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DEFORMATION BEHAVIOR OF AN IDEALIZED CRYSTAL
Sabri Altintas
Inorganic Materials Research DiVision, Lawrence Berkeley Lagoratory and
Department of Materials Science and Engineering, College of Engineering
University of Califormia, Berkeley, California
ABSTRACT
The deformation behavior of an idealized crystal made by stacking
- of parallel‘slip planes is studied. Each slip plane is assumed to
contain active sources of dislocations leading to a constant density of
non-interacting dislocations in the plane which glide through randomly
diéfributed localized point obstacles, representing small precipitates.
The dislocation is assumed to have a constant line tension and the
dislocation-obstacle interaction is taken to have a simple step form.
Using results of cémputer simulation of therﬁally activated glide
through random arrays of point obstacles the deformation is modeled as
a function 6f temperature and applied étress, determining the strain
rate and the morphological characteristics of slip. Stress-strain rate

and flow stress-temperature relations are discussed.
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I. INTRODUCTTON

The plastic deformation of ‘a typical crystal is accomplished through
fhe motion of Aislocations. The available experimental data indicates '
that at moderate temperatureé:thé doﬁinant form of dislocation motion is
planar glide, which is impelled by the local value of the resolved shéar‘
stress and opposed by the resistance of the microstructure, The dominant
impediment to dislocation glide is often due to local microstructural
features such as small precipitates, "forest" dislocations, or solute
atoms which act as local barriers to dislocatién motio_n.l The poséibility
of regulating the density, distribution or character of these barriers
through the processes of alloying, irradiation and thermal and mechanical
treatment provides a vériety of methods to strengfhen crystalline
mélterials.'z-3 When these barriers are spread diffusely through the
1aFtice they may often be regarded as point barriers in an appfoximately
random distribution.

In the past several investigators used various experiméntal metﬁods
to study the velocity of individual dislocations%—sAlso a number of
theories which treat the motion of dislocations in crystals cdntaining

barriers have apj:reared.6_12

‘Most theories are based on the idea that
the dislocations overcome the barriers by a thermally activated process
and involve a number of simplifications.

Under suitable assumptions the problem Ofvthermally activated dis-
location glide through a figld of point barriers éan be simulafed for

13-15 12,15

have discussed how

direct solution. Morris and Klahn

statistical analysis and computer simulation may be combined to yield an
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esséntially complete solution for the velocity of dislocation glide as
a function of.applied stress, the temperature, and the nature of the
barriers. By adding an assumption on the distribution of mobile dislo- :
cations, the results may be extended to model deformation of a single . |
Jcrystal which is assumed to deform through simultaneous glide of non-

interacting dislocations on adjacent slip planes.

Morris and-Klahn15 reportéd preliminary results of a simulation of i
the deformation of a simple crystal at constant strain rate. The
results weie interesting in that the crystal not only showed the antici-
pated trend of flow stress with temperature but also exhibited a
characteristic shift in the morphology of deformation with temperature:
low temperature deformation concentrated on well-defined slip planes
which became less pronounced as the temperature was raised.

In this thesis, the plastic deformation of an ideal crystal made up
of a stacking of slip planes is simulated.’ The slip planes contain
randomly‘dispersed obstacles having roughly the properties expected of
small dispersion or precipitate particles. Furthermore, each slip plane
is assumed to contain active sources of dislocations leading to a con-
stant density of non-interacting dislocations in the plane. The
deformatidn is then modeled as a function of temperature and applied
stress, determining the strain rate and the morphological characteristics
of slip. The results are reported below. First, the basic equations

goverhing thermally activated glide will be reviewed and then the simu-

lation procedures will be described.
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II, STATISTICAL ANALYSIS ,

The assumptions and basic equations governing thermally_activated
glide of a simple dislocation through a field of randomly-distributed
poiﬁt barriers were developed in detail in feference 12, They may be
summarized as follows: Consider a plane of a body which is the glide
plane of a dislocation. Let it contain a random distribufion of micro-
structural berriers, which are represented as point obstacles to

dislocation glide. The array is described by the statement that its

points are randomly distributed and by a characteristic length
1/2 '
t, = @Y - (1)

where a is the average area per point. The total area of the square

array is
A=an () @

where n is the total number of points contained. We can non-dimension-
alize the area by dividing through by the square of the characteristic

length, so as to get
* S : '
A" =a/0)? = n 3)
and the edge length of the square area in dimensionless form is

¥ = (a2 o 12 o ()
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Let a dislocation be introdqced into the glide plane. We model the
dislocation as a flexible, extensiﬁle string of constant line tension
I', its energy per unit length, and Burger's vector of magnitude b,
which is taken to lie in the plane. Any dependence of T on the
orientaﬁion of the line or on the mutual interaction of segments of the
line will be neglected.

