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Richard Frederick Voss 

Inorganic Materials Research Division, Lawrence Berkeley Laboratory 
and Department of Physics; University of California 

Berkeley, California 94720 

ABSTRACT 
' ' 

·Measurements of the. 1/f voltage noise in continuous metal films 

are reported. At room temperature, samples of pure meta·ls and bismuth 

(with a carrier density smaller by 105) of similar volume had com

parable noise. The power spectrum, Sv(f) ~ V2/rJf\ whe.re ii is the 

mean voltage across the sampl,e, 0. is the sample volume, and 

' ( -2 1~0 ~ y ~ 1.4. Sv f)/V was reduced as the temperature was lowered. 

Manganin~ wit~ a temperature coefficient of resistance (B) close to 

zero, had no discernible noise. These results suggest that the nois~ 

~rises from equilibrium temperature fluctuations modulating the 

resistance.to give Sy{f) oc iJ2B2kBT2/Cy, where CJ fs the total heat 

capacity of the sample. The noise was spatially correlated over a 

length A.(f):::: (D/f) 112, where Dis the thermal diffusivity, implying 

that the fluctuations obey a ~iffusion equation. The usual theoretical 

treatment of spatially uncorrelated fluctuations gives a spectrum 

that flattens at low frequencies and has an f- 312 hi9h frequency limit. 

These calculated spectra are verified experimentally for number 

fluctuations of independent particles undergoing Brownian motion but 

do not explain the l/f spectrum. However, the empirical inclusion of 

an explicit 1/f region and appropriate normalizati·on lead to 

Sy(f)/V2 
a: s2kBT2!Cy[3+2 ln (.t/w)]f, where R- is the length and w is 

the width of the film, in excellent agreement with the measured noise. 
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If the fluctuations are assumed to be spatially correlated, the 

diffusion equation can yield an extended l/f region in the power 

spectrum. The temperature response of ~sample to delta and step 

function power inputs is shown to have the same shape as the auto-

correlation function for uncorrelated and correlated temperature 

fluctuations respectively. The spectrum obtained from the cosine 

transform of the measured step function response is in excellent 

agreement with the measured 1/f voltage noise spectrum. Spatially 

correlated equilibrium temperature fluctuations are not the dominant 

source of 1/f noise in semiconductors and metal films. However, the 

agreement between the low frequency spectrum of fluctuations in the 

mean square Johnson noise voltage and the res-istance fluctuation 
i 

spectrum measured in the presence of a/current demonstrates that in 

these systems the 1/f noise is also due to equilibrium resistance 

fluctuations. The 1/f spectrum is not limited to 11 physical systems ... 

Loudness fluctuations in music and speech and pitch fluctuations in 

music al~o show the 1/f behavior. 1/f noise sources, consequently, 

are demonstrated to be the natural choice for stochastic composition. 

:' ! . 

. ' 
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11 HO\-J is•t with me, when every noise appals me? 11 

William Shakespeare, Macbeth 

11 0ne man•s noise is another man•s signal ... 
Sir Edward Bullard 

I. INTRODUCTION 

1/f n~ise has been shown to be the dominant form of low frequency 

noise in most physical systems. Although numerous theories have been 

advanced to explain this ubiquitous phenomenon, they have generally 

proven unsatisfactory. We report here some of our research on the 

subject of 1 /f noise, primarily in continuous meta 1 films., Our choice 

of metal films as a system to study was dictated by our belief that the 

simplest system in which the physical processes were well understood 

offered the best opportunity for determini~g the physical origin~of 

the 1/f noise. 

Our initial experiments set the direc_tio'n of our theoretical 

ideas, which in turn guided further experiments. In general we follow 

here this chronological progression, and provide below a summary of 

the logical development. 

Hooge and Hoppenbrouwers1 have measured the 1/f noise voltage 

generated in continuous gold films (with physical properties close 

to bulk values) ·in the presence of a steady current. They found that 

the noise power spectrum, Sv(f), for samples at room temperature could be 

expressed by the empirical formula 

(1.1) 
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In Eq. (1), N is the number of charge carriers in the sample, f is 
' c 

the frequency, and V is the average voltage across the sample. This 

dependence on V is universally found in resistive systems. The 1/f 

noise is, consequently, often considered as arising from resistance 

fluctuations that generate a fluctuating voltage in the presence of 

a constant current. 2 Hooge and Hoppenbrouwers1pointed out that the 

inverse volume dependence for samples of the same material implied 

by Eq. (1.1) was strong evidence for believing that the l/f noise is 

a bulk effect rather than a surface effect in metal films. They 

found that the noise was still present when the samples were immersed 

directly in liquid nitrogen or liquid helium, and concluded that 

Sv(f) had a temperature dependence no stronger than·T112. 

Williams and co-workers3•4 studied very thin metal films which 

no longer have bulk properties, and in which electrical condition 

is probably partially via a hopping process. Such films exhibit much 

more noise than is predicted by Eq. (1.1). 
5 Hooge has examined measurements of l/f noise in semiconductors, 

and has found that, with a few notable exceptions, Sv(f) was again 

quite well expressed by Eq. (1.1). Agreement with this formula was 

also found in single-crystal .III-V compounds by Vandamme. 6 Both 

results imply that 1/f noise in semiconductors is a bulk effect. 

Hooge, who studied noise in ionic cells,7 and Kleinpennig,8 ~ho 

studied noise in the thermoelectric emf of intrinsic and extrinsic 

·semiconductors, both concluded that the noise arise~ from fluctuations 

in carrier mobility. However, the view that 1/f noise in semiconductors 

is a bulk effect arising from mobility fluctuations is not universally 
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held. 
. 9 

Mc\4horter' s theory suggests that 1 /f noise arises from 

surface traps with an appropriate .distribution of trapping times 

that generate noise by inducing fluctuations in· the number of carriers. 

This· theory has considerabJe experimental support. 10~ 12 However, 

it is possible that, in general, the 1/f noise in semiconductors 

arises from both bulk and surface effects. 

In Section Il, we report our own measurements on 1/f nciise in 

thin films made of a variety of materials; Initial results were 

reported earlier. 13 We found genera 1 agreement with Eq. ( 1 ~ 1 ) ; with 

two important exceptions. First, Bi, a semimetal with a carrier 

density about 105 smaller than gold, exhibited about the same 1/f 

noise' for similar sized samples. Second, manganin, an alloy with 

a temperatu~e coefficient of resistance close ·to tero, showed no 

observable 1/f noise. The absehce of .1/f noise in mangan~n indicated 

that the 1/f noise in metal films could be caused .by temperature fluctu-

ation~ that modulate the sample resistance, R, and generate voltage 

fluctuations in the presence; of a steady current, I. Thus, we expect 

SV(f} a: I 2 (aR/ClT) 2 <.(~T) 2 > = v 2 s2 <(~T) 2 _>, where f3 = (1/R) dR/dT, and 

<(~T) 2 
> is the mean square temperature fluctuation. The simi 1 arity 

of the 1/f noise in Bi and other ~etals suggests,that· Sv(f)/V2 
a: n-1 

I 

-1 (where n is the sample volume), not Nc ; and, consequently, that the 

temperature fluctuations may be those of an equ.il ibrium system.. In· 

t~ermal' equil'ibrium,_ <(~T) 2 > = k8T2;cV,. where CV is theheat capacity· 
! . : 

of the sample. At room temperature, tV- 3Nk8, where N is fh~ number 

of atoms in the sample, and Sv{f} a: v2s2T2/3N. 
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Energy fluctuations (~E = Cv6T) are expected to obey a diffusion 

equation, and in Section III we describe the spectrum of such fluctua

tions in a small subvolume of a uniform medium, assuming the fluctuations 

to be uncorrelated in space. This system has been extensively studied 

in the past. 14 The diffusion model was rejected as an explanation for 

1/f noise because, in this system, it fails to predict a 1/f power 

spectrum over many decades of frequency, 15 and because it seriously 

underestimates the noise in semiconductors. However, the experimental 

configuration involving a metal film on a glass substrate is a poor 

approximation of the uniform medium for which the spectra are calculated. 

If an explicit 1/f region is empirically included in the spectrum, and 

the spectrum normalized by setting <(~T) 2 > = k8T2/CV = r ST(f) "df, the 
0 

calculated noise is in excellent agreement with the data. 

The diffusion theory introduces a frequency-dependent correlation 

length >.(f) ~ (0/f) 112 , where D is the thermal diffusivity. >-(f) 'is 

roughly the length over which a fluctuation at frequency f is correlated. 

Frequency-dependent correlation is thus an identifying characteristic 

of fluctuations in a diffusive medium. In Section IV, we describe an 

experiment on Bi samples in which the noise across two sections becomes 

more correlated in the predicted manner as the frequency is lowered. 

The absence of 1/f noise in manganin, the dependence of Sy(f) on 

V2s2;N, and the observation of frequency-dependent spatial correlation 

for the 1/f noise provide overwhelming experimental evidence that 

equilibrium temperature fluctuations are the physical origin of l/f 
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noise in metal films. Moreover, the introduction ~fan expl{cit l/f 
.· . -

region in the' spectrum enables us to make quantitative predictions 

of the l/f noise in excellent agreement with experiment; The manner 

in which the temperature fluctuations produce the l/f spectrum is, 

however, an open question. One possibility is that the non-uniform 

nature. of the experimental system modifies the simple diffusion theory 

to produce a 1/f .. spectrum. Indeed, experiments16 on the 1/f noise in 
I 

Sn films at the superconducting transition have shown that a change 

in the thermal coupling between the film and the substrate can 

dramatic'ally affect the spectrum. Another possibility is that the 

temperature fluctuations have some spatial correlation. In Section V, 
. . 

we show that spatial correlation of the temperaturefluctuations can 

prod~ce,a spectrum with an extended 1/f region. 

Fiuctuation spectra are calculatedon the assumption that the 

' fluctuationsare on the average governed bY the same decay laws (in 

this case, the diffusion eq~ation) as macroscopic perturbati~ns. 17 

In Section VI, we show that the temperature response of a subvolume 

of a diffusive system to a delta function power input uniform over the 

subvol ume has the same shape as· the autocorrelation function for · 

uncorrelated ·temperature fluctuations. On the other hand, the response 

to a step function in power corresponds to the autocorrelation function 

for correlated temperature fluctuations. l~e then describe an experiment 

in which we measure the temperature response of a small Au film to 

delta function and step f~nction power inputs. The cosine transforms 

of the responses yield power spectra that are compared with 

the measured noise power spectrum .. The spectrum obtained 
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from the delta function is similar to that caiculated for uncorrelated 

fluctuations, flattening at low frequencies, and is unlike the 

measured noise spectrum. The spectrum obtained from the step function, 

however, is not only l/f over many decades, but. when appropriately 

normalized, has a magnitude and shape in excellent agreement with the 

measured noise power spectrum.· 

In Section VII, we briefly summarize measurements on superconduct

ing films at the transition16 and Josephson junctions18 that strongly 

suggest that the 1/f noise in these systems is also due to equilibrium 

temperature fluctuations. However, altho~gh equilibrium temperature 

fluctuations should generate noise in all systems (except those for 

which B = 0), they may not be the dominant noise source. For example, 

the 1/f noise in semiconductors and discontinuous metal films is too 

large to t>e explained by temperature fluctuations, and lacks the 

spatial correlation characteristic of a diffusive process. However, 

we sho\'J in Section VIII that the 1/f noise in these systems is due 

to equilibrium resistance functions. The measured low frequency 

spectrum (appropriately normalized) of fluctuations in the mean 

square Johnson nqise voltage across these samples is 1/f, and is in 

excellent agre~m~nt with the resistance fluctuation spectrum obtained 

in the presence of a current. 

) -2 The disagreement between Sv(f /V measured for metal films and 

the calculated ST(f) for uncorrelated temperature fluctuations 

suggests that we examine the spectra from other diffusive systems. 

In Section IX we describe a series of light scattering experiments 

which verify the calculations of Section III for independent particles 

undergoing Brownian motion. 

• 1. 

. . 
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In Section X we show that l/f noise is not limited to "physical 

systems''. Loudness fluctuations in music and speech and pitch 

fluctuations in music also have the 1/f spectrum. Moreover, we 

describe the use of a 1/f noise source in a stochastic algorithm to 

generate a very agreeable form of "1/f music". 

Section XI contains our concluding discussion~ 

\ 

. - ' 
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"It is a capital mistake to theorize beforeone has data ... 
Sir Arthur Conan Doyle, 

The Adventures of Sherlock Holmes 

II. MEASUREMENTS OF 1/f NOISE IN METAL FILMS 

We have measured the spectrum of current-induced 1/f voltage 

noise in small samples of evaporated or sputtered metal films on 

glass substrates. Our films were 250A to 2000A thick, arid had 

resistivities close to bulk values. Each film was cut With a diamond 

knife in a micromanipulator to produce a small bridge or necked down 

regipn of typical dimensions 10 ~mxlOO .~m with large areas of metal 

at either· end·suitable for contacts. Two variations of the sample 

geometry are shown in Figs. l(a) and 2(a). Four pressed indium 

contacts were placed on each sample and the contacts were checked 

for excessive resistance. A current sour~e, consisting of a bank 

of batteries and a large v1irewound resistor (which exhibited no 1/f 

noi~e) of resistance R
0 

> R (R is the sample resistance), was connected 

to two of the ·contacts~ The other two contacts \'lere used as val tage 

leads. The average voltage across the sample, V, ranged from 0.2 to 

2V. The high resistance current source and the four-terminal con

figuration were necessary to eliminate contact 1/f noise at the current 

carrying contacts. The current and voltage leads were often reversed 
I . . . 

·~O further assure the absence of contact noise. Moreover, the sample 

was replaced by a wirewound resistor of the same resistance to insure 

that no significant noise arose from the current source. 

The sample, current supply, and battery-operated preamplifier were 

placed in an electrically screened room to reduce pickup of external 

.. ..' 
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noise. In some cas.es, the samples were also placed in a vacuum with 

no change of the measured noise spectrum. For th~ high resistance 

Bi samples (R ...... 1 Kst), the voltage 1 eads were ac .coupled directly to 

a PAR113 preamplifier .. To improve the sample noise to preamplifier 

noise ratio for the. low resistance samples (R ::: lOOn) it was necessary 

to providea better impedance match. These samples were either 

transformer coupled to the PAR113 or ac coupled through a large 

capacitor to a Keithley 824 preamplifier. Correction to the spectrum 

was made for the transformer response or the low frequency amplifier 

roll-off. In some cases, the sample was used as one arm of a 

Wheatstone bridge to allow de coupling to the preamplifier. Although 

such an arrangement is. a three..;terminal measurement and more susceptible 

to contact noise, by. cutting two symmetric a·rms from the same continuous 

film, the bridge arrangement caul~ be made insensitive to cdntact noise. 

The voltage noise spectrum 1·1as measured by an ·interfaced PDP-11 

. computer. ·The preamplifier output was· filtered to eliminate unwanted 

high frequencies and was fed to a 1 MHz voltage-to-frequency converter. 

The converter, in turn, d.rove an internal counter in the computer. ·J 

An external oscillator of frequency f
0 

generated an interrupt in the 

computer every T
0 

= l/f
0

• On the first interrupt,· the counter was 

cleared and started. On successive interrupts, the counter was read, 

cleared and restarted. This arrangement provided a highly accurate 

· analog.:..to-digital converter (up to 24 bits) with "automatic averaging 

over T
0 
.. Successive counts stored in the computer thus provided a 

digital record of the noise. Once 1024 points had been accumulated, 

a Fast Fourier Transform \<Jas used to calculate the 512 sine and 512 



-10-

cosine transforms of the data. These values were squared and added 

to an accumulating array of 512 frequency points. The entire process 

was repeated at least 40 times to provide an average measu~e of the 

noise spectrum in the frequency range f/1024 to f/2. By changing 

f
0

, the spectrum could be measured over any desired range, although 

the digitizin~ electronics and interrupt delays gave an upper frequency 

limit of about 10 kHz. 

