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Peter Ring,* John 0. Rasmussen, and Herbert Massmann*
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ABSTRACT

Quantum mechanical tunneling theory in more than one dimension
_is reviewed. |

Several systems from nuclear and molecular science are consid-
ered specifically, such as, alpha decay of spheroidal nuclei,>spontaneous
fission, and reactive collinear collisions of hydrogen atoms with hydro-
gen molecules. The range of validity of vérious'approximations that re-
duce to one-dimensional path integrals or Froman-Nosov matrices ére ex-
amined, testing where possible against fully quantum mechanical coupled-
channels solutions. The classical equations of motion methods using com-
plex variables (uniform semi-classical approximation) are explored for
non-separable fission-like model systems. Effects of variable valley

widths, curving valleys, and of variable inertial tensors are delineated.

+Present address: Physik Department, Technische Universitit Minchen,
West Germany. :

*Present address: Hahn Meitner Institut filir Kernforschung, West Berlin.
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1. INTRODUCTION

The prdblem of quantum mechanical penetration of a two or more dimen-
: . / "
sional barrier occurs in a number of interesting physical situations. In
this article we will review only a few situations, namely the ones which

display the barrier penetration in the simplest and most explicit way.

In paft‘Z, the o particle penétfatioﬁ problem is considered and
several approaches are discussed. Part 3 will deal wifh the barrier pen-
etration in the spontaneous fission problem. The various approximate
treatments that havé been used forAthis problem are descriﬁed, including
a recent barrier model system for which a comparison of several of these
methods is made. In the realm Of’moleéular reactions, only the electron

and the hydrogen nucleus have sufficiently low mass to undergo significant

'tunneling and in part 4 we consider one of these problems, the collinear

. collision of a proton on a hydrogen molecule, a problem that has been of

much interest to molecular theorists. In all these examples we will, how-
ever, only consider the cases where the energy of the system is not too

close to the top of the barrier.

Another place in nuclear physics where a tunneling process is in-
volved is the tunneling of a nucleon or a few nucleons in stripping and
pick-up reactions. In the old semi—classical transfer theory of Breit and
Ebell), tunnéling is displayed rather explicitly but the more sophisticated
2) ‘

modern versions of semiclassical transfer theory (K. Alder et. al.”” and

R. Broglia and Aa. Winthers% don't show the tunneling in a simple way



énd we will therefore not discuss it in this paper. Electron tumneling is
involved, though in a rather complicated way and so will not be considered
here, in the electron capture and loss problems from ions moving through
‘matter. A review of the early quantum mechanical treatments of this sub-
ject by Oppenheimer4) and Brinkman and Kramerss) has been given by Rais-

beck and Yim? ).

The main object of this paper will be to present the various methods
used in sol’ving' the multi-dimensional barrier tmmeling‘problem. The
coordinates orthogonal to the barrier penétration coordinate and the effect
of a coordinate-dependent inertial tensor will be considered and an

attempt will be made to isolate these different components of the problem.
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2. MULTIDIMENSIONAL BARRIER PENETRATION IN‘ALPHA DECAY

Detailed Methods for 2-Dimensional Barrier Problems.

We npw_consider in more detail the penetrability probleﬁ for anisotropic
barriers in alpha decay. Beyond the range of nuclear forces we have the

simple Hamiltonian for a spin zero system

_ h? h? 2 ZZez 262&
H= -5 VZ- 23 Jei tE o+ 5 Py (cos Y)‘ | (2.1)

where the V? Laplacian operates on the coordinates of the alpha in the
lab-fixed system ©, w,Mwith r the center-to-center'Separation distance,

1 the reduced mass Nr;:%%—, _# the nuclear moment of inertia,Jéi the square
ofthenuclearrotationalanZular momentum operator operating on the Eulerican
angles ©; defining the nuclear symmetryvaxes in the lab frame, Z is the
charge and Qo the intrinsic quadrupole moment of the daughter nucleus, and

vy is the angle between the alpha direction ( ©, y) and the nuclear symmetry
axis ( O], 62). The problem reduces to a 2—dimensi6na1 one in r and '

Y when transformed to the body-fixed co-ordinate system (See Rasmussen

‘and Sega117)). The wave equation is transformed to a set of coupled-

channel second order radial equations by expanding the wave function as

follows:
u, () Z 20+1 & | |
v = Z E (2am-m]00)Y, (0,9) &7 -mo®®y) - @
% even Soom

Left multiplying the wave equation- (H-E) ¥ = 0 by the complex conjugate

of an angular function

28'+1

. [
: ®
Z (#"'m'-m' [00)Y,, , (e,0) N8BT D o (05)
m'



and integrating over all angular space 8, Yy and ‘@i gives the set of

coupled channel equations.

d?u
hz o 2Ze h? h? Vo )
"2‘571?2‘+[r +(2Tf"’-_+779 S el e Al

2 ) o '
o+ %3— Z u, (2'9! ,0|P; (cosy)|2£2,0) =0 (2.3)
2 : .

In the total-spin. zero case (as for even-even ground state alpha decay)

the matrix elements have the simple form first given by Racahg)

(2'2',0|P,]|22,0) = %- V(2e+1) (207+1) v(u'ootzo')z

The numerical solution of the problem for alpha decay uéually involves
application-of some double-ended boundary conditions. At tﬁe nuclear
surface or bn a spherical surface R nearby one seeks the irregular solu-
tions for all components u,. That is,all solutions should be exponentially
decreasing solutions appropriate to the quasi-bound alpha state in the
nuclear interior. At la}ge distance the wave functions will be oscillatory,
and often one imposes the experimental relative intensities of decay to
various rotational states. In practice one cannot carry through the
outward integrations, since the exponentially decreasing solutions are
not stable, and any rounding errors in the integration routine will grow
expdnentially. Thus, oné resorts to inward-integfafidns from some large
distance beyond which the quadrupole potential term is negligible.. If
one takes N equations, one ebtains a complete linearly independent set ?f
2N solutions by successively matching at large r each channel solution

and its derivative to the irregular Coulomb solution G (n,p).and then
Y gu %

the regular Fz(n,;ﬂ. The values of these wave functions at RS make up



the real (for G, initial) and imaéinary (for F initial) components of an
N X N matrix, A. The inverse A™' of this matrix when operating on the
colum vector uR(R) gives the amplitudés (and phases relative to pure
Coulomb waves) in the asymptotic region. The alpha intensities are the
squares of amplitudes times the velocity of the alpha group. The matrix
_ is usually factored into a diagonal matrix P, whose elements pzz are the
.square roots of JWKB penetration factors forveach channel in the ébsénce
of the quadrupole term in the Hamiltonian and an N X N matrix K. .
A = K |
. 0

The matrix K is usually called the Froman matrix,”’ and it goes over to a

unit matrix as Qb -+ 0.

An example'of the K matrix is shown below for coupled channel inte-

gration for ?**Cm alpha decay 10)

1.015 + 0.01161 -0.1674-0.01761‘ 0.01166 + 0.002171 (-5.09-1.31)10_4
3.

-0.2107-0.0456i  0.954-0.00158i -0.120-0.00592i (7.26+0.6791)10_
0.02114+0.0135i -0.190-0.0595i 0.919-0.00361i - -0.101-0.001871
-0.00109-0.00216i 0.0189+0.0187i -0.205-0.0893i 0.909-0.02411

where the suécessive elements refer to% = 0, 2, 4, 6. The P matrix in thié
case has elements .poo‘= 1.30 = 10727, pyp = 4.67 - 10‘2°,> ﬁ;::4.21-1029,
p6é4$ 9.30-107%!, Because of the off—diagonai elements in the K matrix, a wave
function that is purely one & value on the surface at R has admixed various %
‘values at larger distances 0utside the barrier. Sometimes the K matrix

is constructed so as to transform the Legendre expansion of the wave



function on a spheroidal surface, a constant nuclear density surface or

11)

a Nilsson stretched co-ordinate surface , rather than the spherical

surface expansion of our numerical example. One may refer to the liter-

ature for examples in which spheroidal coordinates are used 7,12),

It may at first seem puzzling that the K-matrix given above has alter-
nating signs for its élements, while the analogous matrix of Frémang) has
all elements with the same sign. In both cases the nucleus was considered
prolate. However, the K-matrix above transforms the Legendre expansion
on a spherical surface, while Froman's matrix transforms'thevLegendfe ex-
pansion on the spheroidal nuclear surface. The wave propagation from
the spherical surface is more favorable in the equatorial region, éince
'~ the quadrupole term makes the barrier iower in the equatorial region for
a given radius. On the other hand, for wave propagation from the spheroidal -
nuclear surface, the polar regions are favored. The greater disfance from

the center at the poles means the lower net potential barrier is at the

poles, and furthermore the barrier is thinnest in the poiar regions.