Let a stress t be applied to the body containing the glide plane.
If the dislocation moves so as to sweép out area AS under the action of

this stress the work done is8
6W = ThOA_ | (5)
where T is the resolved shear stress impelling glide

T = (betK)bE : (6)

'~

and k is the normal vector to the plane. The dislocation is assumed to
move freely unless pinned by obstacles.

The resolved shear stress can be written in dimensionless form as
*
T = Tlsb/ZF ‘ - N

*
Let the dislocation under the applied stress T encounter a configura-

tion of point obstacles denoted by i (Figure 1). Between two adjacent
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impenetrable obstacles the dislocation will take the form of a circular

“arc of radius

R = (8)

r
b i
which can be written in dimensionless form

T S S - (9)

If the distance between any two adjacent obstaclés along (i) exceeds
ZR* or if the dislocation line anywhere intersects itself, fhen the
configuration (i) is transparent to the diélocation and will be
mechanically bypaésed. If (i) is not transparent, its mechaﬁical
stability is governed by the strength of the dislocation-obstacle
interaction.

The obstacles in this study are assumed to be identical,.circularly
symmetrié, localized barriers to the dislocation whose effective range
of interaction (d) is émall coﬁpared to their mean separation (ZS).

They may hence be treated as point obstacles.l6_ At thé k-th obstacle on

the i-th configuration the dislocation line forms the asymptotic angle

wk (0 =< ¢?.j m) (Fig. 1). The fbrce, F?, that the dislocation exerts

i ;

on the k-th obstacle is éimply, from Fig. 1
k _ 1k
Fjo=2r cos(5¥,) . (10)

or in dimensionless form

Fk
k i 1k
B = 37 = cosgyp | an



—6—

The dislocation-obstacle interaction is governed by a force-
displacement relation,l6 B(x/d), the effecFive dimensionless point
force '‘on the dislocation as it sweeps tbr0ugh (or folds aroundl7) the
obstacle.v A non-transparent line configuration of obstacles constitutes
a mechanically stable barrier to ﬁhe glide of a dislocation under stress
T* if B? < Bé for all obstacles k on i, where BC is a critical pre-
selected obstacle strength, or if Bi < Bc, where Bi is taken to be  the
maximum of the BE. The smaller stress-r* at whiéh Bi > BC for all
configuratiéns within the array (i.e., Bl > BC where Bl is the minimum
of Bi) is the critical resolved shear stress T:, and the dislocation
line containing Bl is the strongest configuration. When T* <.T: the
dislocation will encounter the least one stable configuration within the
array, and can glide only with the help of thermal activation.

The force—displécement relation, B(x/d), dépends on the details of

interaction. For simplicity an interaction of simple step form is

assumed with

B =28 when 0 <x/d <1

B =0 otherwise

If configuration (i) is ﬁechanically_stablé it must 5e.passed by thermal
activationzv We ignore the possibility of thermally activated bow-out of
the dislocation line between obstacles and require"tha; the activation
occuf at an obstacle. The activation energy is pfoportional to the

area in force-displacement diagram (Figure 2) and may be wrfttén in

dimensionless form

gk = u(B) - u(8) | | (12)
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where u(B) is the dimensionless area under both the force-displacement
curve and a horizdntal line of height 8. The activation barrier at the

k-th obstacle on (i) is then

*k k
AG [ = 2Td 8, (13)

or
Bk

_*k ] |
AG i/kT = a(BC - i) (14)

where o is the "dimensionless reciprocal temperature'

1 2Trd
o=l -20d | (15)
T kT ‘
and
k _ k
8, = BC - Bi (16)

for the dislocation-obstacle interaction of simple step form.
The residence time of the dislocation in configuration i is the
time required for thermal activation past at least one obstacle on 1i.

The expected value of the residence time i312

<tf> =‘A;:1 17)
i i

* :
where t ‘is the dimensionless time vt, v 1is the mean frequency with
which the dislocation attempts an obstacle (assumed constant), and Ai

is the activation parameter

Ni v
=3 pK (18)
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Here the summation is taken over the Ni_obstacleS'on i and
k _ k )
P, = exp[-a gi] | (19)

is the probability for thermal activation past the (i,k) barrier in one
attempt. The probability that activation will occur first at an obstacle

k on (i) is12

n(k,1) = A7 exp(-o g)) - (20)

In thermally activated glide the dislocation encounters a sequence
of obstacle configurations as it moves through the array (Figure 3).
These define the 'glide path" (X) of the dislocétion. To compute the
glide velocity, we assume that the glide is controlled by thermal acti-
vation in the sense that the time required for glide between successive
stable configurations along X is negligible compared to the time
required for thermal activation past these configﬁrations. If there are
r stable configurations along a particular pat@ x through the array then

the expected transit time of a dislocation along X is

* Lo-1 . .

<;X> = 2: Ai 2D
i=1 . :

Given that the dislocation may take any one of many available glide

paths through the array, the expected transit time is

* * :

<t > = <t > 22
Zuxx ,‘ (22)
X-

where uX is the probability that the path x is followed in a given trial.