The spectrum, S(f}, was measured with an average voltage, iJ. 

across the sample. The background spectrum, S
0
(f), was then measured 

.with zero average voltage across the. sample and included contributions 

from both external pickup and amplifier noise. The difference, 

SV(f), between S(f) and S
0

(f) was thus the current 'induced voltage 

noise in the sample. These measured spectra for a typical Bi 

sample {R- 4000) coupled directly to a PAR113 ~reamplifier are shown 

in Fig. 1. The increasing steepness of the spectrum below 1 Hz was 

found i~ most samples and was probably due to a gradual deterioration 

of the sample caused by the high current densities (-106 Acm- 2). 

With theFFT me~hod of measuring the spectrum a slow monotonic drift 

generates a l/f2 spectrum. This effect can be eliminated if the 

cosine transforms alone are used. 

Figure 2 shows the measured spectra for a Au sample coupled through 

a large capacitor to a Keithley 824 preamplifier~ In this case, it 

was necessary to correct for the low frequency roll-off of the 

·amplifier. and capacitor as well as to subtract out the background 

to obtain Sv(f). In Figs. 1 and 2-, the corrected spectra show a 

behavior close to 1/f. 
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Similar measurements were made on a wide variety of samples of 

different mate~ials. We found Sy(f) ~ 92/fY, where 1.0 ~ y ~ 1 .4. 

By varying sample size, it was possible to show that Sy(f) was ro·ughly 

proportional to n, the sample volume. · Otherwis~ identical samples 

often showed noise spectra whose.magnitude differed by up to a factor 

of 3. This irreproducibility between different samples and.our 

inability to change n over a wide range while still observing the 

l/f noise made a more accurate determination of the n dependence

impossible. • ·A summary of the measured noise spectra for various 
• . 0 

samples (typically, 10 l-lmxl20 l-!mxlOOOA) of different materials, 
. . 

including metals and a semimetal (Bi),is shown in Table I. The measured 

temperature coefficient of resistivity, B, is also shown for each of 

the meta 1 films. 
. 1 . 

Hooge and Hoppenbrouwers reported no consistent 'variation of the 

l/f noise in their Au films when immersed directly in liquid N2 or 

liquid He. ·These measurements, however, may not be indicative of 

the temperature dependence of· Sy(f)/92. We found that placing the 

samples directly in the liquids caused the spectrum to become steeper 

than 1/f and to be dominated by bubbling in the liquid. Moreover, 

at all temperatures, the high current densitje~ {up to 106 Acm-2) 

and high levels of power dissipation (up to 1 kWcm-2) necessary 

to observe the 1/f noise caused the film to oper~te much above ambient 

temperature. In the case of some 11 room temperature .. metal films, 

the departure of the I-V characteristics from linearity together 

with the known value of S showed that the sample was as much as 40°C 

above room temperature. The non-linearity of the I-V characteristic 
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Table l. The measured temperature coefficient of resistance for 
several materials and the measured and calculated noi~e power 
at 10Hz (measured Sy(f)/V2 differs by 2/w from previous table 
in Ref. 13 because of recalibration). 

Sy(f)/V2 Measured Sy(f)/V2 Calculated 
Measured 13 at 10 Hz at 10 Hz 

Material ( K-1) (lo-16 Hz-1) (10-16 Hz-1} 

Cu 0.0038 6.4 16.00 

Ag 0.0035 6.4 2.00 

Au . 0.0012 0.6 0.76 

Sn 0.0036 7.7 7.7 

Bi -0.0029 13.0 9.3 

Manganin 1131<10-4 <7x1o-3 <3.5x10-3 
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at high currents due to heating is shown in Fig. 3 for the Au film 

whose noise spectrum is shown in Fig, 2. The h~ating causes an increase 

in resistanc~ at high currents. the somewhat amorphous nature of our 

Bi films caused a neg-ative temperature coefficient of _resistivity. The 

Bi films, consequently, exhibited I-V characteristics which curved 

toward lower resistance a~ high currents. 

In order to get some indication of the temperature dependence of 

Sy(f)/V2 it was _necessary to place the samples in a vacuum can and to 

isolate them from temperature fluctuations in the liquid bath by a long· 
-2 . . . 

thermal time constant. ~Je found that Sv(f)/V for both Au and Bi samples 

d~_creased by about an order of magnitude in going from room temperature 

to a liquid N2 bath, but that Sv(f)/V2 did not chang~ further in going 

to a liquid He bath.- In all cases, however, the presence of heating 

nori-linearities indicated that the samples were much above the_bath: 

temperature. In liquid N2 ~nd liquid He baths, we were unable to make 

an accurate m~asurement of Band determine the actual temperature rif 

the samples. Although \'Je can say that with careful measurement 

Sy(f)/V2 is found to decrease as the temperature is lowered we can make 

no quantitative statement about the temperature dependence. 
- 2 

The dependence of Sy(f) of V suggests that the 1/f noise may be 

caused by resistance fluctuations: The measurements summarized in 

Table I provide important clues as to the nature of 1/f noise in 

continuous metal films. The absence of detectable 1/f noise in manganin 

with S ~ 0 indicates that temperature fluctuations generate the 1/f 

noise. The similarity of the spectra from Bi (B < 0) and the metals 

(S > 0) indicates that thermal feedback, in which a resistance fluctuation 
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cha.nges the power dissipated in its neighborhood thereby raising or 

lowering the local temperature, do not play a role. The observation 

that B i , with a carrier density 1 o5 sma 11 er than meta 1 s, has rough 1 y 

the same relative noise spectrum suggests that the size effect is not 

N~ 1 , as suggested by Hooge and Hoppenbrouwers. 1 However, both our 

measurements and those of Hooge and Hoppenbrouwers1 on Au are consistent 

( )
. -2 -1 . 

with Sv f /V ex: Q . In thennal equilibrium a body of total heat 

capacity Cv = cVQ has a mean square temperature fluctuation 
2 2 

<(~T) > = k8T /Cv. Thus, the absence of the 1/f noise in manganin, 

-2 ( -2 the scaling of Sv(f)/V as 1/Q, and the fact that Sv f)/V decreases 

with decreasing temperature are all consistent with the idea that the 

l/f noise voltage in continuous metal films supplied with a steady 
/ . 

current is due to equilibrium temperature fluctuations modulating the 

resistance. 

. ._ .... 
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11Facts are stubborn things; whatever may be o,ur wishes, our 
inclinations, or the dictates of our passions, they cannot 
alter the state of facts and· evidence. 11 

John Adams, Defense of the British soldiers 
on trial for. the Boston Massacre 

III. FLUCTUATION SPECTRA FOR DIFFUSIVE SYSTEMS 
.) 

A tempe~ature fluctuation, 6T, in a resistor of resistance, R, 

and temperature coefficient of resistivity, 8 = (1/R) aR;aT, will be 

observed as a voltage fluctuation, 6V = IRB6T, in the presence of 

a constant current, I. The voltage fluctuation spectrum, Sy(f), is 

then related to the temperature fluctuation spectrum, ST(f), by 

Sv(f) = v2s2
sT(f) ( 3.1 ) 

where V - I~ is the average voltage across the resistor. If the tempera

·ture fluctuations are due to equilibrium exchange of energy between 

the resistor and its environment, ST(f) oc. k8T2/Cy, where Cv is the 
. . '( ) -2 2 2 

tot~l heat capacity of th~ resistor. In this case SV f oc V B kBT ICy, 

which pr~dicts the observ~d behavior of the 1/f noise in metal films. 

It is necessary, however, to determine whether or not the ide a of 
- . 

equilibrium temperature fluctuations can account for both the 

observed magnitude of the 1/f noise and the 1/f spectrum. In this 

section, we shall use a Langevin-type approach to caiculate sT·(f) 

for a system characterized by a single correlation time, and for . 

uniform diffusive systems. Although many of the results have been 

previously derived, 14 •15 •19- 24 neither the generalized three

dimensional spectra nor the frequency-dependent spatial correlation 

l/2 length, A(w) oc (D/w) , have been emphasized. Our simple physical 
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derivation, which stresses the importance of A(w) in determining the 

shape of the spectra, not only provides the basis for our latter experi

ments, but also introduces methods that can easily be extended to the 

case of correlated fluctuations discussed in Section V. 

We begin by considering the. system shown in Fig. 4(a). A mass 

of total heat capacity, C, is coupled via a thermal conductance, G, 

to a heat re~ervoir at temperature T
0

. Macroscopic deviations in T 

will obey the decay equation 

dT _ 
C -- - -G(T - T ) dt 0 

(3. 2) 

I th L . h25 '1 . b . fl t t. 1 . d n e angevtn approac equ1 1 r1um uc ua 1bns are a so assume 

to obey Eq. (3.2). The stochastic nature of the fluctuations is 

introduced by adding a 11 random driving term 11
, F(t), to the right-hand 

side of Eq. (3.2). F(t) is assumed to have zero average and to be 
? 

uncorrelated in ti~e (<F(t) F(t + T)> = F~o{T)) fbr the time scales 

in which we are interested. Physically, F(t) represents the random 

exchange of energy between the mass and the reservoid through the 

thermal conductance. The equilibrium temperature fluctuations thus 

obey the equation: 

dT/dt = -(T - T
0

)/T
0 

+ F(t)/C (3.3) 

where To = C/G is the time constant for decay of a given fluctuation. 

We wish to calculate the spectrum for temperature fluctuations, 

s1 (w) = <IT(w)i 2 >, where 

T(w} = (2TI)-l/2 f (T(t) 

';·' 

- T ) eiwt dt 
0 
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From Eq. (3.3), T(~) = F(w)/C[l/t0 + iw] and ST(w) = SF(w)/C2 [1/T~ + w2]. 

The Wie~~r-Khintchine rei~tiohs 

and 

.. ) 1 fa.~ 
S {w = --x 21r 

-co 

that connect the autocorrelation function~ cx{T), bf a fluctuating 

quantity, x, with its spectr~m, Sx(f)~ may be used to calculate 

SF(w) from <F(t) F(t .+ T)> = F~8(T). Since F(t) is uncorrelated in 
2 time, SF(r,)) = F/21r is "white .. (independent of frequency). Thus, 

(3.4a) 

( 3 .4b) 

S~.(t,l) = F~/21rC 2 (T- 2 + <}). F
0
2 may be determined from the nOI-malization 

i 0 0 

condition (C:q. (3.4a)) that 

.. cT(O) = <(~T) 2 > = kB T2/C = f oo ST(w) dw 

-oo 

We find that F~ = 2k8T2G and 

ST (tu) = kB T
2 

/TrG [1 + <_iT~] (3.5) 

ST(w) is the usual Lorentzian spectrum characteristic of processes 

. I . l . 1 t • ... . 25 Tl . . b . l \'lltl a s·tn~ c~ colTP a 10n ... 1me, T. ns spectr·urn 1s o v1ous y not 
' ) ' 0 ' 

1/f. In fact; the 1/f spectrum can only arise from physical pr·ocesscs 

characterized by th~ appropriate distribution of corre,lation times. 26 

One process with a distribution of correlation times is diffusion, 

\'lhich, morec.v~r~ represents a b;:t·i'f.T appr·oximation to the heat fl01.; 

in the m~tal samples. 
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With a simplE extension C'f this single correlation time system, 

one may approach a 1-d·imens ion a 1 diffusion system. Fi !:jure 4(b) shO\'IS 

a ~tr"in0 of equal rnc1sses of heat capacity C connected by thermal 

conductances, G. l"he tempernture of the nth mass obeys the Langevin 

equation: 

Each of the l'<"ildorn driving terms Fn+l/Z is independent of the others. 

If \'/e assume that each of the masses is separated by a distance 9-. , 
0 

we may define c = C/1 as the heat capacity per unit length and 
0 

g = G1
0 

as the thennal conductivity. In the limit 1
0 

-)- 0, T becomes 

Cl continuous function of position and time, T = T(x,t), and C•beys 

the diffusion equation: 

2 2 -1 ar;at = oa T/ax + c aF/ax 

\'there D = g/c is the thermal diffusivity and F(x,t) obeys the 

relation <F(x,t) F(x + s,t + T)> ~ 2nF~8(s)6(~). The quantity of 

interest is now the spatial average of the temperature, T(t), over 

the length 21 from x = -1 to x = 1: 

(3. 7) 

(3.8) 

T{x,t) may be defined in terms of its space ctnd time Fourier transform: 
00 00 

T(x,t} - ~i I dkf d"'eikx.-iuJtT{k,fk}. (3.9) 

-oo -co 

\ 
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From Eq. (3.7) we find 

T(k,w) = ikF(k,lll)/c[Dk2 - iw] 

S i nee from ~q. ( 3. 8) , 

using Eq. 

T(w) • ~t I R. T(x,w) dx 

-R. 

(3.9) we have 
00 

T{w) • (21<)-1/2 L sinkQ, · T(k,w) dk 
kR. 

- -* The frequcr.cy spectrum is defined by s
1

(w) = <T(w) T {w)>. The 

uncorrelated n'ature of F in space and time implies that it has a 

\'Jhite spectru,n in vJ space dnd k spc.ce. We thus set 

* ( F ( k '{l}) F ( k I '(U ) ) = 

2 
Once again F may be determined from the normalization condition 

0 

(3.10) 

(3.11) ' 

(3.12) 

We .fl.nd F
0

2 -.. 'Jk.
13
T2g. S ( ) b 1' 'tl · t t d t · L T w may new c exp 1c1 y _1n egra ·e o g1ve 

(3.13) 

.(w/t•l ·) 112 , "ild "1 :.:: 012· r,
2 · th t 1 f ' .r.· d - ~ u ~ 1s e na ura . requcncy aeflnc 

I) . 0 

by the bl . S ( ) 1. --2
1
.,., F~.:-~l/2 l/2 f ~ d pro. em. • T It' ->- f.B 1 t:.¥ o,v. (;) c or r;J <-<: w

0 
an 
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S ( . ) k T20112/4 /-2- n2 3/2 ·f .,. ,. 20,21 T W ~ B . · Ti A. CW Oa W ....,. w
0

• 

As a check on the formal ism one may obtain from Eq. (3.10) the 

space-time r.:o1-relation function, c1 (s,-r) _ <ill(x + s,t + -r) i\T(x,t)>, 

(3.14) 

27 
which is the familiar result for 1-dimensional diffusion processes. 

The physical insight into the connection bctt/E:en d·iffusio~l .:~nd the 

1/f-likt: spectrum, ho\'1ever, co;nes from a calculation of the frequency

* dependent correlation functicn~ cT{s,w) ~ <T(x + s,w) T {x,w)>. For 

the 1-dimensional case .,.,e obtain from Eq. (3.10) 

= k8 T2cos[~•1·_~4 ~~;_J_:J_!>-] e -Is(/.\ 
211cD w · 

(3.15) 

where l.(tu) _ (2D/w) 112 is thew-dependent correlation lengtl, and is 

a measure of the aver~ge spatial extent of a fluctuation at frequency 

w. A low w fluctuation effectively samples F(~.t) over a large coherent 

volume giving a large amplitude. 

