introduced in
Reggeon field'thgory. The universality is with respect to scales
¢+ induced through renormalization. Exact twists are obtained at B = O
in one 'loop for D =2,3 with v = 0.75 and 0.60 respectively. In
two loops we obtain v ~ 1.32 and 0.68. No twists are obtained for
n , however. The results for the standard two loop qalculations are

also presented as functions of a scale.

Work supported in part by the U. S. Energy Research and Development

Administration (ERDA).



The possibility of applying the n-loop expansion to the calculation
of critical indices in solid state physics-'directly.in.the dimension D

of interest was proposed and carried out by Parisi to two loops, with

_ optimistic re'sultsl . The method requires the introduction of a

massive theory to avoid severe infrared massless problems. The same
approach followed in the high energy scattering theory of Gribov's

2,3 led to a proposal that universality be employed

Reggeon calculus
as a working tool to determine approximations to critical exponents’
using thé_concept of "twisted fans" h. The idea is éimple. Consider -
a critica.i exponent function T(g) defined with the aid of a wave

function renormalization constant Z which depends on the renormalized

dimensionléss coupling g. At the critical coupling g, defined by

1]

setting the Gell-Mann - Low function P (gc) =0, l" =

z‘_(gc) must
be independent of a change of the moméntum renormélizatiori points of
Green's functions, generically denoted by pN2. This _is'so because at the

phase transition correlations are of infinite range and universality

demands that Yc be independent. of any finite scale 5. The only effect’

~is a finite renormalization of Green's functions which does not affect

the scaling laws. This ceases to be true, however, if g ?‘:gc since

correlations are then not of infinite range and ? can depend on pNe.
s 2,2 ' . . , ) ' .

Defining ; = pNA/m s, m being a mass scale, and expanding X‘ and P

in powers of g we have

| LS L -
Y(.g,f) "-=‘ z&' h () g° (1)
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Bla, ¥ =25‘(§’)g, -
4¥) kek, | (2)

In the exact theory, P =0 at g= gc( S-v) and’ fc =X‘[gc( }'),}']
then becomes independent of § . If either g# gc(r)' or the sums are
truncated, }?oth by é.nd p will depend on ¥ .

Now consider plotting B vs. v for fixed } using g as a
parameter along the curve. In the full theory the curve will start at
the origin and pass through p =0 at ¥ =r‘ where p’(gc) > 0.

As'_ } is varied a series of curves with the same property results,
resembling a fan which tvr'ists at the point p = o, 7‘: xc . The
idea is then to arrangé approximation$ which possess this universality
property of the exact theory as far as possible. In so doing, one is
essentially maximizing the information at one's disposal at a given order.
The utility‘ of such an approach can be seen in caseé»where p does not
have a zero in a given ordér. This in fact happens in two loops, both

ip solid skate physics 1 and in the Reggeon calculus 3 . Nonetheless
twisted fans are obtained in the latter case to high ag:curacy_h.

Several points Vshould be kept in mind. First, several scales }"
.can in general be introduced into the renormalization procedui‘e; the
demand of univéfsality with respect to all these para.meteré provides
maximal information. Although the exact theory should respect invariance
with respect to any simultaneous variation of the }5 » in finite o.rder

one mey have to settle for an approximate invariance, e.g. along a ray




in the 1;3} space. Presumably one could try to maximi ze the-degree
of invariance, perhé.ps obta.ining>reli'able bounds, by varying the direction
of the ray. A sophisticated use of the method would i.nvolve minimizing
a suitably defined velocity -\-r' of the twist as a function of g . It
should therefore be clear that the absence of a fan in a given approx-
imation with a fixed assumption about the direction of the ray does
not a-priori mean that the method has failed.

