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DEFORMATION BEHAVIOR OF AN IDEALIZED CRYSTAL 

Sabri Altinta~ 

I 
Inorganic Haterials Research Division, Lawrence Berkeley Laboratory and 
Department of Materials Science and Engineering, College of Engineering 

University of California, Berkeley, California 

ABSTRACT 

The deformation behavior of an idealized crystal made by stacking 

of parallel slip planes is studied. Each slip plane is assumed to 

contain active sources of dislocations leading to a constant density of 

non-interacting dislocations in the plane which glide through randomly 

dis-tributed localized point obstacles, representing small precipitates. 

The dislocation is assumed to have a constant line tension and the 

dislocation-obstacle interaction is taken to have a simple step form. 

Using results of computer simulation of thermally activated glide 

through random arrays of point obstacles the deformation is modeled as 

a function of temperature and applied stress, determining the strain 

rate and the morphological characteristics of slip. Stress-strain rate 

and flow stress-temperature relations are discussed. 
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I. INTRODUCTION 

The plastic deformation of a typical crystal is accomplished through 

the motion of dislocations. The available experimental data indicates · 

that at moderate temperatures the dominant form of dislocation motion is 

planar glide, which is impelled by the local value of the resolved shear· 

stress and opposed by the resistance of the microstructure. The dominant 

impediment to dislocation glide is often due to local microstructural 

features such as small precipitates, "forest" dislocations, or solute 

atoms which act as local barriers to dislocation motion. 1 The possibility 

of regulating the density, distribution or character of these barriers 

through the processes of alloying, irradiation and thermal and mechanical 

treatment provides a variety of methods to strengthen crystalline 

2-3 
materials. When these barriers are spread diffusely through the 

lattice they may often be regarded as point barriers in an approximately 

random distribution. 

In the past several investigators used various experimental methods 

to study the velocity of individual dislocations~-SAlso a number of 

theories which treat the motion of dislocations in crystals containing 

. 6-12 
barriers have appeared. Most theories are based on the .i.dea that 

the dislocations overcome the barriers by a thermally activated process 

and involve a number of simplifications. 

Under suitable assumptions the proqlem of thermally activated dis-

location glide through a field of point barriers can be simulated for 

. 13-15 direct solut1on. Morris and Klahn
12

•
15 have discussed how 

statistical analysis and computer simulation may be combined to yield an 
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essentially complete solution for the velocity of dislocation glide as 

a function of applied stress, the temperature, and the nature of the 

barriers. By adding an assumption on the distribution of mobile dislo-

cations, the re.sults may be extended to model deformation of a single 

,crystal which is assumed to deform through simultaneous glide of non-

interacting dislocations on adjacent slip planes. 

15 Morris and ~lahn reported preliminary results of a simulation of 

the deformation of a simple crystal at constant strain rate. The 

results were interesting in that the crystal not only showed the antici-

pated trend of flow stress with temperature but also exhibited a 

characteristic shift in the morphology of deformation with temperature: 

low temperature deformation concentrated on well-defined slip planes 

which became less pronounced as the temperature was raised. 

In this thesis, the plastic deformation of an ideal crystal made up 

of a stacking of slip planes is simulated. The slip planes contain 

randomly dispersed obstacles having roughly the properties expected of 

small dispersion or precipitate particles. Furthermore, each slip plane 

is assumed to contain active sources of dislocations leading to a con-

stant density of non-interacting dislocations in the plane. The 

deformation is then modeled as a function of temperature and applied 

stress, determining the strain rate and the morphological characteristics 

of slip. The results are reported below. First, the basic equations 

governing thermally activated glide will be reviewed and then the simu-

lation procedures will be described. 
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II. STATISTICAL ANALYSIS 

The assumptions and basic equations governing thermally activated 

glide of a simple dislocation through a field of randomly-distributed 

point barriers were developed in detail in reference 12. They may be 

summarized as follows: Consider a plane of a body which is the glide 

plane of a dislocation. Let it contain a random distribution of micro-

structural berriers, which are represented as point obstacles to 

dislocation glide. The array is described by the statement that its 

points are randomly distrib~ted and by a characteristic length 

.Q, 
s 

(1) 

where a is the average area per point. The total area of the square 

array is 

A 
2 n. (.Q. ) 

s 
(2) 

where n is the total number of points contained. We can non-dimension-

alize the area by dividing through by the square of the characteristic 

length, so as to get 

n (3) 

and the edge length of the square area in dimensionless form is 

n 
1/2 

(4) 
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Let a dislocation be introduced into the glide plane. We model the 

dislocation as a flexible, extensible string of constant line tension 

r, its energy per unit length, and Burger's vector of magnitude b, 

which is taken to lie in the plane. Any dependence of r on the 

orientation of the line or on the mutual interaction of segments of the 

line will be neglected. 

Let a stress t be applied to the body containing the glide plane. -
If the dislocation moves so as to sweep out area A under the action of 

s 
8 this stress the work done is 

ow Tho A 
s 

where T is the resolved shear stress impelling glide 

-1 
T = (b•t•k)b. 