Coupled-channel calculations have also been madels)4for odd-mass
nuclei, such as 253Es and 25SFm, where the calculated K-matrix is a 9 x 9,
including the lowest five members of the favored rotational band and all

£ =0, 2, and 4 waves.

Let us now examine Fréman's approximation. It is most accurate in
the case of vanishing nuclear rotational energies (infinite moment-of-

inertia), so we consider that case. His method Legendre expands the



wave function on the interior surface, as in the coupled-channel method.
For each Legendre component on the surface one propagates the wave function
out to large distance by 1-dimensional path integrals at constant polar

angle y taking into account the potential energy terms of the Hamiltonian.

By the JWKB approximation then a particular £ component on the

interior surface is transformed from

' YQQ(Y’w) at R to

- Ty ()

Yt ee) ¢ | VBTG i | 2.4
"Rs ()

where V(y,r) = Ziez + -;53- P, (cos v) (2.5)

and rt(y) is the outer classical turning distance. The waﬁe function
outside the barrier is re-expanded in Legendre functions. When the ex-
pansion coefficients are divided by the penetration factor for no quad-
rupole distortion of shape or field one has the elements k, , of the

Froman matrix K. Let us write out these relations explicitly

I+ (Y)

kogr = [-[Y:'o exp 3 f%j V2u(V(r,y)-E) dr +

. R - -
+ %_ [ \IZu'(VC-E) dr% YSLOd‘” (2.6)
o .

2Ze?
T

with Vé = (2.7)

To further simplify, Fréman expands the integrand (under the assumption

that the quadrupocle term is small):



| .2
| xe” p
: 4. 1 2
VV(r,y)-E = VV_-E RERE —‘-’;-C—E—— ..

The argument of the exponent then goes over to

““j 1 9"—-— te_dr = B P,(cos V)

-P, (cos y) " h E

defining the argument B of the Froman matrix. Thus equation (2.6) can

be approximately written

Il = : : ,
=//Y2'0 exp g -BP2 (cos y) } Ymdw, A ' (2.8)

We shall not work out here the analytical expression for the Froman argu-
ment B appropriate to the K-matrix from a spherical surface. Rather do

we quote Froman's expression for the transformation from a spheroid

B—sz\/41r \/KR° 1- (%é %;) B (2.9)

where yx = 4Ze*/hv is twice the Sommerfeld parameter n,*K is the wave
number. We have specialized Froman's formula for the usual case of a
uniformly charged spheroid. The parameter 8 is the usual coefficient of

YZO in the expansion of the nuclear shape.

’ Nosov.14l'independent1y of Froman and working from an equation’of
Strutinsky 151 arrived at a similar matrix element expression. His ex-

pression becomes, using Froman's notation,



_ KRo - ' 4 ; 2 k2R2 : '
B. = sz\[M \[ ( "—)g‘ = K (2.10)

The important new aspect in Nosov's expression is the imaginary component,
1mpo P Xp Ty comp

representing the Coulomb excitation. The real parts agree in the leading

term of FrOoman's expression.

Yet another approx1mat10n to the problem was applled by Chasman and
Rasmussen 16)~,tak1ng approximate radial wave functions for (a2+ By ' /2).
Gg(r) within the barrier and choosing constants ay and B, to optimize
solutions in the presence of the quadrupole potential term. The trans-

mission matrix obtained in this way also compares favorably with the exact

solutions.

3. MULTIDIMENSIONAL BARRIER PENETRATION AND FISSION

A. Introduction |

Another field in nuclear physics where a multidimensional barrier pen-
etration manifests itself is in the study of spontaneous and induced
fission. Preééntly nearly all the fission barriers are calculated by a
macroscopic-microscopic method. In this method the smooth trends of the
potential energy ( with reépect to paiticle numbers and deformation) are
taken from a macroscopic model, the liquid drop model, and the local
fluctuations, also called shell corrections, are taken from a microscopic
model. We shall not try to review the early attempts to calculate
theoretically the fission barrier penetrability, for prior to the

. 17 . .
Strutinsky )method of applying the shell corrections to the liquid drop
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potential surfaces, the fission barrier heights and shapes were simply not
at all understood. Several’group518'24) have since then made careful
application of the Strutinsky method and now we caﬁ have confidence that
the main aspects of the potential landscape along the fission trajectories
are well known. In the region where spontaneous fission rates are known |
there seems to be a two-humped barrier, with the notaLle fission isomer
discovered by Polikanov et. 21:25), beingaéhape—isomeric metastable

state. in the minimum between the two barriers.'“Itbélso appears that the
innermost saddie may often be unstable with respect to gamma defbrmation26),
i.e. deviations from cylindrical symmetry, while the outer saddle may be
27)

unstable with respect to the reflection symmetry It would appear

that the asymmetry in the fission fragment mass distribution derives from

this instability at the second barrier.

In order to describe the deformation energy surfaces for the fission
process one needs at least two or three deformation parameters to define
the nuciear'shape. These generalized coordinates, which are strongly
coupled, give the generalized forces acting on the fissioning nucleus.

For a complete‘dynamicai deséription of the fission process, however, it
is not enough to have a goodvknowledge of the potential surface, but also’
a knowledge of the inertial tensor is needed in order to find out how the
nucleus will react to the generalized forces. The inertial tensbr, of

such great importance to the barrier penetration calculations, is only

poorly known.

R. Nix28) has carried out extensive derivations and calculations of
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irrotatidnal flow hydrodynamical inertial tensors for fission trajectories. The
inertial fensor so obtained is, however, too small by a factof of approxi—
mately five, i.e. the flow during the barrier penetration is not irrotational
Now, it is generally assumed that the first stage of the fission process,

the penetration through the barrier, occurs adiabatically and that the
cranking model can be used to evaluate the inertial tensor. The Pauli-
Strutinsky-grouplg’zg) and othersso) have extensively been exploring

cranking calculations for the inertial tensor. These calculations show

that the inertial tensor depends'strongly on the generalized coordinates,

i.e. also the inertial tensof gives a coupling between the different

degrees of freedom. In the one-dimensional case however, the coordinate
dependence of the inertia introduces no new difficulty since it can be
transformed away. H. Hofmann and K. Dietrich31) have shown how to trans-

form the Schrédinger equétion with variable mass m(q) into one with constant
mass m by modifyinglthe potential. The oné-dimensional Schrodinger

*)

equation 1is:

.| p*1 4 1 4., S

Performing the following transformation '
o -
x(q) = m 94 : | (3.2)

% _ : .
)The general expression for the kinetic energy with variable inertia in
curvilinear coordinates for many degrees of freedom has been described

by H. Hofménnsz).
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where m, is an arbitrary constant mass, one obtains the Schrddinger
‘equation:

h2‘ dZ ~ ~ ~ | ) .
| o KT + V() ¥ (x) = E¥Y(x) . (3.3)

where V(x) =V (x(q)) =V(q) and ¥ (x) = ¥ (x(q)) = ¥(q). This trans-
formation corresponds to a stretching of the potential in such a way that

the mass becomes constant.

Another aspect of the fission problem that has recently been stressed

33),'13 that besides the coordinates de-

by L. Moretto and R. P. Babinet
scribing the surface configuration, one should also consider the pairing

correlation parameters as dynamical variables.

To summarize, the fission process is a challenging multidimensional
barrier penetration problem, a problem that has been tackled by many
groups introducihg more or less drastic approximétions. Some of these

approaches we will now describe briefly.

