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COOLING OF INTERSTELLAR FORMALDEHYDE BY COLLISION WITH HELIUM;· AN 
ACCURATE QUANTUM MECHANICAL CALCULATION 

Barbara Jane Garrison 

Inorganic Materials Research Division, Lawrence Berkeley Laboratory 
and Department of Chemistry; University of California, 

Berkeley, California 94720 

ABSTRACT 

In order to test a collisional pumping model as a mechanism for 

cooling the 6 em and 2 em doublets of interstellar formaldehyde, a 

quantum mechanic~l scattering calculation is performed. To obtain 

the intermolecular interaction between H2co( 1A1) and He(1s) two 

calculations are performed, a Hartree-Fock (HF) potential surface and 

a configuration interaction (CI) surface. A basis set of better than 

11 tr1ple zeta plus polarization .. quality is used to compute the HF 

portion of the potential energy surface. This prirtion is highly 

anisotropic and has a slight attraction arising .from induction effects 

at intermolecular separations around 9 a.u. The HF surface is modified 

through a series of CI calculations. Correlation is found to have 

little effect in the strongly anisotropic repulsive region of the 

interaction potential but dominates the well and long-range regions. -

The maximum well depth is attained for in-plane approaches of He and 

lies in the range 35-40°K for arbitrary e at center of mass separation 

of 7.5 a.u. The entire surface is fit to a spherical harmonic expansion 

to facilitate scattering applications. 

An Arthurs and Dalgarno type coupled channel (CC) formalism is 

presented for scattering of an asymmetric top by an atom. These CC 

equations are integrated at 12 scattering energies between 20 and 95°K. 
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For the cross section calculations a basis set of 16 ortho H2co states 

are included, resulting in 62 channels. Resonances ar.e observed 

at -20.2, 32.7 and 47.7°K. The cross sections are Boltzmann averaged 

to obtain r~te constants which are used to solve the equations of 

statistical equilibrium. The 6 em and 2 em doublets of interstellar 

H2co are found to be cooled by collisions with He. The j = 3 ortho 

doublet plays a fundamental role in the cooling of H2co. 

II " 
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. I. INTRODUCTION 

During the past few years, considerable interest ha~ developed 

around observations of anomalous absorption in interstellar formaldehyde. 

Because this absorption is se~n toward dark clouds, it is anomalous, 

implying an excitation temperature for two rotational states lower than 

either the background radiation temperature (-2.7°K) or the expected 

kinetic temperature (10-20°K). These observations are quite common in 

the interstellar medium and are seen in (l)the 110 + lll (6 em) transition 

of H2co/• 24 •27 (2) the 2ll + 212 (2 em}. transition of H2co, 10 •12 •13 

and (3) the 110 + 111 transition of the isotope H2
1\o. 13 

To obtain such low excitation temperatures requires a nonthermal 

cooling mechanism. A number of pumping models have been proposed that 

involve transitions to higher· rotational states of H2co followed by 

radiative decay. The pump or force causing the excitations has been 

v~riously suggested as being due to col1ision~ 35 or to radiatio~ at 

millimeter, 32 ~ 34a infrared, 22 and ultraviolet25 ~avelengths. Evans, 

et a1. 13 have. recently given a convincing discussion which indicates 

that the collisional pump is the only model that accounts for all the 

observations and satisfies necessary criteria. 

The collisional pumping model of Townes and Cheung35 is based on 

classical arguments. The rotational e_nergy level structure ,and dipole 

allowed transitions of ortho H2co are shown in Fig. 4.1. Note that the 

lower levels of each doublet are connected by dipole allow.ed transitions; 

likewise, the upper levels. Thus, if a molecule is excited to state 

3 (212 ) it will radiate to state 1 (1 11 ). The classi~al model proposes 

that both of the lower two states (j = 1 doublet) are preferentially 
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excited by collisions to state 3 where the molecule willradiatively decay 

to state 1., therefore, cooling the 6 em (j = 1) doublet. (The intra-

doublet relaxation is slow due to the small energy separation between u 

the levels.) 

Since the collisional pump appears to be the key to understanding 

interstellar cooling of H
2
co, several workers 2'lO,ll,lJ,J4, 35 have 

attempted to theoretically verify this model by determining the appropriate 

rotational cross sections. These calculations have been ~;:arried out 

subject to a number of limitations, including approximate interaction 

potentials (hard or soft sphere), approximate dynamics (classical or 

semi-classi~al calculations), and other less appropriate approximations 

(born or sudden). 

In the present study the test of the collisional pump is based upon 

entirely quantum mechanical calculations. An accurate ab-initio 

interaction potential (Hartree-Fock and configuration interaction) 

between H2co and He is given in Chapters II and III. For these calculations, 

the most probable scatterer H2 is replaced by He to reduce the scope of 

the computation. It is anticipated that the main conclusions of this 

study will not be seriously altered by this choice of scattering 

particle. In Chapter IV the Arthurs and Dalgarno1 type coupled channel (CC) 

formalism is presented for scattering of an asymmetric top by an atom. 

Using the ab~initio potential, the CC equations are integrated to yield 

rotational cross sections. Collisional rates are then determined (in 

Chapter V) from these cross sections and used to test the validity of 

the collisional pump as a mech~nism for the cooling of interstellar H2co. 
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II. HARTREE-FOCK INTERACTION POTENTIAL 

A. Introduction 

This chapter deals with the determination of the Hartree-Fock (HF) 

portion of the interaction potential (to be used in the scattering study) 
' 

1 1 between H2co ( A1 ) and He ( S). Because collision energies in inter-

stellar space are small (~l00°K) and the vibrational .energy level 

spacings of H2co are sufficiently large ·(>1600°K for the lowest 

fundamental), H2co should be well approximated by a ri.gid rotor. 

Consistent with the rigid rotor model, H2co is constrained to a single 

geometry in the calculations to be described. This results in a smaller 

number of degrees of freedom that must be treated and thereby significantly 

reduces the number of points needed to map the region of the interaction 

potential required for scattering studies. 

At long range, the dispersion energy dominates the interaction of 

He with H2CO. Lesk20 has recently proven that the dispersion energy is 

unobtainable in the HF approximation so that a. reliable determination of 

the correlation energy ~ontribution is required .for scattering studies 

of the present system. Nevertheless, it is clear that the HF method 

can accurately characterize the repulsive anisotropy of atom-diatomic 

molecule interactions between closed shell systems and yield quantitatively 

the induction energy at long range for such systems. 21 The present 

chapter forms the first of a two-part effort in which the second part--

the determination of the dispersion interaction--will be presented in 

the following chapter. 
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B. Description of Calculations 

Hartree-Fock calculations were carried out .following the Roothaan 

approach with H2CO constrained to the equilibrium geometry of Reo = 1 .208~, 

RCH = 1. 116~, and LHCH = 116°31' determined by Takagi and Oka. 33 To 

facilitate collision studies, interaction energies are presented in a 

coordinate system with origin at the center-of-mass (c.m.) of H2co that 

is shown .in Fig. 2.1 . 

The choice of basis set was governed by two criteria. One is that 

the superposition error36 be small. The other is that the quantities which 

determine the leading terms of the induction contribution to the interaction 

energy at long range (permanent monents of H2CO, dipole polarizability of 

He) be reliably charact~rized. 4 

To test these criteria, preliminary calculations were performed with 

He constrained to B = 0° (0-atom end) and B = 180° (C-atom end) approaches 

to H2co, i.e., c2v geometries. Table 11.1 lists interaction energies 

obtained (1) in the HF model employing the basis sets used in our 

recent study15 of. ground and excited state properties of H2co, and 

(2) using the multipole theory expression given in the Appendix. The 

excellent agreement (within O.l°K) for R ~ 11 a.u. between energies 

computed using both basis sets and perturbation theory indicates that.the 

induction contribution is quite well described and furthermore that 

the onset of the non-overlap region occurs for R- 11 a.u. 

Table 11.2 lists basis sets A and B for the (H2Co, He) system. 