.-...;-"' 

(5) 

(6) 

and ~ is the normal vector to the plane. The dislocation is assumed to 

move freely unless pinned by obstacles. 

The resolved shear stress can be written in dimensionless form as 

* T T£ b/2f 
s 

(7) 

* Let the dislocation under the applied stress T encounter a configura-

tion of point obstacles denoted by i (Figure 1). Between two adjacent 
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impenetrable obstacles the dislocation will take the form of a circular 

arc of radius 

R 
r 
Tb 

which can"be written in dimensionless form 

* R 
R -r 1 

= -f/,- = Tbi = * 
S S 2T 

(8) 

(9) 

If the distance between any two adjacent obstacles along (i) exceeds 

* 2R or if the dislocation line anywhere intersects itself, then the 

configuration (i) is transparent to the dislocation and will be 

mechanically bypassed. If (i) is not transparent, its mechanical 

stability is governed by the strength of the dislocation-obstacle 

interaction. 

The obstacles in this study are assumed to be identical,. circularly 

symmetric, localized barriers to the dislocation whose effective range 

of interaction (d) is small compared to their mean separation (£ ). 
s 

Th h b d · b 1 16 A h k h b 1 ey may ence e treate as po1nt o stac es. t t e -t o stac e on 

the i-th configuration the dislocation line forms the asymptotic angle 

1)!~ (0 2_ 1)!~ 2_ TI) (Fig. 1). 
k The force, F., that the dislocation exerts 
1, 

on the k-th obstacle is simply, from Fig. 1 

or in dimensionless form 

F~ 
s~ = -.2: = 

1 2r 

(10) 

(11) 
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The dislocation-obstacle interaction is governed by a force

displacement relation,
16 

S(x/d), the effective dimensionless point 

17 force ·on the dislocation as it sweeps through (or folds around ) the 

obstacle. A non-transparent line configuration of obstacles constitutes 

a mechanically stable barrier to the glide of a dislocation under stress 

* k T if S. < S for all obstacles k on i, where Sc is a critical pre-
1 c 

Selected ObStacle Strength, Or if S
1
. < s ' Where s, iS taken tO be I the 

c 1 

k * maximum of the S .• The smaller stress T at which S. > S for all 
1 1 c 

configurations within the array (i.e., sl > sc where sl is the minimum 

* of Si) is the critical resolved shear stress 'c' and the dislocation 

line containing sl is the strongest configurati.on. * * When T < T the 
c 

dislocation will encounter the least one stable configuration within the 

array, and can glide only with the help of thermal activation. 

The force-displacement relation, S(x/d), depends on the details of 

interaction. For simplicity an interaction of simple step form is 

assumed with 

when 0 < x/d < 1 - -
otherwise 

If configuration (i) is ~echanically stable it must be passed by thermal 

activation. We ignore the possibility of thermally activated bow-out of 

the dislocation line between obstacles and require·that the activation 

occur at art obstacle. The activation energy is proportional to the 

area in force-displacement diagram (Figure 2) and may be wrftten in 

dimensionless form 

u(8 ) 
c 

k 
u(8.) 

1 
(12) 



0 r u 0 

-7-

where u(8) is the dimensionless area under both the force-displacement 

curve and a horizontal line of height 8. The activation barrier at the 

k-th obstacle on (i) is then 

or 

a(8 
c 

where a is the "dimensionless reciprocal temperature" 

a = 

and 

1 
-= 

* T 

2fd 
kT 

8~ 
l. 

for the dislocation-obstacle interaction of simple step form. 

(13) 

(14) 

(15) 

(16) 

The residence time of the dislocation in configuration i is the 

time required for thermal activation past at least one obstacle on i. 

Th d 1 'f h 'd . . 12 e expecte va ue o t e res1. ence t1.me l.S 

* . -1 
<t.> = A 

l. i 
(17) 

* where t is the dimensionless time vt, v is the mean frequency with 

which the dislocation attempts an obstacle (assumed constant), and A. 
l. 

is the activation parameter 

N. 
l. 

A.=~ 
l. k=l 

(18) 
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Here the summation is taken over theN. obstacles on i and 
1 

P~ = exp[-a g~] (19) 

is the probability for thermal activation past the (i,k) barrier in one 

attempt. The probability that activation will occur first at an obstacle 

k on (i) is
12 

n(k,i) (20) 

In thermally activated glide the dislocation encounters a sequence 

of obstacle configurations as it moves through the array (Figure 3). 

These define the "glide path" (X) of the dislocation. To compute the 

glide velocity, we assume that the glide is controlled by thermal acti-

vation in the sense that the time required for glide between successive 

stable configurations along x ~s negligible compared to the time 

required for thermal activation past these configurations. If there are 

r stable configurations along a particular path X through the array then 

the expected transit time of a dislocation along X is 

* <t > 
X 

r 
= E 

i=l 

-1 
fl.. 

1 
(21). 