Next, it may or may not be. profitable in a given order to estimate
higher order terms with Pade approximants ; indeed the presence of

approximate universality could be employed as Jjustification for using them,

" Third, twlst positions in successive orders may oscillate, probably

depending on the existence or non-existence of a zero of B in those
ofders. Fourth, in .a given order a twist msy only be approximate. At
least in the Reggeon calculus infrared divergences of the massless theory -

prevent the limit § =» 8@  from being valid in perturbation theory l‘,'

1,6,7

though it must be valid in the complete theory . Use of Pade

approximates can also restrict the available range in I . Fifth, if

more than one critical exponent \‘J exists the fan will be a mul't'i_

#*

dimensional construct in 1 p, %‘5 ).
Finally, our use of univefsality seems similar in philosophy to-
that of Ref. 8, although the details are quite different.

h
We now describe the calculation, carried out in +Euclidean ¢

theory 1’6’7. Details will be presented elsewhere9 . The unrenormalized

' 2
proper vertiex function for N 4 fields and L 4’ fields are

used to define parameters in terms of which we will re-express the theory.

A
n
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These are the renormalized mass m, the dimensionless renormalized.
coupling g, and the # a.ncf*z wave function renormalization constants

7 and Z

1 5 defined by

ml

VP_(Z,O) (P'&)‘ . o= O | | (3)

a;_l_,_ r,(z,o) (Pz) l

(%)
pe

1]

pr=S,m

Y (p) | = (2,2,)" (5)
NP(S) |

114,0) = -
I )° (P;)l =L, m 3 (6)
NP(Y,)

The F(h’o_) reno.ma.lizati.on point is defined by the symmetric ;'decay"-
condition p, =-3pN = —3p,j (3 '=>é,3,h) where pﬁz = }i‘mz . To obtain
the renormalization point fof F(-e’l) ,. P3 and p) are Jjoined to ’form
the ¢2 line with momentum -2le 3 we define p‘N2 = 53m2 for this
function. Other normalizations are of course possible énd should be
investigated. We have in fact found that a more symetfic noma.lization
of r‘(e,l)' coupled with the above "decay" normalization of P(b 0)

produces less satisfactory results.

We define for i = 1,2

(1)

C;(ﬁ,f,’) = m‘?miul; !
5

)x°



and

e

P(gi ES) = M,z ° . i | | (8)
| | ES)X" |

The derivatives are to be evaluated at fixed }} and fixed bare éoupling Ag

£l

(Xo has dimension mh_D). The critical exponent functions VY and y are

then
| ={
Vg, 3;) = [2 i Zcz(g,}j,-) ] | ©)
| n (9, Ts) = 2¢(9,5;) | . | (10)
The corresponding Callan-Symenzik operétér-for f‘(N7L) is 6
3. | N
Wit B -M-L(L2)
We set . . , '
r(}j - I(3-92) fdzd 6(1—xQ y [+ 43’x5]%-2
! | (‘“T)ph | J | ] | (12)

| | o 4
I(3)= Is5-D) J.dxdgdz Sli-x-y-2) xy2 {H- T xyz ] |
(‘lrr)v—-_ - (X!ﬁ “y? +x2)'t 02 (X\3+.32 tx2)

(13)

I'::; (3) = f‘(zb"%)jjdx: 5(1- 3x) Fag (%, ) (1)
™ If(xﬁr:cm(.l)(x:;rx..)--x.}]"’z




_where o

. b4

FA B(X;)}) = | 1' 3 [‘Ix.x,( qu)"' X;Xq (X +°{Xz)]l (}5)
' | [(x +x,_+ x..)(x +x.,) xa ] J

respectively. I correspondsv to the one

B 1
loop graphs in P(Q’l) and r'(h’o) ; 12 corresponds to the two loop

and o = 1,9 for FA’F

graph in P(Q’O) 5 I;ce

in F(2’l) and P(h’o)

corresponds to the "ice-cream" two loop grarhs

0)

where the 3pN leg in P (4, is adjacent to

the ice-cream, and Pche corresponds to the ice-cream graph in l"“"o)
with the 3pN leg not adjacent to the ice-cream. We obtain |
¢“(9,3%) = 'e'; gt I,(3) _ (16)
c,(9,%.) = I(S) -€,(4,3, {‘-I"‘ )
2 (9, i’ " "'% 4,3,) + 3