The H2co basis sets have been described previously. 15 The He basis sets 

are due to van Duijneve,ldt8 augmented by p functions chosen to give an 

accurate dipole polarizability. 37 The latter functions are required to 
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Table 11.1. Comparison of Hartree~Fock and 
multipole expansion interaction 
energies (°K).* · 

R(a.u.) Basis Set Multipole 

Bt 
Expansion 

A** 

9 = 0° 
5.0 2508.83 2606.14 
6.0 228.96 276.60 
7.0 -11.05 20.58 
7.5 -22.29 1.83 -6.34 
8.0 -18.65 -3.05 -4.30 
8.5 -11.79 -3.61 -2.99 
9.0 -6.33 -2.98 -2.12 
9.5 -3.15 -2.15 -1.53 

10.0 -1.62 -1.47 -1.13 
11.0 -9.63 -0.69 -0.63 
12.0 -0.36 -0.38 

. 13.0 -0.22 -0.23 
9 • 180° 

5.0 6355.97 6467.19 
6.0 777.87 838.07 
7.0 55.07 85.42 
7.5 4.13 21.36 
8.0 -6.91 1.78 -4.22 
8.5 -7.13 -3.03 -2.93 
9.0 -5.22 -3.29 ' -2.08 
9.5 -3.39 -2.48 -1.51 

10.0 -2.08 -1.67 -1.11 
11.0 -0.77 -0.73 -0.63 
12.0 -0.37 -0.37 
13.0 -0.22 -0.23 ··-

* l°K = 3.1668xlo-6 a.u. 
** Obtained with formaldehyde geometry of Ref. 16. 
t Obtained with formaldehyde geometry of Ref. 33. 
The energy differences are attributable to basis 
set; differences due to geometry are negligible. 
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Table IL2. Contracted Gaussian basis sets for H2co and He.*· 

Basis A 

Atom Type Function* 

0 s 0.006436(7816.54) + 0.048924(1175.82) 

c 

H 

s 
s 
s 
s 
x,v,z 

X, Y ,z 
x,v,z 
x2,l2,z2,xv,xz,vz 
s 

s 
s . 

+ 0.233819(273~188) + 0.784798(81.1696) 
0.803381(27.1836) + 0.316720(3.4136) 
1.0(9.5322) 
1 .0(0.9398) 
1.0(0.2846) 
0.040023(35.1832) + 0.253849(7.9040) 

+ 0.806842(2.3051) 
1.0(0.7171) 
1.0(0.2137) 
1.0(0.8) 
0.006228(4232.61) + 0.047676(634.882) 

. + 0.231439(146.097) + 0.789108(42.4974) 
0.791751(14.1892) + 0~321870(1 .9666) 
1.0(5.1477) 

s 1 .0(0.4962) 
s 1.0(0.1533) 
X,Y,Z 0.039196(18.1557) + 0~244144(3.9864) 

+ 0.816775(1.1429) 
X,YrZ 1 .0(0.3594) 
x,v,z 1.0(0.1146) 

2 2 2 X ,Y ,z ,XY,XZ,YZ 1.0(0.8) 

s 

s 
s 
X,Y,Z 

0.025374(48.442) + 0.189684(7.2835) 
+ 0.852933(1.6517) 

1.0(0.46238) 
1 .0(0.14587) 
1.0(1.0) 

* . 
Linear combinations are written in the form c1 (a1) + c2(a2) + .. 

where c1,c2, ... are coefficients and a1,a2, .. '.are Gaussian 
exponents. 



Atom Type 

He s 

s . 
s 
X,Y,Z 
X,Y,Z 

0 s 

s 
s 
s 
s 
s 
s 
X,Y,Z 

X,Y,Z 
X,Y,Z 
X,Y,Z 
X,Y,Z 
2 2 2 X ,Y ,z ,XY,XZ,YZ 
2 2 2 X ,Y ,Z ,XY,XZ,YZ 
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Table 11.2. Continued. 

Basis A 

Function 

0.002600(233.b93) + 0.019628(35.023) 
+ 0.091421(7.9557) + 0.272853(2.2028) . 

1.0(0.66435) 
1.0(0.20825) 

1 .0(1.0000) 
1.0(0.2000) 

Basis B 

0.000210(31195.6) + 0.001628(4669.38) 
+ 0.008450(1062.62) + 0.034191(301 .426) 
+ 0.110311(98.5153) 

1.0(35.4609) 
1.0(13.6179) 
1.0(5.38618) 

1.0(1 .53873) 
1.0(0.60550) 
1 .0(0.22054) 
0.002266(114.863) + 0.017192(26.8767) 

0.075341(8.32077) 
1.0(2.97237) 
1 . 0 ( 1 . 12848) 

1.0(0.42360) 
1 . 0 ( 0. 1507 4) 

1.0(2.0) 
1.0(0.5) 
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Table 11.2. Continued. 

Basis B 

.. Atom Type . Function 

c s 0.000242(15469.4) + 0.001879(2316.47) 
+ 0.009743(527.099) + 0.039167(149.438) 
+ 0.123636(48~8562) 

s 1 .0(17 .6209) 
s 1.0(6.81082) 
s 1.0(2.7276) 
s 1.0(0.75674) 
s 1.0(0.30073) 
s 1.0(0.11409) 
X,Y,Z 0.002734(51 .7233) + 0.018979(12.3397) 

+ 0.080806(3.77224) 
X,Y,Z 1.0(1.32487) 
X,Y,Z 1.0(0.50546) 
X,Y,Z 1.0(0.19827) 
X,Y,Z 1 .0(0.07731) 
2 2 2 X ,Y ,z ,XY,XZ,YZ 1.0(2.0) 
2 2 2 X ~x ,z ,XY,XZ,YZ 1.0(0.5) 

H s 0.002006(82.636374) + 0~015345(12.409558) 
+ 0.075577(2.823854) 

s 1.0(0.797670) 
s 1.0(0.258053) 
s 1.0(0.089891) 
X,Y,Z 1.0(1.0) 

He s 0.000059(4840.888547) + 6.000463(723.108918) 
+ 0.002422(164.299706) + 0.009995(46.636262) 
+ 0. 034249 ( 15. 277787) + 0. 096302 ( 5. 526897) 

s 1 .0(2 .132879) 
s 1 .0(0.849674) 
s 1.0(0.343643) 
s 1.0(0.138709) 
X,Y,Z 1.0(1.0) 
X,Y,Z 1.0(0.2) 
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yield a proper description of the induction contribution to the 

interaction energy at long range. Figure 2.2 plots the interaction 

energy for c2v approaches of He to the 0-atom end (e = 0°) and C-atom 

end (e = 180°) for basis sets A and B and indicates the magnitude of 

the superposition error that accompanies the use of basis set A. Basis 

set B reduces the superposition error to appro~imately half the well 

depth. The close agreement between interaction energies obtained 

using basis set B and perturbation theory results given in Table II.l, 

and the reasonable agreement between the dipole moment determined 

employing basis set B and experiment, lend support to the notion that 

basis set B should provide a reliable description bf the HF portion of 

the int~raction potential. 

C. Results and Discussion 

Hartree-Fock interaction energies obtained using basis set B are 

presented in Table II.3 for ~ = 0° (He incident in the plane of 

formaldehyde), in Table !1.4 for~= 30°, in Table II.5 for~= 60°; and 

in Table !1.6 for ~ = goo (He incident in the perpendicular bisector 

plane of H2CO). Owing to H2CO symmetry, only 0° ·~.~~goo need be 

considered. Because the interaction potantial is planned for scattering 

studies at energies ~100°K, R = 5 a.u. was arbitrarily chosen as the 

minimum R for computations. At this separation, the interaction is 

exponential,with repulsion en~rgies ranging up to several thousand 

degrees K; see Tables II.3-II.6. The maximum R treated was chosen as the 

onset of agreement between HF and perturbation theory induction energies 

which, as discussed in relation to Table 11.1, occurs at -11 a.u. 

Because of the large repulsion at e ~ 140° due to the He-H interaction, 
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Table II.3. Interaction energies (°K) for~= 0°.* 

R (a.u.) 

e 5 6 7 8 9 10 

0 2606.14 276.60 20.58 -3.05 '-2.98 -1.47 
30 2044.04 237.92 20.15 -3.26 -3.55 -1.66 
60 837.23 101.05 6.60 -3.67 -2.67 -1.03 

90 621.14 76.45 5.52 -1.52 -0.98 -0.37 

120 7220.33 1178.99 169.48 21.63 2. 0,2 -0.15 

140 15852.93 2474.73 352.67 46.22 4.86 0.01 

160 11942.20 1774.97 235.29 25.72 0.82 -0.86 

180 6467.19 838.07 85.42 1. 78 -3.29 -1 . 67 

* See footnote * of Table I 1.1. 

Table II.4. Interaction energies (°K) for·~= 30°.* 

R(a.u.) 

e 5 6 7 8 9 10 

30 1967.52 226.04 18.50 -3.12 -3.29 -1.56 
60 840.15 '1 02.82 7.62 -2.92 -2.32 -0.95 
90 563.52 70.95 6.26 -0.74 -0.70 -0.33 

120 4468.44 735.56 109.13 14.39 1.27 -0.22 
140 10343.96 1642.55 236.61 ' 30.93 2. 91 -0.23 
160 9735.36 1431. 19 185.02 18.57 -0.18 -1 .01 

* See footnote* of Table 11.1. 