B. One Dimensional WKB Method.

19) after the Strutinsky

The first caiculations of fission lifetimes
prescription was introdﬁced, took into account as coordinates only €
and e, (that is quadrupole and hexadecupole deformations) to define
the nuclear shape. In order to calculate the penetrability the problem

was simplified to a one-dimensional barrier penetration problem, con-

structing a path on the energy surface by minimizing the potential energy
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with respect to e, for each €, and then projecting this path into e, axis.

The penetrability is then obtained by using the one-dimensional WKB approx-

imation: o
o . 8" ) ‘ ’
. 2B _
Crmew { Y [T 0B def = ep(n) (3.0
’ g : ,
: . o . . . 34)
An improved expression was shown by P. Froman and N. Froman to be:
o -1 , . , _
P = { 1+ exp (K) } (3.5)

In this eariy calculation the inertial mass B associated with fission wés
taken as a constant of was parametrized as a function of €, in some simpie
manner. E is the initial energy of the nucleus in the fission direction and
W (e) represents the barrier as obﬁained‘from the potential energy surface
just as described above. Later eésentially the same type of c31cUlations .
were performed by Randrup et. gl,ss) to predict the fission half lives of
heavy elements, but not only P, and P, distortions of the nucleus were
included, but also coordinates were introduced fo describe Ps;, Ps distof—

tions and the gamma degree of freedom.

C. Stationary Action Path Method
“The next refinement in the fission barrier penetration problem was

18)

introduced by the Pauli-Strutinsky group; see Brack et al. The two

shape coordinates used in their calculations to describe the fissioning
nucleus were a separation or elongation coordinate ¢ and a necking-

in coordinate h. ~ A~ shows a contour map of the liquid drop energy,
u F,‘g,\ﬁ({.lf of reference 18
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the energy shell corrections for neutron and prétonsvand the total defor-
mation energy for 2*°Pu. As already mentioned, they studied the inertial
tensor within the cranking model. A contour map of the qfffereytm$om-
ponents of the inertial tensor for 2"°Pu is shown in Fig;O ?iﬁe strong
shape dependence of the inertial tensor is readily observed. The mass
tensor componént corresponding to the elongation coordinate generélly
exhibits a large maximum at the saddle. It seems likely that the fission
trajectory for barrier penetration might avoid the high-inertial region
by avoiding the saddle, even at the cost of a higher potential barrier.
As J. Griffin36) pointed out, if the inertial tensor has nonzero off
diagonal componenté or if the components depend on the coordinates, then
one's intuition of the fission trajectory based oﬁ the potential map

may be completely wrong. In other words, to assume that the fission
trajectory follows along the bottom of the valley may not be adequate.

In order to find the path one resorts to classical mechanics by invoking

the least action principle.

In classical mechanics the action is defined by:
L ‘ a, , ‘

S = f ﬁi J piqidt = f Z’pidqi - (3.6)
ty - q

Here {qi} are the coordinates describing the system and {pi} are
the corresponding canonically conjugate momenta. The principle of least
actionvstate537’38), that in a system for which the Hamiltonian H is
conserved (i.e. if H(q,p) =E=const.) one has

AS = 0 . B | . (3.7)
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where the variation A does not include all the virtual displacements of
the system, but only those for which the energy is conserved along the

varied path. One has:

v

_ oL _ 3 | SR ,

1

also

1 dq; dq, |
E=2 Z Bij (@) afl gt—l— + Wi(q) (3.9)
ij- ‘

from which dt can be found:

1

dt = JZBij (a) dayda, <Z(E-W)) . (3.10)
ij '

Substituting (3.10) and (3.8) in eq. (3.6) we find:

2 dq. dq. -
S = fJZ(E-W(o)) Z Bij(q) 30—1 aal do (3.11)
1)
01 : »

where o is sbme arbitrary parameter along a trajectory and Bij is the
inertial tensor which may also depend on o. During the tunneling process
W > E, and the integrand in eq. (3.11) is purely imaginary. The tunneling

probability is given in the usual way by:
P=| exp(i8)) 2= ¢ 2SI (3.12)

The way Brack et. al.ls) proceeded to find the trajectory which makes

|S| smallest was by forcing the trajectory through several points between
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the two endpoints o; and 0,. These intermediate points were then varied
until the smallest action {S/ wa§ obtéined. The trajectory so obtained
usually did not folldw the steepest descent of the potential ana did not
lead through the extremal points of the deformation energy. It should
still be noted that the entrance (01) and exit (02) points in eq. (3.11)
should be determined in such a way that the action integral is also
stationary against variation of these endpoints. The entrance point -

o1 is usually choﬁen to lie 0.5 MeV (zero point'energy) above the bottom
of the well (which is a local minimum of the total deformation energy
surface); o> then has to lie on the energy contour with the same energy E.

30) using the same method (as the one

T. Ledergerber and H. C. Pauli
described in ref. 18), have done calculations using three deformation para-
meters; an elongation coordinate, a constriction or necking-in coordihate
and a parameter describing the left-right asymmetry. The lifetimes ob-
tained from these calculatipns are in order-of-magnitude agreement with
the experimental data; they also show that mass asymmétric fission is

favoured and that the most probable mass division (peak-to peak ratio)

agrees with the experimental data.

In this multidimensional approachls’so), however, one still ignores
the kinetic eﬂérgy tied up in the motion orthogonal to the fission path
(which may change along the path). The question of inclusion of zero-point
energy for the fission degree of freedom, depends oﬁ.how the potential sur-
face was derived. It has been customary in shell-corrected liquid drop

model work (Strutinsky method) to ignore all zero-point vibrational energy
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corrections, since they would require assumptioﬁs abouﬁ an iﬁertial tensor.
Thus, liquid drop model parameters are adjusted to fission barrier heights.
- With such a surface it is clearly incorrect simply to add zero-point ener-
gies.. This'point is closely relatédvto the point made by Maruhn and
Greinersg); for spontaneous fission from a spheroidal ground state the
number of degrees of freedom for quadrUpole vibrations is three, that is,
the ground:sfate wouldvhave 3/2 hw of zero-point energy. At_the»saddle
the fréquency of the beta-vibrational mode in the‘fission direction has
become imaginary, leaving only two units of zero-point energy, those
associated with the gamma-vibrational (axial-symmetry-breaking) mode. In
‘order to include these zero-point energy corrections (withput modifying
the fission barrier heights) Maruhn and Greiner réadjusted some of the

40) to lower the ground

liquid drop parameters of Myers and Swiatecki
state potential energy (and that of the final fragments) by the zero-
point energy; which was obtained from the first 2° state experimentally

observed.

D. Tunneling and fhe'Inverted Potential Energy Surface.

Consider a system which moves toward a barrier and let time be the
parameter in the equations of motion describing:thé system. If the time
increments are kept real, the system will move toward the barfier and then
 reflect at the barrier and move back. If hdwever, one takes purély imag-
-inary time increments when.the system is at the turning point, the system
will start tunneling. In other words, during the tunneling process, the
system follows the classical equations of motion bpt with purely imaginary

time increments. (See also Fig.4 and discussion in section 3-F.)
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If at the classical turning point of the fission degree of freedom
also all the other degrees of freedom are at a turning point (or in
other words, if the system when it reaches the barrier is at rest), then
the tuﬁneling process can be Viéualized by a very simple picture. If the
system is at rest at the turning point and if one uses purely imag-
inary time increments thereafter (until the tunneling is completed), then
all the coordinates will remain real, all quantities related to odd powers
of the time'(for example velocities, momenta, angular momenta, etc.) will
be purely imaginary; quantities which depend on the square of momenta
(for. example thé kinetic energy, cenfrifugal force, etc.) will change sign.
It is now easy to see that the system can equi#alently be described by
using only real tiﬁé increments and changing the sign of (V-E). That is,
the tunheling'trajectories can be obtained by finding how the system moves

41). For the fission example, the

on the inverted potential surface.
entrance point o; will now be close to the top of a hill and the fission
valley will be a mountain ridge starting somewhere close to the hill (see
fig.41 for a simple illustration of this idea)} The system now has to |
roll down the hillland up the moﬁntain ridge (following the classical
equations of motion) in such a way that it does not fall of the ridge to
either side but reaches the exit point o, where the velocity is zero
again; (at this point, if one wants to follow thé,system into thé

fission valley, one would switch to the ordinary potential surface again).
If after the system reaches o, the time increments are kept purely
imaginary (or equivalently, using real time one keeps the inverted poten-

tial surface), the system will move toward o, again. Finding the tun-

neling trajectory then, is equivalent to finding the periodic orbit on the
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inverted potentiél surface. In the example shown in Fig. 1 there is only
one point (in general, it is a certain interval) on the éntrance and one
point on the exit energy contour which are connected through classical
eqﬁations of motion; therefore when 1ookingffor the trajectory with the
minimum action |S| one also has to vary the'éndpoints o, and o, umtil
the minimum is achieved. Anothér example of motion on an inverted

potential surface is given in Appendix A

E. Quantum Mechanical DWBA Approach

The two-dimensional Schrédinger equation has the form:

2 53 '
HyY = ; L Z .11). 33__.Dg1_J 9+ V(ql,q2)9 ¥ = EY © (3.13)
1,j=1.2

where glJ are the contravariant components of the inertial tensor (gij)
and D = Vdet(gij) ; V(q',q%) is the potential energy, a function of

the curvilinear coordinates q!, q2.