Given that the dislocation may take any one of many available glide 

paths through the array, the expected transit time is 

* <t > E 
X 

* ~ <t > 
X X 

(22) 

where ~ is the probability that the path x is followed in a given trial. 
X 

A variety of ways have been suggested to calculate the average velocity 
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of a dislocation;
13 

such as from the total area swept through and the 

total time during motion; from the distance traveled by the end of a 

dislocation and the total time; and from the average area per activation 

event and the average expectation time. Here, the velocity of a glide 

dislocation is defined in a statistical sense only, but has the ergodic 

12 average 

* 

(23) 

where v is the dimensionless area swept out by the dislocation per unit 

time divided by its projected length, the edge length of the array. 

The determination of the velocity of glide through a random array 

of point obstacles is complicated since the available glide paths 

change with the applied stress, and the relative probabilities of these 

paths change with temperature. The glide path becomes precisely defined 

* only in the limit of very low or very high temperature (T ) or when the 

* applied stress is very close to the critical value (T ) for athermal 
c 

glide through the array. * When T * is small or T * 'V. T 
c 

the dislocation 

tends to follow the "minimum-angle" path (x
0

) obtained under the 

constraint that the dislocations pass each configuration (i) by activa-

k ting past the point k at which the angle ~. takes on its minimum value 
l. 

. k 
or equivalently, at which Si takes on its maximum value, Si. In the 

* limit of very low temperatures (T ~ 0) the velocity is given by the 

Arrhenius equation 

. . * 1/2 <v > = n exp[-a(Sc- S1)] (24) 

and the glide velocity is determined by the time required for thermal 
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activation at the weakest point along the strongest configuration in 

the array, where sl is the m~nimum of the si, i.e., the maximum force on 

the most stable configuration encountered during glide. 

* In the limit of very high temperatures (T ~ oo) the glide path 

becomes a "random" path (XR) whose configurations are obtained through a 

random sequence of activation events. In this case the velocity is 

again governed by an Arrhenius equation, with pre-exponential and acti-

vation energy given by suitable weighted averages over the random 

f
. . 12 con 1gurat1ons. At intermediate temperatures the equation governing 

glide are more complex, and cannot easily be set in Arrhenius form. 

Given a satisfactory analysis for planes of randomly distributed 

obstacles· one may treat the plastic deformation of an idealized crystal 

modeled as a stacking of planes of the same type. The model requires an 

additional assumption on the distribution of dislocations over the glide 

planes. The simplest assumption, which we shall make in the following) 

is that each glide plane contains active sources of non-interacting 

dislocations so that the expected number of dislocations is the same 

for all planes and all times during steady state deformation. Morris 

15 and Klahn termed. this a "uniform" distribution of dislocations. Given 

a crystal made up of S parallel glide planes containing a uniform 

distribution of dislocations the steady state strain rate may be written 

in dimensionless form 

* y (25) 

Here p is the expected number of dislocations intersecting a dimension

* less area perpendicular to the glide planes and v is the average of the 
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expected glide velocity for the individual planes in the crystal 

with * <v > 
R, 

* v 
1 s 
s~ * <v > 

R, 
(26) 

the expected value for the glide velocity of the dislocations 

gliding in the t-th plane and S is the total number of glide planes. 

If the individual glide planes contain a finite number of obstacles, 

then there may be appreciable scatter in the expected velocity from one 

plane to another. This will be reflected in an inhomogeneity of the 

crystal deformation, which will tend to concentrate on those planes over 

* which glide is easiest (<vt> is largest). As will be shown below, this 

plane-to~plane variation in glide velocity becomes less pronounced as 

* * the temperature (T )·is increased or as the stress (T ) is decreased. 

Hence crystal deformation becomes more uniform as stress is lowered at 

constant temperature or as temperature is raised at constant stress. 
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III. NUMERICAL ANALYSIS 

Foremafl and Hakin
13 

used computers for the first time in studying 

the glide of dislocations through random arrays of point obstacles and 

demonstrated the usefulness of computers in obtaining an accurate solution 

of this complex problem. The first code to simulate thermally activated 

14 glide of a dislocation was written by Klahn et al. They simulated 

* dislocation glide as a function of stress (T ), obstacle strength (S ), 
c 

* and temperature (T ) assuming a simple step form for the dislocation-

obstacle interaction. Morris and Klahn15 showed that fundamental 

theorems could be used to simplify the computational effort required in 

a simulation of thermally activated glide and give a precise statistical 

definition to the velocity obtained. 

Several interesting details of the thermally activated cutting of 

localized obstacles by the dislocation are exposed in these computer 

simulated experiments. Within the limits of the simplifying assumptions 

the computerized experiments (described in references 15 and 19) give 

what is believed to be an accurate statistical representation of 

thermally activated dislocation glide through randomly distributed 

obstacles. Thus, the computer simulation serves a two-fold purpose: 

first, it provides a guide for formulating an analytical approach to the 

statistical treatment of the subject; secondly it furnishes a 

reference for checking the accuracy of analytical approximations that 

might be designed for the solution of the problem. 