When w < w , >-(w) > 21 and the fluctuations become correlated .· 0 

across the entire length. In this cas~ ST(w) can also be e~~rcssed 

as 

{3.16) 

Sincf~ cr{s,w) is independent of s as w -~ 0, s
1

(ul) ~ c
1

(0,w) as w ~ 0 

lei!ding to the same: low ltl limit as that obtained from Eq. (3.13). 

' . . ' 



.. 
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In the high :.o region (r..u ~ w ) >.(tol) ~ 21. Although 2.C may be divided 
0 . 

into many corfelated regions each of length >. only the two end regions can 

fluctuate independently of the others. Energy exchange bet'.-:een any of the 

internal lengths cannot chang~ f(t). The behavior is then best understood 

in terms of l-di1:1ensional ~ner-gy flovt across the boundaries. The energy 

flow, j(x,t), obeys the equation, J =-gaT/ax- F(x,t). From Eq. (3.10), 
. 'l 

j(k,w) = iwF(k,w)/[Ok~ - iw]. If E(t) represents the total energy on one 

side of th8 boundc:.ry at x = 2. i:lnd we consider only flmJ across this. 

signal boundary, then dE(t)/dt = j(1,t), and 

Oo 

E(w) = -i(21:r·112tl,-l J exp(ik£) j(k,w) dk 

-oo 

Thus, 

for energy fluctuations due to f101-J across a single bounda1·y. For 

w > w the flows across the two ends are ind~pendent~ and, since 0 . 

.6T = 6E/21c, ST(ul) "" 2<!E(u:) !2 >!4£2c
2 

= k8T2t4/21rR.2cw312 as before. 

This formalisnr may readily be extended to m dimensions. 

T(x,t) obeys the Langevin diffusion equation 

{3.17) 

{3.18) 

. . ~m 
spat-ially averaged ternperature of c: lJox of volume n =- t.. x.

1 

m-dimensions, th~n 

~T(c.l} 

. 2k n s 1 n .. ,, . 

. . ·. 1 1 -. --k~ xf 
. 1 1 

i in 
m 

(3.19) 
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The requirement that <(AT) 2
> = f ST(w) dw gives F~ = 2k8T2g. Although 

we have been unable to determine a general analytic expression for 

ST(w), \'le can ·determine its 1 imiting forms from the behavior of the 

appropriate w~dependent correlation function, which retains its 

dependence on exp(-lsi/A) in all dimensions. Thus~ in 2 dimensions 

where cT(~,w) + (k8T2/2n2Dc) ln(I2A/Isi) for lsi~- A and 

cT(~,,w) + 1~1- 112 exp(-121~1/A.) for 1~1 )!.>A.. In 3 dimensions 

k T2 

cT(s,w) = 2
8 cos(L~I/X) e-1~1/A 

· "" 4n DcL~I 

For a regular 3 dimensional volume of lengths 11 > 12 > 13 

(3.20) 

( 3. 21 ) 

the three natural frequencies, wi = 0/21~. separate the spectrum into 

four regions. In the frequency region w > w1 ,w2 the lengths 11 and 12 
may be considered infinite and the spectrum becomes 1-dimensional 

with temperature fluctuations only due to energy flow in the x3 
3/2 . direction. Thus as ca 1 cul a ted above s1(w) a: w- · for w > w3 and 

ST(w) a: w- 112 for w2 ~ w ~ w
3

• If w > w1, the spectrum looks 2-dimensional 

with temperature fluctuations only due to energy flow in the x2 and 

x3 directions·. The low frequency limit of the 2-dimensional spectrum 

may be calculated from Eq. (3.20) and the observation that 

(3.22) 
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From the limiting form of Eq. (3.20) as w + 0 it can be seen that 

. ST(w) oc [con~t + ln(l/w)] for w1 < ~ < w2. 24 For w < w1 ST(w) is 

determined from the low frequency limit of the 3-dimensional 
r 

c1 (s,w) (Eq. (3.21)) and Eq. (3.22). Thus, for w -~ wl' ST(w) oc const. 14 

The behavior-of ST(w) for the four regions of the.spectrum of a 

regular 3-dimensional volume are shown in Fig. 5(a). The (J.)-
3/ 2 

behavior at high w for all dimensionalities is .characteristic of 
23 . . 

diffusive flow across a sharp boundary. When A. is < any length 

2R.; only the outer shell of an arbitrary val ume, SG, can fluctuate 

independently of the remainder and then only by local 1-dimensional 

flow across the boundary. A generalization of Eq.··(3.17) gives 

( 2 3/2 2 3/2 s1 w) + k B T A/ 2 ns-G cw . as w + oo (3.23) 

where A is the total surface area of n. If, on the other hand, the 

bound~ry is ·not sharp but has a finite width, w, ST(uJ) varies as uJ- 2 

for w ~ D/w2. 

As discussed in Section IX these calculated spectra for diffusive 

systems have been verified experimentally by a direct fueasurement of 

the spectra. Howev~r, unlike th·emeasured Sv(f) for metal films 

shown in figs. 1 and 2, Fig. 5(a) does not show an extended region 

of 1/f behavior. Figure 5(a) was calculated for temperature 

fluct~ations in a regular subvolume of a uniform medium. On the 
'. 

other hand, the experimental system of metal film on glass substrate 

does not present a uniform medium for heat conduction. We expect 

diffusive flow ~long the film to dominate the heat conduction creating 

primarily·a 2-dimensional system; but with some effects due to coupling 
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to the substrate. The importance bf coupling to the substrate on 

the spectrum has, in fact, been demonstrated for superconducting 

films at T . 16 It is also possible that path switching effects, c 
in which a temperature configuration that does not change T(t) does 

change R, (~V ! ~B~f) may play a role. However, at the frequencies 

measured A is large enough that temperature fluctuations are expected 

to be correlated across the cross section of the strip, hence 

If we assume that the temperature fluctuations in the metal 

films obey a diffusion equation, but that the complex natute of the 

system introduces an explicit 1/f region into th~ spectrum at inter

mediate frequencies, we may form a model spectrum that will allow 

quantitative tomparison of the measured noise with that predicted 

from temperature fluctuations. Since the thermal conductivity of 

the film is so much higher than the substrate, we expect the high 

frequency behavior to be 2-dimensional while at low enough frequencies 

the spectrum must become 3-dimensional and independent of frequency~ 

This simple model spectrum is illustrated in Fig. 5(b). The limits 

of the 1/f region are defined by the natural frequencies of the 

film, D/TIR.2 and D/TTW2 where 9.. and w are the 1 ength and \'li dth of the 

film. The high and low frequency limits are taken to be diffusion-like: 

~T(f) cr f- 312 for f > D/nw2 and ST(f) cr canst for f < D/nR-2. The 

normalization condition 

<(~"[) 2 > = k8T2/Cy = Joo ST(f) df 
0 
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theri determines the magnitude of the spectrum. In the lAf region 

( ) -2 2 2 SV f /V = B k8T /Cy[3 + 2 ln(l/w)] f 

independent of D. The term ln(l/w) makes Eq. (3.24) extremely 

insensitive to changes in the limits of the 1/f region. For metals 

at room temperature CV ~ 3Nk
8 

where N is the total number of atoms 

in the sample, and 

( 3. 24) 

(3.25) 

For the samples of Hooge and Hoppenbrouwers,1 Eq. (3.25) predicts 

Sy(f)/V2 ~ 3.6~10-3/Nf which is within a factor of two of their 

experimental results (Eq. (1.1)) if we replace Nc by N. The last 

column of Table I shows the calculated values of ST(f) from Eq. (3.25) 

for our samples. The· agreement is excellent. 

Although the calculated ST(w) for simple uniform diffusive m~dia 

do not have a~ explicit 1/f region, the assumption of such a 1/f 

region in ST(f) for ,the complex experimental systems allows a 

quantitave prediction of the 1/f noise in excellent agreement with 

experiment. 
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11 But the main thing is, does it hold good measure? .. 
Robert Browning 

IV. MEASUREMENT OF SPATIAL CORRELATION OF 1/f NOISE 

The usual diffusion theory does not provide an explanation for 

the l/f spectrum, it does, however, suggest an important experimental 

test of the correctness of a diffusion mechanism. Fluctuations in 

a diffusive medium are characterized by the frequency-dependent 
l/2 . 

correlation length, A(f) = (D/nf) . Thus, the temperature fluctuations 

of two regions separated by a length ~ should be independent if -

£ > A(f), and correlated if£~ A(f). The extent of the correlation 
I . 

• depends on the dimensionality of the diffusion process and the exact 

geometry of the two regions. 

Figure 6(a) shows the experimental configuration for an experiment 

designed to measure the frequency dependence of the correlation of the 

l/f noise from two regions of a single Bi film .. A Bi film of 
. 0 

thickness lOOOA was cut to form two strips each of length ~ and 

width 12 ]lm. Separate batteries and large resistances R were used 
. 0 

to supply a constant current to each strip and prevent any correlation 

via a common power supply. The two noise voltages v1(t) and v2(t) \-Jere 

separately amplified with PAR113 preamplifiers and the spectrum of 

their sum or difference measured with the PDP-11 as described in 

Section II. If S+(f) is the spectrum of [V1(t) + v2(t)] and S_(f) 

is the spectrum of [V1(t)- v2(t)], the fractional correlation 

between the strips, C(f), is given by 

C(f) = [S+(f) - S_(f)]/[S+(f) + S_(f)] ( 4. 1 ) 

.• 
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When v1·(t) and v2(t) are independent, S+(f) = S_(f) and C(f) = 0. 

When the two strips are completely correlated v1 (t) = v2(t), 

S_(f) = 0, end C(f) = l. For temperature fluctuations at high 

f, A(f) <Land C(f) + 0, while at low f, A{f} ~ i and C(f) ~canst. 

The change from co~related to uncorrelated behavior occurs when 

~(f) ~ 1. · Experimental result$ for two differe~t values of 1 are 

shown in Fig. 6(b). The condition A(f) c 1 corre~ponds to f = 0.13 Hz 
. ) 

fort=· 7.5 mm, and f = ,1.2 Hz for 1 = 2.5 mm (with D ~ 0.2 cm2sec-1), 

in good agreement with the frequencie$ at which C(f) changes rapidly. 

As 1 is increased, the low frequency limit of C(f) decreases because 

a fluctuation in one strip has an increasing probability of decaying 

\ltithout ·influt:nc~ny the other strip. For £much greatei" than 7.5 mm, 

it became increasingly difficult to observe any .correlation. Since 

we could not measure S+(f) .'lnd S_(f) sim,ultaneously, He often observed 

ermrs due to slo~t changes with time of S(f). Depending upon whether 

we measur·ed S+(f) or S_(f) first, a slo\·J chan.ge would appear either 

as a posHive or negat·ivP offset to C{f), as in the 1 =-' 2.5 mm case 

in Fig. 6(b). 

These measurements of the frequency-dependent spatial correlation 

of the 1/f noise in metal. filrns and the observation that the change 

h·om un~orrelated to correlated behavior occurs at a frequency 

predicted Ly the ther·mal diffusivity provide strong experimental 

evidence that the 1/f no:ise ari~cs from a ther(llal diff~\sion.mechani.srn. 



-28-

"A thingmay look evil in theory, and yet be in practice excellent." 
Edmund Burke 

V. SPATIALLY CORRELATED FLUCTUATIONS 

The absence of 1/f noise in manganin, the scaling of Sy(f)/V2 as 

1/n, the general decrease of Sy{f) with ~emperature, the observed 

frequency-dependent spatial correlation, and the ability of temperature 

fluctuations to correctly predict the absolute magnitude of Sy{f) 

(with an assumed 1/f spectrum for s1(f)) provide overwhelming evidence 

that the 1/f noise in metal films is due to equilibrium temperature 

fluctuations modulating the film resistance. Yet, the inability of 

the usual diffusion theory as outlined above to yield a l/f spectrum 

suggests a reexamination of the theory. 

In Section IM we presented a physically simple derivation of the 

spectrum of temperature fluctuations in infinite, uniform, diffusive 

media. The results have been verified experime~tally for independeni 

particles undergoing Brownian motion. As mentioned in Section III, 

it is possible that the non-uniform nature of a metal film on a glass 

substrate is responsible for the 1/f spectrum. However, more 

sophisticated models of the experimental configuration (for example, 

a diffusive medium coupled to a constant temperature substrate, or 

two coupled diffusive media) were unsuccessful in generating a 

1/f spectrum. In most cases the increasing complexity of the models 

only brought in more low-frequency flattening. The measured spectra 

correspond to the frequency range f < f3 in Fig. 5(a) and, consequently, 

would be expected to vary as ~f-l/ 2 . Any coupling to a substrate could 

only be expected to cause a temperature fluctuation to decay more 
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rapidly and further flatten the spectrum. The measured spectra, 

on the other hand, have a l/f behavior down. to frequencies as low as 

fl/1000 . 

The calculated diffusion spectra of Section III assume that the 

fluctuations are spati~lly uncorrelated: 

<t.T(x + s,t) t.T(x,t)> = c (s) a: cS(s). A spatial correlation of the 
Wi vw - 0"" >W 

temperature fluctuations, c0 (~) t cS(i), could drastically alter the 
28 shape of·sT{f); and; as suggested by Lundstrom, McQueen and Klason, in 

certain cases give an explicit 1/f region. Such spatial correlation 

would occur if the free energy of a given temperature configuration 

is non-local and contains higher order terms such as (VT) 2. A familiar 

exampleof this effect is the large correlation length of density 

fluctuations at a critical point. 29 The presence of a term such as 

(VT) 2 im_pl ies that configurations \oJith slow spatial variations require. 

a smaller free energy and, consequently, have a greater probability of 

occurring than configurations with rapid spatial variations. 

More explicitly, if T(t) is the spatially averaged temperature 

over some arbitrary volume.~. then 

where 

T(t) .= J T(~,t) d\ = f s*(~,) T(~,t) d\ 
~ 

B(!J) = (2n)-l/2 I 
. . ~ 

-iq•x 3 · e .wt"dx 

- -

( 5 .1 ) 

( 5. 2) 

Thus, the autocorrelation .function crh·) = <T(t) T(t + T)) has the form 

(5.3) 
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Because the temperature fluctuations obey a diffusion equation, 

<T(~,t) r*(1,t + T)> = <IT(t)1 2> e-Dk
2
T 

where <IT(ls)1 2
> is the mean square amplitude of temperature fluctuations 

of wavevector k. By Eq. (3.4b) the spectrum then has the form . WI 

(5.4) 

<IT(Ji)1 2> is related to c0 (~) by the spatial Wiener~Khintchine relation 

For uncorrelated temperature fluctuations, c
0 
(~) a: o (.~) and 

<IT(k)l 2
> = cost. Moreover, for a regular volume of sides 2t., 

~ 1 

3 n sin(kt. )/k. 
. 1 1 1 1= 

and Eq. (5.4) reproduces Eq. (3.19) for ST(w). 

If, however, the (VT) 2 term dominates the free energy we find 

<IT(k)l 2
> a: l/k2, c (s) a: 1/lsll, and 

W{ 0 ..... "" 

(5.5) 

We now show that it is possible to treat these spatially correlated 

fluctuations in the Langevin formalism by replacing the ;t·£ term in 

Eq. (3.18) by a random source, F(x,t), to give 
WI 

aT/at = DV2T + F(x,t)/c 
""' 

(5.6) 
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F(!,t) is assumed to be uncorrelated in sp~ce and time, 

<F(~ + ~,t + T) F(~,t) > = (2n)mF~o(~)o(T). F(~,t) is a random source 

which adds or substracts energy from the diffusive system. The ,~·,fv 

term ( Eq. ( 3.18) ):, on the other hand, represents a random flow of 

energy within the diffusive system. 