In Appendix A of ref. 42), H. Hofmann describes a method for finding
a coordinate transformation x = x (q',9%), y =y (q', q?) which has the
following properties: i) that thé off-diagonal components of the in-
ertial tensor expressed in.the new coordinates vanishes (i.g. mxy = myx = O)f
ii) that the trajectory y = 0 defines a path of minimal potential energy
(e GV, L o= 00

42)

Hofmann "~ using a transformation of coordinates like the one just

described, using a harmonic approximation for the potential perpendicular



20

to the fission path and with the additional assumptions that the mass tensor
components do not depend on the coordinate y, reduced the Hamiltonian

eq. (3.13) to:

a2 [1 5 /m 3 1 9?2 LI '
H T[ T W, m, By FVER0r S—yt G18)

‘and solved it approximately in what can be called the first truly two-
dimensional quantum mechanical dynamicél treatment of the fission process.
_ In eq. (3.14) w (x) is defined by

1 VE,y) : :
w? (x) = my(x) 3y? y =0 (3.15)

MThe Hamiltonian is then separated into an adiabatic Had and a non-
adiabatic Hnad part. If the system is initially in an oscillator state
n, then Hnad = H =Had can produce transitions to other oscillator states
m. The probability amplitUdes'Amn_of finding the system after the barrier
penetration in a state m satisfies an integral equation for which Hoffman
uses the Born approximation (DWBA) to get an approximate solution. This
use of the DWBA however, as we will see later, is probably only good when
considering transitions which start from the ground state before fission.
When starting-from an excited state, the transition probabilities to the
ground state are usually higher by some orders of magnitude than the ones
to excited states (evén in the case where the coupling between the two
degrees of freedom is quite small). . The reason is that the system can

penetrate much easier within the ground state.
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F.\ Study of a Fission Barrier Model System

Now we will study a two-dimensional model of a fission-like barrier
system. In order to investigate the full two-dimensional dynamics and
to test various approximations it is of value to stﬁdy a model system with
the potential given by an analytical function. An example studied by
~ Massmann et. gl,43) takes a Hamiltonian wifh potential giving a Gaussian
barrier in the x direction (x being the fission cobrdinate) and an harmonic
potentialiin the y direction. The mass tensor was taken to be diagonal

and constant; the width of the valley, however, was variable. The Hamil-

tonian considered was:

X ¥ X ¥
2 2 - = =
oy () l-c(1,+ae(a) ), (3.16)
H=7 "~ +5~ *+Ve + 2 7y '
mx m
y

A non-zero value of the "coupling constant" o allows the width of
the valley to vary over the saddle, and by doing so couples the two degrees

of freedom. The numerical values were chosen so as to correspond to a typ-

ical fission case: m, = 500 MeV'l, V_ = 7 Mev, m, = 4.7 Mev'l, a = 0.185,

C=5.1MeV, E = 6.0 MeV. This choice of C and my gives a frequenéy

tot
of about 1 MeV, typical of say a gamma vibrational mode.. The coordinates

x and y are dimensionless and correspond for instance to the defoimation

parameters e, and €,.

a. Exact Quantum Mechanical Solution.
A fully two-dimensional quantum mechanical solution of this model
is possible for not too stfong coupling constant o. The method is anal-

ogous to the coupled channel calculations described for alpha-decay:

!
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one expands the two-dimensional wave-functions in a set of product wave

functions:
(UO) :E: () ,
v =2y ) W ) (3.17)
)

where {y;} is an appropriate orthonormal basis set. In this it is
reasonable to choose the harmonic oscillator eigenfunctions of the y-
dependent ﬁotential.fbr |x| » » , where the coupling term o is negli-
gible. The index . denotes the.boundary conditioh that in channel
b one has for x + - an incoming wave with unit amplitude eiKP;X and
a reflected wave r, -e_15“°x, but in alllthe other channels for x| » o

only outgoing waves. Substituting this expansion into the wave equation:

| . H-B)Y =0 (3.18)
' *
left multiplying by 4,, (y) and integrating over y from - « to + = gives

coupled channel equations in x.

e u®) -2 Bl Gy

: v :
For o = 0 the equations will be uncoupled and the solutions are simply
the product 6f one-dimensional wavefunctions in x and y directions. .Of
course a part of the total energy, (o + %)hmy, is tied up in the y-mode,
and the available energy for the one-dimensional barrier peﬁetration in
the x direction is correspondingly reduced. The matrix in equation

(3.19) Buw(x) is given by
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o . M 32 2m, { |
BUU' (X) = Wlul - I-Tg; 5')72 + HZ (V(X,Y)‘E) lwuv ) (3-20)

In order to find the solution With the corréct bbundary conditions, one
integrates the coupled equations (eq. 3.19) starting from x » + wiph_
outgoing waves as initial conditions and integrating towards x -»- .,

This is repeated for each channel on the right side (if the channel is
closed, instcad of an outgoing wave an exponentially decreasing wave is
‘used). At the left side of the barrier one will then have incoming and
outgoing waves in each channel. A matrix inversion then gives the correct
linear combination of waves to be used in order to satisfy'the boundary

| condition on the left side.

Fig. 2 shows in its upper part the shape of the Gaussian barrier
together with the adiabatic translational energies in the x direction for
the three y-vibrational channels n = 0, n = 2 and n=4. Let's remember
‘that the problem we are solving is typical of sub-barrier fission, with
~4.8 MeV of excitation and ~1.5 MeV below the classical barrier threshold
(the coupling is o = 0.1). Higher n channels are obviously closed, and
odd n channels are not coupled for parity reasons. The lower part of the
diagram plots the square of the wavefunctions for an incident wave from
the left in chammel y = 2 (i.e. |u2vi)r). We note the standing wave
in the channel p = 2 on the left-side of the barrier, as most of the flux
is elastically reflected. About 10" ° is inelastically reflected.in
channel p = 4 and 10”% in chamnel p = 0. To the right of the barrier

v = 0, 2 and 4 waves are transmitted at the 10-'°, 107 '® and 10 2*



24

probability levels, respectively. There is a vibrational "cooling" effect
on the passage through the barrier, with v = 0 transmitted waves dominating
regardless of vibrational state incident on the Barrier. Only in the case
of | o veryicldse'to zero, a constant valley width, will the '"cooling"
feature_notvappeér (see Fig. 3). In a realistic fission landscape coﬁpling
is sure to be ample, both through valley width vériations and mass tensor

changes.

‘We may, as with alpha decay through anisotropic barriers, express the
transmission alteration of amplitudes through an N XN square matrix. This
matrix opefatiﬁg on the colum vector of incident amplitudes in various

vibrational states gives the final transmitted waves amplitude matrix:

| [ 3.74 (-3)  9.64 (-6) 1.01 (-8)
At=. | 3.64 (-6) 5.17 (-7) 9.93 (-10)
1.01 (-8)  9.93 (-10) 6.83 (-12)

We. now factor this_matrix to get a matrix analogous to the Froman matrix,
that ié,,one which goes over to a unit matrix as the coupling o goes
‘to zero:

A'=PK.