Given the statistics of dislocation glide through localized, 

randomly distributed point obstacles and assuming a dislocation-obstacle 

interaction of simple step form, the time required for the dislocation 
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to travel through the array can be calculated and thus the velocity of 

the dislocation as a function of stress, temperature and obstacle strength 

can be obtained. To study the behavior of a crystal made up of parallel 

glide planes each of which contain an expected number (n) of obstacles 

in a Poisson distribution we fixed the number of planes (10 in this 

study), the number of obstacles (10 3 or 104) and the obstacle strength 

(0.1 or 0.6). The results are reported below. 

The. dislocations were assumed uniformly distributed over the glide 

planes. Hence the dislocation density in equation (25) could be treated 

* as an arbitrary constant and the steady state strain rate y measured by 

* the velocity v . This velocity may then be calculated as a function of 

* * temperature (T ) and stress (T ) for given obstacle strength (S ). For 
c 

completeness, our simulation studies covered the whole range of tempera~ 

* ture (T ). In fact, the melting temperature of all real materials fall 

* -1 * -1 at T < 10 • Hence T ~ 10 ' gives an upper limit to physically 

reasonable values of the dimensionless temperature. 

To determine the strain rate -y* the expected glide velocity <v*> 

for each of the glide planes as a function of temperature and stress was 

found, and summed according to equation (26) to give the average glide 

velocity of the planes in the crystal, ...Y <v >, which is a measure for the 

* strain rate y (equation 25). The glide velocities were calculated 

through direct computer simulation. The simulation code employed is a 

modification of that described in reference 15. Its procedure is 

19 essentially as follows. 
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A. Simulation Procedures 

Using a pseudo-random number generator the code first fills the 

area of a square of size n with a random distribution of points of 

density one. The array is assumed periodic across all boundaries. The 

code then introduces a dislocation across the lower boundary of the 

array and allows it to move forward until it contacts points of the 

array. The dislocation bows out between adjacent points in a circle of 

continuously changing radius. The bow-out is terminated by one of 

three limits: 

a) First, the dislocation segment may bow-out to the equilibrium 

* radius R , given by equation 9, without contacting any third obstacle or 

violating the conditions of mechanical equilibrium (w > w ) at either of 
c 

the adjacent obstacles. In this case the dislocation segment is 

recognized to be mechanically stable. 

b) Second, the dislocation rna(' bow to the extent that it violates 

the condition w > w at one of the adjacent obstacles. In this case the 
c 

dislocation is allowed to pass the obstacle, a new segment is defined by 

the obstacles adjacent to the bypassed obstacle and the bow-out process 

begun anew. 

c) Third, the dislocation segment may contact a third obstacle 

during bow-out. In this case the segment is divided, and the stability 

of the new segments tested by allowing them to bow out in turn. 

This process of bowing the dislocation between obstacles, defining 

new segments when obstacles are contacted, and passing obstacles when w 

falls below w is continued until a dislocation configuration is found 
c 

in which all obstacles are connected by segments which have the 
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* equilibrium radius R and the angles at all obstacles are greater than 

the critical angle ~ • The dislocation is finally tested for self
c 

intersections, which, given the method of construction, must occur at 

some point other than at an obstacle. If there are se-lf-intersections, 

the dislocation is joined at the point of intersection, and a new search 

is begun. If there are no intersections, the configuration is recognized 

to be mechanically stable. 

k Given a stable configuration, the code computes the angles ~. along 
1 

it, and uses the assigned value of the thermal parameter, a, to compute 

the mean residence time according to equation (17). It then calls a 

random number and chooses an activation site according to the probability 

assignment given in equation (20). The chosen point is passed, and the 

code then initiates a new search to establish the next stable configura-

tion. In this way a statistically chosen glide path is generated and a 

transit time is computed according to equation (21). By allowing several 

sequential passages the ergodic average of the transit time is estimated 

* (equation 22) and the glide velocity <v > found. 

In simulating deformation of a crystal in which several glide planes 

must be treated simultaneously over a range of stress and temperature it 

is tedious and expensive to carry out a full statistical computation of 

<v*>. Morris and Klahn12 identified approximate techniques which 

appeared particularly promising for use at low-temperatures. In 

reference 15 these are specifically studied. The most promising is the 

minimal sequence approximation, which ignores the change in glide path 

with temperature and assumes that the glide path is reasonably well 

approximated by the "minimum angle" path, x
0

• This assumption greatly 
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simplifies the computational effort necessary in simulating glide. 

12 
Since the path x

0 
is fixed by stress a single computer simulation 

* experiment at a given value of T yields sufficient information to 

determine the glide velocity for glide along x
0 

through a particular 

array at any value of the temperature. 

B. Simulation Results 

The computer simulation studies reported in this section focus on 

fou-r problems: 1) the glide velocity and the accuracy of the "minimal 

sequence approximation," 2) the deformation of an idealized crystal, 

3) the dependence of flow stress on the temperature. Now, these will be 

discussed in turn. 