As with Eq. (3.18) we may determine the spectrum of the spatially 

averaged temperature of a box of volume n = 2111£1 
Thus: 

£ in m-dirnensions. m 

T(k,w} = F(k,w)/c[Dk2 - iw] 
""" rM 

(5. 7) 

and 

. 2k m s1n .. £. n , 1 
.. k2 £~ 

i 1 

(5 .8) 
i=i 

A compa~ison of Eqs. (5.4) and (5.8) shows that the introduction of 

F(Ji,t) is equivalent to <IT(~,)1 2 > a: k- 2. The normalization condition, 

00 

<(LH)
2 

> = f ST(w) dw 
-oo 

cannot be applied unless m;;;;. 3 since for one and two dimensions JsT(w) dw 

diverges. 

· The general behavior of the spectrum can be'determined fron1 the 

three dimensional frequen~y dependent correlation function, 

F
0

2 cos[ (n/4) + I.~ I /A] 
( ) e-1~1/A cT ~,w . = ---16-'IT~2,.--0=3/...,..,2~w"""'"l--,./""""2 -- ""'- (5.9) 
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where, as before, A(w) = (2D/w) 112. In the limit w .~ 0 

Because F(x,t) is an external -
source, each correlated region may be considered as fluctuating 

independently of the other correlated volumes with a spectrum 

Sc(w) a: w- 112 from Eq. (5.9). 

If n, the volume of interest, consists of N independent 

correlated volumes, ST(w) a: Sc(w)/N .. Thus, when w ~ w3, A(w) ~ ~3 
and n is composed of N = n/A3(w) independent volumes: 

2 When w2 ~ w ~ w3, ~2 ~ A(w) > ~ 3 , and n is composed of N = ~ 1 £2/A 
independent volumes: 

when w1 ~ w ~ w2, ~l > A(w) ~ ~2 , and n is composed of N = ~1 /A(w) 
independent volumes: 

-1 a:w 

and, for w ~ w1 all of n is correlated: 

ST(w) a: Sc(w).a: w-l/2 

( 5.1 Oa) 

( 5.1 Oc) 

(5. 1 Od) 

The shape of ST(f) for this type 6f spatially ~orrelated temperature 

fluctuation is shown in Fig. 7. Not only does ST(f) ~ontain an 

explicit 1/f region, but this region corresponds to the low frequency 

' limit of a two dimensional system and matches the frequency range 

over which the metal films are observed to have the 1/f spectrum. In 

fact, if we assume that <(~T) 2 > = T2/3N, we find· 
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Sy(f) 82T2 . , 
-2 = 3N[4 - d/w + 2 ln(l/w)] f v 

(5.11) 

where dis the film thickness. This result differs from our earlier 

model spectr~m. Eq. (3.25}, only by a factor cld~e to unity. 

Although the introduction of spatially correlated fluctuations 

provides a means of achieving the 1/f spectrum for simple diffusive 

systems, the theoretical justification of the spatial correlation 

in the case of equilibrium temperature fluctuations poses new problems: 

notably the physical origin of the correlations, and the proper. 

normalization of the spectrum. Moreover, it remains to be demonstrated 

that the correlated temperature fluctuations can produce the ljf 

spectrum for the thermally inhomogeneous experimental systems. 

It is interesting to note that when treated by the Langevin method 

(the association of an uncorrelated random source, F(t),'with each 

thermal conductance), a diffusive system coupled to a substrate at 

constant temperature, T , via,a thermal conductance, G, may be treated 
0 

by an F1(!,tt term representing exchange of energy with the substrate. 

In this case, 

(5.12) 

It can be shown, however, that· the frequency region in which F1 (~,t) 

dominates ,:Z·.£ corresponds 'to the region in which the -GT decay term 
. 2 

dominates gV T and the spectrum never achieves a 1/f behavior. 
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"The energies of our system will decay, II 

Arthur James Balfour, 
The Fo~ndations Qf Belief 

II by a gentle decay." 
Walter Pope, The Old Man's Wish 

VI. AUTOCORRELATION FUNCTIONS FROt1 DECAY MEASUREMENTS 

The theoretical calculations of Sections III and V, as all such 

theoretical calculations, are based on the assumption that the 

spontaneously occurring fluctuations in equilibrium on the average 

obey the same decay law as small non-equilibrium macroscopic perturbations 

of the system. 17 The autocorrelation function for temperature 

fluctuations, cT(T), thus reflects the average manner in which a 

temperature fluctuation decays in time. By perturbing the temperature 

of the experimental system and measuring its response, we are able to 

measure cT(T). The cosine transform (Eq. (3.4b)) of cT(T) gives 

ST{w). 

This procedure will be illustrated for the simple system shown 

in Fig. 4(a), and descr~bed by Eq. (3.2). If the temperature at 

t = 0 is raised t.T above T
0 

the decay for t > 0 will proceed 

according to 

(t > 0) (6.1) 

-T/T 
Thus, cT(T) ex: e 0 forT >0. Since cT(T) is symmetric about T = 0, 

·the n'ormalization condition cT(O) = <(t.T) 2
> = k8T2;c implies 

(6.2) 
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which gives the same ST(~) as Eq. (3.5). Thusr the response of the 

system to a temperature perturbation determines the shape of the 

spectrum 1"hil.e the .normalization condition, cT(O) = <(6T) 2 >, determines 

the magnitude . 

This procedure is not so straightforward for-extended media 

described by a diffusion equation. In this case, we are interested 
\ 

in the spatially averaged temperature of some volume n, 

T(t) ::: f T(Q_,t) d\;n 
n 

(6.3) 

It is Obvious that a given perturbation ~T in f(t) cOuld occur for an 

infinite variety of perturbation distributions, 6T(~,t), each of which 

might have a different decay in time. We must determine which 

perturbation distribution corresponds to the desired spectrum. In 

the simplest distribution, the temperature of n is uniformly raised 

a height 6T above the surroundings at t = 0. This is accomplished 

by dissipating the pm>~er, P(t) = c6To(t), uniformly throughout n. 

The decay equation then becomes 

aT/at = ov2T + 6To(t)' B(x) 
'IN 

where B(x) = if x is in n and B(x) = 0 otherwise. Introducing 
~ * ~. 

we find 

T(k,t) 
""'· 

(t > 0) 

(6.4) 

(6.5) 
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where 

B(k) 
..w 

)-l/2J -ik·x 3 (2n B(~) e M~ d x 

Now, since 

T(t) = J B(x) T(x,t) d\ =J B*(k) T(k,t) d\ (6.6) 
~ ~ ..W M 

we find from Eq. (6.5) that 

(t > 0) (6. 7) 

The cosine transform of Eq. (6.7) determines the shape of the spectrum: 

(6.8) 

0 

For a regular n of sides 2t1, 2t2, 2t3, 

IB(k)l 2 
a: 

3 
2( ) 2 n sin k.t. /k. 

1 1 1 i =1 

and we see that Eq. (6.8) predicts the same shape for the spectrum as 

Eq. (3.19) for uncorrelated fluctuations. This is not surprising. 

For uncorrelated fluctuations the average manner in which a fluctuation 

l-!T in T(t) occurs is by a uniform distribution of temperature over n. 

The importance of this result, however, is that it ~ives an experimental 

method of determining the shape of ST(w) for uncorrelated temperature 

fluctuations in an arbitrary volume with arbitrary coupling. 

Another jmportant result comes from a consideration of the 

temperature response of n to a step function inp~t of dissipated power, 

-· 



p 0 

..,., 
-;)J-

P(t) = p
0
e(t) ~(~,), \'/here e(t) = 0 for t < 0 and e(t) = 1 for t > 0. 

In this case 

artat (6.9) 

and 

T(!),.t) (6.·10) 

Thus, we find that 

(6.11) 

1he cosine transfot~ of Eq. (6.11) shows that 
' . 

p ' f' I B ( k ') 1
2 d \ . 0 "i S (w) a. --- ---~-----

T c J [) 2 k 4 -fw ?. 
(G.l2) 

\•thich !laS the same shape as ST(f) for correlated temperature. 

fiuctuat"ions given by Eci: (5.5). The response of an arbitrary volume 

to a step function input oi'' povte:r thus detel-mines the shape of the 

spectrum ior correlated temperature fluctuations. 

Figures 8 and 9 sho0 th~ response of the same Au sample used in 

Figs. 2 and 3 to delta function and step function po\'Jel· inputs. The 
. I 

san.ple l'!tlS one arm of a Wheatstone bridge. The othet· three arms 

consiste:d of \'Jir-e1·;ounu resistors with a zero temperature coefficiC'nt 

of resistivi~'· At~ = a, a 1 kHz ac current was applied to the 

bd dge. r~s the (\~ fi 1 rrr became hot, the bridge became ;u:.ba 1 unced. 

The POP-11 was used as a digital lockin detector to measure the voltage 

r·esponsc of the brid9e as a function of time. In this way, the decay 

of the Soinplr.- temperature \':as determined. Each dt>cuy v1as averaged 



I 
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over many repetitions. The ac current prQvided the heating as well as 

the bias for measuring the temperature response. This method had the 

advantage th~t the necked-down areas of the film, wbich contributed 

the most noise, also were weighted the most heavily in the temperature 

response. The delta function response was determined from the 

derivative of the step function response. Direct delta function 

(very narrow pulse) response measurements gave similar results. 

Figure 8 shows the temperature response f(t) to a delta function 

power input on three different time icales. The decay is essentially 

complete by a few hundredths of a second. Figure 9, on the other hand, 

shows T(t) for a step function input of power. The decay is much 

slower and appears to have appreciable contributions on all time 

scales. Figure 10 shows the cosine transform of these decays over 

many decades of frequency. The decay was assumed to give the shape 

of cT(T) and was normalized to T(O) = <(LH) 2>=s2T2/3N to allow 
. -2 

comparison with S(f) = Sy(f)/V . The dotted line shows the expected 

S(f) for uncorrelated temperature floctuations. As predicted 

theoretically. s.(f) is 1/f-like for higher frequencies, but flattens 

rapi~ly for low frequencies. In this case, the low frequench cutoff, 

f1 = D/n12 ~80Hz, also correspohds to the measured ch~nge in behavior. 

The solid line, however, shows the expected S(f) for corr~lated 

fluctuations. This spectrum shows the 1/f behavibr down to the 

lowest frequencies measured. The squares in Fig. 10 sho\'J the measured 

relative noise spectrum for the same sample. The normalized cosine 

transform of the measured step function response, \'Jhich contains no 

fitted parameters, provides an excellent reproduction of the measured 
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noise spectrum both in shape and magnitude. The ob~ervation that the 

cosine tr~risfotm of the step functiori respohse retains its l/f 

behavior down to 10-2 Hz implies that even on these long time scales 

the heat conduction is pret'erenti ally two dimensional. Similar 

experiments on Bi films (B < 0) also shov1 that the cosine transform 

of the step function response matches the measured noise spectrum, 

indicating, in addition, that feedback effects are not important in 

· measuring the decay. 

~Je have shown experimentally that correlated temperature 

fluctuations in the complex experimental systems of' metal films on 

glass substrates can, in fact, produce the measured 1/f spectrum. 
' 

Moreover, we have shown that the usual assumption of uncorrelated 

fluctuations does not produce ·the measured 1 /f spectrum for these 

samples. The ass~mption of correlated equilibrium temperature 

fluctuations in a diffusive medium together with the normalization 

<I~T~ 2 > = k8T2/Cy are, thus, sufficient to predict all the measured 

characteristics of 1/f noise in continuous me~al films.· 
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"Then, farewell, heat and welcome, frost!"· 
t~i 11 iam Shakespeare, The Merchant of Venice 

VII. THERMAL FLUCTUATIONS IN UTHER SYSTEMS 

It was not possible to test in detail the dependence of Sy!V2 

(Eq. (3.24)) on n, B, and Tusing the metal films. However, Clark 

and Hsiang16 measured the 1/f noise in Sn films at the superconducting 

transition, where B is larger than at room temperature by a factor 

of about 105. In the first series of experiments, the Sn was evaporated 

directly onto a glass substrate. The main conclusioni were: 

(i) Sy!V2 ~ 1/n (for a factor of 30 variation inn); 

(ii) Sv .~ s2 (for a factor of 30 variation in s2); 

( ) -2 ' . -2) iii· SV ~ V (for a factor of 500 variation in V ; 

(iv) the noise showed the expected spatial correlation; 

(v) the magnitude of the noise was well represented by 

Eq. (3. 24), thus verffyi ng the dependence of Sv on T. 

Equation (3.24) thus correctly predicts the measured l/f noise in Sn 

both at 4K and 300K. In the subsequent experiments the Sn evaporation 

was preceded by a thin underlay of Al, that greatly enhanced the 

thermal coupling of the film to the substrate. Not only did the 

observed spectrum flatten at low frequencies to become white, but the 

degree of spatial correlation of the l/f noise was appreciably reduced. 

As the coupling to the substrate increased a given temperature 

fluctuation in one section of the film could decay more rapidly by 

heat flow into the substrate and, consequently, was less likely to 

influence the neighboring sections. These results add strong support 

to the diffusion theory. 
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Clarke ~nd Hawkins 18 measured the 1/f noise in Josephson tunnel 

j~nctions that were resi~tively shunted to eliminate hysteresis in the 
,. 

current-voltage characteristic. The noise was measured by passing a 

constant current, I, greater than.the critical current, I , throuah c ~ 

the junction and measuring the voltage.fluctuations with a super-

conducting voltmeter. 
. \ 

If the noise is assumed t~ be due to 

equilibrium temperature fluctuations modulating I , a suitable modifi-' . c 

cation of Eq. (3.24) leads to the following result for the noise 

power spectrum: 

( 7. l ) 

Cv is the heat capacity of a'volurile given by the product of the junction 

area and a superconducting coherence length. The dependence of 

Sv(f) on (ClV/Cllc)I'imd (ai/aT) Has experimentally verified. In 

addition, the magnitude of the noise was accurately predicted by 

Eq. (7. 1). 

Weissman and Feher30 have studied the low frequency noise in 

electrolytes in the presence of a current. Their system consisted 
-2 ~ 

of a capilliary tube connecting two large reservoirs. Sv/V was 

proportional to ri and was quantitatively predicted by the 3-di.mensional 

diffusion'mod~l (Eq. (3.19)). Presumably the thermal copductivities 

of the solution and the glass capilliary were comparable and the 

boundary resistance.between them not too large, so that the system 

was reasonably thermally homogeneous. 
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Thus, there are several different systems in which strong 

evidence exists for a thermal diffusion model of 1/f noise. However, 

in a series of experiments on semiconductors, we found no evidence 

for this model. In evaporated films of InSb we found that the noise 

was typically three orders of magnitude larger than that predicted 

by Eq. (3.25), and that there was no spatial correlation of the noise 

on a scale of a few mm at frequencies down to 10-3 Hz. We also found 

that the 1/frioise in very thin (-100~) discontinuous metal films 3•4 

was much larger than predicted by Eq. (3.25). In these systems, the 

noise due to thermal diffusion presumably exists, but is completely 

dominated by another mechanism. The lack of spatial correlation 

indicates that, if diffusive in nature, this additional mechanism 

must be characterized ·by D < 10-5 cm2sec-l. However, we were able 

to show that the 1/f noise in semiconductors and very thin metal films 

~ is also an equ.ilibrium process. 
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"This humour of passive resistance " 
Sir Walter Scott, Ivanhoe 

VIII. EQUILIBRIUM MEASUREMENTS OF 1/f NOISE FROM 
. RESISTANCE FLUCTUATIONS 

We have observed a 1 /f-1 ike pow'er spectrum for 1 ow frequency 

fluctuations of the mean square Johnson noise voltage across a very 

small sample of semiconductor or discontinuous metal film in thermal 

equilibrium. The 1/f spectrum is shown to be due to resistance 

fluctuations,in the sample, and closely matches the resistance 

fluctuation spectrum obtained by passing a current through the sample. 