Ly [105,)- 35,(5)] } ()
2(“ D)

Bl; 5,3 = (D:..-z)g+ 1321(5) t :zgc(g,§)

{ 3 (TG4 r"‘(:)]+ [Im]}

(18)



The apparent poles at D = 4 cancel; all expressions are finite for D\( L,
The results in one loop are easily examined since‘ ¢y = ’) =0

to that order. .Setting ﬂ[gc( }h)’ jh] =0 yields

9.(5) = & (q-o)/:,(:s;,') (19)
so that ’

vc-‘ [ﬁc(}q), 53] = 'é‘ (D-4) I,(}',)/I. (}Q) (20)

We see that we need only set }'3 = }" to obtain a perfect twist

at l p = 0 with .critical exponent A
v= 3(2+D)" (21)

independent of sq . This result is identical to Pgrisi's ,l and yields

v
v

0.75 for D=2 and V= 0.60 for D = 3, The best values! are

1 end 0.6k , respectively. | \

We learn 2 lesson at this point by r'equiringv }3 # }'9 »spoiling
the perfect twi..st.‘ .’.I'he point is, of course, that we are at liberty
td express the theory in ‘i;eﬁns of those boundary vélues of the [? (N,L)
which are thé 5est éhoicés .from thc—; point of view vof universality.  We do
not need to do so, wé want to do so; in this ‘order ?3 = }“4 reprodﬁces
the universality Iﬁresent in the exact theory as well as possible.

The results for the two loop approximation to the D = 3 Isin?g
model )r.'i.th a1l s& = S’ ‘ -are presented in Figs. 1,2. Since our moment &
afe Euclidean_thg perturbative singularities are at } 4 _O 3 hence we

restrict our attention to s 2 O . Pade approximates have been used

for ‘3 and V , following Parisi. We call these functions BP and VP .



. ~8-
Pade approximates are necessary for the results which follow for V .
The region in _}' which we can examine is limited by their poles to
}' 5' k., An approximate twist with a spread of about .02 is observed

for VP yielding _ : .

VP ~ 0.68 | (22)

However no twist is found for 'rl in this approximation.

‘The graphs also directly yield results for the standard two loop
calculation l obtained by éetting B' = 0, but _demonstra’cing the
varia.tioﬁ of the exponents gn the scale s. . We see that VP. is

relatively stable; we obtain
0.64 & v, & 0.67 (23)

However q is not stable; we obtain only 'l » 0.03 for }') 0. The
lower bounds at § = 0 were obtained by Parisi o

Thé results for VP at D=2 in t;ro. loops 'are qua].itatively
similar with a fwist at VP % 1.3 and a variation at p' =0 of
1.1 & v' £ 1.29 over the range in ¥ allowed by the Pade approximates,
which in this case is Y‘f_ 0.4. Again | has no twist and is quite
unstable; we obtain only N> 0.0k

We have not investigated tﬁe cause of the instability of the
exponent Vl in any detail, .altho'ugh it is interesting that it is also
more unsta.b"le than V in the‘treatment of Ref. 8. After this work was

nearly completed we received a preprint 10 in which a coupling constant

Ly



rescaling g, = (Y e, Bf(gf) = £( })p(g) wa.s:shown to havé
substantial effects on W . (The condition for a.twisti | 39[3}‘ =0
becomes S’p + S';PIQS =0 which depends on .f_' if p * 0 ).
Further exé.mination along these lines coupied with a less restrictive

assumption on the ray in {s" } sl;ace than used here would be interesting.
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FIGURE CAPTTIONS

1. Results for the Pade-approximated BP vs VF in the D = 3 1Ising
model in the two loop e.pproximation.

2. Results for pp vs ‘)l at D=3 in two loops.
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