1. Glide Velocity 

As mentioned above, the glide velocity of a dislocation can be 

obtained with reasonable accuracy using the minimal sequence approxima-

tion. To check its validity over the whole range of temperature, we 

compare the glide velocity computed in the minimal sequence approxima-

tion to that obtained from stochastic treatment of thermal activation 

* for the stress T = 0.4 and obstacle strength S 
c 

0.6. The number of 

obstacles was taken to be 103 (Figure 4). As is apparent from Figure 4, 

* where we have plotted the dimensionless velocity v (specifically, its 

* negative natural logarithm) against the thermal parameter, a= 1/T , for 

the minimal sequence approximation (dashed line) and for a statistically 

chosen path (data bars indicating results of four independent trials), 

the approximation yields a reasonable result for values of the tempera

ture as high as 10-1 , which corresponds to the highest realistic value 

* of.T for a deformable metal (Cd at its melting point). We hence 
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employed the minimal sequence approximation to simplify the simulation 

of crystal deformation. 

Figure 5 illustrates the results obtained from simulation of a 10
4 

* point array for obstacle strength S = 0.1 and stresses T = 0.001, 0.01, 
c 

and 0.03, using the minimal sequence approximation. As we can see in 

* the figure the velocity increases monotonically with temperature (T ) 

* * and stress (T ). At low temperatures (a high) the -£n<v > vs. a curve 

approximates a straight line indicating a simple Arrhenius relationship. 

At high temperatures, however, a downward concavity (very pronounced at 

high stresses) is observed as shown in the data exhibited in Figures 3 

and 5. 

Given the accuracy of the minimal sequence approximation, in the 

following it will be used as the basis of a discussion of the dependence 

* * * of the glide velocity <v >on the temperature (T ), stress (T ) and 

obstacle strength (S ). From equations (18), (!'9) and (21) the expected 
c 

value of the transit time <t*> along the path Cx 0 ) may be written15 

where 

* <t > 

ro 
Q L exp[-a(Si- S1)] 

i=2 

exp[a(S - S.)] - exp[a(S - S1)] 
c 1 c 

(27) 

(28) 
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ro 
R = ~ Ti exp[-a(f\ - S1 ) 

i=2 

T. 
1 

ro 
~ Ti exp[a(Sc- Si)] - T1 exp[a(Sc- S1)] 
i=l 

N. 
1 

=1-{1+~ 
k=2 

exp[-a(S. - S~)]}-l 
1 1 

N. 
1 

L: 
k=l 

exp[-a(S - S~)] - exp[-a(S - S.)] 
c 1 c 1 

= ----------------------------------~-----
exp[a(S - S.)] c 1 

(29) 

(30) 

where r
0 

is the total number of stable configurations along the path 0 , 

k 
Si is the largest value of the obstacle strengths Si, and Ni is the 

number of obstacles in the i-th configuration. 

Figure 6 illustrates the dependence of the series Q, R, and T
1 

on 

temperature and stress. They all decrease as the 'temperature increases 

(a d~creases). The series Q is the lead correction term giving the 

* * decrement in <v > (increment in <t >) due to the fact that the disloca-

tion must activate past stable configurations in addition to the strongest 

along X 0 . 

* 
The series T. is the lead correction term giving the increment 

1 

to <v > from the possibility of thermal activation at a point other than 

the weakest in a stable configuration. The parameter T
1 

specifically 

measures this effect for the strongest configuration (i=l). The series 

' * R is the correction term giving the increment to v in configurations 

other than the strongest one. 
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To solve for the parameters Q, R and T1 analytically, hence to 

estimate the velocity of dislocations in the minimal sequence approxima-

tion, it is necessary to predict the properties of the obstacle 

configurations encountered in glide along the minimum-angle path, now 

unavailable. However, a brief discussion on the dependence of Q, R and 

T
1 

values on the stress, temperature and obstacle strength can be given. 

In reference 15, the expression (27) has a sign error in it (equation 

V.l) and dropping R lead the authors to unreasonable approximation for 

the glide velocity in limiting cases (equation V. 7). Thus, it is 

* * necessary to incorporate the parameter R into the discussion of T , T 

* dependence of <v >. 

* At very low temperatures (a arbitrarily large) the velocity <v > is 

given by an Arrhenius equation of the form 

* <v > (31) 

As temperature increases (a decreases) the parameters (Q-R) and T1 

* become significant and <v > deviates from the above equation. The 

direction of the deviation is determined by the relative magnitudes of 

(Q-R) and T
1

• 

At high temperatures, T
1 

approaches zero and the term (Q-R) 

determines the velocity. At low temperatures, however, T1 dominates and 

thus determines the velocity. 

The dominant influence of stress on the velocity is through the 

* str~ngth s1 • As T increases B1 increases, which in turn causes an 

* exponential increase in the glide velocity v . The value of Q and R 

decreases as stress increases and in the lfmit when T* is sufficiently 
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* close to T the array contains only one stable configuration and Q and R 
c 

* are identically zero. The series T1 is almost independent of T • The 

obstacle strength B appears explicitly in the exponential in equation 
c 

(31). * * A change in B at fixed T will cause.the velocity <v >to under-
c 

go an exponential change in the opposite direction. The series T
1 

is 

independent of B and the series Q and R increase as B increases, 
c c 

decreasing or increasing the velocity, respectively. 