"' 
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Table II.S. Interaction energies (°K) for~= 60°.* 

R(a.u.) 
e 5 6 7 8 9 10 

30 1813.06 202.06 15.16 -2.83 -2.77 -1.35 
60 830.64 103.06 8.69 -1.84 -1.77 -0.80 
90 555.09 72.21 7.22 . -0.21 -0.54 -0.31 

120 1608.87 240.09 30.45 2.74 -0.32 -0.44 
140 3942.97 590.33 75.57 6.93 -0.55 -0.73 
160 . 6138.00 850.97 97.83 5.87 -2.03 -1.30 

* See footnote * of Table I 1.1. 

Table II.6. Interaction energies (oK) for~= 90°.* 

R(a.u.) 
. e 5 6 7 8 9 10 

30 1735.15 189.98 13.48 -2.70 :..2.50 -1.25 
.60 819.62 101 .86 8.84 -1 .47 -1 .53 -0.73 

90 589.43 80.31 8.63 -0.06 . -0.53 -0.31 
120 888.84 115.70 11.74 0.09 -0.71 -0.46 
140 2060.27 262.98 23.82 -0.87 -1.78 -0.93 
160 4670.12 606.53 60.25 0.34 -2.86 -1.44 

* See footnote * of Table I 1.1. 
·~ 
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e was sampled at the unevenly spaced values of 0, 30, 60, go, 120, 

140, 160 and 180°. A total of 156 energy points were computed using 

basis set B. 

Figure 2.3 broadly summarizes the results contained in Tables 11.3 

through 11.6 in the form of equipotential plots for He incident in (a) 

the H2CO -plane (~ = 0°) and (b) the perpendicular bisector plane 

(~=goo). For~= 0°, a slight attraction at R = g a.u. is evident as 

is the large repulsion at small R due to the H atom. At~= goo, however, 

the equipotential plot is very nearly symmetrical about e =goo. (Note 

that the opening of the zero contour is an artifact of having used the 

spherical harmonic expansion to generate the plots and reflects slight 

inaccuracies in the fit functions.) These and other features are more 

clearly shown in the planar projections presented in Figs.2.4-2.7. The 

reduction of the strong repulsion due to the H atoms as He approaches 

for increasingly 1 arge out-of-(H2co) plane angles -~ is detailed in 

Fig. 2.4 for R = 7 a.u., in Fig. 2.5 for R = 9 a.u., and in Fig. 2.6 

for R = 10 a.u. Figure 2.7 presents another view of the R dependence 

of the interaction for He incident in the plane of H2co and shows the 

pronounced decline of the repulsion due to Hat R = 10 a.u. which 

portends the onset of the non-overlap region describable by multipole 

theory. From perturbation theory, the fonm of the long-range induction 

energy is cos2e. At R = 9 a:u~ (Fig. 2.5), this functional behavior is 

perceptible in the bisector plane approach (~ = goo) .. Note that by 

R = 10 a.u. (Fig. 2.6), the He-H interaction is much less repulsive 

and the long-range forces begin to dominate. 
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Fig. 2.5. Interaction energy vs e for selected angles <P 
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The HF interaction energies obtained using basis set B have been fit 

to an expansion in spherical harmonics, viz. 

Ab initio energy points were supplemented by additional points determined 

by the method of splines to yield a dense grid to facilitate the 

determination of the radial coefficients. The HF energies were accurately 

reproduced using £ = 12 by both least-squares and numerical integration max 
procedures. Formaldehyde symmetry leads to v£m(R} = v£-m(R), form an 

even integer, and to 49 unique nonzero terms through £ = 12. The v£m 

coefficients are given in Table 11.7. These coefficients have been fit 

to the radial function 

{ 
-BR -6 . -7 

v (R} = A e - CR - DR , R ~ 10.5 a.u. 
£m 0 , R > 1 0. 5 a. u. (2) 

A, B, C and D are listed in Table II.8. 

D. Summary and Remarks 

Using a basis set of better than triple zeta plus polarization 

quality, a Hartree-Fock interaction potential for the H2CO-He system 

has been determined for fixed geometry of H2co suitable for rigid rotor 

scattering studies. The potential energy surface is highly anisotropic 

for He incident in the plane of H2CO and has a small (~°K) minimum at 

R ~ 9 a.u. The ab initio surface agrees closely with interaction energies 

determined from perturbation theory for R;;?.: 11 a.u.,which is indicative 

of the onset of the non-overlap region. 
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Table II. 7. Radial coefficients v~(R) of spherical 
harmonic express ion ( K). 

R(a.Li.) 
R, m 5 6 7 8 9 10 

0 .· 0 2580.1 374.7 46.91 3.47 -0.93 -0.68 

1 .o -3253.8 -531.2 -77.89 -11 .50 -2.05 -0.41 

2 0 3773.1 527.4 64.57 5.40 -0.83 -0.72 

2 2 1144.5 188.8 27.81 3.48 0.29 0.01 

3 0 -296.6 -20.8 2.79 2.39 1.00 0.24 

3 2 -2139.1 -355.0 '-54.02 -8.19 -1.35 -0.23 

4 0 -1003.4 -208.0 -37.17 -6.22 -0.87 -0.09 

4 2 2383.1 388.2 58.51 8.26 . 1 .00 0.09 

4 4 223.7 34.6 4.26 0.31 -0.02 0.00 

5 0 1348.7 224.7 35.37 5.66 1.02 0.22 

5 2 -1541 .8 -241.5 -35.86 -5.39 -0.89 -0.17 

5 4 -415.2 -63.7 -8.33 -0.98 -0.09 -0.01 

6 0 -827.2 -134.2 -20.56 -3.25 -0.54 -0.09 

6 2 764.2 115.6 17.03 2.50 0.35 0.05 

6 4 457.9 66.6 8.65 1 .05 0.11 0.01 

6 6 32.0 3.4 -0.16 -0.15 -0.04 -0.01 

7 0 290.0 48.4 7.50 1.12 0.20 0.05 

7 2 -185.8 -30.0 -4.49 -0.67 -0.13 -0.03 

7 4 -369.9 -49.5 -6.23 -0.73 -0.07 0.00 

7 6 -63.1 -7.5 -0.06 0.18 0.04 0.01 

8 0 51.8 4.9 0.50 0.14 0.05 0.02 -
8 2 -65.1 -8.2 -1.12 -0.21 -0.05 -0.01 

8 4 253.6 32.6 4.05 0.48 0.05 0.00 

8 6 73.1 8.5 0.32 -0.13 -0.03 -0.01 

8 8 12.3 1.1 0.23 0.01 0.00 0.00 

9 0 -1 Ol. 9 -16.0 -2.44 -0.41 -0.07 -0.01 

9 2 106.3 15.7 2.29 0.35 0.05 0.00 

9 4 -145.5 -18.9 -2.37 -0.29 -0.03 0.00 

9 6 -64.3 -6.9 -0.45 0.06 0.02 0.00 
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Table 11.7. Continued. 

R(a.u.) 
Q, m 5 6 7 8 9 10 

9 8 -23.9 -3.8 -0.51 -0.06 -0.01 0.00 
10 0 39.9 6.0 0.90 0.17 0.03 0.00 
10 2 -36.1 -5.3 -0.77 -0.12 -0.02 0.00 
10 4 59.0 7.8 0.99 0.13 0. 01 0.00 
10 6 53.5 5.6 0.45 -0.02 -0.01 0.00 
10 8 28.9 4.4 0.57 0.07 0.01 0.00 
10 10 1.2 0.1 0.03 0.00 0.00 0.00 
11 0 28.2 4~9 0. 77 0.10 0.01 0.00 
11 2 -25.5 -4.1 -0.62 -0.09 -0.01 0.00 
11 4 -11 .0 -1.5 -0.20 -0.03 0.00 0.00 
11 6 -39.8 -4.2 -0.34 0.01 0.01 0.00 
11 8 -29.4 -4.2 -0.54 -0.06 -0.01 0.00 
11 10 -2.7 -0.5 -0.07 -0.01 0.00 0.00 
12 0 -55.2 -9.3 -1 .45 -0.22 -0.03 -0.01 
12 . 2 49.2 7.7 1.15 0.17 0.03 0.00 
12 4 -8.0 -1.0 -0.12 0.00 0.00 0.00 
12 6 26.1 2.7 0.23 -0.01 0.00 0.00 
12 8 28.0 3.9 0.49 0.06 0. 01 0.00 
12 10 3.7 0.6 0.09 0.01 0.00 0.00 
12 12 0.0 0.0 0.00 0.00 0.00 0.00 
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Table !1.8. Parameters for the HF interaction.* 

5I, m A** B C** D** 

0 0 3.034 {7) l .845 -4.793 {6) 5.635 {7) 

