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ABSTRACT

The positions and lifetimes of several lS and 1’3P

autoionizing states of He and H are obtained by two methods»
involving standard techniques of‘electronic structure calcula-
tion which can be extended to more complicated systems. The
first method involves an approximate evaluation;of Millef's-
"Golden Rule" formula; the second is an application df the

recently developed complex coordinate method.
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I. INTRODUCTION.

Recenﬁ calculationsl’2 of the autoionizing states of two-electron
systems have been carried out to a very high degree of accuracy.
However, tﬁese calculations u;ilize Hylleraas basis sets aqd other
techniques which cannot easily be extended to more complicated
systems.- We have performed calculations of the poéitions and
lifetimes of several autoionizing states of He.and H by two
metho&s involving standard techniques of electronic structure
calculation. The first method is a direct exfension of the
wst;bilization method3 and involves an approximéfe evaluation of
Millef's4 Golden Rule formula. The second method.is an -application
of the recently—developed'complex coordinate approach,z’5 in which
the éoqrdinateoperators; in the Hﬁmiltonian are replaced by -

. h|
e o ;5, and matrix elements are evaluated in an appropriate basis

set. The comblex eigenvaluestr - %-F of this matrix give directly
the‘position and width of.autoionizing states. We have obtained
resultévaccurate to about ten percent using Slater-type basis
sets of modest size. Both of these methods may be extended to
molecular systems, and thus may provévuseful in the calculation

of .electron-molecule scattering resonances and widths for Penning

Ionization.



II. GOLDEN RULE CALCULATIONS.

The familiar Golden Rule of Miller is given by
T o= 2mp|<y |H-E,[x_>] )

wr is tﬁe,resonance electronic wave function cqrrespdndiﬁg
(for example) to a doubly excited state of He. Xe is then |
a continuum wave function qf thebsystem He+ + ef.-‘p is the
density of continuum states. |

Our apbroach is to approximate xc by one of:the non-resonance
eigenfunctions of thé Hamiltonian matrix constructed by-tﬁe CI
procedureft That is, we begin with a basis set of N orthonormal

configufatidns {@i(;i,;z)}, and diagonalize the matrix Hij =

<®1|H|¢j>. As in the standard stabilization procedure, we identify

one root as the resonance:

v, = L a_, ¢ : ' - (2)
r 4=1 i i ‘ B o S
It has been found3that some of the other N-1 éigénfunctions of

Hij correspond to "continuum—liké" solutions of H, 1.e., to He' +

e H

Before substituting into the Golden Rule formula, it is

necessary to "projett out" from wi'ail configufations which
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correspond to continuum-like solutions; otherwise the orthonormality
of the eigenfunctions wr and ic'would yield a zero result. It is

then easily shown that
. v' ‘. - 2 ' | 2
I = 2mp (B, -E)" |Z a, a,l (4)

where the prime oﬁ the solution emphasizeé that certain configurations
are not includéd;

Calcuiatidns were performed on the 2s2p 1’3P states of He
using the basis sets shown in Taﬁle I. Several.diffuse basis
functions have been included.to represent the continuum orbital.
Typicallvae usedvnine configurations: 1s2p, 282p, lSZp',
1s3p, ..., 188p (where each STO has beén:orthbgOnalized to those
preceeding it in Table I). Initially it was hoéed that the roots
would correspond to the resonance state closely bracketed by
continuum-like solutions. The continuum roots, however, proved
not to bé so closely Spaced. We therefore decided to adqut the
Z of thé:ZbLBp basis functions in order to have one continuum
solﬁtion very close to the resonance solution. This was effective.
As 4 was varigd; the”energy of the continuum #oot closest to
resénance poved continuously through an interval about Er' Eq. 4
ﬁrgakﬁ down aﬁd gives zefo.if.Ec = Er’ s0 we determined ' for |
several values of Z which gave Ec close to Er and interpolated.
The value of Er was relétively stable against variation in Z. As
previously stéted, all continuum-like configuratioms 192p', 1s3p, ...,1s8p

are exluded from the sum. T is thus a direct measure of the amount



of the resonénce 2s2p configuration in‘the c&ntinuum state,
or,‘altethatively, of the amouﬁt of continuum configurations
in the resonance states.

| We’&etermined tﬁé density of continuum states p by using
~ a result discdésed previously by Hazi and Taylor.? They fbund
that the use of.square_infegrable functions which form a flexible
basis ouﬁ to some lafge distancé L, but which fhen decay rapidly,

, .

corresponds approximately to the boundary conditibn of an

infinite potential barrier at L. The energies of the continuum

states of He+ + e should then be approximately En = - %-ZZ +
%: knz, where - %-ZZ is the energy of the He+ core, and

If the integral of w*w is normalized to unity (és is done

automatically in our CI calculations), then P(E ) is given by

1.2 1.2 -1
(6)

kn was'détefmined for each continuum eigenvalue, and found to

be veryvﬁeariy linear in n near the resonance. We were‘therefore
_aﬁle to detérﬁine p with an accuracy of 10-152;_ Figﬁre 1 shows
our results for He(2s2p 3?); vthe value obtained for I' agrees
quité well with the accurave values of Bhatia and Temkin.l For

He(282p,1P) _ﬁhe method gave I' about a factor of two small.

These resdlts are summarized in Table II.
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ITI. COMPLEX COORDINATE METHOD.