A variety of ways have been suggested to caléulate'the average velocity

'
’
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of a dislocation;13 such as from the total area sﬁept through and the
total time during motion; from the distance traveled by the end of a
dislocatioﬁ and the total time; and from the average area per activation
event and the average expectation time. Here, the velocity of a glide

dislocation is defined in a statistical sense only, but has the ergodic

average
% %
<y > = nl/2/<t > (23)

where v* is the dimensionless area swept out by the dislocation per unit
time divided by its projected length, the edge length of the array.

The determination of the velocity of glide through a random érray
of point obstacles is complicated since the available glide paths
change with the applied stress, andAthe relative probabilities of these
paths change with temperéture. The glide path bepomes‘precisely defined
only in thé'limit of very low or very high temperature (T*) or when the
applied stress is very close to the critical value (r:) for'athermal
glide through the array. When T* is small or T* N'Tz the dislocation
tends to follow the "minimum-angle'" path (xo) obtained under the
constraint that the diélocations pass each configuration (i) by activa-
ting past the point k at which the angle w? takes on its minimum value
or equivalently, atlwhich B? takes on its maximum Qalue, Si. In the
limit of very low temperatures (T* -+ 0) the veloéity is given by the

Arrhenius equation
K 1/2 g
<v > =n exp[—oc(BC - Bl)] (24)

and the glide velocity is determined by the time required for thermal
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activation at the weakest point along the strongest configuration in
the array, where Bl is the m}nimum of the Bi’ i.e., the maximum force on
the most stable configuration encountered during glide.

In the limit of very high temperatures (T* + ») the glide path
becomes a "random" path'(XR) whose configurations are obtained through a
random sequence of activation events. In this case the velocity is
again governed by an Arrhenius equation, with pre-exponential and acti-
vation energy given by suitable weighted averages over the random
configurations.12 At interﬁediate temperatures the equation governing
glide are more complex, and cannot easily be set in Arrhenius form.

Given a satisfactory analysis for planes of randomly distributed
obstacles one may treat the plastic deformation of an idealized crystal
modeled as a stacking of planes of the same type. The model requires an
additional assumption on the distribution of dislocations over the glide
planes. The simplest assumption, which we shall make in the following
is that each glide plane contains active sources of non-interacting
dislocations so that. the expected number of dislocations is the same
for all planes and all times du:ing steady state deformation. Morris
and Klahn15 termed this a "uniform" distribution of dislocationé; Given
a'crystal made up of S parallel glide planes containing a uniform
distribution of dislocations the steady state strain rate may be written

in dimensionless form
K Wk ‘ :
vy = (pb/zs)v (25)

Here p is the expected number of dislocations intersecting a dimension-

. -
less area perpendicular to the glide planes and V is the average of the
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expected glide velocity for the individual planes in the crystal

*
v =

AT

S
* .
> vy , (26)
=1 .

with <v:> the expected value for the glide velocity of the dislocations
gliding in the %-th plane and S is the total numbef of glide planes.

If the individual glide planes contain a.finite number of obstacles,
then there may be appreciable scatter in the expected vélocity from one
plane to another. This will be reflected in an inhomogeneity of the
crystal deformation, which will tend to concentrate on those planes over
which glide is easiest (<v:> is largest). As will be shown below, this
plane-to-plane variation in glide vélocity becomes less pronounced as
the temperature (T*)'is increased or as the stress (t*) is decreased.
Hence crystal deformation becomes more uniform as stress is lowered at

constant temperature or as temperature is raised at constant stress.
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III. NUMERICAL ANALYSIS

Foreman and Makinl3 used computers for the first time in studying
the glide of dislocations through random arfays of point obstacles and
demonstrated the usefulness of computers in obtaining an accurate solﬁtion
of this complex problem; The first code to simulate thermally activated
glide of a dislocation was written by Klahn et 51.14 They simulated
dislocation glide as a function of stress (T*), obstacle strength (BC),
and témperature (T*) assuming a simple step form for the dislocation-
obstacle interaction. Morris and Klahn15 showed that fundamental
theorems could Be used to simplify the computational effort required in
a simulation of thermally activated glide and give a precise statistical
definition to the velocity obtained.

Several intefesting details of the thermally activated cutting of
localized obstacles by the dislocation are exposed in fhese computer \
simulated e;periments. Within the limits of tﬁe simplifying assumptions
the computerized experiments (described in references 15 and 19) give
what is believed to be an accurate statistical representation of
thermally.activated dislocation glide through randomly distributed
obstacles. Thus, the computer simulation serves a two-fold purpose:
first, it provides a guide for formulating an analygical approach to the
statistical treatment of the subject; secondly it furnishes a
reference for checking the accuracy of analytical approximations that
might be designed for the solution of the problem.