~ with P coming from the solutions of the uncoupled o = 0 problem.

.

4.09 (-3) 0 0
p= 0 7.0 ¢7) T 0
| 0 T 0 1720 (1) L

*) The ''cooling" should not be interpreted in the framework of thermodynamics,
since the process considered here is a completely reversible one.
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and
0.905 2.36 (-3) 2.47 (-6)
K = 13.0 0.699 1.34 (-3)

841.0 82.8 0.569

The K matrix in this '"fission' example is so strongly unsymmetric that it
would be clearly inappropriate to apply the Froman approximation as it
is used in alphé decay. This asymmetry in the K matrix evidently results
from the fact that the different channel components see greatly differing
barriers in the "fission" case. The transmission matrix Af‘bitself is

symmetric due to the symmetry of the potential in our model.

The COuplea channel code described above can take into account only
-a finite number of channels; it is therefore useful only for problems wheré
: oné gets convergence taking into account a reasonable number of channels.
In the calculations described here, three open channels were included.
Taking along a fourth (closed) chamnel changed thé results only in the
fourth significant figure. For realistic surfaces, in order to expand the
wavefunction eq. (3.17) many more channels have to be included. This not
only involves more'computer time, but also closed channels with higher

energy require a special handling.

b. Quantum Mechanical Adiabatic Approximation.
An obvious approximation to be tested by the coupled channel solution
is that the y-direction wave function, particularly the Gaussian of the

zero-point lowest state, adiabatically adjusts its width as the valley
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changes along the path. That is in this so-called Vibrationally adiabatic
approximation (VA) one assumes that during the fission process the system
always stays in the same oscillator state u. Then one carries out a one
dimensional calculation, taking into account only the change of the oscil-
lator energy. Table I shows the diagonal transition probabilities for né
coupling (o = 0) obtained with the exact quantum mechanical program (QM)
and with the one-dimensional WKB formula eq. (3.1), and for a coupling

a = 0.1 obtained with the quantum mechanical solution (QM) and for the

adiabatic approximation (QMad). For this example it turns out that the

adiabatic approximation is good.

For our model the inertial tensor is coordinate-independent and diag-
onal and therefore the methods described in B and C, that is, the one-
dimensional WKB approximation and the least action path method, giﬁe
the same result and are independent of o. In table I this result is also
shown and is labelled WKB (and it is equivalent to the conserved ﬁibra-
tional energy, CVE, approximation). The reason why the results of the
one-dimensional WKB method and the least action path method are independ-
ent of o is because they neglect the change ofAenergy tied up in the motion

perpendicular to the fission path (which may chénge during the tunneling).

c. The Uniform Semiclassical Approximation.

Now we will test the validity of the USCA (uniform semi-classical
approximation) on this model problem. The underlying idea of the USCA
is that one uses the analytical'continuation of the classical equations

of motion to describe the dynamics of the system together with quantized
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‘boundary conditions and the quantum mechanical superposition principle
in adding amplitudes for different trajectories. The foundations of the
USCA and many applications to molecular scattering and reaction problems
- have been giVen by Miller and others (see refs. 44, 45, 46). Here we
will therefore only giVe the main’results of the USCA as applied to our

model.

Let's introduce for the model problem in the asymptotic regions,
‘that is for |x| » =, the action-angle variables (J,q) for the transverse
collective degree of freedom. The action variable J is related by the
correspondence principle to the ''quantum number’ n of the harmonic
oscillator through J = 2mh(n + %) and the angle variable q to the phase

¢ of the oscillator through q = ¢/2m.

The semiclassical S-matrix, whose square gives the transition prob-

ability between two quantum states non, is given by:44)
8nv(q-)) ,)-’4 - (
Sv+u }E:( 2mi ( aqi n, exp 1®(nv1nu) (3.21)
where the phase & 1is the classical action integral:
o tf | te
) - 1 . . -i r
°(mn ) i oy * yp) dt-3(Ja-p,) t, (3.22)
t..
i

The sum in eq. (3.21) goes over all possible classical paths which satisfy
the appropriate boundary conditions, that is, correspond to trajectories

which tunnel through the barrier and are such that'n(ti+ - ©) = n,
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and n(tf > + o) = n.

There are several differences between this USCA method and the two-

18,30) hich was described

dimensional method used by the Pauli group
earlier. The main difference lies in the different boundary conditions
used by the two methods. The way in which the boundary conditions are
héndled in the USCA method allows one to calculate penetrabilities from
particular iﬁitial states (i.e. not only from the ground state but also
from excited states) to particular final States; The USCA incorporates

the full dynamics of the problem, that is, the energy tied up in the

motion perpendicular to the fission path is included.

One way to proceed in order to find the paths with the correct
boundary conditions is the following: integrate the coupled classical
Hamilton equations of motion starting from the left side at some distance
X =X, (<O) outside of the interaction region, with the collective oscil-
lation in the quantum state n and with some arbitrary initial value of the
angle variable Q; - The integration is directed so that tunneling is
achieved and continued until x = X¢ (>0) outside of the interaction
region. Thé final "quantum number" ne (usually not an integer) in which
the transverse oscillatory degree of freedom is found is then a function
of q;-

This way one finds the final quantum number function nf(qi). The‘clas-
sical paths which satisfy the correct boundary cbnditions are then those
satisfying thé equation

ng(a,) = n, (3.23)
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The way to obtain a trajectory that tunnels is to follow a time path
in the complex time plane around the appropriate branch points.45) This
is most easily seen on a simple one-dimensional example the barrier pen-
etration through a symmetrical Eckard potential barrier.46) This problem
can be solved analytically and.thé main results are summarized in Fig. &.
In the complex time plane the solution to this pfoblem has pairs of
‘branch points_joined by cuts. If the time increments are kept real, then
the particle is reflected at theAbarrier; if a purely imaginary time
increment is chosen when the particle has reached the barrier, then the
particle penetrates into the barrier. If bhe switches to real time in-
crements again when the particle has reached the other side of the
bérrier, thén.the particle continues moving tb the right and tunnelihg has
‘been achieved. One has to proceed in'eﬁsentially the.same way in our

two-dimensional example.

It is noted that in applying this semicalssical method one needs the
analytical continuation of the equation of motion into the complex plane.
For this to be possible one has to have an analytical expression for the
potential energy in the Hamiltonian. A potential consisting of piece-
wise analytical functions cannot belcontinued analytically in a unique way
into the complex plane, and therefore the USCA cannot be applied in this
case. This, however, doesn't pose a major restriction to the method,
éince any potential énergy surface can be approximated in some_way‘by

an analytical function in the region of interest.

For our model we find that eq. (3.23) has always two solutions;
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that is, there are two values of qi(usually complex) that satisfy

nf(qi) =n,. That one has complex initial and.final phases causes no
problems, since these phases are not observables. . The quantities that
are observables (for example, the initial and final quantum numbers 'n.u
and nv) are real in the asymptotic regions. In our calculation we have
used a = 0.1 and a = 0.01 which correspond to small coupling and there-
fore as in the case of Coulomb Excitation'S) and other cases studied47)

one has that for fhe 6ff-diagona1 transitions, only one of the two solutions
“of eq. (3.18) contributes to thé S-matrix, (this may not necessarily be

_ true for larger coupling constants). For the diagonal transitions however
both Toots contribute. Since the quantum number function is very flét

(this because of the small coupling), a uniform semiclassical expression
for the S-matrix, based on ‘Bessel functions is the appropriate one for

thié case.47’49) We used here an expression slightly modified and gen-

eralized from the one given by Stine and Marcus.*?)

Once the S-matrix is known the transition probabilities P\)‘_u =
lsvfu' follow directly. There is very good agreement between these
USCA calculations and the exact quantum mechanical coupled channel cal-
<culations, as can be seen from Fig. 3 and Table II, even though the model

here considered is highly nonclassical.

This very good agreement gives confidence that the semiclassical
method may also be applied to more realistic cases with stronger coupling,
where the numerical effort does not change very much and where a quantum

mechanical calculation would be unfeasible. Since coordinate-dependent
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iner@ial-parameters introduce no additional difficulty, the USCA could -
be a useful tool to investigate the full dynamics of the coupling between
the’fission coordinate and the other degrees of freedom such as hexadec-

apole deformations, mass asymmetries and change in pairing correlation.