Consider a resistance, R, of total heat capacity, CV' shunted 

by a capacitance, C, and in thermal coritact with reservoir at temperature 

T
0

• The voltage across the capacitor, V(t), represents a single 

degree of freedom that can exchange energy with the resistor via 

the charge carriers in the resistor. The exchange takes place on 

time scales of order T = RC. In thermal equilibrium the average 
1 2 1 energy of the capacitor, <Ec> = 2 c<V > = 2 k8T

0
• These voltage 

fluctuations (Johnson noise) are limited to a bandwidth of l/4T, and 
2 2 2 consequently have a spectrum of the form Sv(f) = 4k8T

0
R/[l + 4n f T ]. 

If the resistor is assumed to exchange energy with the reservoir on a 

time scale of order TR that is much greater than T, the capacitor 

is able to reach equilibrium with the internal degrees of freedom 6f 

the resistor before the internal energy of the resistor can change. 

The temperature of the capacitor is then the same as the temperature 

of the resistor. v2(t), like V(t), is a rapidly fluctuating quantity 

in time due to this exchange of energy between the resistor and 
. 2 

capacitor. However, the average of V (t) over a time, e, such that 
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T < e < TR, cv2(t)>e = kBT/C (Tis now the instantaneous temperature 

of the resistor), is sensitive to slow energy or temperature 

fluctuations in the resistor on time scales TR nr longer. 

Experimentally, the Johnson noise voltage, V(t), is passed 

through a filter with a bandpass from f
0 

to f1, squared, and averaged 

over a time B > 1/f to give P(t), a slowly varying signal proportional 
0 

to the Johnson noise power in the bandwidth f
0 

to f1. Thus, 

where P
0

(t) represents the fluctuations in P(t) due to the rapid 

exchange of energy between capacitor and resistor. Because this 

(8.1) 

exchange is so rapid, P (t) has a spectrum, Sp (f), that is independent 
0 0 

of f for the low frequencies in which we are interested. SP may 
0 

be reduced by increasing the bandwidth or by moving the bandwidth to 

higher fr.equencies, but in practice P
0

(t) severely limits the accuracy 

of measurements of P(t). 

If the bandwidth in E~. (8.1) is either totally above or totally 

below the knee at l/2nT, P(t) is sensitive to slow resistance as well 

as temperature fluctuations. These resistance fluctuations, ~R, may be 

driven by temperature fluctuations with a spectrum ST(f) so that 

~R = ~B~T; or be temperature independent fluctuations, ~R0 , with a 

spectrum SR (f) (such as number or mobility fluctuations of the charge 
0 

carriers). Thus, from Eq. (8.1), ~P(t)/P = (1±BT0 )~T/T0+~R0/R+P0 (t)/P, 
and the relative power spectrum for fluctuations in P(t) is of the 

form 
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(8.2) 

where the plus sign corresponds to f
0 

< t 1 < l/2TI~j and the minus sign 

corresponds to f 1 > f
0 

;;<· l/2nT. If, however, most of the noise 

power and the knee frequency, l/2n~. are included in the bandwidth 

(i..e., f
0 

< l/2•r~ < f 1), from Eq. (8.1) we find P(t) ~ 

( -2 ( . 2 -2 and sp f)/P = s1 f)/f + sP /P-. 
0 0 

In this limit, P(t) is not serisitive 

to resistance fluctuations. Thus, with an appropriate choice of· 

bandwidth, the lew frequency spectrum of P(t) is an equilibriu~ 

measurement of s1(f) or SR (f) provided the temperature or resistance 
0 

fluctuations are large enough to dominate SP • 
0 

Our initial measu:--crr:ents wc:re on e':aporated Ir.Sb fi1~s '.'d'tli a 

thickness of 1000~ and a resistivity of about l S2cm. As indicated'. 

in. section VII, '.'le expected to observe only the resistance fluctuations 

t.R (t). In order to make the relative 
0 

resistance fluctuation spectrum1 
-2 . 

) 
-? SR (f /R-, large enough 

0 

to dominate Sp /P , the samples were made as 
. 0 

small as possible. The resistance of a strip of InSb was monitored 

whilecthe· strip wds Cut transversely 'tJith a dian~ond knife until 

only u small bridge containing t.vpically dbout 106 atoms rem.:dned. 

In the presence of a direct current, I, the relative power spectrum 

of the voltage fluctuations is S(f) = Sy{f)/V2 = .SR (f)/~2 ~ The 
0 

sol·id line in F'i':l· 11 sl1o1·1s S(f) for a 20 ~1Q bridse of InSb measured 

1·1ith ,~. di rcct nwrenL The spectrum \'JJS rernea~.ured using an· ac 

technique in \-~hich a s.quart! ~>;ave currPnt \':as applied to the sample, 
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and the PDP-11 was used as a digital lock-in detector to measure 

the spectrum of the amplitude fluctuations of the induced voltage. 

The relative spectrum is plotted with open circles in Fig. 11. In 

a third technique the current was supplied as a series of pulses 

to reduce the power dissipated in the sample. The relative spectrum 

is shown in Fig. 11 as open triangles. All three techniques measure 

the resistance spectrum, SR (f)/R2. The agreement of the three spectra 
0 

demonstrates that neither a direct current nor a constant dissipation 

of·power is the cause of the 1/f spectrum. 

For the measurement of P(t), the sample was capacitively coupled 

to a preamplifier to prevent any leakage current flowing through the 

sample. The input capacitance produced a knee frequency, 

l/2nRC ~ 500 Hz, in the Johnson noise spectrum. After amplification 

the noise was filtered with a 10 kHz to 300 kHz bandpass filter, 

squared with an analog multiplier, and filtered to remove frequencies 

above the digitizing frequency .. Since the bandpass is above the knee 

frequency the calculated relati~e spectrum of this signal is given 

by Eq. (8 .. 2) (with the minus sign), while the measured relative 

spectrum is shown as the open squares in Fig. 11. The white spectrum 
-2 above 1 Hz represents SP /P . The 1/f spectrum below 1 Hz closely 

0 
matches the current-biased measurements. To insure that the 1/f 

spectrum was generated by fluctuations in the sample rather than by 

spurious effects from our electronics, the InSb was replaced by a 

metal film resistor (which did not exhibit 1/f noise) of the same 

resistance. This relative spectrum is shown dotted in Fig. 11. The 

spectrum is ~hite down to the lowest frequency measured, and represents 

-2 only the term Sp /P . 
0 
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. We have made similar measurements on metal films. The three current

biased techniques gaVe identical r·elative spectra for continuous 

metal firms in vthich the resistance fluctuations are t:err,perature 

induced, confirming that thec~urrent ser~es only as a probe of the 

equilibrium fluctuations. However, we were unable to make these 

( 
-2 . -2 

films small enough for SR f)/R to dominate SP /P at 

-3 ° 11 dmm to 10 Hz. We therefore used very thin (<lOOf\) 

frequencies ' 

films in \o:hich 

temperature i~duced fluctuat1o~s are not dominant. In Fig. 12, the 

continuous curve is the relative spectrum of e1 very thin Hb film 

(R ~ 200 kn) measured with an ac current bias. The open squares 

are a Johnson noise measurement with a bandwidth of 100 kHz to 

200 kHz, above the ·knee frequency of,40 kHz. The agreement below 

)o-2 Hz is excellent. The dotted spectrum was obtained from the 

same sample u:;·ing a banctwidth of 5 kHz to 200 kHz, which includes 

the knee frequency and most of the Johnson noise power. /\lthough the 

low frequency spectrum is substantially reduc~d (as expected when 

P(t) is no longer sensitive to resistance fluctuations); it is still 

above the background spectrum of a large metal film resistor. This 

residual noise is possibly due to the tempe1·ature fluctuution term 

( 
. 2 

ST f J/T
0

• 

(Fig. 5(b)) 

Indeed, the vssumption of a 1/f spectrum fot· \(f) 

for a santple of 106 atoms yields. 

a value tl:at is consistent with the obs2rved spectrum. 

It was sotnc>times necessary to use the digital lockin technique to 

eliminute drifts in the 3n.1loJ rnuHiplier zero offset. The i:!ltlplifier 

output \'tas gruted on anci Gff tr, pn>vide a multiplier output consistirliJ 
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of equal periods of offset and offset plus squared signal. These periods 

were digitized and the offset subtracted within the computer before 

analyzing the spectrum 

Our results strongly suggest that 1/f noise in semiconductors and 

discontinuous metal films arises from equilibrium resistance 

fluctuations. Current-biased measure~ents probe·these resistance 

fluctuations, but in no way generate them. This idea is consistent 

with several current theories of 1/f noise that propose various 

mechanisms for the resistance fluctuations, for exaniple: th~ 

9 McWhorter theOI~y for semiconductors, carrier mobility fluctuations 

in semiconductions and ionic solutions, 7' 8 and the temperature 

fluctuation model. Our results are obviously inconsistent \'lith 

theories that involve non-equilibrium processes. For exampl~: 

turbulence theories, 31 theories that require a long term ste~dy 

t 33 d tt . . 1 . th 1 f db k . tt curren or pov:er, an teones 1nvo v·1ng erma ee ac: Vlii ie 

heat generated by an external current. 
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11 The thing to do is to supply light and not heat. 11 

Wood row ~~i 1 son , 
Speech in Pittsburg l/29/1916 

IX. NUMBER FLUCTUATION SPECTRA FROM LlGHT SCATTERING 

The calculated spectra of Sections III and V apply to any quantity 

governed by a diffusion equation. The disagreement, however, between 
' -2 the measured Sy(f)/V for metal films and the expected ST(f) for 

uncorrelated temperature fluctuations (Fig. 5(a)) suggests that we 

examine a different diffusive system. Perhaps th~ simplest and most 

extensively studied diffusive system is that of independent particles 

undergoing Brownian motion. The intensity of light scattered from a 

solution of these particles is sensitive to the number of particles 

in the illuminated region. To our knowledge, however, light scattering 

(or any other technique) has not been previously used to verify the 

theoretical spectrum (Fig. 5(a)) by a ~irect spectral measurement. 

Although light scattering is a common technique, number fluctuations 

are generally dominated b¥ interference effects. 

The intensity fluctuations of monochromatic coherent light 

scattered by a suspension of in~ependent particles undergoing Brownian 

motion have been used to measure the diffusion constant, 0, of the 

particles. 33 Similar methods have also been used to gain information 

about the motion of motile organisms. 34 Two closely related experi

mental techniques have been developed, namely heterodyne and homodyne 

detection. .In the heterodyne experiment, first performed by 
.·. ' 35 

Cummins et al., light scattered by the particles is mixed with light 

of constant phase from the same source, which acts as a local oscillator. 
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Interfe~ence between the constant phase component and the light scattered 

by each independent particle gives rise to intensity fluctuations. 

The heterodyne spectrum is, therefore, proportional to <N>, the average 

number of illuminated particles. In the homodyne experiment, first 

performed by Ford and Benedek, 36 only light scattered from the particles 

is detected. The intensity fluctuations arise from interference between 

the light scattered by pairs of particles: as one particle moves 

relative to another, the phase difference of their electric fields at 

the detector varies. The fluctuation spectrum is thus proportional to 
2 the number of pairs of illuminated particles, <N> . Both of these 

interference effects depend on the coherent nature of the incident light. 

The heterodyne and homodyne experiments may be considered as an elastic 
I 

scattering of light from wavevector Js to 1 by nK' a density fluctuation 
I vvV 

of wavevector K = k - k. 
WI v.'l/ WI 

The autocorrelation function for the intensity 

then depends on the average manner in which nK decays in time. For 
w -DK2t independent particles .undergoing Brownian motion <nK(t)> = <nK(O)> e 

"""'' .. " ... 
The fluctuations thus are correlated over a time Tc ~ l/DK2. By 

measuring Tc or the shape of the spectrum, s1(f) ~ Tc/[1 + (2nTcf) 2], 

one is able to determine D. 

More recently, Schaefer and Berne37 studied suspensions of 

polystyrene spheres in water when the average number of particles, <N>, 

in the illuminated volume, n., was very small. In this limit, the 
. 1 

relative fluctuations in the number of particles become significant, 

and introduce additional intensity fluctuations inthe scattered 

light. These additional fluctuations are not an interference effect 

but arise because the intensity of the scattered light is sensitive 
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to the number of particles inn .• Number fluctu~tioris have also been - 1 

observed by the fluorescence of individual particles. 38 The correlation 

time for the ·number fluctuations is of order .t
2
/D, where is the 

smallest dimension of ni' and is usually much greater than l/DK2. 

Schaefer and Berne showed. that the number fluctuations may be observed 

as a slowly varying excess background in the homodyne autocorrelation 

function. They were able to subtract out the contribution of the 

number fluctuations, and thus recover the usual homodyne autocorrelation 

function. The number fluctuations had a detectable ~ffe~t for 

<N> ~ 102. 

We describe here a _series of homodyne experiments in which laser 

light was scattered by a suspension of polystyrene spheres in water. 

The spectra of the intensity fluctuations of the scattered light were 

~easured from 5xlo-4 Hz to 5xlo3 Hz. The spectra show clearly bdth the 

homodyne Lorentzian and the f- 312 be.havior of SN(f). Provided <N> 

is not too sn1all, the two spectra can easily be separated. Spectra 
1 

were also obtained with a white 1 i ght source; in this case, the 

interference Lorentzian was absent, and only SN(f) was observed. The 

observed spectra are in excellent quantitative agr~ement ~ith the 

theoretical predictions. 

Light ofwavevectot! illuminates a small subvolume, n1 , of a 

cell of total volume n containing a suspension of M particles. Each· 

of the illuminated particles scatters the light elastically with a 
' ... 

phase that varies· in time due .to the particle motion. We wish to 

calculate the .intensity fluctuation spel=trum for light scattered 
I 

with wavev~ctor 1 into the detecto~. We assume ihitially that the 
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light is coherent over the area of the detector and that the electric 

field is of the form 

-Jw t M -iw t iK•r. 
E(t) = E e 0 + S '"'B(r.) e 0 . e '"''WJ 

..w mO wJ ~ ""'J 
j=l . 

(9 .1) 

E ,s the constant phase heterodyne component, and K = k - k is the V<NQ VN ·.w -.·1'/ 

scattering wavevector. B(r.) = 1 if r. is inn., while B(r.) = 0 
'M'J •<vJ l •WJ 

* otherwise. The intensity of the light, I(t) = E(t)·E (t), is given by 
\.0\r\-' \~ ... 