A more direct approach for calculating the energies of

autoionizing states 1s the recently developed complex coordinate

methbd.z’sl

In this approach all the radial coordinates in the
Hamiltonian are considered to be complex (; -+ eiq ?), and the

resulting Schrodinger's Equation is
-io -ia -ia

2 2, Ze. ze e
V."+ V%) - - + -Ely =0 (7)
1 2 r, T, i, |

-Zia
-[_;E____
» 2

6 that the bound state eigenvélues E of this

It has been'shown
tfénéformed equation are independent of o, and that thevcontingum
solﬁtions have energies along rayé in the complex plane which
make an angle 20 with the real axis, and which iﬂtersect the

real axis at each eigenenergy of the one electrég system. The
location of autoionizing staées (whiqh correspon& to scattering
resonance; or poles of the S matrix) is also independent of EH
the Qave fuﬁctionsvfor these states decay asymptotically fqr o

in a certain range. .Thus, after a coordinate rotation, auto-
ionizing states and genuine bound states are bofh described by
square infegrablé wave functions, and both may be calcﬁlatéd wi#h
the same techniques. Using modest but carefully selected basis
sets of Siaéér orbitals, we havevcalculated the spectrum of eigen-
values of certain 1S and 1’3P states of He and H;, and found

behavior of the bound, autoionizing, and continuum states in accord

with the prediction fbr an exact calculation. 7Previous complex



coordinate calculationsz’S of ﬁwo electron systeﬁé have.dealt only -
with the 'S state of H . | |

We’typlcally chose basis sets of about 13 STO's, and formed
linear combinations of them to construct 40 to 60 cdnfiéurations
which'we:é eigenfuﬁétions of L2, ML, Sz, and )%;' As in the
previoué section,.we chose séveral very diffuse basis functioms,
to allow the wave functions to have a flexible Aéyﬁptotic form;
Figure 2 illustrates our fesults for the 3 symmetry of H . Statés
were acquratély obtained belonging to two different continua, e
+ H(1s) and e + H(2s). States were also found which seem to
beiong to the e~ + H(3s) continuum, but they do not iie exactly
on the ray.as'expected. This presumably reflects the limited
nature pf our -basis.

Figure’3 shows the trajectory of the energy §f the 252p 3P
autoionizing stdte of He. For o = 0, this is jus; the energy
obtained in a sfabilization'calculation.‘ For a > 0, the root
- should rapidly approach the exaét pole location and remain there.
Instead, wé observe the same behavior as did Doolentgg_gl?; the
root trajecfories approach the exact.pole 1oca£iéns;:hesitate,
and then move rapidly away. We calculated [dE/dal along the
trajectory, and defined our best estimate of the pqle's location'ﬁs
the point where this quantity was a minimum, Tﬁus.in Figure 3 the
r&ot location is plotte& for eqﬁal increments Ao = 1"/96; a range
of o exists over which both tﬁe real and imaginary parts of the

energy are nearly stationary.



An explanation for this behavior is suggested by the results
of calculations we carried out using the same model potential

as Bain, et al. viz.,V(r) = 7.5 r2e®

au. For several a, we
calculated the complex wave functions numerically and compared
them with those generéted by the'compléx matrix,diagonalization.
For small a, the bésis set was flexible enoughvto'feproducev
accuratély the real aqd imaginary parts of the wave function,
and the.resonance eigenvalue was‘stationary. However, as o was
increased, fhe exact wave function exhibited additional oscillations
which the basis set could not reproduce. At this point the trajectory
followed by the resonance root moﬁed away from the exact pole, in
a seemingly‘random direction.

It is likely that the behavior of the resonance roots for the
two electron system is also related to the adequacy of the basis
set at each angle «, We_found the folloﬁing e#pansion a useful
guideline.for choosing basis functions:

n ;Zfeia n,~2 cosd r ~Z cosa

r e r [e - iZ sino r e T +...] (8)
Thus if an STO of order n and charge Z is imporéant.in describing
a particular state for a = 0, one might expect higher order STO's
of charge Z cosa to be'appropriate at.the rotation angle.a. We
normally inclﬁded only oﬁe higher order functioh, and used double-
zeta baéis sets to span a range of Z's.

Table II summarizes the results of our éaléulations. We feel

that of the two methods we have tried, the complex_coordinate meéethod



is the'msrg promising. This method yields lifetimes accurate to
about tenbpercent for a variety of autoionization states,.and
requires Véry little effort beyond that for a standard, real,
bound stafe calculation. Undoubtedly, this acéu:acy could be
improvéd by the use of more elaborate basis sets; However, we

are presently working to extend the method to molecular systems.
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TABLE I. Basis Sets for Golden Rule Calculations |

1s

28

_ 3p-8p
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Z = 2.00
.74

.85

1.71 - 1.81

L

2= 2.00
.56
.99

1.71 - 1.81
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TABLE II.
State Golden Rule Method
E_ (au) I' (eV)
lS
1 R
P =.6577 .021
3 N t
P -.7504 .0085
1S*
3P

Results for ‘this state are also obtained in references 2
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Suﬁmary of Results

Complex Coordinate

Method

Er (au) I'(eV)
-.7767 .1170
-.6618 .0412
-.7552 . .0079
-.1484 .0574
-.1382 .0072

and 5.

Accurate Values

Er (au)
~.7788

-.6929

-.7615

-.1488

-.1426

I' (ev)

.125

.0374

.0084

.0476

.0063



Figure 1.

Figure 2.

Figure 3.
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FIQRE CAPTIONS

I' as determined from the Golden Rule Eq. 4 for several

~basis sets giving continuum roots in'afrange near the

resonance energy EYr = ~0.7504 a.u.

Several eigenvalues of the 42 configuration complex

matrix diagonalization are shown. The diagonal lines

" make an angle 20 with the real axis and represent the

various branch cuts of the exact continuum spectra,

- which are rotated by the complex coordiﬁate transformation.

‘The trajectory of the 2s2p resonance eigenvalue of the

He 3P system. The points are shown at a = 0 (on the

real axis) and then for equal increments Ao = "/96.
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