Another striking result
20 

obtained from computer simulation studies 

is that the motion of a dislocation through a finite array of point 

obstacles is usually jerky, which is in qualitative agreement with the 

experimental results of Gilman and Johnson4 obtained by etching LiF 

specimens. A few positions within the array efficiently pin the dislo-

cation for times long compared to the transit times between the "strong" 

configurations. Consequently, the dislocation appears to jump almost 

discontinuously from one of these configurations to another. The degree 

of this "jerkiness" is principally determined by the temperature and 

decreases as temperature is raised. The jerkiness of the motion also 

tends to increase with applied stress, but stress is the dominant 

variable only when the temperature is very high, the obstacle strength is 

* very low, or the stress is close to T • 
c 

2. Deformation of an Idealized Crystal 

Given the behavior of a dislocation moving through randomly distri-

buted obstacles we define a crystal made up of ten parallel glide planes 

3 each of which contains an expected number (10 ) of obstacles in a Poisson 

distribution. The strength of the obstacles was fixed at 0.6, which 

21 theoretical work by Bacon, Kocks, and Scattergood suggests will 
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approximate the effective strength of an "impenetrable" particle in the 

plane. The force-displacement relation was assumed to have a simple 

step form. The obstacles hence roughly represent small precipitates or 

dispersion particles in the glide plane. Their number, 103 , was chosen 

to facilitate computation. A physically more realistic number would be · 

6 in the range of 10 

Figure 7 illustrates the central results obtained from simulation 

of the deformation of an idealized crystal made up of ten parallel glide 

planes having area 103 , a uniform distribution of non-interacting dislo-

cations and a Poisson distribution of obstacles having strength S = 0.6, 
c 

and an interaction function, S(x/d), of simple step form. The figure 

* * shows the glide velocity (plotted as -£n<v >) as a function of a.(= 1/T ) 

* for four values of the applied stress, T • The light curves show the 

data for each of the individual glide planes making up the crystal (taken 

in the minimal sequence approximation), the heavy line gives the result

* ing deformational velocity (v ) for the crystal as a whole. 

The glide velocities for the individual planes vary over a range 

which increases as the temperature is lowered or the stress is raised. 

The source of this scatter is straight-forward and may be easily seen 

from the expression for the glide velocity in the low temperature limit 

(equation 31) 

* <v > = n112 exp[-a.(S - S )] c 1 

When the reciprocal temperature a. is large the velocity is quite sensi-

tive to small plane-to-plane variations in the value of s
1

, the maximum 

force exerted on the most stable configuration encountered in glide 

along the minimum angle path. This variation is illustrated in reference 
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15. In a finite array the variation is significant and tends to 

* increase with the stress T • As the temperature is .raised the properties 

of the most stable configuration become less dominant. In the high 

temperature limit the glide velocity is determined by an average over 

* * the forces. Unless T is so near T that there are only a few stable 
c 

configurations in the array this average tends to be independent of the 

specific array, and the variation of <v*> becomes very small. 

The plane-to-plane variation in glide velocity is enhanced by the 

small array size used in this simulation, 10 3 , as opposed to a physically 

realistic number of perhaps 10
6

• Were the array size increased the 

variation would become less pronounced. Specific simulations of very 

large arrays have, however, shown that the plane-to-plane variation 

remains significant when the number of obstacles is increased to 106 or 

more. 

The consequences of the plane-to-plane variation in glide velocity 

are illustrated in Figure 8, where we show the appearance of a hypotheti-

cal tensile bar made'of our model crystal and strained 20% in tension at 

* * each of two resolved shear stresses, T 0.01 and T = 0.04, at tempera-

* At low stress (T = 0.01) the deformation is 

* markedly inhomogeneous at the lowest temperature (T 10-3), but rapidly 

* becomes homogeneous as temperature is raised. At high stress (T = 0.4) 

the deformation remains inhomogeneous even at T*· = 10-l, which roughly 

corresponds to the highest dimensionless temperature attainable in a 

typical metal. 

A second salient qualitative feature of the data shown in Figure 7 

concerns the possibility of representing the deformational velocity by 
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an Arrhenius equation. .....,* At low temperatures the velocity v is given by 

an Arrhenius equation of the form 

* 
1/2 

(-n-) exp[-a(S - s
1 

)] 
s c m 

(32) v 

where slm is the largest of the sl values for the s planes composing the 

* * crystal. However as T is increased (a decreased) v deviates from 

equation (32) by an amount which represents a balance between the 

increasing contribution of glide on secondary planes and the increasing 

importance of secondary activation events in the primary glide plane. 

* As discussed before, at intermediate temperatures v tends to fall below 

the values predicted by the asymptotic relation (32), a result reflected 

* in the light upward concavity of the curves at T = 0.01-0.25. However, 

* * ,.._,* as T approaches T this effect is reversed and v tends to exceed the 
c 

value predicted by equation (32), thus the downward concavity of the 

* curve for T = 0.4. Note, however, that the data shown here span man7 

* orders of magnitude of v . Were we to confine the data to a range (5-10 

* orders of magnitude of y ) which might be experimentally measurable, the 

data would be well fit by an Arrhenius equation at intermediate 

temperature. 