1 0 -2.483 {7) 1. 751 1 . 226 {7) -1 .186 {8) 

2 0 5.449 (7) 1.890 -6.558 {6) 7.320 (7) 

2 2 8.094 {6) 1. 735 -3.628 {6) 3. 789 {7) 

3 0 -1.056 (8) 2.586 -7.069 (5) 1. 354 (6) 

3 2 -1.546 (7) l. 736 8.259 {6) -8.037 {7) 

4 0 -3.534 {6) 1. 535 9.527 {6) .· -9.868 {7) 

4 2 1.853 {7) 1.759 -6.595 {6). 6.644 {7) 

4 4 1.891 {6) 1. 774 -7.542 { 5) 8.072 {6) 

5 0 9.850 (6) 1. 748 -3.935 '{6) 3.771 (7) 

5 2 -1.483 (7) 1 .810 3.471 (6) -3.309 {7) 

5 4 -3.876 {6) 1. 773 2.176 {6) -2.133 {7) 

6 0 -6.766 {6) 1. 773 2.240 {6) -2.139 {7) 

6 2 9.097 (6) 1.867 -6.458 {5) 6.286 {6) 

.6 4 5.635 {6) 1.849 ' -1 .443 ( 6) l .405 {7) 

6 6 1.054 (6) 2.084 -1.275 (5) 1 .425 (6) 

7 0 2.065 (6) l. 736 -9.935 {5) 9.736 (6) 

7 2 -1.527 {6) 1.765 6. 644 (5) -6.362 {6) 

7 4 -7.489 {6) 1.970 4.087 {5) ~4.048 {6) 

7 6 -1.423 {6) 1 .999 2.603 {5) -2.759 {6) 

8 0 6.528 {6) 2.340 -1.211 {5) 8.455 (5) 

8 2 -2.540 {6) 2.123 -6.083 (3) 2.294 {5) 

8 4 6.741 {6) 2.032 -1.058 (5) 1.096 {6) 

8 6 2.284 {6) 2.072 -1.670 {5) 1.855 {6) 

8 8 2.483 {6) 2.440 7.301 {4) -6.220 (5) 

9 0 -1.018 {6) 1.827 1.612 {5) -1.453 (6) 

9 2 1.458 {6) 1.900 -5.968 (5) 5.435 {5) 

9 ' 4 -3.530 {6) 2. 011 9. 729 (4) -9.621 ( 5) 

9 6 -3.149 {6) 2.154 7.576 {4) -8.948 {5) 

9 8 -1.829 {5) 1. 749 9. 982 {4) . -1.005 {6) 

* Di$tance units are a.u. and energy units are °K. 
** Values in parenthesis are powers of 10~ 
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Table 11.8. Continued. 

~ m A** B C** D** 

10 0 5.618 (5) 1 .909 -2.721 (4) 1.752 (5) 
10 2 . -5.311 (5) 1. 916 1.599 (4) -1 . 309 ( 5) 
10 4 1. 374 (6) 2.003 -4.401 ( 4) 4.150 ( 5) 
10 6 3.146 (6) 2.191 -2.969 (4) 4.099 (5) 
10 8 2.936 (5) 1 .818 -8.167 (4) 8.218 (5) 
10 10 1. 088 (6) 2.730 9.658 (3) -8.540 (4) 
11 0 1.532 (5) 1. 681 -9.677 (4) 1.023 (6) 
11 2 -2.037 (5) 1.763 7.733 (4) -7.618 (5) 
11 4 -2.004 (5) 1 .950 1.693 (4) -1.453 (5) 
11 6 -2.502 (6) 2.206 1 .243 (4) -2.111 (5) 
11 8 -4.106 ( 5) 1 .881 7.275 ( 4) -7.134 ( 5) 
11 10 -1.562 (4) 1. 691 1 . 133 (4) -1 . 127 ( 5) 
12 0 -3.809 (5) 1.730 1.869 (5) -1.840 (6) 
12 2 4.697 (5) 1 . 811 -9.500 (4) 9.246 (5) 
12 4 -1.694 (5) 1.982 2.674 (3) -5.278 (4) 
12 6 1.825 (6) 2.232 7.190 ( 2) 5.528 (4) 

12 8 4.479 (5) 1. 913 -5.518 (4) 5.421 (5) 

12 10 2.446 (4) 1. 734 -8.733 (3) 9.300 (4) 
12 12 -2.358 (1) 1 .273 3.639 (2) -4.978 (3) 
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Since the Hartree-Fock model cannot describe dispersion contributions, 

which from perturbation theory should dominate the long-range interaction 

in the present system, correlation studies will be needed to complement 

results presented here. 
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APPENDIX 

The induction contribution to the long range interaction between 

H2co and He may be written, 4 

The lowest order nonzero terms are 

voo(R) 
2 6 = -~ a/R 

v20(R) = voo(R) 

vlO(R) 
7 = -18 ~ae /5R zz 

v30(R) = (2/3} v10 (R) 

v32(R) = -~a(8/15) 1 / 2 (exx eYY)/R
7 

(A2) 

(A3) 

(A4) 

(AS) 

(A6) 

Here, a is the dipole polarizability of He,~ is the dipole moment of 

H2co, and eii (ii = xx, yy and zz) are the diagonal components of the 

quadrupole moment tensor of H2co. Note that the dipole-induced dipole 

contribution (R-6) is two orders of magnitude larger than the quadrupole-

. ( -7) 1nduced dipole term R . 

The values of molecular properties used to construct the entries 

in the third column of Table II.l were taken from Ref. 15. They are: 

~ = -1.1249 a.u. 

exx = 0.1773 a.u. 

eyy = -0.1481 a.u. 

e = -0.0292 a.u. zz 

An experimenta-l dipole polarizability (1.397 a.u.) was used for helium. 9 
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III. EFFECT OF ELECTRON CORRELATION 

A. Introduction 

In the previous chapter we discussed a Hartree~Fock (HF) interaction 

potential for the H2co( 1A1)-He( 1S) system. It is known that the HF method 

describes only the average interaction between electrons of colliding 

molecules~3 Hence for neutral-neutral interactions, the HF method cannot 

provide an accurate description of the interaction energy in regions where 

the dispersion interaction plays an important role, since the dispersion 

interaction arises from the instantaneous mutual response of one molecule 

to another. 4 Therefore, a correlated calculation is required to yield 

this contribution to the interaction energy. 4 ' 20 Because accurate 

scattering cross sections at very low energies are sought for the 

H2CO-He system, 13 , 34b, 35 it is important to determine the correlation 

correction to the HF potential. 

It is useful to divide the H2CO-He interaction potential into three 

parts--a highly anisotropic repulsive region at small internuclear 

separations, a region containing the energy minimum at intermediat~ 

distances, and a long-range region. The dominating forces in these 

regions have different physical origins which dictate the use of selected 

methods for each. Since electron correlation is only a small fraction 

of the interaction ~nergy at short range (where closed-shell repulsive 

forces dominate), the potential energy surface in this region is believed 

to be well described by our previous HF results. 19 In the non-overlap 

region, perturbation theory estimates show that the dispersion 

interaction is dominant and that induction contributions (obtainable in 

the HF approximation) are negligible. Little is known a priori about 
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the region near the minimum. Since the HF well depth is quite small 

(-3°K), it is clear that the CI contribution will significantly alter 

the potential in this region. Therefore, CI calculations are needed 

to complete the interaction potential for the H2CO-He system. 

Since only small van der Waals attractions arise from dispersion 

forces. special care must be given to the type of CI calculation 

performed. Of course, one would like to determine the correlation 

contribution to the interaction energy from a full CI claculation but 

that is at present economically unfeasible for most systems. Extensive 

work on the He2 system,3,23 ,31 which similarly has a small van der Waals 

minimum, guides our approach to this problem. By carefully choosing 

configurations for the He2 system, the dispersion energy was calculated 

directly (Di-CI)~' 23 ' 31 The main advantage of this method is that the. 

error due to lack of completeness of the basis set (superposition 

error) is eliminated. 23 However, it does not take into account change 

in intramolecular correlation of each molecule with internuclear 

distance. 23 , 31 Since the change in intramolecular correlation increases 

with decreasing intermolecular distance, this method overestimates the 

well depth. As shown by Liu and Mclean, 23 the .intermolecular and the 

intramolecular correlations are not additive, thus one cannot add the 

dispersion energy and the intramolecular correlation to obtain the 

total CI contribution. To include intramolecular correlation, a CI 

calculation may be performed which includes all single and double 

excitations from the HF reference state (S+D CI). Such a computation 

approximates the total .CI energy including dispersion and intramolecular 

correlation energy. It also includes the superposition error, however, 



0 0 0 ~ ~· 0 ~ 6 9 6 

-29-

which generally leads to an artificial increas~ in ~ell depth. fur 

He2 a full CI was carried out yielding a well depth of -10.7°K23b that 

is bracketed by the DI-CI value (-12.l°K) 23a and the S+D CI limit result 

(-9.3°K)~ 23a Unfortunately, as of this writing, there is no basis upon 

which to presume that this bracketing will hold rigorously for other 

systems. However, it does show that interaction energies obtained by 

the various methods are roughly equal. For the larger H2CO-He system, 

it is economically feasible to perform only Di~CI and S+D CI calculations. 