I (t) 2 2 i K • ( r . - ~r..k) 
= E + 2B·E r B(r.) cosK•r. + B r B(~.) B(rk) eM ~J r 

0 VII "''• 0 j w J >W w.t J j k "'- J "' 
(9.2) 

The positive frequency spectrum of the intensity fluctuations is given 

by the cosinetransform of the autocorrelation function (Eq. 3.4b), 
00 

S1(f) = 4 f < 1(0) l(T) > cos(2nfT) dT (9.3) -

0 

We assume that the motion of each of the particles is independent, that 

n is large enough that we may neglect any effects due to its boundaries, 

and that Ill> 1-l where 1 is the smallest dimensions of ni. This 

last assumption is equivalent to setting B(K) = 0, where B(q) is the 
'i'/'llt. VIA 

spatial Fourier transform of B(r). In other words, 
wtl 

B ( q ) = ( 2n f 1 1 2 J B ( r) e i 9. ·.r d 3 r = o 
~~ ~ . n . 

for I q I ;;:. 1-1 

'"' 

<I(O) I{T)> {nvolves the average of the product of two terms similar to 

Eq. (9.2), one at t = 0 and one at t = T. Because of our assumption 

that B(K) = 0, cross' terms of the form <B(r) cosK•r> vanish. Since 
~ . ~ ~-

each particle is independent, terms containing more than one index 

factor into the product of avera~es for each index. Thus, for example, 
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· iK•(r.-r ) iK•r. -iK·r 
<B(r,j) B(f.k) 'e .YN ""'J ""k > = <B(Cj) e '" ""J > <B(.rk) e "' ""k > = 0 for 

j; k, and <B> = rl/rl for j = k. <I(O) I(T)> .thus simplifies to 

jkQ.m 

where <N > = Mn/rl. The indices j and k refer to t = 0, while 9. and m 

refer tot= T. The third term in Eq. (9.4) is zero for j ; L 
I 

There are M terms for which j = Q. so that the third term becomes 

2 
4(~·~0 ) M <B[~(O)] B[?:,(T·)J ~os~·~(O) cos~·v.V(T)> 

= 2(B•E )2 M[F+(~,T) .+ F (K,T)] 
w~ v.vO ~ - wl 

where 

I 

(9 .4) : 

F±(~,T) = k f d3r f d3 r
1

B(~) B(~:) ei~·(r±r:,) P(J;,OI_!;
1

,T) (9.5) 

n n 

P(r,O r
1 

,T) d3r
1 

is the probability that a particle at .rat t = 0 
"' wl ·~ 

3 I I 

will be in d r about r at t ~ T. The last term in Eq. (9.4) reduces 
""" 

in a similar manner. In one index is different from the other three 

the average will be z~ro. There are thus only four possibilities 

for nonzero averages: the M terms where j = k = Q. = m for which the 

last term reduces to 

a4M (B[r(O)] B[(r(T)].Y = B4MF (O,T) 
~ ~ -

the M2 - M terms \'/here J = k and Q. = m, but j ; Q. for which 
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2 . 
the M - M terms where j = R. and k = m but j 'f k for which 

and the M2 - M terms where j = m and k = R., but' j 'f k for which 

Thus, for M ~· 1 

( 9. 6) 

It remains to evaluate F+(~,T). In the usual diffusion approximation27 
- . 

I ( I ) 2 . 
P(r,Oir ,T) = (4nDT)-3/ 2 e- fv "':.!' /4DT 

vw Yot/ 
(9. 7) 

I 

By introducing the relative coordinate~~ = J - r in Eq . ( 9. 5) , we 
VI{ . 

have (9.8) 

F±(,K,T) =0.-l{4rrDT)-312f d3rf d\B(t:,) B(!: +~) e±i,~·.~ ei(~±,~}·,r e-S
2
/ 4DT 

Q S1 

In terms of the spatial transform, B(q), 
wv 

(9.9) 

Since B(q) ~· 0, for Jql ~ K, we have 
WI <:::: 

F (K 1') = 0 + v-N' . . 
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and 

<I(O) I(T)> then takes the form 

<I(O) I(T)> 

where <8N(O) 8N(T)> = MF (O,T) is the autocorrelation function for 

number fluctuations inn. due to diffusion of the particles. 
1 

F_(O,.T) is the probability that a particle in ni at t = 0 will also 

be in ni at t = T. 1- F (O,T) is the probability after-effect 

factor of Chandrasekha r. 27 

.Substitution of Eq. (9.10) in Eq. (9.3) gives the frequency 

spectrum. Apart from zero-frequency components, we find 

where 

is the spectrum for n~mber f1uctuatinns which has the same shape as 

ST(f) for uncorrelated temperature fluctuati~ns (Eq~ (3.19)). The 

first term in Eq. (9 .11), the heterodyne Lorentzi an, and the second 

term, the homodyne Lorentzian, depend on the coherent nature of the 

light'in producing irterference fluctuations. SN(f), on the other 

hand, which is_independent of K, .does not depend on'coherence, but 

(9.10) 

(9.11) 

(9.12) 
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rather on the shape of ni. The general b~havior of SN(f) is the 

same as ST(f) shown in Fig. 5(a} for uncorrelated temperature 

fluctuations. Renormalizing Eq. (3.23) for number fluctuations, 

we find the high frequency limit of SN(f): 

(9.13) 

Although we initially assumed that the scattered light was coherent 

over the area of the detector, Adet' this assumption is usually not 

valid experimentally. In most cases, the coherence area-at the 

detector, Acoh' is less than Adet· Acoh depends on the experimental 

configuration. Cummins and Swinney1 show that Acoh R:: t...

2R2/A' where It 

is the wavelength of the light, R is the distance from ni to the 

detector, and A' is the apparent area of ni as seen by the detector. 

For the interference effects each Acoh fluctuates independently and 

the spectrum is proportional to AdetAcoh· As shown in Eq. (9.12), 

however, the number fluctuations do not depend on K and the spectrum 

is, therefore, proportional to A~et· 
Interference and number fluctuations are best observed tbgether 

in a homodyne experiment, for which E
0

-+ 0. In this case, from 

Eqs. (9.11) and (9.12), the relative spectrum for a finite area 

detector 

(9.14) 
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- 2 where I = <N>~ Adet is the average intensity. The position of the 

half-width of the Lorentzian, f 112 = DK2/n, allows one to determine 

the diffusion constant, D. The. lo~ frequency limit of the Lorentzian, 
2 

2Acoh/AdetDK = 2Acoh/nf112Adet' then allows one to determine Acoh 

if Adet is known. The Lorentzian is expected to be on top of a 

11background 11 spectrum due to number fluctuations. For small enough 
I 

n. or low enough densities, n = M/n, the number fluctuations may 
. 1 0 

' 

dominate the Lorentzian. The high frequency limit of the relative 

number fluctuations from Eq. (9.13) 

allows one to determine n
0 

if D and ni are known. 

In our experiment, light from a helium-neon laser (~ = 0 

6328A) 

with a beam diameter of 1.7 mm passed through a small aperture of 

diameter 0.45 ·mm, and was focused by a microscope objective lens 

(9.15) 

onto a thin closed cell containing a :suspension of polystyrene 

spheres in distilled water. Light scattered through an angle e 

passed through an aperture of area Adet at a distance R from the cell 

and was incident on a photomultiplier 3 em behind the aperture. 

Stray light was minimized to make the heter~dyne components negligible. 

The spectrum of the photomultiplier output ~as measured with the PDP-11 

as described in Section II. 

Our arrangement of passing the'laser.light through an aperture 

and focusing it onto the sample cell produced an illuminant cylindrical 

volume, ni, of length £
0 

= 1.5 mm with sharp b()undaries.and illumination 
., t 

uniform to ~ithin 10%. The diameter of the cy1inder, d, could be 
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varied by changing the beam focus. The minimum beam diameter was 

10 ± 2 urn. · Since the particles could neither enter nor leave n. 
1 

via the end~ of the cylinder, we eXpect the shape of the number 

·fluctuations spectrum~ SN(f), to be as shown in Fig. 5(a) with f 1 ~ 0, 

and f2 = f3 ~ D/nd2. In other words, we expect SN(f) ~ f- 312 for 

f ~ D/nd2 with a gradual flattening of the spectrum as f is lowered 

below D/nd2. From Eq. (9.15) for a cylindrical n. the high frequency 
1 

limit of the number fluctuation contribution is 

(9.16) 

where n
0 

= M/D is the particle concentration. Since the knee for the 

number fluctuations D/nd2, is at a much lower frequency than the knee 

for the interference Lorentzian, DK2/n, the number fluctuations will 

have an f- 312 behavior in the region in which the Lorentzian is 

usually observed. 
. -2 

Figure 13 shows s1(f)/I for a 

of radius r 
0 

= 630~ with 8 = 50°, d 

The value of n
0 

was estimated from 

facturer (Dow Chemical Company) of 

homodyne experiment on 

= 10 um, R = 4 em, and 

information supplied by 

the polystyrene spheres 

spheres 

n ~ 5x1011 
0 

the manu-

and our 

known dilution. Because of settling of the particles and evaporation 

of solvent we believe the value to be accurate only to within a factor 
. ' 2 

of 2. In F1g. 13(a) Adet = 0.009 em , and the spectrum is th~ usual 

em 

homodyne Lorentzian. From the position of the half-width, f
112 

= DK2/n, 

we may measure D. Here K = 4ttnsin} 8'/A, where n is the index of 

refraction of the solvent, A is the vacuum wavelength of the light, 

and e• is the angle through which the light is scattered in the 

.,-3 
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suspension~ Using Snell's law to correct for refraction at the water

glass-air interface, we find that e = 50° corresponds to 0' = 37.2° 

inside the cell. Using the value of f112 =85Hz from Fig. 13(a), 
. . ~8 2 

we find 0 = 4.2xlO tm /sec. This is in good agreement with the 
- -8 2 

value of 0 = 3.73xlQ em /sec calculated from the Einstein-Stokes 

relation, 0 = k8T/6nnr
0

, at room temperature. 

In Fig~ l3(b) Adet was increased by a facto~ of 77 to 0.7 cm2 and 

the low frequency limit of the Lorentzian was reduced by a factor of 

65 demonstrating the effec~ of Acoh/Adet in determining the absolute 

magnitude of the homodyne spectrum. From the low frequency limit, 
. . . 2 -6 . -1 

we f1nd 2Acoh/AdetDK = 2Acoh/Adetnf112 = 1 .7xlO Hz , and estimate 
. '-4 2 

Acoh = 1.6x10 em at the aperture. T~is compares with a value of 

A, h =; 4.0xl0-4 cm2 calculated from the empirical formula, co 
A h = A2R2;A·~ where A' is the apparent area of Q. as seen from co 1 

the aperture. A is taken as the waveiength in the solvent, and 

correction was ~ade to A' for the water-glass-air interface. The 

number fluctuation contributirin is unaffected by the ch~nge in Adet 

and, therefore, becomes more apparent at the low frequency end of 

the spectrum in Fig. 13{b). 

for 

d = 

Figure 14 shows the effect of changing particle concentration 

a given exper~n~ntal configuration with r = 630~, e = 50°, 
0 

- 2 10 ~m, and Adet - 0.7 em R was reduced _to 3 em in order to 

make the number fluctuations more apparent by decreasing Acoh and 

further ~uppre~sing the Lorentzian below that in Fig. 13(b). For 

a given valu~ of Qi' we see from Eq. (9.14) that the rel~tive inter

ference fluctuations ~re independent of n while the number fluctuations 
. 0 
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are proportional to n~1 In Fig. 14(b) n
0 

is estimated to be 5xlo11 cm-3. 

At the lower frequencies, the number fluctuation spectrum varying as 
-3/2 . f becomes apparent. In Fig. 14(a) the suspension was diluted by 

a factor of 500 to give an estimated n
0 

of 109 cm-3. The number 

fluctuations are observed to increase by a factor of about 750 to 

dominate the Lorentzian. A shoulder due to the Lorentzian is, however, 

still visible above 1 Hz. As in Fig. 5(a), as the frequency is 

lowered, there is an evventual flattening of the spectrum. The 

frequency below which this is expected, D/nd2 
= 1 .3xlo-2 Hz, is in 

excellent agreement with experiment. As noted abo~ej if D is known 

{say from the Lorentzian half-width) the absolute magnitude of the 

high frequency behavior of the number fluctuations can be used to 

measure n
0

• Using our measured value of D = 4.2xl0-8 cm2/sec and 

Eq. (19), we find that for Fig. 14(a) SI(.f)/12 = l.Oxlo-3 Hz-l at 
. 8 -3 ~ 

1 . 0 Hz, and thus nm = 6. 6xl 0 em ,. where nm is the measured con-

centration from SI(f). In Fig. 14(b) s
1
(f)!I2 = 1.3xlo-6 Hz-l at 

l.a Hz, and we find nm ~ 4.7xlo11 cm-3. Both of these valu~s are 

within the limits of our estimated n
0

. The flattening of the spectra 

in Fig. 14(a) and (b) above 1 kHz is due to shot noise in the photo

mUltiplier. Using our values of nm' we find that in Fig. 14(a) 

<N> = 77,. while in Fig. 14(b) <N> = 5.5xlo4 . 
. , i 

For comparison, Fig. 14(c) shows the relative intensity spectrum 
.\ 

for the laser used, measured by replacing the sample cell by ground 
( 

glass. The laser was not stabilized and the fluctuations were due 
-2 primarily to a drift in the output intensity, which gives a f spectrum 

with our measurement technique. The laser intensity fluctuations were 
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orders of magnitude below the number and interference fluctuations. 

With an intensity stabilized laser it should be possible to see 

number fluctuations with <N> muc~ greater than 105. 
0 

Figure 15 shows the effect of changing ~i' with r
0 

= 630A, 

8-= 50°, Ad 't = 0.7 cm2, R = 3 em,' and n estimated to be 109 cm-3. . e · . o 
Figure 15(a) reproduces Fig. 14(a) with d = 10 ~m. In Fig. 15(b) the 

beam was defocused to give a larger~-. In addition to decreasing 
1 

the relative number fluctuations and moving the knee to a lower 

frequency, the increase in ~i reduces Acoh and suppresses the 

Lorentzian. ·In Fig. 15{b) the spectrum is close to f-312 over five 

decades while no definite knee or Lorentzian is apparent. Again, 

the high frequency flattening is due to photomultiplier ~hot noise. 

Although we could not make a direct measurement, the value of d 

in Fig. 15(b) can be determined from Eq. (9.16) and the ratio of the 

f-312 regions in Fig. 15(a) a·nd Fig. 15(b). We find d = 120 ~m 

and predict-that the k~e~ should occ~r at D/nd2 ; 9xlo-5 Hz, which is 

below the lowest frequency measured. In Fig. 15(b) <N> = 1.1x104 . 

Figure 16 shows·~ similar set of experiments on larger spheres, 

with r
0 

= 6500A, e = 30°, Adet = 0.7 cm2, and R = 6 em. In Fig. 16(c) 
8 -3 we estimate n

0 
= 5xlO em . A large ~i was used and only the 

interference Lorentzian was observed. As with Fig. 13(a) we use the 

'half-width 6f the Lorentzian, f 112 =2Hz, to determine 
' -9 ' 2 9 2 

D = 2.5xlO . _em /sec. This compares with a value of D = 3.62xlO- em /sec 

from the Einstein-Stokes teiation. In Fig. 16(b) d was reduced to 10 ~m 

and the number fluctuation spectrum becall)e visible at the low frequency 

( ) ' (' )' -2 -1 . end of the Lorentzian. From Eq. 9.16 and s1 f/I = 0.10 Hz at 
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10-2 Hz we find n =.1.5x1o9 cm-3 In Fig. 16(a) the suspension was m 

diluted by a factnr of 50 to give an estimat~d n
0 

= 107 cm-3 , and 

the number f1uctuations increased relative to the Lorentzian. Using 
2 -"l 2 -7 -3 s1(f)/I = 3.2 Hz at 10- Hz and Eq. (9.16) we find nm = 4.7x10 em 

In Fig. 16(a) and Fig. 16(b) a knee is expected at a frequency of 

D/nd2 = 8xlo-4 Hz. Although the lowest few points of Fi9. 16(a) show 

some decrease which may be the sturt of the knee, the lm'lest points 

are unreli~ble due to a noticeable settling of the larger spheres 

over the time- span of the cxperinient. 