* At very high values of T (above the melting point of a plausible 

crystal in this specific example) a pronounced downward concavity is 

observed, as shown in the data exhibited in Figure 4. This phenomenon 

* reflects the rapid increase in v as the probable glide path of the 

dislocation changes from one dominated by the minimum angle path, x
0

, to 

the much easier glide paths which approach the random path, xR. The 

effect is a rapid thermal "softening" of the crystal, which has its 
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source entirely·in the thermal choice of the glide path, the properties 

and distribution of obstacles remains the same. 

The variation of slip morphology with stress at constant tempera-

ture is illustrated in Figure 9, where we have shown idealized tensile 

* * bars after a strain of 20% at four values of stress (T = 0.01 to T 

0 4) T* -. 10-2 . . at The tendency of slip to become more inhomogeneous as 

stress is raised is apparent in the figure. 

The change in slip morphology with temperature at constant strain 

* rate (v ) is illustrated in Figure 10. The r~sults qualitatively 

reproduce those reported in reference 15. Deformation rapidly becomes 

* homogeneous as T is raised, since both the increase in temperature and 

the decrease in flow stress favor homogeneous slip. 

3. Stress-Strain Rate Relation 

Figure 11 illustrates the variation of glide velocity with stress 

in tests conducted at constant temperature. In keeping with the 

conventional representation 

* * m* y (') (T ) (33) 

the data are plotted in logarithmic coordinates. The stress exponent m* 

is then the slope of the curve: 

m* -
* 3 £og T 

* 3 £og Y 
(34) 

As is apparent from Figure 11 the data do not show a well-defined stress 

,., * 
exponent. The parameter m1' is a function of both T and T . However, 
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again the data span many orders of magnitude of strain rate; were the 

data confined to a plausible experimental range a reasonabl' constant 

stress exponent would be obtained. 

* -3 At low temperature (T = 10 ) the value of m* is large and 

increases rapidly with stress, from a value of the order of 80 at 

* * T 0.01 to a value above 300 at T = 0.4. As temperature increases 

* both the stress exponent and its stress variation diminish. At T 

the stress exponent is about 10 at low stress, increasing to "-'35 as 

* * 10-l the stress approaches T • At T = stress exponent is near 1. 0 
c 

* low stress, increasing about 10 near T 
c 

(Table 1. 

4. Flow-Stress - Temperature Relation 

·k 

at 

Flow stress of a crystal is defined as the value of T to sustain a 

.....,* constant strain rate v in this model. We consider the ~ariation of 

flow stress with the testing temperature. Since at low temperatures the 

velocity is given by an Arrhenius form (equation 31) the temperature 

dependence of the flow stress at constant strain rate can be written in 

the form 

* T (35) 

where A and B are constants. The result depends on the precise value of 

* * v chosen, when T > 0 the flow stress is an increased function of 

* strain rate. Plots for two choices of v are shown in Figure 12. The 

* * flow stress decreases monotonically from the value T when T = 0. As 
c 

expected the rate of· decrease falls as the strain rate is raised. Since 

in this simple example there is no athermal component to the flow stress, 
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and since the maximum value of the activation barrier at an obstacle is 

* finite, the flow stress becomes zero at a finite value of T which 

* depends on strain rate and increases as v is raised. By extrapolation 

in Figure 12, ,* vanishes for T* > 3.5 x 10-2 when £n<v*> -20, and for 

* ~ -3 * T > 7.2 x 10 when £n<v > = -10. 
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IV. DISCUSSION 

The computer simulation experiments discussed above give us infor-

mation on the -statistics of overcoming of local obstacles by dislocations 

which is needed for a reliable analysis of the experimental data and for 

the further development of the theory of dislocation mobility, and 

crystal plasticity. However, the results obtained are sensitive on the 

approximations used and it is necessary to check the validity of the 

asstm1ptions and modifications of the model. Due to the lack of detailed 

knowledge concerning the density of obstacles, their strength, etc. in 

experiments on real materials a quantitative comparison at this stage is 

not possible. 

We will now discuss briefly the validity of the asstm1ptions: The 

asstmlption of randomness of point obstacles is a good one if the obstacles 

are non-interacting impurities, small dispersion particles or small 

voids. Interacting point obstacles or flexible forest dislocations will 

not be random. Obstacles were assumed to be point obstacles. In most 

models, the nature of obstacles has generally been unspecified, a proper 

description of point obstacle approximation is necessary. According to 

M . d s 16 l.' f h ff . f . . (d) . 11 orr1s an yn, t e e ectl.ve range o l.nteractl.on l.S sma 

compared to the mean separation (£ ) of the obstacles which are taken 
s 

to be identical circularly symmetric barriers to the dislocation glide, 

then the obstacles can be treated as point obstacles. Thus, in this 

model we are only concerned about barriers with short-range interaction. 