Given the statistics of dislocation glide through localized,

randomly distributed point obstacles and assuming a dislocation-obstacle

interaction of simple step form, the time required for the dislocation
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to travel fhrough the arréy can be calculated and thus the velocity of

the dislocation as a function of stress, temperature and obstacle strength
can be obtained. To study the behavior of a crystal made up of parallel
glide planes each of which contain an expected number (n) of obstacles

in a Poisson distribution we fixed the number of planes (10 in this

study), the number of obstacles (lO3

or 104) and the obstacle strength
(0.1 or 0.6). The results are reported below. |

The diSlocatiohs were assumed uniformly distributed over the glide
planes. Hence the dislocation density in equation (25) could be treated
as an arbitrary constant and the steady state strain rate ?* measured by
the velocity ?*. This velocity may then be calculated as a function of
temperature (T*) and stress (T*) for giyen obstacle strepgth (Bc)' For
completeness, our simulation studies covered the whole range of tempera-
ture (T*). In fact, thé melting temperature of all real materials fall
at T* < 10;1. Hence T*.N 10_;/L gives an upper limit to physically
reasonable values of the dimensi;nless tempe:ature.

To determine the strain rate ?* the expected glide velocity <v*>
for each of the glide plénes as a function of temperature and stress was
found, and summed according to equation (26) to give the average glide
velocity of the planes in the crystai, <V*>, which is a measure for the
strain rate.y* (eQuaﬁion 25). The glide velocipies were calculated
through difect computer simulation. The simulation code employed is a
modification of that described in reference 15. Its procedure is

essentially as follows.19
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A. Simulation Procedures

Using a pseudo-random number generator the ddde first fills the
area of a square of size n with a random distribution of points of
density one. The array is assumed periodic acfoss‘all boundaries. The
code then introduces a dislocation across the léwér boundary of the
array and allows it fo move forward until it contacts points of the
array. Therdislocation bows out between adjaceﬁt points in a circle of
continuously changing radius, The bow-out is terminated by one of
three limits:

a) First, the dislocation segment may bow—ouﬁ to the equilibrium
radius R*, given by equation 9, without contacting any third obstacle or
violating the conditions of mechanical eQuilibrium (v > wc) at either of .
the adjacent obstacles., In this case the dislocation segment is
recognized to be mechanically stable.

b) Second, the dislocation may bow to the éxtent that it violates
the condition ¢ > wc at one of the adjacent obstacles. 1In this case the
dislocation‘is allowed to pass the obstacle, a new segment is defined by
the obstacles adjacent to the bypassed obstacle and the bow-out process
begun anew.

c) Third, the dislocation segment may contact a third obstacle
during bow-out. In this case the segment is divided, and the stability
of the new segments tested by allowing them to bow.out in turn.

This process of bowing the dislocation between obstacles, defining
new segments when obstacles are contacted, and passing obstacles when Y
falls below wc is continued until a dislocation configuration is_found

in which all obstacleé are connected by segments which have the
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equilibrium radius R* and the angles at all obstacles are'greater than
the critical angle wc. The dislocation is finally tested for self-
intersections, which, given the method of construction, must occur at
some point other than at an obstacle. If there.are self-intersections,
the dislocation is joined at the point of intersection, and a new search
is begun. If there are no intersections, the configuration is recognized
to be mechanically stable.

Given a stable configuration, the code computes the angles w? along
it, and uses the assignen value of the thermal parameter, o, to compute
the mean residence time according to equation (17). It then calls a
random number and chooses an activation site according to the probability
assignment given in equation (20). The chosen point is passed, and the
code then initiates a new search to establish the next stable configura-
tion. In this way a stetistically chosen glide path is generated and a
transit time is computed according to equation (21). By allowing several
sequential passages the ergodic average of the transit time is estimated
(equation 22) and the glide velocity <v*> found.

In simulating deformation of a crystai in which several glide planes
must be treated simultaneously over a range of stress and temperature it
.is tedious and expensive to carry out a full statistical computation of
<v*>. Morris and Klahn12 identified approximate techniques which
appeared particularly promising for use at low-temperatures. In
reference 15 these are specifically studied. The most promising is the
minimal sequence approximation, which ignores the change in glide path

with temperature and assumes that the glide path is reasonably well

approximated by the "minimum angle'" path, Xg This assumption greatly
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simplifies the computational effort necessary in simulating glide.
Since the path Xg is fixed by stress12 a single computer simulation
experiment at a given value of T*.yields sufficient information to
determine the glide velocity for glide along Xg through a particular

array at any value of the temperature.

B. Simulation Results

The computer simulation studies reported in this section focus on
AfOUr problems: 1) the glide velocity and the accuracy of the "minimal
sequence appro#imation," 2) the deformation of an‘idealized crystal,
- 3) the dependence of flow stress on the temperatﬁre. Now,‘these will be

discussed in turn.