In the forward direction the approximation IKI ~ 1/t breaks down. 
wv 

As thE main beam is detected by the photomultiplier the heterodyne 
' 

· f1uctuat~ons dominate the spectrum. Figure 17(a) shm\'s the :;~eetrum fror.~ 

an ftXperiment in the forward direction in which the main beam is 

detected, with r
0 

= 630~, e = 0°, Adet = o: 7 cm2 , R = "10 em and n
0 

estimated to be 5xl011 cm-3 • If or.e assumes that K is exactly zero 
WI 

in the fon~ard direction, there is no first order phase change when a 

par-:.icle moves, and we see from Eq. (9.12) that the interference terr.1s 

have n~ finite frequency contribution. One would then expect to 

observe only nuiTiber fluctuations 2nd a spectrum like Fig. 14(a). Although 

the spectrum of Fig. ·17(a), has a knee at 10-2 Hz, it is much shurper 

than the knee in Fig. 14{a), and the behavior between 10-2 Hz and 10Hz 

is steeper than f- 312 . We conclude that the fluetuatiops are 
t' 

heterodyne interference with a distrib:;tion of small K values. .,., 
the positirin of the knee at 10-2 Hz we estimate that IKI < 103 

.... v 

due to 

From 
-1 em 

ro,Jgh estiltiJte of the r~nge of e•s ·included ·due to' the finite Adet 
3 -1 gives IK! < 4xlO ern 

'f.'l . 
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The number fluctuations are .not an interference effect. It 

should, therefore, be possible to observe the number flUctuation 

spectrum with white or incoherent light. ~igures 17(b), 17(c) and 

17(d) sho~ the spectra obtained from several experiments in which 

the light source was a de powered incandescent bulb; In Fig. 17(b), 

r
0 

= 6500A, e = 45°, Adet = 0.7 cm2, n
0 

is estimated to be 5xlo8 cm-3 

and R:::::: 1 em. D·. was determined by a slit 130 itmxlO ]Jm immediately 1 . 

in front of the sample cell rather than by a focused beam. Although 

the photomultiplier shot noise is more ~pparent, there is no interferente 

Lorentzian and the f- 312 number fluctuation spectrum is quite clear. 

~Using Eq. (9.15) ~nd o~r measur~d D = 2.5xlo-9 cm2/sec, we determine 

n = 2.3xlo9 cm-3 from the magnit~de of th~ f- 312 region. In Fig. 17(c), 
m 

ro = 630A, e = 50°, Adet = 0.7 cm2, no:::::: 2xlo11 c~-3 • and R.= 6 em. 

The microscope objective lens was used to focus an image of the 

bulk filament in the cell, and so produce ann. of irreg~lar shape 
1 

for which no numerical calculations could be made; However, as 
. ' 

expected, the spectrum is still proportional to f- 312 since the 

dimensions of ni were greater than (D/f) 112 . In Fig. 17(d), r
0 

= 63?A, 

e = 0°, Ad t ~ 0.7 cm2, n :::::: 2xlo11 ~m- 3 , and R ~ 1 em. n. was again e o · 1 

determined by a slit of dimensions 2 mmx2Q ]Jm immediately in front 

of the cell. Although the f"' 312 behavior is apparent its magnitude 

cannot in general be used to determine nm from Eq, (9.15) as it was 

in Fig. 17(b). 
2 . 

Since we are observing the main beam; I ! <N>B Adet· 

It is, however, sufficient to adopt a simple model in which 

I = I0e~Na/A, where I is the transmitted intensity, I
0 

is the incident 

\. 
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intensity, N is the number of particles in the beam, a is the cross 

section for scattering out of the beam, and A is the beam area. In 
·.· .. -2 2 

this case s1(f)/I = [ln(I
0
/I)] . Here, I

0
/I ~ 2, and we find 

n = 1.2x1o11 cm-3. In Fig. 17(d), <N> = 8xl06. The increased 
m 

intensity stability of the bulb over the laser and the absence of 

interference fluctuations allow one to easily observe the number 

fluctuatio~s even when <N> > 106. 

We have shown that for monochromatic light scattered by a suspension 

of independent particles the intensity fluctuation spectrum contains 

SN(f) in addition to the usual homodyne and heterodyne Lorentzian. 

All three terms arise in a unified manner from P(r,Oir•,T). By 
"" '" 

measuring the homodyne fluctuation spectrum for light scattered from 

a suspension of polystyrene spheres down to frequencies as low as 

Sxl0-4 Hz,·we have been able to verify the calculated SN{f) for 

independent particles undergoing Brownian motion. We have experi~ 

mentally demonstrated that the effects of varying Adet' Acoh' n
0

, 

ni' and Don the relative magnitudes of the interfe~ence and number 

fluctuation spectra are in excellent agreement with theory. The 

position of the half-width of the Lorentzian allows us to determine 

D. The theor-y predkts a gradual flattening of SN(f) as f is lowered 
. 2 .. 

below D/wd . The knee is observed experimentally at the predicted 

frequency. Knowing D and ni we are also able to determine nm from 

the f- 312 limit of SN(f). This value of "m is in good agreement 

with our estimate based on the manufacturer•s data. With an 

unstabilized laser SN(f) was easily discernible, and, consequently, 
4 a measurement of n

0 
was possible, even for <N> as~ high as 5.5xlO . 
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SN(f) was also apparent with an incandescent bulb as the light source. 

In this case, the interference fluctuations were absent and the 

increased stability of the b.ulb over the laser allowed a measurement 
. 6 

of nm' even when <N> = 8xlO • ·' 
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X. l/f NOISE IN MUSIC: MUSIC FROM 1/f NOISE 

Much of the .interest in 1/f noise is due to the presence of the 

' 1/f behavior as the low. frequency limit to the power spectrum of 

most measured quantities coupled with its absence from most theoretical 

calc~lations. Even the voltage fluctuations across nerve membranes39 

and long term geological or hydrological records40 exhibit the 1/f 

spectrum. For example, Fig. 18 shows the powe~ spectrum of the flood 

levels of the river Nile. The 1/f behaVior extends to frequencies 

as low as 3~lo- 11 Hz. In this section we present m~asurements on 

quantities associated with music and speech and show that these, 

too~ have the 1/f spectrum. To conclude, we describe how a "1/f 

noise .. maybe used to make 111/f music 11
• 

Many fluctuating quantities, V(t), may be characterized by a 

single correlation time, Tc. In such a case, V(t) is correlated 

with V(t + T) for ITI < -rc' and is independent of V(t + -r) for 

ltl > Tc .. For this case, Sy(f) is 11White 11 (independent of frequency) 

in the frequency range corresponding to time scales over which V(t) 

is uncorrelated (f < l/2n-rc); and is a rapidly decreasing function of 

frequency, usually l/f2, in the frequency range over which V(t) is 

correlated (f ~ l/2nTc). A quantity with a 1/f power spectrum cannot, 

therefore, be characterized bya single correlation time. In fact, 
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the 1/f power spectrum implies some correlation in V(t) over all time· 

scales corresponding to th~ frequency range for which Sv(f) is 1/f. 

In general; a negative-slope for Sv(f) implies some degree of correlation 

in V(t) over time scales of roughly l/2nf. A steep slope implies a 

, higher degree of correlation than a shallow slope. Thus, a quantity 

with a ·l;f2 power spectrum is highly correlated. 

Figure 19 show~ samples ~f white, 1/f, and l/f2 noise. Each 

fluctuating quantity \'Jas scaled to cover the same vertical range. 

The white noise has the most random appearance and shows rapid 

uncorrelated changes. The l/f2 noise is the most correlated show~ng 

only slow changes. The 1/f nois'e is intermediate, showing structure 

on all time scales. It is interesting to note that, although .simple 

computer algorithms exist for a white or.l/f2 noise source over 

·arbitrarily long time scales, no such algorithm exists to produce 

1/f noise. This inability to produce a ·generating ·algorith~ is 
. .. 

related to our incomplete theoretical understanding of 1/f noise. 

Nature, however~ has no such problem: any semico~ductor, for example, 

provides a convenient source of l/f noise. 

In our measurements on music anq speech, the fluctuating quantity 

of interest was converted to a voltage whose po\'ler spectrum was 

measured by the PDP-11 computer. The most familiar fluctuating 

quantity associated with music is the audio signal, 'V(t), such as 

... the voltage used to drive a speaker system. Figure 20(a) shows a 

linear-linear plot of'the power spectrum, Sv(~), of the audio §ignal 
·. · •. st 

from J. S. Bach's 1 Brandenburg Concerto (Angel SB-3787) averaged 

·over the entire concerto. The. spectrum consists of a series of sharp 
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peaks in the frequency range 100 Hz to 2 kHz correspondin~ to the 

individual notes in the concerto and, of course, is far from 1/f. 

Although this spectrum contains much useful infomation, our primary 

interest is in more slowly varying quantities. 

One such quantity is the loudness of the music: The audio 

signal, V{t), \vas amp1ified and passed through a bandpass filter in 

the range 100 Hz to 10 kHz. The filter output was squilred and the 

audio freqlJenr.ies filtered off to give a slowly varying signal, 

v2(t), proportional to the instantaneous loudness of the music. 
st · 

The po\ver spectnim of the 1 oudness fluctuations of the 1 Brandenburg 

Concerto, S 2 (f), averaged over the entire conce~to is shown in 
v 

-Fig. 20(b). On this linear-linear p"lot, the loudness fluctuat-ions 

appear as a peak close to zero frequency. 

Figure 21 is the log-log plot of the same spectra as in Fig. 20. 

In Fig. 21(aL the power'spectrum of the audio signul. Sv(f), is 

distributed over the audio range. In Fig. 2l(b), however, the loudness 

fluctuation spectr·urn, S 2(f), shows the 1/f behavior belm-1 1 Hz. The 
v 

peaks between 1 Hz and 10Hz at·e due. to the rhythmic sh'ucture of the music. 

Figure 2~(a).shows the power spectrum~f loudness fluctuations for 

a recording of Scott Joplin piano rags (Nonsuch H~71248) averaged 

over the en-tire recording. Although this music has a more pronounced 

1netric structure than the Brandenburg Concerto, arid, consequently, 

has r.1ore structut'£ in the spectrum between 1 Hz and 10 ,~z. the spectrum 

belo'x 1 Hz is still 1/f-like. 
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In 6rdef to meas~re S 2(f) down to even lower frequenti~s an 
v 

audio signal of greater duration than a single record'is needed, 

for example, that from a radiostation. The audio signal from an AM 

radio was f1ltered and squared. S 2 (~) was a~eraged over approximately 
v 

12 hr, and thus included ~any musical selections as ~ell as announcements 

and commercials. ·Figures 22(b) through (d) show the loudness fluctuation 

spectra for three·radio stations characterized by different motifs. 

'Figure 4(b) shows S 2(f) for a classical station. 
, v 

The spectrum exhibits 

a smooth 1/f·deperidence. Figure 22(c} shows S 2(f) for a rock station. 
. v 

The spectrum is 1/f-like above 2xlo-3 ·Hz, and flattens for lower · 

frequencies, indicating that the correlation of th'e 1 oudness fl uctu

ations ·does n·ot extend over time scales longer than a single selection, 

··roughly 100 sec. Figure 22(d) shows S 2(f) for a news and talk 
v . . 

station, and is representative of S 2(f) .for speech.·. Once again the 
. v . 

spectrum is 1/f-like .. In Fig. 22(b) 'and Fig. 22(d), S 2(f) remains 
4v . 

1/f-like down to the lowest frequency measured, SxlO- Hz, implying 

correl~tibns over time scales of at l~~st 5 mi~: fn the cas~ of 

classical music this time is less than the average length of each 

composition. 

Another slowly varying quantfty in speech and music is the 

instantane.ous pitch. A convenient ·means of measuring the pitch is 

. by the rate, Z,. of zero crossings of th~ audio signal, V(t). Thus 

an ~udio signal of low pitch will have few zero crossings per 

second and a small Z, while a high pitched ·signal will have a high 

Z. For the case of music, Z(t) roughli'follows th~ pitch content. 

Figure 23 shows the power spectra ofth~ ~aie of zero·crossing~, 
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Sz(f), for four radio stations averaged over approximately 12 hr. 

Figure 23(a) shows Sz(f) for a classical station~ The power spectrum 

is closely l/f above 4xl0-4 Hz. Figures 23(b) and (c) show SZ(f) 

for a jazz and blues station and a rock station.. Here the spectrum 

is 1/f-like down to frequencies corresponding to the average selection 

length, and is flat at lower frequencies.· Figure 2J(d), however, 

which shows Sz(f) for a news and talk station, exhibits a quite 

different spectrum. The spectrum is that of a quantity characterized 

by two correlation times: The average length of an individual speech 

sound, roughly 0.1 sec, and the average length of time for which a 

given annouhcer talks, about 100 sec. For most musical selections 

the pitch content has correlations that extend over a large range of 

time scales, and has a l/f power spectrum. For normal English speech, 

on the other hand, the pitches of the individual ~peech sounds are 

unrelated. As a result, the power spectrum is 11White 11 for frequencies 

less than about 3Hz, and falls as l/f2 for, f? 3Hz. In fact, in 

Figs. 23(a) through (c), one observes shoulders at about 3 Hz 

corresponding to speech averaged in with the music. The prominence 

of this shoulder increases a~ the vocal content of the music increases, 

or as the commercial interruptions become more frequent. 

The l/f spectrum for quantities associated with music and 

speech is, perhaps, not so surprising. We speculate that measures 

of "intelligent 11 behavior should show a 1/f-like power spectrum. 

Whereas a quantity with a white power spectrum is uncorrelated with 
2 its past, and a quantity with a l/f power spectrum depends very 

strongly on its past, a quantity with a l/f power ~pectrum has an 
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intermediate behavior, with some correlation on all time scales, yet, 

not depending too strongly .an its pa~t. Human communitation is one 

example where correlations extend over various time scales. In 

music much of the communication is directly by the pitch content 

whic~ exhibits a 1/f spectrum. In English speech, on the other hand, 

The corrununication is not directly related to the pitch of the 

individual sounds., The ideas communicated may have long time 

correlations even though the pitches of successive sounds are 

; 

unrelated. 

The observation of 1/f power spectra for the loudness and pitch 

fluctuations in music has implications for stochastic music com

position. In the past, stochastic compositions have been based on 
-

a random number generator (white noise 'source) which is uncorrelated 

in time. In the simplest case the white noise source can be used 

to determine the pitch and duration (quantized in some standard 

manner) of successive notes. Th~ resulting music is and sounds 
I 

structureless. (Figure 24 shows an example of this ;'white music" which 

we have produced using a white noise source.) Most work on stochastic 

composition has been concerned with ways of adding the time structure 

that the random number generator could not provide. Low level 

Markov processes (in which the probability of a given note depends 

on its immediate predecessors) were able to impose some locql 

structurff but lacked long time correlations. Attempts at increasing 

the number of preceeding notes on which the given note depended gave 

increasingly repetitious results rather than interesting long term 

structure. 41 By adding rejection rules for the random choices 
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(a trial note is rejected if it violates one of the rules), Hiller 

and Isaacson were also able to obtain iocal structure but no long 
. 42 

term correlations. J. C. Tenney has developed an algorithm that 

introduces long term structure by slm~ly varying the distribution of 
" 43 random numbers from which the notes were selected. Thus, although 

it has been possibly to impose some structure on a specific time 

scale, the stochastic music has been unable to match the correlations 

and structure found in music over a wide range of time scales. 