4. THE COLLINEAR ATOM-DIATOMIC MOLECULE SYSTEM: Barrier penetration
for a curving valley and non-diagonal mass tensor.

Although this_arficle is predominantly concerned with barrier prob-
lems in nuclear physics, it would leave abgap to fail to discuss also the
two-dimensional barrier problem of great concern to theoretical chemists,
the collinear collision of an atom such as hydrdgeh with a molecule Hs.
The two common coordinates are x, the distance of the left-most atom from
the central atom, and y, the distance of the right-most atom from the
central atom. The Hamiltonian for relative motion, where we have con-

strained the center-of-mass to be at rest, is as follows:
H=3 md+gmy + 3 m? + Vi) (4.1)

where m is the mass of-a hydrogen atom, and V(x,y) has the form of two
valleys extending out parallel to the respective co-ordinate axes and dis-
tant from them by the equilibrium bond‘distance of the H, molecule. The

~ depth of the valleysvin the asymptotic region is the bond energy of the
molecule plus the zero-point vibrational energy. As one approaches the
origin along the valleys, they rise to a‘'saddle point at the energy of
the linear symmetric "activated complex for the exchange reaction of

the central hydrogen atom. We note that with this choice of co-ordinates

the inertial tensor is not diagonal. At the saddle point we may carry



32

out a standard normal co-ordinate analysis by expahding the potential and
retaining only the quadratic terms in the expansion.

¢ = 1 2 1 2 . )
Voaddre X)) = Vg + 70" + C Xy + 5 Gy 4.2)

where by symmetry the spring constant Cxx=ny.anywhere on the line x=y.
Of the two eigenfrequencies of the determinantal equation one is real,
W for the_symmetric stretch, and one imaginary, W for the asymmetric
stretch mode. The nofmal co-ordinates lie along axes rotated by 45°,
namely XY and XY fof the symmetric and asymmetric stretch modes,
i v | |
respectively. This transformation can readily be seen by substitution,
to diagonalize both the mass tensor and the potential .energy at the
saddle. At ény place along the line x=y, this transformation still re-
ﬁoves the off-diagonal terms in the kinetic and pofential energies, but

a linear potential term in the symmetric stretch co-ordinate is present

except at the saddle.

Away from the line x=y, Cxx# ny, and the normal co-ordinate transfor-
mation, eliminating the Xy and Xy cross-terms will involve a different
co-ordinate transformation. In applying the vibrational adiabatic (VA)
approximation to multidimensional barrier penetration with non-diagonal
mass-tensors, one needs to perform the normal co-ordinate transformation
repeatedly aldng the tunneling trajectory in order to determine the zero-

point energy tied up in the modes orthogonal to the tunneling trajectory.

In one sense the collinear H+H, reaction problem is not ideal for
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understanding details of two-dimensional tunneling, since the problem has
several complexities, the non-diagonal mass tensor, the curving valley,
and a variable valley width (much broader at saddle than in the asymptotic
régions), However, such a great deal of nﬁmerical'work is now available
on the systemvthat it affords the best illustrations of barrier penetra-
bility in more than one dimension.

Truhlar and Kuppermanso)

test two simple path-integral approximations
against their full quantum mechanicai tunneling solutions. ‘In both
approximatioﬁs the path is taken along the bottom of the potential valley,
but in the CVE, conserved vibrational energy, approximation (similar to

the previous spontaneous fission studies that we know) the potential valley
profile directly becomes the potentiél for a one-dimensional penetration
‘calculation. In the VAZC, Vibrationally adiabatic zero-curvature, approx-
imation, one continuously alters the available energy in the tunneling:

path by subtraction of the zero-point energy of vibration at each point

of the path. With the broader valley at saddle and lower zero-point energy,
the VAZC leads to much greater penétrability than the CVE. 2The VAZC is

in much better agreement with the quantum mechanical calculations. How-
ever, for déeper tuﬁneling the VAZC more and morelunderestimafes tunheling,
and this disagreement is attributed to thé'corner-cutting inside the saddlé.

(In appendix A we treat a simple model system of a curving valley to give

insight into the cornmer-cutting phenomenon.)

In section IIIF we showed that by integration of classical equations

of motion with complex variables (USCA) we obtained excellent agreement
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with quantum mechanical coupled-channel calculations. The problem involved

a straight valley of varying width. Our work was inspired largely by the

45)

work of George and Miller on the H+H, problem. There is generally good

agreement of their semi-classical work with the quantum mechanical, though

Hornstein and Miller51) have proposed some modifications to improve agree-

52) paper. We show here in

45)

ment over that shown in Duff and Truhlar's
Fig. 5 the trajectory map of George and Miller =/, nicely showing the
corner-cutting at two different energies. We would repeat the caution
of these authors that they are plotting only the real part of complex

co-ordinates, and that the particular time path of these calculations was

not unique.

Even for vibrationally non-excited cases one must use caution about
the approach of finding a real least action path and substrécting zero-point
energy (VA) adiabatically for problems where the Vélley is curving or
there are peculiarities in the mass tensor. Such problems deserve to be
studied fully quantum mechanically or by complex trajectory USCA methods.
At first glance it would seem that the two-dimensional tunneling path would
originéte,at’the classical turning contour. However, examination of the
straight, constant-valley-width problem, which is exactly separable,
makes evident that the tunneling trajectory must originate on a contour
lower than the turning contour by the zero-point energy in the cross-valley
direction. For tunneling close to the barrier top the simple WKB expo-
nential penetrability is incorrect, and one should use the form of

Froman and Fr6man34):
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Xy .

2 1 . ) £

PVA = ; 1+ exp(rT | \/ZBxx(V'E_T hwy(x)) dx , - (4.3)
XA :

where the integral is taken along the least action path, found by direct

minimazation or by solving classibal equations of motion for the periddic

orbit in imaginary time.

Another penetrability problem with curving trajectbry comes from
treating the pairing correlation as a collective co-ordinate as proposed
by Moretto and Babinetss) for spontaneous fission. In this case the least
action pathvis ""pulled" off the valley floor by a Bxx inertial component
that decreases with y (A). (Our example of Appendix'B illustrates this
"pulling" effect of a variable mass tensor) This interesting problem
deserves further treatment with realistic parameters and full two-dimen-

sional dynamics.
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5. OVERVIEW OF TWO-DIMENSIONAL BARRIER PROBLEMS

Asidé from exactly separable barrier problems, which reduce to one-
dimensional penetration calculations, we have reviewed two classes of non-
separable problems. The case of alpha decay of spheroidal nuclei is
charactérized by channel energy differences small compared to the total
barrier height and kinetic energies far from the barrier. The cases of
fission barrier penetration and the coilinear triatomic hydrogen reaction
constitute a second class where the differences in channel energies are
comparable.to the barrier height and to the external total kinetic ener-

gies, with the question of closed channels also entering.

In principle one might solve two-dimensional barrier problems by
two-dimensional network methods such as Kumar and Barangerss) have applied
to bqund nuclear wave functions in B ,y shape space. In practice the most
vigorous solutions for both classes of problems use the coupled-channel
approach. Oné expands the wave function in an orfhogonal set of functions
of the variable cross-wise to the penetration variable, with expansion co-
efficients a function of the penetration:variable. After substitution
into the partial differential equation and integration over the cross-wise
variable, a set of coupled ordinary differential equation in the expansion

amplitudes results.

Both classes of problems present similar special difficulties for
computer numerical solutions, namely, only half of the set of linearly
independent solutions of the wave equation are stable during integration

through strong barriers. The exponentially decréasing solutions cannot
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‘be generated, since rounding errors in computation grow exponentially.
One frequently has to impose double-ended boundary conditions by solving

matrix equations based on the complete set of linearly independent solutions.

It is in the nature of the éppropriate approximate methods that the
two classes greatly differ. For the alpha decay class with small channel

9,14) matrix approximation is quite

energy differences the Froman-Nosov
applicable. That is, one may construct a propagation matrix from solutions
of the one-dimensional wave equation. in the penetration variable carried

out for fixed values of the other variable. The kinetic energy tied up in

the cross-wise motion (wave function curvature) is not ignored but is

"handled in an averaged way.