B. Description of Calculation 

To obtain the CI energy, we init.ially chose to calculate the 

dispersion energy by the fo 11 owing procedure (Di -C I): (a) compute the 

HF energy of th·e system, (b) localize the occupied orbitals, 38 (c) generate 

configurations that include single and double_excitations corresponding 

to removal of one electron from a H2co orbital and one electron from 

the He orbital, and (d) place the excited electrons into all possible 

spin and symmetry allowed combinations of HF virtual orbitals. 41 

(In all Di~CI calculations, the two lowest orbitals, which correspond 

to 0 and C ls cores, are frozen, i.e., no excitations are permitted.) 

By calculating the dispersion energy in this manner, no superposition 

error arises. Using this method at R = 8 and 11 a.u. for both e = 0° 

(0-atom end) and 180° (C-atom end) yields an interaction at the C-atom 

end that is twice as attractive as that at the o~atom end; see Table III.l. 

This finding is contrary to what one would expect from HF results where, 

-for fixed R, the interaction at the C-atom end was more repulsive than 

that at the 0-atom end. To verify these values, S+D CI calculations 

were performed42 at the same geometries, again holding the lowest two 
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orbitals fixed. The S+D CI interaction energies were in close accord 

with Di-CI values. As in the He2 study, 23 the Di-CI procedure yields 

a larger well depth than the S+D CI method. 

In the HF H2CO-He study, a very large basis set (basis B) was used 

to reduce the superposition error. Since the expense of using basis 

B for the two types of CI calculations described above is presently 

prohibitive, basis A was reexamined. At R = 8 ~.u. and e = 0°, the 

superposition error is at most 7°K. Since Di-CI and S+D CI computations 

are in reasonable agreement using basis A, we feel that the super

position error is likely not larger than 7°K for the geometries 

considered here. For these reasons, it is felt that basis set A should 

provide an adequate description of the well and long-range regions and, 

therefore, is used for the remainder of the calculations. 

Although the Di-CI and S+D CI methods yield comparable results, the 

available S+D CI computer code is faster and, therefore, was the one 

used for the bulk of the calculations. CI computations were performed 

at 14 geometries: e = 0° and 180° for R = 5, 7, 8 and 11 a.u.; e =goo, 

~ = 0° {plane of H2CO) for R = 5, 8 and 11 a.u.; and e =goo,.¢= goo 

{bisector plane) for R = 5, 8 and 11 a.u. The number of configurations 

included in the CI wavefunctions depends, of course~ on the molecular 

point group. As discussed elsewhere, 30 each configuration is a pure 

spin eigenfunction with S = 0. The geometries e = 0° and 180° correspond 

to c2v symmetry {1g452 configurations in the S+D CI}, e =goo, ¢ = oo 

corresponds to Cs symmetry {3777g configurations) and e =goo,¢= goo 

also corresponds to Cs symmetry (344lg configurations). but a different 

plane of symmetry is involved. 
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C. Results and Discussion 

Correlation energies are given in Table !ILl. These values do 

not include the HF int~raction energy ~nd thus must be added to the 

HF ~esults to get the complete interaction potential. Because Of the 

limited information available fore= goo, no correlation contribution 

to the ~ dependence can be ascertained. 

To facilitate the use of the energy surface in scattering calculations, 

the correlation contribution is expanded in spherical harmonics. Following 

Eq. (11.1) the angular dependence of the correl~tion contribution is 

expressed in the form 

Inverting Eq. (1) gives 

and 

= V(R,0°) + V(R,l80°) + 4V(R,90°) 
6 

= V(R,0°) - V(R,l80°) 
2 

(2) 

(3) 

(4) 

From Eqs. (1) through (4), the correlation contribution can be interpolated 

for all desired values of R and e. The potentials V(R,e) have been fit 

to the radial function 

(5) 

where A, B and C for e = 0°, goo and 180° are given in Table 111.2. 



-32-

Table III.l. Correlation energies (ECI-EHF) for H2CO-He.* 

e oo goo goo 180° 
R(a.u.) cp oo oo goo oo 

5 -0.0008gl -0.000737 -0.000709 -0.002247 

-281.4 -232.7 -223.9 -709.6 

7 -0.000171 -0.000294 

-54.0 -92.8 

8 -0.000064 -0.000040 -0.000026 -0.000115 

-20.2 -12.6 -8.2 -36.3 
(-22.g)** ( -41 . 9) 

11 -0.000005 -0.000001 -0.000001 -0.000009 

-1.6 -0.3 -0.3 -2.8 
(-2.g) (-4.9) 

* Order of entries in the table: energy in a.u. and °K, where 
l°K = 3.1668xl0-6 a.u. 
** Energies (°K) in parenthesis are from the Di-CI calculation. 
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Table III.2. Parameters for the correlation 
interaction.* 

e A** B C** 

ao -1.30529 (4) 0.80863 8.19754 (5) 

gao -5.58237 ( 4) 1 .11606 2.08846 (5) 

180° -8.00165 ( 4) 1 .01991 3.46152 (6) 

* Distance units are a.u. and energy units 
are °K. 
** . Values in parenthesis are powers nf 10. 
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Contour plots of the HF and Cl interaction energies in,the plane 

of the H2CO (¢ = 0°) and the bisector plane (¢ = 90°) are given in 

Fig. 3.1. As expected, the strongly repulsive region is virtually 

unchanged by including electron correlation. The correlation con

tribution increases the well depth from 3°K in the HF surface to 

35-40°Kandshifts the minimum inward from 9 a.u. to 7.5 a.u. 

Based on the close agreement of the Di-CI and S+D Ci calculations 

in the well region (R = 8 a.u.), the final CI interaction energies 

are believed reliable to -20%. 

D. Summary 

A CT calculation has been performed to ascertain the role of electron 

correlation on the interaction potential between a rigid formaldehyde 

molecule and a helium atom. Efforts were concentrated on the region of 

the energy minimum and at large intermolecular distances where correlation 

effects are expected to have their largest effect. 

Two types of CI calculations were carried out. In one method 

(Di-CI), the dispersion energy was calculated directly by judicious 

selection of configurations. In the second procedure (S+D CI), the 

interaction energy was determined from a CI wavefunction built from 

inclusion of all single and double excitations from a HF reference 

state. Interaction energies obtained by the two procedures were in 

reasonable agreement. It is noted that the Di-CI method yields a 

somewhat larger well depth than the S+D CI procedure as anticipated 

from previous He2 studies. 23 CI interaction energies in the vicinity 

of the minimum have an estimated uncertainty of 20%. 
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Fig. 3.1. Contour plots of the interaction potential for He 
incident in the plane of H2CO {¢ = 0°) and He incident 
in the bisector plane (¢ = .90°), -. -. Ci interaction 
potential. ---- HF interaction potential. Energies 
in °K. c.m. denotes center of mass~ 

' . 
I 
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To facilitate scattering studies, the CI interaction energies were 

fit to a spherical harmonic expansion. Three terms were used to 

describe the 8 dependence; no significant out-of-(H2co) plane 

dependence ¢ was obtained. The effect of correlation on the well region 

is to deepen the well from -3°K to 35-40°K and to shift the minimum 

inward from a H2CO-He center of mass separation of 9 to 7.5 a.u. 
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IV. DETERMINATION OF CROSS SECTIONS 

A. Introduction 

In this chapter an Arthurs and Dalgarno type coupled channel (CC) 

fo.rma 1 ism 'is deve 1 oped for the scattering of an asymmetric top by an . 

atom. With the interaction potential described in Chapters II and 

III, the CC equations are integrated to determine the rotational 

cross sections of ortho H2co. 
B. Asymmetric Top 

Before treating the scattering of an asymmetric top by an atom, 

the properties of the asymmetric top wavefunctions will be briefly 

summarized. An excellent detailed discussion is given by Davydov. 6 

It is convenient to define two coordinate systems: (1) a space 

fixed (SF) frame denoted by primes and (2) a body fixed (BF) frame 

(unprimed) which is attached to the center mass of the top. The BF 

axes are taken to be coincident with the principal axes of the top. 

The. orientation of the BF axes with respect to the SF axes is given by 
28 the three Euler angles (aBy). 