1. Glide Velocity

As mentioned above, the glide velocity of a dislocation can be
obtained with reasonable accuracy using the minimal sequence approxima-
tion. To check its validity over the whole range of temperature, we
cémpare the glide velocity computed in the minimal sequence approxima-
tion to that obtained from stochastic treatment of thefmal activation
for the stress T* = 0.4 and obstacle strength BC = 0.6. - The number of
obstacles was taken to be 103 (Figure 4). As is apparent from Figure 4,
where we have plotted the dimensionless velocity v* (specifically, its
negative natural logarithm) against the thermai parameter; o = 1/T*, for
the minimal sequence approximation (dashed line) and for a statistically
chosen path (data bars indicating results of four‘independentatrials),
the approximétion yields a reasonable reéult fér values of the tempera-

ture as high as lO_l,'which corresponds to the highest realistic value

* :
of T for a deformable metal (Cd at its melting point). We hence
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employed the minimal sequence approximation to simplify the simulation

of crystal deformation.

Figure 5 illustrates the results obtained from simulation of a lO4

point array for obstacle strength BC = 0.1 and stresses r* ; 0.001, 0.01,
and 0.03, using the minimal sequence approximation. As we can see in
the figure’the velocity increases monotonically with temperature (T*)
and stress (T*). At low temperatures (o high) the —2n<v*> vS. o curve
approximates a straight line indicating a simple Arrhenius relationship.
At high temperatures, however, a downward concavity (very pronounced at
high stresses) is observed as shown in the data exhibited in Figures 3
and 5.

Given the accuracy of the minimal sequenée approximation, in the
following it will be used as the basis of a discussion of the dependence
of the glide velocity-<v*> on the temperature (T*), stress (T*) and
obstacle strengfh (BC). From equations (18), (19) and (él) the expected

*
value of the transit time <t > along the path (xo) may be writtenl

<t*> ={1+Q-R-~ Tl} exp[a(Bc - Bl)] (27)
where
o
Q= iZ=32 exp[-a(8, - 8))]
%o
12=:1 expla(B, - 8,)] - expla(B_ - B))] |
= : (28)

expla(8_ - 8))]
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r

0 :
R = E;é Ti exp[—a(Si - Bl)
r
0
{31 T, expla(8, - 8;,)] - T, expla(8_ - 6,)]
=1 - (29)
expla(B - B))]
Ni
Ti =1 - {1 + 2: exp[-ot(Bi - B?)]}-l
k=2 .
N,
2 k
2 exp[-a(B_ - B.)] - exp[-a(B_ - 8.)]
1 c i c i
- _ (30)

eXP[a(BC - Bi)]

where r. is the total number of stable configurations along the path 0’

0
Bi is the largest Yalue of the obstacle strengths 8?, and Ni is the
number of obstacles in the i-th configuration.

Figure 6 illustrates the dependence of the series Q, R, and Tl oﬁ
temperature and stress. -They all decrease as the’témperature increases
(d dgcreases). The series Q is the lead cor?ection term giving the
decrement in <v*> (increment in <t*>) duevfo the fact that the disloéa—

tion must activate past stable configurations in addition to the strongest

along X The series Ti is the lead correction term giving the increment

0"
* ) ) 3 3 3 . . I3 s
to <v > from the possibility of thermal activation at a point other than

the weakest in a stable configuration. The parameter T. specifically

1
measures this effect for the strongest configuration (i=1). The series

: _ . *
R is the correction term giving the increment to v in configurations

other than the strongest one.
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To solve for the parameters Q, R and Tl analytically, hence to
estimate the velocity of dislocations in the minimal sequence approxima-
tion, it is necessary to predict the properties of the obstacle
configurations encounte;ed in giide along the minimum-angle path, now
‘unavailable. However, a brief discussion on the dependence of Q, R and
Tl values on the stress, temperature and obstacle strength can be given.
In reference 15, the expression (27) has a sign error in it (equation
V.1l) and dnopping R lead the authors to unreasonable approximation for
the glide velocity in limiting cases (equation V.7). Thus, it is

* *
necessary to incorporate the parameter R into the discussion of T , T

*
dependence of <v >,

*
At very low temperatures (o arbitrarily large) the velocity <v > is

given by an Arrhenius equation of the form

<> = 0% expl-ats_ - 8))] (31)

As temperature increases (o decreases) the paremeters (Q-R) and Tl
become significant and <v#> deviates from the above equation. The
direction of the deviation is determined by the relative magnitudes of
(Q-R) and Tl'

At high temperatures, T

1 approaches zero and the term (Q-R)

determines the velocity. At low temperatures, however, Tl dominates and
thus determines the velocity.
The dominant influence of stress on the velocity is through the
* - > » -
strength Bl. As 1 increases Bl increases, which in turn causes an
. . _
exponential increase in the glide velocity v . The value of Q and R

, . A . * .. '
decreases as stress increases and in the limit when v is sufficiently
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close to T: the array contains only one stable configuration and Q and R
are identiéally ze#o. The series Tl is almost independent of T*. The
obstacle strength BC appears explicitly in the exponential in equation
(31). A cﬁange in B_ at fixed T* will cause.the velocity <v*> to under-
go an expénential change in the opposite direction. The series Tl is
independent of BC and the series Q and R increase as BC increases,
decreasing or increasing the velocity, respectively.