For the class of fission and triatomic hydrogen barrier problems the
Froman-Nosov approach is not valid. Often for this class of problems one
is interested only in the penetrability of the non-vibrationally excited
solution. In éuch situations it is appropriate to seek answers in terms
of a one-dimensional WKB path integral along a path of least action. It
is only recently that attention has been paid in the literature to the
subtleties of choice of path and the partition of available energy between
the penetration mode and the other degree of freedom. The traditional
choice of path at the bottom of the potential valley and over the saddle
Hgs been shown to be incorfect in cases where the valley curvés. The
least-action path cuts the corner more and more as the energy is dropped
further below the saddle energy, thus giving an increased penetrability

over that calculated by a path in the bottom of the valley. Moretto and
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Babinetss) have shown how a variable mass tensor can also pull the least-

action path away from the bottom of the valley. -

Finally there is the question of partition of the kinetic energy be-
tween the two modes. The traditional approach is to neglect kinetic energy
in the cross-wise méde altogether. One stage betfer is to subtract the
zero-point energy in the crossed mode from available energy for penetra-
tion. Truhlar and Kuppermanso) have shown for the triatomic hydrogen
problem that this conserved vibrational (CVE) approximation is not very
good. In that problem the valley widéns cohsiderably at the saddle.

They show that the vibrationally adiabati; (VA) approximation is much
better; in the VA approximation the variable zero-point energy is sub-
tracted at each point along the path when evaluating the one-dimensional

WKB integral.

For problems in which vibrationally excited solutions impinge upon
the barrier there is as yet little experience witﬁ approximations. From
coupled-channel solutions it would appear that there is generally a
"'vibrational cooling' effect in transit of the barrier. That is, the
exiting solution is predominantly in the lowest vibrational zero-point
state. Perhaps approximations to penetrability might be made by taking
a product of the VA penetrability in the excited state in to the region of
sufficiently strong coupling and the VA penetrability in the zero-point

state for the remainder of the barrier.

There are other more sophisticated approximate methods undergoing
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testing. - In the semi-classical methods one intégrates time-dependent
classical equations of motion and by carrying the time path appropriately
into the complex plane effects barrier penetration. It may be that these
methods will prove more appropriate thén coﬁpledfchannel for some cases,
and they may furnish new physical insights into the problems. These
methods appeér to be more complicated for energies near the barrier top;
where multipie paths contribute, and the application of the double-ended

boundary conditions becomes much harder for more than two dimensions.-

Recentiy attention has been focused on a method where one seeks a
periodic orbit with time running in a purely imaginary direction. With
imaginary time increments the kinetic energy terms of the classical
equations of motion reverse sign, and potential barriers invert into
troughs. ‘The approach is related to the more general semi-classical
methods, except here the variables (except time) may remain real. _It
remaihs to be proved whether one can properly inéorporate motion in the
crossed direction to bring in the full two-dimensional dynamics in this
picture. Already this picture affords a useful way of thinking about
multi-dimensional barrier penetration and the reciprocal behavior of
posifive and negative kinetic energy cash. As our examples in appendices
A and B illustrate, one can appreciate that penetration paths cut inside
the curving barriers by virtue of a negative centrifugal potential, while
over-the-barrier trajectories are forced to the outside of the curving
valley. Penetration paths of negative kinetic energy are pulled toward °

lower values of the penetration mass tensor component, while at positive

kinetic energy the paths seek higher values of the tensor component. In
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a coupled chaﬁnel situation there is a vibrational cooling effect for
negative kinetic energies and a progressive exciting of vibrational modes
for positive kinetic energies. We may reasonably surmise from the coupled-
channel behavior that with inclusion of a friction term invthe'classical
bequations of motion we gain kinetic energy for tunneling paths, just as

we lose kinetic energy to heat for increasingly fast real velocities.

The whole field of theoretical study of classically forbidden pfo-
cesses with more than one degree of freedom seems to be in a period of
active development with many open problems and hopefully a new plateau

of deeper insight lying just ahead.
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Appendix A

Tﬁnneling along a valley turning a corner.

Both quantum mechanical and semiclassical trajectory calculations
on thé cqlinear H+H, reactive tunnelihg have shown that the deeper the
tunneling the more the least action path'"cuté the corner'. Thus, pene-
trability is systematically enhanced with curving valley over calculétion
following the valley floor. The numerical studies of the H+H, problem
do.not'readily permit isolating effects due to curvature and effects due
to valley widening at the saddle. Thus, it is of value to consider a

model system of curving valley with constant width.

Let's consider a particle of mass y, moving in a circular valley

given by: (see fig. 6a).

.
V() = 3 éz " %—_Cr" (A-1)

with VA>> 1. The minimum of the valley occurs for

Y U |
ro='®‘A=aA . (A-Z)

where C = pw? and a E.\’%a,, Oné also has V(ro) =‘1FK'hw. The

Schrodinger equation we have to solve is:

_h218<3)132).h2A C 2. -
[ —Z—U(-IT —a—r— r-s? +Y:2 -5——2 + —2_]:{:2 + 2—1‘ E ‘P(I‘,d)) - O X (A'S)
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The solution to this equation is:

¥(gp) = =R, (g) I - (A-4)

where RnJL is solution of the radial equation:

2E o\
[ G w 22)]ro -

is given

The solution of this equation has acceptable boundary only when En!L
by:
E, = flw<2n+1 + Vase? )
=Bo*Ea* Eang | : .
= hw YA + he (2n+l) + hw(VAHLz -VA_ ) (A-6)
54)

where n is an integer, The solution to eq. (A-5) can be expressed as

o R o

g(o) =N,

where the Laguerre functions are defined by SS):

A (e—z Zn+§p)
dz"

@ =
Lno (Z)fe

A quantity measuring the average radial distance of a particle which moves



ﬁ@ t; f;}’ ﬂ:é 5 ﬁ / 2 é-) 0

43

around along the valley with angular momentum £ and whose energy is EnJL

is given by >4)

1
r, = Yo = [ R (£)r3dr] ’
nt'a
)
= a (2n+i +\/A+22,>1/2 , ' (A-8)

We want to study a tunneling process, that is, a case where the energy
in the angular direction is negative. This is obtained when one takes

imaginary & values (see eq. (A-6)).
R o= ife (% real > 0)

Let us also only consider the n=0 case (for n#0 the reasoning is similar).
From eq. (A-4) one sees that the wavefunction for imaginary 2 is hot_ a

wave function corresponding to a stationary state, but to a state which is
exponentially damped out when the system tunnels around (the angular part

of the wavefunction is exp (- %¢ )). For ) we have then (assuming VA >>%):

V L 2. | :
r,=a VI +Y A2 =g 'A"Qca = Yo (l- &A—) . (A-9)

we find that the particle moves more on the inner side with respect of, the

bottom of the valley; that is, in this "tunneling process' the system

"cuts the corner".

The same result can also be understood from a more classical point
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of view, by finding the minimum ?1 of the effective potential:

Veff = V() + Vc:ent (1)
_h? A 1.0 0% (i%)2
= ‘—u }‘2 + 'z' Cr- + —21‘- -"-1:2——' (A'].O)

—_ 3 .
Ty = a Vk%z' - ‘ (A-11)

T; essentially agrees with r,; that is, the minimm of the effective po-

tential is further inside than the minimum of V(r).

This ties in with the idea that the tunneling process can be under-
stood by using classical equations of motion on the inverted potential.
- The problem becomes now to find the stable orbit of a system moving on a
circular hill (with angular momentum % ), see fig. 6b. The faster it
moves, the more inside it must be. Equating the centrifugal force to the

force acted on the system by the potential (hill), we find:

= 3V A _ ( h2 A ) A
pot 5y T \Cr g @)t
I L.
‘cent T ur?
—_— — (C hz A 20 2 A

= - c— + —
cent - pot "7 i )r =0

=
]
jsb)
b
i
e
0
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To sumarize, for a system moving along a valley which turns a corner,
for positive kinetic energies the centrifugal force pushes the system out-
wards (bobsled effect), for negative'energies the centrifugal force is

negative and during this tunneling process the system cuts the comner.