The rotational Hamiltonian of the top is 

(1) 

= AJ2 + (B - A) J2 + (C - A) J2 
y z 

(2) 

Here J2 is the square of the angular momentum operator J, J1 (i = x,y,z) 

are the components of J along the BF axes, 
1 1 

of inertia, and A = 21' B = 21 and C = 

I; are the principal moments 

- 1- are the rota tiona 1 
2Iz X y 
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constants. To solve the Schroedinger equation for the Hamiltonian in 

(2) it is convenient to expand the asymmetric top wavefunction in a 

basis set of symmetric top (where Ix = IY) wavefunctions, lji. k" The 
Jmj 

asymmetric top wavefunction is, therefore, expanded as 

where 

jm. 
<P J 

T 

( ) - _{2"j+l j* . 
l/!jm.k a(3y - l' -:~-2- 0m.k (aSy) 

J 8n J 

(3) 

(4) 

Here o~.k(aSy) is an element of the rotation matrix;
28 

the afT are 

expansign coefficients (to be determined); j(j + 1) h2, m.h (lmJ.I,.;; j), 
. J 

and kh (lkl ~ j) are the eigenvalues of J2, J ,(SF projection), and z . 

Jz (BF projection) respectively; and T labels the asymmetric top 
2 . 

eigenfunctions (see below). Note that J and J , are conserved for . z 

both symmetric and asymmetric tops while Jz is conserved only for the 

symmetric top. The fact that Jz is not conserved results in mixing of 

the (2j + 1) different values of k corresponding to a given (j, mj) 

to form (2j + 1) states of the asymmetric top. These asymmetric top 

states are labeled by an index T as indicated above. 

Substitution of (3) into the Schroedinger eq~ation leads to 

z: aJk. {<\IJ. k'IJCI \IJ. k> - £. 0k'k}. = 0 k T Jm. Jm. JT 
J J 

(5) 

for (2j + l) values ofT. The matrix elements of Jf over the symmetric 

top wavefuncti on s can be found in Davydov. 6 
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The (2j + 1) equations given by (5) can be simplified by employing 

the syrrmetry properties of the Hamiltonian. The Hamiltonian is 

invariant under the group of the following four coordinate transformations: 

(1) identity transformation, (2) x -+ -x, (3) y ~· -y and (4) z -+ -z. 

These transformations form a representation of the Klein Four Group 

which has four one-dimensional irreducible representations. By 

transforming the basis of symmetric top wavefunctions to a set of 

symmetry adapted functions, which transform according to the irreducible 

representations of the Four Group, the Hamiltonian.matrix (see Eq. (5)) 

becomes block diagonal, thus decoupling the system of Eqs. (5) into 

four smaller systems. The four classes of symmetry adapted functions, 

x, are 

odd = _1 r/. + (-)·s ,,, ] . k odd, s = 0 or 1' (6a,b) 
Xks /2L jmj k o/ jmj -k ' 

lk·sven = rl4J .. k + (-)s tjJ. k] 
12 ( 1 + o J L Jm · Jm ·- . ok · J J 

k even, s = 0 or 1. 

Note that there are four types of functions (k is odd or even and 

s = 0 or 1), each of which transforms according to a different 

irreducible representation. The expansion (3) can now be restricted 

to sums over a single class of symmetry adapted functions, 

odd or 
evenk 

jm. 

L bj <P J = xks T kT 
k=O or 

where the state index T now also implies odd or even values of k 

and a value of s (0 or 1). The system of Eqs. (5), therefore,becomes 

four smaller systems of the type 

(6c,d) 
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L b~T{ <xk. s IXI\s > EjT<\·k} = o 
k=O or 1 

(7) 

These sets of equations can be solved by standard techniques in linear 

algebra td yield the eigenvalues EjT and expansion coefficients b~T 

of the asymmetric top. 

The group described previously does not represent all the 

symmetry properties of the asymmetric top Hamiltonian. The Hamiltonian 

also has inversion symmetry (simultaneous inversion of the x, y and z 

coordinates), thus the full group of the top is o2h = D£g>;. (D2 is a 

realization of the Four Group and i represents the inversion group.) 

In Section III this additional symmetry will be used to si~plify 

the coupled channel scattering equations. For reference the inversion 
jm. 

parity of ¢ J is given by 
. T 

jm. 
F¢ J 

T 

where F is the inversion operator. Hence the symmetry adapted 

functions of (6) are automatically symmetry adapted functions of the 

larger group o2h. 

For the case of H2CO there is the additional ·symmetry of inter

changing the identical H nuclei resulting in ortho (symmetric) and 

para (antisymmetric) couplings of nuclear spins. Since there is no 

interaction that couples nuclear spin states during collisions with 

He, ortho and para H2co can be treated as separate species. The 

astrophysical observations of interest in this study are of ortho 

H2CO; therefore, only these states need be included in the scattering 

(8) 
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calculations. Since the H nuclei are Fermions, the total wavefunction 

must be antisymmetric under their interchange. The nuclear wavefunction 

is symmetric, and therefore the rotational wavefunctions must be 

antisymmetric. Letting P be the operator that interchanges H nuclei 

then 

jm. 
P<P J = 

T 

k jm. 
(-) <P J 

T 

where again T implies odd or even values of k. 
. jm. 

Since <P J must be 
T 

anti syrrmetric for ortho H2co, Eq. (9) s.hows that only states with k 

odd (functions given by (6a,b)) are required in this study. 

. (9) 

Using the rotational constants of Oka26 (A= 38835 MHz, B = 43003 MHz, 

and C = 282029 MHz) to evaluate the Hamiltonian matrix elements, the 

energy levels of ortho H2co were obtained from the solution of (7). 

These energy levels accompanied by two labeling schemes are given in 

Fig. 4.1. For the lower (upper) state of each doublets is 1 (0). 

C. Theory of Atom-Molecule Scatte.ring 

In thts section, the Arthurs and Dalgarno1 (AD) coupled channel 

or close coupling (CC) formulation is presented for the case of 

scattering of an asyrmnetric top by an atom. For simplicity the atom 

is assumed spherical (in a 1s state) and the top is also taken to be 

in a singlet state so that the problems associated with the coupling of 

spin angular momentum can be neglected. Low kinetic energies will be 

considered; therefore, vibrational and electronic excitation is not 

possible. 
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Ortho H2CO 

Energy Levels and Transitions 

. 

-
~, t 

~ 

-

-

; 

~ 4 (22.6219°K) 

3 (21.926~K) 

2 (15.39arK) 
1 (15.1668°K) 

XBL 758-6983 

Fig. 4.1. Energy level diagram for ortho H2co with the 
dipole allowed transitions designated by arrows. 
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The Hamiltonian of the total syst~m (top plus atom) in center 

of mass coordinates is 

( 10) 

where the terms from left to right are the kinetic energy operator for 

the relative motion of the top and the atom, the rotational Hamiltonian 

(Eq. (2)) of the top, and the intermolecular potential. Here ll is the 

reduced mass of the total system~~~ (r,e•,¢•) is the position of the 

atom in a space fixed (SF) frame and R1 ~ (aSy) is the orientation of 

the top in the SF frame. 

To solve the Schoedinger equation 

-+ 
an expansion technique is used. The total angular momentum J and its 

SF z• projection J • "' M are conserved in this system. AD found it z ·. 
-+ 

convenient to couple the rotational angular momentum (j) of the top 

and the orbital angular momentum (!) of the colliding system together 
-+ 

to form eigenfunctions of J and Jz•· Following AD the radial and 

angular dependences are separated and the wavefunction is written as 

~M -+A 
·n (r,R•) 
J JVT 

yJM ("• A.). 
X • 1 n 1 1 r ,K 

J JV T 

( 12) 
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where 
C ( j R.J ; mj m1 M ) 

,.. j m. " 
x Y (r') ~ 3(R') 

R.mR, T 

Here, C(jtJ;mjm1M) is a Clebsch-Gordan coefficient, 28 v
1111

(r') is a 

spherical harmonic describing the relative angular momentum of the 
j ~ " colliding system and ~T (R') is the asymmetric top function given 

(13) 

by Eq. (3). Substituting Eqs. (10), (12) and (13) into (11), multiplying 

on 'the left by y~~; .. T"' integrating over r• and R'' and making use of 

orthonormality relations, 28 yields the CC equations 

(14) 

= ( 2u lt. 2) Y' Y' Y' (J• I " IT I IV I J. """T II ) J { ) t",.. tn' & ~ J(, J(, uj"R."T"+jR:r r 
J R. T 

where 

The coupling matrix elements are defined by 

ff A " JM* A A 
<j't'T'IVIj"R."T"> = dR 1dr'YjltiTI(r 1 ,R') 

(+ RA 1) yJM (A 1 R" 1) 
x V r, j"t"T" r ' 

and are independent of M. For an asymmetric top and an atom the 

interaction potential can be expressed as (see Eq. II.li 
co ). 