L . l'k b 1 d b 1 f d'ff . d . 22 d 1ne- l. e o stac es an o stac es o 1 erent s1ze an spacl.ng an 

non-localized obstacles10 have been treated in the literature. The 

nature of the motion of a dislocation through non-random obstacles can 
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of course be quite different. 

· Dislocations were assumed to be flexible, extensible strings of 

constant line tension, thus, neglecting effects of orientation, radius 

of curvature and the influence of elastic anisotropy on the energy of 

the dislocation. 
21 

Bacon et al. considered the change in line tension 

with dislocation type and obstacle spacing when the obstacles are strong. 

We also neglected the interactions between dislocation branches on 

either side of the obstacles, and interactions arising between disloca-

tions on different slip planes. 

A force-displacement diagram of simple step form was assumed. As 

indicated by Ono23 the diagrams discussed in the literature fall into 

two classes: "calculated" and "intuitive." Very few attempts have been 

made to calculate force-displacement diagrams for particular local 

obstacles and these are restricted to the simpler elastic interactions. 
24 

Since the temperature dependence of the flow stress is very sensitive to 

the shape of the force-displacement diagram an agreement between 

experimentally determined temperature dependence of flow stress and that 

predicted by a theory is not necessarily unique. 
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V. CONCLUSIONS 

The deformation behavior of an idealized crystal made by stacking 

of planes each of which contained non-intersecting dislocations and 

randomly distributed localized point obstacles is studied. Assuming a 

dislocation-obstacle interaction of simple step form and dislocations of 

constant line tension the following conclusions are made: 

1) When the obstacle strength is large, the minimal sequence 

approximation yields a good estimate for the glide velocity 

over a wide range of temperature (see Figure 4). As discussed 

earlier, at low temperatures and high stresses the dislocation 

follows the minimum angle path x0 and the strongest configura-

tion is strength determining. At moderate temperatures the 

difference between configurations diminishes. 

2) The motion of dislocations is more discontinuous at low tempera-

tures and low stresses. An idealized crystal made up of 

stacking of slip planes will show inhomogeneous behavior at low 

temperatures and high stresses, because the crystal deformation 

tends to concentrate on those planes on which glide is easiest. 

* 3) The stress exponent, m , will depend both on temperature and 

stress and will increase as stress increases or temperature 

decreases. This suggests that velocity and stress cannot be 

set in simple proportionality. 

4) The flow stress of an idealized crystal will decrease· moncton-

ically as temperature increases or strain rate decreases. 
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FIGURE CAPTIONS 

Configuration of a dislocation pressed against an array of 

obstacles by a stress T. 

(a) A possible force-displacement relation, S(x/d), for 

dislocation passage through an obstacle which forms a 

simple repulsive barrier. The shaded area indicates 

the activation energy (g~) if the dislocation exerts a 
1 

. k 
force S. on the obstacle. 

1 

(b) The assumed step form of the dimensionless dislocation-

obstacle interaction, S(x/d). The obstacle strength is 

S • The shaded area is g~, the activation energy 
c 1 

required when the dislocation exerts a force s~ on the 
l. 

obstacle. 

Sequence of four possible configurations as a dislocation 

glides into a random array of point obstacles. The activa-

tion side is indicated by the symbol (~). 

Comparison of the results using minimal sequence approxima-

tion (dashed line) and statistically chosen path. The data 

bars indicate results of four independent trials. 

Results of a simulation of thermally-activated glide through 

an array of 104 obstacles, showing the average glide velocity 

* <v > as a function of the thermal parameter a, at three 

* stresses: T = 0.001·, 0.01 and 0.03, with obstacle strength 

t3 0.1. c 

* Q, Rand Tl values as a function of a at T 0.01 and 

s = 0.1 for an 104 point array. 
c 



Figure 7. 

Figure 8. 

Figure 9. 
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Comparison of. the velocity-temperature relations for ten 

3 arrays of 10 obstacles having S = 0.6 at each of four 
c 

stresses (light lines). Also included are the velocity-

temperature curves for a crystal made up of these ten arrays 

tmder the assumption of a "tmiform" distribution of disloca-

tions over the planes (circles, heavy lines). 

Illustration of the deformation of a hypothetical crystal 

made up of ten glide planes whose properties are shown in 

. Figure 7. This figure shows the change in the appearance of 

the deformed crystal with temperature, assuming that the 

crystal contains a uniform distribution of dislocations of 

fixed density, and is given a total shear strain y = 20%. 

Variation of slip morphology with stress at constant temper-

~ 

ature. Idealized tensile bars are shown after a strain of 

* 20% at four values of stress (T 0.01, 0.1, 0.25, 0.4) at 

Figure 10. Illustration of slip morphology with temperature at constant 

* strain rate (tn<v > = -20). 

Figure 11. Illustration of the variation of glide velocity with stress 

in tests conducted at constant temperature. In this figure 

* * £n<v > is plotted against log T at constant temperature · 

* (T 

Figure 12. The variation of the flow stress with the testing tempera

* ture at constant strain rates (£n<v > = -10, -20). 
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