A quantity measuring the amount of corner cutting is f=(r0-r1)/r0.
Let us now express f in terms of C' (the "spring" constant of the cir-
cular valley), T, (the curvature of the valley turning a corner) and

E%ng (the energy in the tunneling direction). We find

(A-12)

'8 |E
£ = ang
' C'I'cta:z

with C' given by

_ 4n2A
€=

Appendix B
Tunneling with variable mass along a'étraight valley

The potential we will consider is:

V) = 1oy B (B-1)

which represents a straight valley, the x axis being the valley floor.

The mass tensor will be diagonal but with a dependence on the y coordinate:
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= =0
Ty T Myx
= Y
me=m <1 +Q Y. > (B-2)
m_=m |
Yy °

L .
where Yo = (ﬁz/(moC)) *. The parameter o is assumed to be small. From

the classical Lagrangian one finds the following classical equations of

motion:
‘alf [Hb(lf a%)x] =0 | , (B-3a)
my - 3 m g X2 + Cy= 0 | (B-3b)

The first equation just gives the conservation of linear momentum in the
x direction. We seek the straight line trajectory along the valley for
a tunneling case, that is, for the case where the kinetic energy in the x
direct‘ion is negative. The straight path trajectory has of course ;;=>',=0
and y=y=constant, y being the amount the straight track moves off the
valley floor. From the equations of motion we find:

2

ol X

y = Cye

or introducing the energy in the tunneling direction (which is negative)

= M Y )2 = Lpx
Etunn 2 (1 +0‘-)&,))( =g hX <0
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one finds

= g( Etwml>= _ o Et:urm’ : ' (B-4)
MR PR 7 o - ‘

Essentially the same result is found when looking at the action in-

tegral and asking for what value of y it is a minimum; this occurs when

& ym(el) B -o

or
_8_._ l+. Y ) (}. 2_ ) ~ __3__ .]; 2 E. .__.Ea)._ = - __E':“ =
s | (1 aZ )5 Cy%-E = = 5 Cy*-E . Cy- 5-=0

We are considering the straight track, that is the case where there is
no energy in the harmonic motion. The energy E is then the energy in the
tunneling direction, E=Etumn<0' Using this, equation (B-4) is»readily
found.

As a conclusion one can say that the trajectories for a tuhneiing
process will shift toward the region of smaller inertia. The distance
y which measures the distance between the equilibrium path and the floor
of the potential energy depends on the important parameters of the prob-

lem in the way shown in eq. (B-4).



48

Appendix C

Tunneling along a straight valley with variable valley width.

The potential energy we will consider here is:
1
Vix,y) =5 (G +C §x))y? | (C-1)

This corresponds to a straight valley (the x axis being the valley floor)
whose width has a sudden jump at x=0. The mass tensor will be diagonal
with constant elements equal to u. The Schrddinger equation in this case

is as follows:
h? /32 3?2 1 2 -
[.._2_11(5;‘,+_8.)72 +5 (G * G S(ox) ) y -I? .‘Y—O (C-2)

We want to consider a tunneling case along the valley, that is the energy
shall be negative. In both regions (x § 0), the problem is separable, the

wave function being:

- X 2,,2

e ; (Ane Knx+B emnx) Nn Hn(aYJ exP{g%L} (C-3)
- n

where _1/2
K = f% [211 ( hw(n+4)-E )]
- 1/2 o
= [HW Y-
o7 (T)

with

hw = hYp
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We seek the solution with the boundary condition that at large neg-
atiye X values, only one particulgr vibrational sfate n, is incident
(An(z) = G.nn ) and at large positive x values only decreasing waves
are present (E Bn (r) - 0). At th_e boundary x=0 the left and right wave

function have to join continuously; the delta function however introduces

a discontinuity in the derivative, and we have:

v (x=0,y) = v(D (x=0,y) ‘ (C-4a)
2
& Wy i Weon|- PR a0y (C-4b)

Substituting into (C-4) the expansion (C-3), left multiplying by Hm(ay)-
exp (-a?y?/2) and integrating over y one finds, using the orthogonality

of the harmonic oscillator wavefunctions:
@), @, (@), . (@ i
A *+B Y= A+ BY - (C-5a)

B, ®) = (4, o, ) i% _;m,yz,m (An(r)+Bn(r)> -5b)

Applying the boundary conditions these become:

e, @ )
St By T AL \ (C-6a)

S -Bm(g'); = Am(r) + &‘IY_UCIKm E<m|y2|n> An(r) (C-6b)
' n
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We eliminate Bm(’z') by adding
o (D KCy | E 2 (r). | | 7y
An Y oK n “amly* |n> An 6mno K €7
The matrix elements are:
ly?|m = o (2m + 1)
pATTY
h
<m|y?|m+2> = yam Vim+1) (m+2)
. _
<mlyz| m-2>= Zwe  \mm-1)

Consider the case of a non-excited incident wave (n.=0), one has:

A O s “Céoa ‘z‘%a [A., (), VTAz(r)J =1
N - [ﬁ- A5 4 sa, ) 17 A,,(r)] -0

These equations can be solved in a perturbation approach, if we assume
that C1/~ (4‘Koc§))= K<ko . Then we have to lowest order in the pertﬁrbation
parameters K/ Ky ’
(r) K 5 ., K
A2 = = Ez 2 9 Ao - 1 - Eo
For the case of an incident wave with n.=2, one finds similarly (to lowest

order in the perturbation parameters):
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A L és/T

o

K

Az(r) _ (1_ =

5)

IR v

The n=0 wave does not decay as fast as the n=2 wave function, so at some
distance X they will cross over and the n=0 will dominate for larger dis-

tances. The distance X can be found from

A (r)e-Ko‘f - A (r)e-nczi
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Table I. Compérison between the'QM, QMad and WKB calculations of the

diagonal transitions.

a = 0. Ca=0.1

oI WKB M A
0> 0 |1.67 10°° 1.60 10°° 1.40 1005 1.40 10°°
P > 2 | 5.48 10713 5.21 1013 2.67 1073 2.42 10713
4> 4 | 1.44 10722 1.34 1022 4.66 100%% 3.62 10°23




Comparison between the M and USCA transition probabilities.

Table TII.
| a=20.1 a = 0.01
00 02 0 2652 2454 0«50 052 0«4
(M 1.40 100 9.30 100''  1.03 10°'® 2.67 10°!* 9.86 107!°® 1.64 10°°  1.22 107'2 1.49 107 2°
USCA | 1.44 10°° 9.49 107'' 0.97 107'® 2,52 107'° 9.15 107}? 1.56 10°°  1.30 107} 1.42 1072°

€S
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Figure Captions

Schematic representation of a contour map of a potential energy
surface turned around to study the classical motion below the barrier.
The entrance and exit points, o and 02,5 lie on}thevsame equi-
potential. The bill at the left side corresponds to the potential
well in which the nucleus sits before fissioning and the mountain

range at the right represents the fission valley.

Fission barrier and the.square of the quantum mechanical channél

function Uzy(x) for an incoming wave or the channel n = 2.

Penetrabilities Puv for different values of the coupling constant
a. The lines correspond to the QM coupled channel calculations
(solid line for the diagonal and broken lines for the off-diagonal

penetrabilities) and the dots correspond to the USCA calculations.

Diagram showing on the right hand side the different time paths
one has to follow in order to obtain the trajectories shwon on the
left hand side. The crosses represent the branch points and the

wiggly line corresponds to the cuts joining them.

Trajectories for reactive tunneling in the ground state to ground-
state H+H, reaction at a collision ‘energy E.+0.20 eV (dotted line)

and E=0.02 eV (dash-dot 1line). For reference, the dashed line
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is the reaction coordinate, i.e. the path of minimum potential

energy, and the cross is the saddle point. Ra and r, are the

realbparts of the complex translational and vibrational coordinates,

respectively. R, and r, are related to the coordinates x and y used

in the texﬁ by.y=r1,, x=R, - ra/Z.

A circular valley with the valley floor at ro is shown in é);

If the potential shown in a) is inverted one gets a circular

hill as shown in b).
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