(15) 

(16) 

V(r,R 1
) = .L L: (41T/2A+l) l/ 2 vAV(r) YAV(e,~) (17) 

~=0 v=-). 
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where e and ~ are the angles that define the position of the atom 

with respect to the top. Since (e,~) are not the angl~s used previously 

and integration over angles is required by (16), the group representation 

property39 is used to write Y, {B,~) as a function of the angles r' and 
AV 

A 

R'. The potential is alternately written as 

+ A "'""' V(r,R') = ·L...J (4rr/2A+l )112 ( 18) 
A\)\)

1 

Substitution of Eqs. (3), (13), and (18) into (16) yields the explicit 

form of the coupling matrix elements 

. j' 

(j't'T'IVIj"t"T") = (-)j'+j"-J L 
k'=-j' 

X [(2j 1 + 1 )(2j" + 1 )(2£ 1 + 1 )(2£11 + 1)] l/ 2 

£" A) (j 1 

0 0 k' 

j" A){., R.' ~( 
-k" k''-k' ~ .. j" /\$ 

The (:::)are 3-j symbols and{:::} is a 6-j symbo1. 29 

Symmetry considerations simplify evaluation of the coupling 

matrix elements. Conservation of parity requires the coupling matrix 

elements (19) to vanish unless 

(19) 

j'+k+s'+t' (-)j"+k"+s"+t" (-) = (20) 

(Recall from Section II that T implies odd or even values of k and 

s to be 0 or 1.) Hermiticity of the potential results in 

\''•' ' 
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(j II R, liT II I vI j I R, IT I } = <j I R, IT I I v I j II R, liT II } 

The boundary condition on the radial function 

( 
k )1 /2 

- k jT S~lnl 1 ·n exp[-t(k. r- R.TI/2)] "I I J NT +JNT JT J T 

defines the scattering matrix SJ. For the j 1T1 + jT transition the 

integral cross section is given by 

00 J+j J+j I 

I: I: 
t=IJ-jl 11=1J-jl I 

'IT k~ I: (2J + 1) 
(2j + 1) JT J=O 

J 2 
1Tji11TI+j1TJ 

where 

(21) 

(23) 

(24) 

The cross section in Eq. (23) has been obtained by averaging over 

initial projections mj and summing over final projections mj 1
• Since 

the S matrix is unitary the reverse cross sections can be obtained 

from the reciprocity relation 

(2j + 1) 

( 2j' + 1 ) 2 k • I I J T 

(25) 
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D. Description of Scattering Calculations 

The cross sections for rotational excitation of ortho H2co by call is ion 

with He are determined by integrating the coupled channel equations (14). 

In order to carry out the i nt,egration it is necessary to 

specify the total energy of the system Etot (see Eq. (11)), the number 

of internal H2co states, and the integration procedure. For the 

astrdphysical problem Boltzmann averaged rate constants ~re required 

(see Section VI), and accordingly 12 values of Etot in the range 

20° ~ Etot ~ 95°K were chosen. (See Table IV.l or IV.2 for a list of values.) 

The sums on the right hand side of the CC equati6ns (14) extend, 

in principle, over ~n infinite number of (j,T,1) combinations. Obviously, 
·' 

this is not computationally feasible so the sums must be restricted, 

keeping only the important terms. This is done by chasing a basis of 

internal ortho H2co states (j,T) and then selecting the values of 

orbital angular momentum 1 permitted by the triangle inequalities of 

angular momentum coupling for a given value of J (total angular momentum). 

For this calculation a basis set of 16 ortho H2co states with 

1 ~ j ~ 5 were chosen. This resulted in a maximum of 62 channels 

((j,T,1) combinations) coupled together. At Etot's less than 50°K 

ther~ are 4-8 H2co states energetically accessible in the asymptotic 
\ 

region. The CC equations were integrated by Gordon's method17 with 

the tolerance parameters VMAX, TMAX, TOLLO, TOLHI, CTOL set at 

10-4 and the parameters STEST and UTEST set at 10-3. The interaction 

potential (Eq. (17)) is the sum of the Hartree-Fock contribution 

(Eq. (II.l)) and the correlation contribution (Eq. (III.l)). 
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E. Results 

The elastic cross sections for the six lowest (j ~ 3) ortho 

H2co states are given in Table IV.l and displayed as a function of 

Etot in Fig. 4.2. The inelastic cross sections are given in Table IV.2. 

Selected inelastic cross sections are plotted in Fig. 4.3. Reverse 

transitions were obtained from the reciprocity relation (25). 

Resonances occur at -20.2, 32.7 and 47.7°K in many of the cross 

section curves. These energies are approximately equal to the internal 

energies of the j = 2, 3 and 4 doublets, respectively. 



'0 
Table IV.l. Coupled channel elastic cross sections.* 

0 

Etot(oK} '_;~·:. 

State 20.1668 25.1668 27.6668 30.1668 32.6668 35.1668 37.6668 40.1668 42.6668 ' 47.6668 70.1668 95.1668 r· ... -
111 331 235 229 213 345 189 179 170 163 152 115 93 ... t~ 

110 331 257 241 231 418 194 182 174 167 154 115 93 .(,: 

212 --- 267 282 249 430 217 205 197 186 178 122 96 c\ 
211 --- 308 306 263 414 228 211 204 195 187 124 97 

~ {fi 

313 --- --- --- --- 1620 289 277 255 244 259 135 103 
I .......:. 

312 --- --- --- --- . ---- 253 288 293 281 353 142 106 ~ 
1.0 
I 0 

413 --- --- --- --- ---- --- --- --- --- 950 162 112 

412 178 116 0"---- --- --- --- ---- ---· --- --- --- ---

*units are A2• 
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Fig. 4.2. Elastic cross sections. 
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Table IV .2. Coupled channel inelastic cross sections. * 

Etot(oK) 0 

Transition. 20; 1668 25.16.68 27.6668 30.1668 32;6668 - 35.1668 37.6668 '40.1668 42.6668 47.6668 70.1668 95.1668 0 
111.110 66.0 25.6 17.8 15; 1 . 45.5 12.3 11.5 11.1 10.1 9.5 7.6 6.6 .· 

-('''"·-' 

. 111->212 ---- 22.7 23.3 23.3 37.6 20.2 18.1 17.1 16.7 16.1 10.5 8.5 ·oq,~-

111->211 ---- 12.2 11.8 13.9 17.1 11.2 9.5 8.9 8.0 7.7 5.7 5.2 c 
111 +313 ---- ---- ---- ---- 4.8 4.1 5.4 6.3 6.4 8.0 5.4 4.6 
111.312 ---- ---- ---- ---- ---- 0.3 0.6 0.8 1.2 1.6 0.9 1.3 ~-" 
111-'414 ---- ............ ---- ---- ---- ---- --- --- 3.0 3.5 3.8 
111-<413 ---- ---- ---- ---- ---- ---- --- --- --- --- 0.9 1.2 .v~ 
110->212 ---- 13.4 13.8 15.4 33.1 11.5 9.9 9.7 9.2 8.5 6.3 5.4 
11o·2n ---- 14.2 13.3 16.0 34.9 14.3 12.4 11.6 10.3 8.9 8.4 7.8 0 

. 110.313 ---- ---- ---- ---- 2.5 7·.6 8.6 7.6 7.2 7.0 4.7 3.4 tr: 'I··-~-

110.312 ---- ---- ---- ---- ---- 1.6 2.4 2.6 3.7 4.7 4.5 4.3 

110-<414 ---- ---- ---- ---- ---- ---- --- --- --- 3.0 2.5 2.2 ""'-! 
110 ""13 ---- ---- ---- ---- ---- ---- --- --- --- --- 0.6 0.7 I 

<.11 
212.211 ---- 24.8 19.4 19.9 92.4 . 13.1 10.4 8.4 7.1 5.5 3.5 2.8 

__. 0 
212.13 ---- ---- ---- ---- 10.8 11.9 13.3 13.3 12.9 20.0 .11.6 11.1 

212.312 ---- ---- --·- ---- ---- 2.1 3.3 3.7 3.7 9.5 3.4 3.1 '.J 
212""14 ---- ---- ---- ---- ---- ---- --- --- --- 4.2 3.0 3.3 
212-<413 ---- ---- ---- ---- ---- ---- --- --- --- --- 1.1 1.3 

211 +313 ---- ---- ---- ---- . 7.6 7.1 7.9 6;8 7.3 12.3 3.7 2.8 
211.312 ---- ---- -.~-- ----. ---- 8;2 11.5 .. 12.1 10.4 20.2 9.5 8.2 
2n-'414 ---- ---- ---- ---- ---- ---- ---- 4.2 3.9 3;4 