Another striking result20 obtained from computer simulation studies
is that the motion_of a dislocation through a finite array of point
obstacles is usually jerky, which is in qualitative agréement with the
experimental results of Gilman and Johnson4 obtained by etching LiF
specimens. A few positions within the array efficiently pin the dislo-
cation for times long compared to the transit times between the "strong"
configurations. Consequently, the dislocation appears to jump almost
discontinuously from one of these configurations to another. The degree
of this "jerkiness" is principally determined by the temperature and
decreases as temperature is raiéed. The jerkiness of the mqtion also
tends to increase with applied stress, but stress is the dominant
variable-only when the temperature is very high, ﬁﬁe obstacle strength is

s *
very low, or the stress is close to TC.

2, Deformation of an Idealized Crystal

Given the behavior of a dislocation moving through randomly distri-
buted obstacles we define a crystal made up of ten parallel glide planes
each of which contains an expected number (103),of obstacles in a Poisson
distribution. The streﬁgth of the obstacles was fixed at 0.6, which

theoretical work by Bacon, Kocks, and Scattergood21 suggests will
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approximate the éffective strength of an "impenetrable" particle in the
plane. The force-displacement relation was assumed to have a simple
step form. - The obstacles henée foughly represent small precipitates or
dispersion particles in the glide plane. Their number, 103, was chosen
to facilitate computation. A physically more realistic number would be -
in the range of 106.

Figure 7 illustrates the central results obtained from simulation
of thebdeformation of an idealized crystal made up of ten parallel glide
planes having area 103, a uniform distribution of non-interacting dislo-
cations and a Poisson distribution of obstacles having strength BC = 0,6,
and an interaction function, B8(x/d), of simple step form. The figure
shows the glide velocity (plotted as —2n<v*>) as a function of a(= l/T*)
for four valﬁes of.the applied stress, T*. Thé light curves show the
data for each of the individuél glide planes making up the crystal (taken
in the minimal sequenée approximation), the heavy line gives the result-
ing deformationél velocity (v*) for the crystal as a whole.

The glide velocities for the individual planes vary over a range
which increases as the temperatufe is lowered or the stress is raised.
The source of this scatter is straight-forward and may be easily seen
from the expression for theAglide velocity in the low temperature limit
(equation 31)

<v*> = nl/2 exp[-—tx(Bc - Bl)]

When the reciprocal temperature o is large the velocity is quite sensi-
tive to small plane-to-plane variations in the value of Bl, the maximum
force exerted on the most stable configuration encountered in glide

along the minimum angle path., This variation is illustrated in reference
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15. In a finite array the variation is significant and tends to
increase with the stress T*. As‘the temperature'ié,raised the properties
of'the most stable configuration become less dominant. In the high
temperatufeﬂlimit the glide velocity is determined by an average over

the forces. Unless T* is so near T: that there are oniy a few stable
configurations in the array this average tends to be independent of the
specific array, and the variation of <V*> becomes very small.

The plane-to-plane variation in ‘glide wvelocity is enhanced by the
small array size used in this simulation, 103, ae opposed to a physically
realistic number of perhaps 106. Were the array size increased the
variation would become less pronounced. Specific simulations of very
large arrays have, however, shown that the plane-to-plane variation
remains significant when the number of obstacles is increased to ib6 or
more.

The consequences of the plane—to~plene veriation in glide velocity
are illustrated in Figure 8, where we show the'appearance of a hypotheti-
cal tensile bar made of our model crystal and strained.ZO%_in tension at
each of two_resolved shear stresses, T* = 0.01 and T* = 0.04, at tempera-

* -3 1

. - ) * -
T = 10 and 10 ', At low stress (1 = 0.,01) the deformation is

' * -
markedly inhomogeneous at the lowest temperature (T = 10 3), but rapidly

. *
becomes homogeneous as temperature is raised., At high stress (1t = 0.4)
, * -1 .
the deformation remains inhomogeneous even at T = 10 ~, which roughly

corresponds to the highest dimensionless temperature attainable in a

typical metal.

A second salient qualitative feature of the data shown in Figure 7

concerns the pessibility of representing the defofmational velocity by
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*
an Arrhenius equation. At low temperatures the velocity ¥V is given by

an Arrhenius equation of the form

n1/2

S

v = (

) exp[—a(BC - Blm)] (32)

where Blm is the largest of the Bl values for the s planes composing the
crystal, However as T* is increased (o decreased) %ﬁ deviates from
equation (32) by an amount which represents a balance between the
incfeasing contribution of glide on secondary planes and the increasing
importance of secondary activation events in the primary glide plane.

As discussed before, at intérmediate temperatures'v* tends to fall below
the values predicted by the asymptotic relation (32), a result reflected
in the light upward concavity of thé curves at T* = 0.01-0.25. However,
as T* approaches T: this effect is reversed and ?ﬁ tends to exceed the
value predicted by equation (32), thus the downward concavity of the
curve for T% = 0.4, Note, however, that the data shown here span many
orders of magnitude of ?ﬁ. Were we to confine the data to a range (5-10
orders of magnitude of ?*) which might be experiméntally measurable, the
data would be well fit by an Arrhenius equation at intermediate
temperature.

At very high values of T* (above the melting point of a plausible
crystal in this specific example) a pronounced downward concavity is
observed; as shown in the data exhibited in Figure 4. This phenomenon
reflects the rapid increase in V# as the probable glide path of the
dislbcation changes from one dominated by the minimum angle path, XO; to
the much'easier glide paths which approach the random path, XR‘ The

effect is a rapid thermal "softeniﬁg" of the crystal, which has its
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source entirely.-in the thermal choice of the glide path, the properties
and distribution of obstacles remains the same.
The variation of slip mdrphology with stress at constant tempera—
ture is illustrated in Figure 9, where we have shown idealized tensile
_ . . * *
bars after a strain of 207 at four values of stress (1 = 0.0l to t =
. * -2 ' .
0.4) at T = 10 ©, The tendency of slip to become more inhomogeneous as
stress is raised is apparent in the figure.
The change in slip morphology with temperature at constant strain
* .
rate (¥ ) is illustrated in Figure 10. The results qualitatively
reproduce those reported in reference 15. Deformation rapidly becomes
. .
homogeneous as T 1s raised, since both the increase in temperature and

the decrease in flow stress favor homogeneous slip.

3. Stress-Strain Rate Relation

Figure 11 illustrates the variation of glide velocity with stress
in tests conducted at constant temperature. In keeping with the

conventional representation

e (H™ - (33)

the data are plotted in logarithmic coordinates. The stress exponent m*

is then the slope of the curve:

*
% = 3 Rog 1T (34)

As is apparent from Figure 11 the data do not show a well-defined stress

exponent. The parameter m* is a function of both T

<

* :
and T . However,
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again the data span many orders of magnitude of strain rate; were the
data confined to a plausible experimental range a reasonabl®s constant
stress exponent would be obtained.

3) thé value of m* is large and

* .
At low temperature (T = 10
increases rapidly with stress, from a value of the order of 80 at
% % .
T =.0,01 to a value above 300 at T = 0.4. As temperature increases
. | . L * -2
both the stress exponent and its stress variation diminish., At T = 10
the stress exponent is about 10 at low stress, increasing to 35 as

: ] * -1 ‘
stress approaches TC. At T = 10 the stress exponent is near 1.0 at

: *
low stress, increasing about 10 near TC (Table 1.

4, Flow-Stress — Temperature Relation

Fiow stress of a crystal is defined as the value of T to sustain a
constant strain rate V# in this model. We consider the variation of
flow stress with the testing temperature. Since at low temperatures the
velocity is given by an Arrheniusvform (equation 31) the temperature
dependence of the flow stress at conétant strain rate can be written in

the form

T = A - BH?/3 - (35)

where A and B are constants. The result depends on the precise value of
N* ‘ * . ‘
V' chosen, when T > 0 the flow stress is an increased function of
%
strain rate.  Plots for two choices of ¥ are shown in Figure 12, The
' * * '
flow stress decreases monotonically from the value T. when T = 0. As

expected the rate of decrease falls as the strain rate is raised. Since

in this simple example there is no athermal component to the flow stress,
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and since the maximum value of the activation barrier at an obstacle is

' *
finite, the flow stress becomes zero at a finite value of T which

' *
depends on strain rate and increases as v 1is raised. By extrapolation

* ' * o - *
in Figure 12, t wvanishes for T > 3.5 x 10 2 when 2n<v > = -20, and for

* -3 *
T > 7.2 x 10 when 2&n<v > = =10,
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IV. DISCUSSION

The computer simulation experiments discussed above give us infor-
mation on the statistics of overcéming of local obstacles by dislocations
which is needed for a reliable‘analysis of the experimental data and for
the further development of the theory of dislocation mobility, and
crystal plasticity. However, the results obtained are sensitive on the
approximaﬁions used and it is necessary to check the validity of the
assumptions and modifications of the model. Due to the lack of detailed
knowledge concerning the density of obstacles;'their strength, etc. in
experimehts on real materials a quantitative comparison at this stage is
not possible.

We will now discuss briefly the validity of the assumptions: The
assumption of randomness of point obstacles is a good one if the obstacles
are non-interacting impurities, small dispersion particles or small
voids. rInteracting point obstacles or flexible forest dislocations will
not be random. Obstacles were assumed té be point obstacles. In most -
models, the natﬁre of obstacles has generally been unspeéified, a proper
description of point obstacle approximation is necessary. According to
Morris and Syn,16 if the effective range of interaction (d) is small
compared to the mean sepafation (QS) of the obstacles which are taken
to be identical circularly symmetric barriers to the dislocation glide,
then the obstacles can be treated as point obstacles. Thus, in this
model we are only concerned about barriers with short-range interaction.
Line-like obstacles and obstacles of different size and spacing22 and

non-localized obstacles10 have been treated in the literature. The

nature of the motion of a dislocation through non-random obstacles can
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of course be quite different.