211-'413 ---- ---- ---- ---- ---- ---- ---- ---- ---- --- 3.3 3.6 

313.312 ---- ---- ---- ---- ---- 9.6 10.2 8.8 9.2 25.0 2.8 2.1 
313-+414 ---- ---- ---- ---- ---- ---- --- ---- ---- 14.1 11.9 10.7 

313"413 ---- ---- ---- ---- ---- ---- --- ---- ---- ---- 2.4 2.4 
312.414 ---- ---- ---- ---- ---- ---- --- ---- ---- 12.7 2.6 1.9 

312.413 ---- ---- ---- ---- ---- ---- --- ---- ---- ---- 10.0 9.6 

414413 ---- ---- ---- ---- ---- ---- --- ---- ---- ---- 2.7 1.8 

*units are A2• 
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Fig. 4.3. Inelastic cross sections for initial states 
111 and 110• 
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V. COOLING OF INTERSTELLAR FORMALDEHYDE 

In order to test the collisional pump as a mechanism for cooling 

of interstellar H2co, the rotational cross sections given in Chapter IV 

will be used to determine excitation temperatures. For simplicity 

we will assume that the only processes of importance are dipole 

radiation and collisions. Higher moment transition probabilities are 

several orders of magnitude smaller than dipole ones, and hence they 

are neglected here. 14 It will also be assumed that the interstellar 

medium is rare enough to neglect radiative trapping. 13 

Astrophysical observations indicate that the 6 em (j = 1) and 

2 em {j = 2) doublets of ortho H2CO are cooled, i.e., the excitation 

temperatures Texc between states 1 and 2 (see Fig. 4.1) and between 

states 3 and 4 are less than either the isotropic background temperature 

(Tiso!::: 2.7°K) or the kinetic temperature {10° E:;;· Tk E:;; 20°K). The 

excitation temperature is defined by assuming a Boltzmann distribution 

for the populations of two internal states, viz, 

where ni 

g. 
1 

E. 
1 

. ni = gi exp(-E;fkB Texc) 
n. g. exp(-E./kB T . ) 
J J J exc 

= population of the ith internal 

= degeneracy of the .th 
1 internal 

state 

state 

= energy of the ith internal state 

kB = Boltzmann's constant. 

(1) 

Then if the populations of two states are known the excitation temperature 

characterizing them can be determined. 
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The populations are determined by solving the equations of 

statisti~al equilibrium, 5 

dn. L 
dt

1 = {A .. + B .. p(v .. ) +[He] k .. } n. 
Jl Jl lJ Jl J 

Hi 
-J~ A .. +B .. p(v .. ) +[He] k .. n

1
• = 0 ~ lJ lJ lJ lJ 

j!i 

where Aij is the Einstein coefficient for spontaneous dipole emission 

from state i to state J (E. >E.) (Table V.l}, B .. is the Einstein 
1 J lJ 

coefficient for induced dipole emission and absorption (Table V.2), 

(2) 

p(vij) is the energy distribution of radiation at the isotropic background 

temperature (2.7°K), vij = IE; - Ejl/h and [He] is the helium con

centration.14 Here kij is the ~ollisional rate constant for transition 

from state i to state j obtained by Boltzmann averaging the cross 

sections (as determined in Chapter IV) as follows (Table V.3): 

( 

B )l/2foo -E/kBTk k .. (Tk) = 3 E cr •• (E) e dE 
1 J Till ( kB T k) J+-1 

0 

(3) 

where E = Etot - Ei is the relative translational energy. 

Assuming a kinetic temperature and a helium concentration, the 

system of equations defined by Eq. (2) is solved for the populations. 

Excitation temperatures are then calculated using Eq. (1). In the 

limit [He]+ 0, i.e., radiation processes only (no collisions), all 

the excitation temperatures reduce to Tiso· As [He]+ oo the collisional 

processes become dominant and all Texc + Tk. At helium concentrations 

between these limits Texc lower than both Tiso and Tk can occur. 



Table V.l. Spontaneous emission coefficients matrix A.* 

Initial Final State 0 

State 111 110 212 211 313 312 413 412 0 

111 --- --- --- --- --- --- --- --- C· 

110 0.4 --- --- --- --- --- --- .;~. 

212 5261.2 --- --- --- --- --- --- --- .(.,..! 

211 6420.2 3.2 0 ---
22739.4 

(}": 
313 --- ---

I 

' (J'1 

312 --- --- --- 27504.1 11.9 --- --- --- (J'1 
I 

0 
413 --- --- --- --- 58007.1 --- --- ---

"' 412 --- --- --- --- --- 71264.6 35.4 

* Units of 10-8 (molecule -sec)-1. 



Table V.2. Induced radiation times radiation density matrix B•p.* 

Initial Final State 
State . 111 110 212 211 '• 3 

. 13 312 413 412 

111 --- 3.9 781.2 

110 3.9 --- --- 791.7 

212 468.7 --- --- 10.8 754.6 

211 --- 475.0 10.8 --- --- 709.7 

313 --- --·- 539.0 --- --·- 18.2 509.4 

312 --- --- --- 506.9 18.2 --- --- 438.0 I 
(J'I 

0'1 
I 

413 --- --- --- --- 396.2 --- --- 26.0 

412 --- --- --- --- --- 340.7 26.0 

* -8 -1 Units of 10. (molecule -sec) . 



Table V.3. Rate constants* at Tk = l5°K. 
0 

Final State ·-'-' 
Initial ,. ........ 

State 111 110 212 2il 313 312 414 413 
~..: .. · 

c 

111 --- 5.5 5.0 2.5 1.3 0.2 0.4 0.1 -J~t· 

110 5.6 --- 3.1 3.4 1.3 0.8 0.3 0.0 ·~~ 

212 4.7 2.8 3.8 1.3 0.6 0.1 
c --- 3.9 
tr-. 

211 2.5 3.3 4.1 --- 2.0 3.4 0.6 0.3 
~ 

313 1.7 1.7 5.3 2.7 3.4 2.8 0.3 I --- (J1 
......... 
I 

312 0.3 1.1 2.1 4.9 3.8 --- ' 1.5 1.4 0 

414 1.0 0.8 1.6 1.7 5.4 2.6 --- 0.5 

413 0.2 0.1 0.3 0~9 0.7 2.9 0. 6 . 

* -11 In units of 10 cc/molecule-sec. 
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Figure 5.1 displays cooling curves (Texc vs [He]) at 

Tk = 5, 10, 15 and 20°K. Cooling of both the 6 cm-(T12 ) and 2 em 

(T34 ) doublets is seen to occur at helium concentrations between 

102 and 105 cm-3 for kinetic temperatures between 10 and 20°K but 

not for 5°K. The two remaining curves, T13 and T24 , are excitation 

temperatures for pairs of states where dipole radiation is allowed. 

Havirtg established that the 6 em and 2 em doublets of H2CO are 

cooled by a collisional pump, the question of the relative importance 

of the various transitions remains to be fully elucidated. By varying 

the number of states used in the equations of statistical equilibrium 

(limit of summation in Eq. ( 2)), the effect of the different j doublets 

on the cooling can be assessed (see Fig. 5.2). Neglecting the j = 4 

levels caused less than 0.2°K changes in the effective temperatures 

for He concentrations at which cooling occurs. Omission of the 

j = 3 levels, however, resulted in no cooling. Thus the j = 3 ortho 

doublet plays a fundamental role in the cooling of H2co. At low He 

concentrations (~105 cm-3) radiative contributions are found to dominate 

collisional dipole-allowed transitions so that rate constants k12 , k13 , 

k24 , k34 , k35 , k46 and k56 are of minor importance. Ratios of dipole 

forbidden transitions, e.g., k25;k16 , are the indicators of cooling. 

The large ratio of k25;k16 ""' 6 (Table V.3) implies that transitions 

from the j = 1 to the j = 3 doublets are the primary components of the 

cooling mechanism. 

For collisions of the isotopic homologue H2
13co the Born-Oppenheiner 

interaction potential is the same as before and all differences are 

contained in the dynamical treatment. They involve small changes in 
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Fig. 5.1. Excitation temperatures as a function of He density at 
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the center of mass of H2co, the reduced mass of the tota 1 system and 

the energy level spacing. These differences are expected to have little 

effect on the scattering cross sections. In agreement with observations, 
.. 13 

these calculations indicate that the j .= 1 doublet of H2 CO is cooled. 

By a series of accurate quantum mechanical calculations, the 

collisional pump is confirmed as a cooling mechanism for the 6 em 

{j = 1} and 2 tm (j = 2} doublets of ortho H2co. The j = 3 levels are 

found to be an integr~l part of the pumping scheme. 
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