" Dislocations were assumed to be flexible, extensible strings of
constant line tension, thus, neglecting effects of orientation, radius
of curvature and the influence of elastic anisotropy on the energy of
the dislocation. Bacon et al.21 considered the change in line tension
with dislqcation type and obstacle spacing when the obstacles are strong.
We also neglected the interactions between dislocation branches on
either side of therobstacles, and interactions arising between disloca-
tions on different slip planes.

A force-displacement diagram of simple step form was assumed. As
indicated by Ono23 the diagrams discussed in the literature fall into
two classes: "calculated" and "intuitive." Very few attempts have been
made to calculate force-displacement diagrams for particular local
obstacles and these are restricted to the simpler elastic interactions.
Since the temperature dependence of the flow stress is very sensitive to
the shape of the force-displacement diagram an agreement between
experimentally determined temperature dependence Qf flow stress and that

predicted by a theory is not necessarily unique.
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V. CONCLUSIONS

The deformation behavior of an idealized crystal made by stacking

of planes each of which contained non-intersecting dislocations and

randomly distributed localized point obstacles is studied. Assuming a

dislocation—-obstacle interaction of simple step form and dislocations of

constant line tension the following conclusions are made:

1)

2)

3)

4)

When the obstacle strength is large, the minimal sequence
approximation yields a good estimate for the glide velocity
over a wide range of temperature (see Figure 4). As discussed
egrlier, at low temperatures and high stresses the dislocation
follows the minimum angle path X and the strongest configura-
tion is strength determining. At moderate temperatures the
difference between configurations diminishes.

The motion of dislocations is more diséontinuous at low tempera-
tures and low stresses. An idealized‘crystal.made up éf
stacking of slip planes will show inhomogeneous behavior at low
temperatures and high stresses, because the crystal deformation
tends to concentrate on those planes on which glide is easiest.
The stress exponent, m*; will depend both on temperature and
stress and will increase as stress increases or temperature
decreases. This suggests that velocity and sﬁress cannot be
set in simple proportionality.

The flow stress of an idealized crystal will decrease monoton-

ically as temperature increases or strain rate decreases.
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FIGURE CAPTIONS

Configuration of a dislocation pressed against an array of

obstacles by a stress T. |

(a) A possible force;displacement relation, B(x/d), for
dislocation passagé through an obstacle which forms a
simple repulsive barfier. The shaded area indicates
the activation energy (g?) if the dislocation exerts a
force B? on the obstacle.

(b) The assumed step form of the dimensionless dislocation-
obstacle interaction, B(x/d). The obstacle strength is
BC. The shaded area 1is g?, the activation energy
required when the diélocation'exerts a force B? on the
obstacle.

Sequence of four possible configurations as a dislocation

glides into a random array of pqint ébstacles. The activa-

tion side is indicated by the symbol (A).

Comparison of the results using minimal sequence approxima-

tion (dashed line) and statistically chosen path. The data

bars indicate results of four independent trials.

Résults of a simulation of thermally—activatéd glide through

an array of 104 obstacles, showing the average glide velocity

<'v*> as a function of the thermal parameter o, at three

*
stresses: T = 0,001, 0.0l and 0.03, with obstacle strength

0.1.

™
I

*
Q, R and Tl values as a function of ¢ at T = 0.01 and

0.1 for an 104 point array.

w
#
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Comparison of the velocity-temperature relations for ten

‘arrays of 103 obstacles having BC = 0.6 at each of four

.stresses (light lines). Also included are the velocity-

temperature curves for a crystal made up of these ten arrays
under the assumption of a "uniform" distribution of disloca-
tions over the planes (circles, heavy lines).

Illustratioﬁ of the deformation of a hypothetical crystal

made up of ten glide planes whose properties are shown in

~Figure 7. This figure shows the chénge in the appearance of

the deformed crystal with temperature, assuming that the

crystal contains a uniform distribution of dislocations of

-fixed density, and is given a total shear strain y = 207%.

Variation of slip morphology with stress at constant temper—

ature, Idealized tensile bars are shown after a strain of

*
20% at four values of stress (1 = 0.01, 0.1, 0.25, 0.4) at

™ = 10"2.

Illustration of slip morphology with temperature at constant
K

strain rate (An<%¥ > = -20).

Illustration of the variation of glide velocity with stress
in tests conducted at constant temperature. In this figure

* . *
fn<v > is plotted against log T at constant temperature
23 2 ]
(T =10 7, 10 7, 10 7).

The variation of the flow stress with the testing tempera-

x )
ture at constant strain rates (&n<v > = -10, -20).
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