The ~atural means of adding this structure is with the use of a 

1/f noi\se source rather than by imposing constraints upon a white 

noi~e source~ The 1/f noise source itself has the same time 

correlatioris as we have measured in various types of music. To 

illustrate ~his process at an elementary level, we present short 

typical selections composed by white, 1/f, and l/f2 noise. 

In each case a physical noise source was used to produce a 

fluctuating voltage of the desired spectrum. The voltage was sampled 

and digitized by the PDP-11 computer to produce a series of random 

numbers stored in the computer whose power spectrum was the same as 

that of the noise source. The series was then scaled so that successive 

numbers determined the pitch of successive notes over a two octave 

range. A high number specified a high pitch and Vice versa. This . 

process was then repeated to produce ~n independent series of stored 

random numbers whose value cortesponded to the duration of successive 

notes. 
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The PDP-11 was then used to "perform" the stochastic composition 

by controlling a single amplitude modulated voltage controlled 

ostillator. The computer was also Osed to put the stochastic 

compositions in more conventional form. Samples of these computer 

"scores" are shown. in Figs. 24 through 26. Accidentals apply only 

tO' the notes they precede. In Fig. 24 a white noise source was 

used to determine pitch and duration. In Fig. 25 a 1/f noise source 

was used, while in Fig. 26 a l/f2 noise source was used. Although 

Figs. 24 through 26 are not intended as complete formal compositions, 

they are representative of the types of correlation that can be 

achieved when the three types of noise sources of Fig. 1 are used to 

control_ various musi ca 1 p'arameters. - In each case the noise sources 

~-Jere uGaussian" implying that values near the mean were more likely 

than extreme values. 

Our l/f music was judged by most 1 isteners to be far more 

pleasing than either the white music (which was "too random") or the 

scale-like .l!f2 music (which was "too correlated 11
). Indeed the surprising 

sophistication of the 1/f music (which was close to beirig "just 

right ic) suggests that the 1 If noise source is an exce 11 ent method 

of adding time correlations. 

There i~, however, more to music than 1/f noise. Although our 

simple algorithms were sufficient to demonstrate the superiority of 

a 1/f noise source over a white noise source in Stochasti~ composition, 

the variation of only two parameters (pitc~ and duration of the notes 

of a single vqice) can, at best, produce only a very simple form of , 

music. More structure is needed, not all of which can _be provided by 
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1/f noise sources. We improved on this elementary composition by 

using two voices that were either independent or partially correlated 

(notes having the same duration but independent pitches or vice versa). 

and by varying the overall loudness with an additional l/f noise 

source. We added more structure to the music by introducing either 

a simple, constant rhythm, or a variable rhythm determined by another 

1/f noise source. The use of l/f noise sources on various structural 

levels (from the characterizati~n of individual notes to that of 

entire movements) coupled with external constraints (for example, 

rhythm or the rejection rules of Hiller) offers promising possibilities 

for stochastic composition. 

.• 
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~~~lhat is that noise? .. 

William Shakespeare,Macbeth 

11 He whci loves noise must buy a pig ... 
Spanish Proverb 

XI. CONCLUSIONS 

We have shbwn that 1/f noise in metal and semiconductor films 

is an equil~brium process. For continuous metal. films the absence 

of 1/f noise in manganin; t·h~ scaling of SV(f) as V2/rt for different 

materials; the general decrease of Sv(f)/V2 with decreasing temperature; 

the observation of frequency~dependent spati~l correlation for the · 

1/f noise; the agreement of·ac, de and pulsed current resistance 

fluctuation spectra; and the abi.ii ty of equil i bri urn temperature 

fluctuations to accurately predict the magnitude of the 1/f rioise 

(with an assumed 1/f spectrum for ST(f)) indicate that equilibrium 

temperature fluctuations modulating the resistance are the physical 

origin of the 1/f ·noise. The same mechanism also accounts for the 

1/f noise in ~~tal filmS at the supe~conducting trans.ition and in 

Josephson junctions. 

Although temperature fluctuations are expected to obey a diffusion 

equation, the usual calculated spectra for uniform diffusive systems, 

in which the fluctuations are spatially uncorrelated, do not give a 

1/f spectrum. These theoretical spectra hav~. however, been Ve~ified 

experimentally for number fluctuations of independent particles under

~oing Brownian motion .. Attempts at more accurate models of the complex 

experimental confi~uration (i~ which the diffusive medium is coupled 

to a substrate) only flatten the spectrum further at low frequencies. 
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Moreover, we have demonstrated experimentally for the metal fil~lS 

(by a measurement for the shape of the autocorrelation function from 

the temperature response to a delta function power input) that 

uncorrelated temperature fluctuations do not produce the 1/f spectrum. 

On the other hand, we have shown both theoretically and 

experimentally (by the temperature response to a -step function of 

power) that spatially correlated temperature fluctuations can, in fact, 

account for the 1/f spectrum in the frequency r~nge i~ which it is 

observed. The physical origin of the spatially correlated temperature 

fluctuations remains an unsolved problem. Another possible difficulty 

is the proper normalization of the spectrum for correlated fluctuations. 
. 2 2 

However, the use of <(~T) > = k8T /Cy to normalize the spectrum for 

correlated fluctuations does lead to a result in excellent agreement 

with the experimental measurements. 

A different physical mechanism for the 1/f noise dominates in 

semiconductors and discontinu6us metal films: the observed noise 

is much larger than predicted by the theory, and is not spatially 

correlated. The agreement of the low frequency resistance fluctuation 

spectrum obtained from Johnson noise measurements with that obtained 

from current biased measurements shows, however, that even in these 

systems the l}f noise is due to equilibrium resistance fluctuations. 

The 1/f spectrum is not limited to physical systems. The same 

correlations on all time scales that yield the l/f spectrum for many 

physical quantities are also found in various measures of human behavior. 

The loudness·fluctuations of music and speech and the pitch fluctuations 

in music also have the 1/f behavior. Perhaps this. accounts fo~ some 

of the f~scination of the l/f noise problem. 
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FIGURE CAPTIONS 

Fig. 1. (a) Sample configuration for Bi film noise measurement. 

(b) Measured spectrum, ij = 0.9V (•); background spectrum, 

ij = O.OV (o}; and Sv(f), noi·se-backg.round ( ). 

Fig. 2. ·(a) Sample configuration for Au noise measurement. 

(b) Measured spectrum, ij = 0.81V (•); background spectrum 

V = O.OV (o); and Sv(f) corrected for amplifier and capacitor 

frequency response. 

Fig. 3. Nonlinearity of 1-V characteristic caused by heating of Au 

sample of Fig. 2. 

Fig. 4. (a) Simple system of heat capacity, C, coupled to reservoir 

at temperature T
0 

by thermal conductance, G. (b) String of 

these simple systems which approximate a 1-dimensional 

diffusive system. 

Fig. 5~ (a) ST(f) for spatially unco~related temperature fluctuations 
2 of a box 2.Q.1x2Q.2x2.Q.3. fi = w/2rr = 0/4rrii. (b) Model ST(f) 

') 

for a metal film on glass substrate. f1 = 0/rr.t'-. where z is 

the length of the film, and f2 = O/rrw2, where w is the width 

of the film. 

Fig. 6. (a) Experimental configuration for correlation measurement. 

(b) Fractional correlation for two s~mples. 

Fig. 7. ST(f) for spatially correlated temperature fluctuations of a 
·. . 2 

bo~ 2.t1x2.Q.2x2.t3. f1 = D/4rrii 

Fig. a~ Temperature response of Au sample of Fig. 2 .to delta function 

of applied power. 
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Fig. 9. Temp2rature response of Au sample of Fig. 2 to step functio:1 

of applied power. 

Fig. 10. S(t) from c6sine transform ~f temperature response to delta 

function ( · · ·) and step function (--) of applied. rovter f:-om 

Figs. 7 and 8 nornalized to f(o) = s2T2/3N; and measured noise 

spectrum S(f) = Sy(f)/V2 (o). 

Fig. 11. InSb bridge: SV(f);v
2 using de bias {--), ac bias (o), 

pulsed current bi~s (~); Johnson noise measurement, Sp(f);P
2(o). 

rl 

Background Sp(f)/P'- from metal film resistor(···). 

. -2 ( ' -2 Fig. '12. Nb bridge: Svtf)/V using ac bias (·--); SP f,/P (0). 

Sp(f)/P including kne~ frequency ( · · · ). 

Fig .. 13. Effect of c:hanging l'det en s1(f)/I2 for- 1i9ht scattered f~·om a 

suspension of po 1 ys tyrene s phe t·es with r
0 

= 630t e - 50 o , 

11 -3 2 d = 10 wm, R = 4 em and n
0 
~ 5x10 em . (a) Adet = 0.009 em ; 

(b) II 0.7 2 ..... det = em · 

Fig. 14. Effect of changing n
0 

on ~ 1 (f)!I 2 with r
0 

- 630~, e = 50°, 

Fig. 15. 

F~g. 16. 

2 ° -3 d = 10 pm, Adet = 0.~ em , and r = 3 em. (a) n
0

"" 10"' em and 

<N> == 77; (b) n ""5x1o11 cm-3 and <N> = 5.5>:104• (c) Laser 
0 

intensity fluetuat·ion speet1um. 
') 0 

Effect of changing £ii on s (f)/1'· vii th r . - G30/\, e = 50°,' 
I 0 

Ade:t 0.7 2 R = 3 n·""' 1 o9 -3 (u) d = 10 (reproduces = em em, em . \ml ' 0 ' 

Fig. 2{a)); (b) d"" 120 wrn. 

Mcasur2d s1(f)/I 2 for 
2 

: 5' 
larger spheres with r

0 
~· 6500t\, 0 = 30° 

Adet = 0.7 em , R = 6 em. 
7 -3 {a) n

0 
~ 10 cn1 • and d = 10 !Jill; 

. 8 -3 
(b) n ""'' 5x'IO em and d :: lO vm; (c) n ~ . 0 . 0 

8 -3 5xl 0 Cfll and 

d gr~a(ly enlarged~ 
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Fig. 17. (a) (Right-hand scale) Measured s1(f)!i2 for laser light 

scattered in the forward direction with r = 630~, e = 0°) . . 0 

Adet= 0.7 cm2, R = 10 em, and n
0

"" 5xlo11
• (b), (c), and (d). 

V~tt-hand scale) S1(f)/1 2,observed with a white light source. 

(b) ~0 = 6500~, e = 45°, Adet = 0.7 cm2, n
0 

"" 5xlo8 cm-3 

R"" 1 em, n. determined by a slit 130 11mx10 11m and 
1 

3 ° . 2 
<~) = 5xlO ; (c) r

0 
= 630A, 8 = 50°, Adet = 0.7 em , r = 6 em, 

. 11 -1 
and n

0 
"" 2xlO em , and ni determined by a focused image of 

the filament; ~d) r
0 

= 630~, 8 = 0°, Adet = 0.7 cm2, 

r"" 1 em, n ""2x1o11 cm-3, n. determined by a slit 
. 0 1 

20 11mx2 mm, and <N> = 8xlo6. 

Fig. 18. Power spectrum of flood levels of the river Nile. (Data from 

O~ar Toussoun, M~moires 1 'Institut Egypte 8-10, (1925)). 

Fig. 19. 
. . . . 2 

Samples of white, 1/f, and 1/f noise .. 
, · 

1
st · Fig. 20. Bach s Brandenburg Concerto (linear scales): ('a) PO\'Ier 

Fig. 21. 

Fig. 22. 

spectrum of ~udio signal, Sy(f) vs f; (b) power spectrum of 

loudness fluctuations, S 2(f) vs f. 
st V 

Bach's 1 Brandenburg Concerto (log scales): (a) Sy(f) vs f; 

(b) s 2 (f) vs f. 
v 

Loudness fluctuation spectra, S 2(f) vs f for: (a) Scott Joplin 
v 

piano rags; (b) classical radib station; (c) rock station; 

(d) news and talk station. 

Fig. 23,. Po\'ler spectra of pitch fluctuations, Sz (f) vs f, for four radio 

stations: (a) classical;· (b) jazz and blues; (c) rock; 

(d) news and talk. 
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Fig. 24. Pitch and duration determined by a \·1hi te noise source. 

Fig. 25. Pitch and duration determined by a 1/f noise source. 

Fig. 26. Pitch and duration determined by a 1/f2 noise source. 



. 
0 • 

o o o ·4 J o a 2 2 a 

N 
:r: 

' (\.1' 

v. 0 

+ o l 0~ u~ 
> -
-

l o·ts 

-85-

V(t) 

(a) 

Bi sample 
• 

lOOOA~lO~m~l20~m 

-• V=0.9 volts -
o V=O.O volts 
- noIse - back9round 

. 001 . 01 . 1 1 

Fig. I 

10 100 l 000 

f CHz > 

XBL758-S8:5S 



-N 
:r: 
' C\J 

+ 
0 
> -

:> 
(I) 

-86-

1 o·l1 

• V=O.Sl volts 

Au sample 
25DAxS~mxS2S.um 

(a) 

l 0· 18 o V = 0 . D D v o J t s 

""'"'noise - bocksround 
(corrected) 

.001 .01 .1 1 

Fig. 2 

(b) 

l D 1 DO 1 DOD 

f <Hz) 

XBL758-S8:5S 

. 
• > 



w 
(!J 

< 
i-
..J 
0 
> 

0 0 f'l £j ''It if~ 6'· ' 2"'·' .... 19·· .. v :!"~ ~.: ~.i .· 1' "" .t.::. ·. 

-87-

2.5mA/DIV 
250mV/DlV 

Fig. 3 

0. 25mA/DIV 
25mV/DIV 

CURRENT 

XBL758-88'37 



-88-

c 

T<tJ 

Fig. 4 

(a) 

XBL758-S838 



0 0 I "J 
.,!.'\ J 0 ~·~ 2 

t"f'qf 

0 :t~w<' ~- :~ » ,.) .. 
' 

-89-

fo t-, __ ,......_ 

(f) r· - ·~ '~~~ 

g' 1~1/fi··~ ... 

:: ~ 
21, 

(a) 

log fi log f2 log f:5 

log f 

MODEL SPECTRUM (b) 

~ 

log ft log f2 

log f 

XBL758·S~~9 

,·:--.-.. FJg. 5 



1.00 

0.25 

-0.25 

BISMUTH 
FILM -

0.1 

-90-

PREAMP 

+OR-

PDP-II 

(a) 

0 ..P = 2.5mm 
' e .R = 7.5 mm 

10 100 

f (Hz) 

(b) 

XBL 7312-6762 

Fig. 6 



0 

t-
(f) 

en 
0 

0 <''I 
,, 

"::>' 0 .8 ') ~it I v ~j .;> ¢;,., ~ 

-91-

~-. . 

f ·~ 

,• 

I og f 1 I og f 2 · I og f 3 

log f 

XBL758-S81:5 

Fig. 7 



2.0 

1.0 

0.0 1-

IJ1 
+-
c 
.:J 

~ 
.L 
0 
.L 
+-
..0 2.0 
.L 
0 

1.0 

+- 0.0 
H-

2.0 

1.0 

0.0 

-92-

0 . 01 .02 .0:5 .01 .OS 
+ C sec) 

I L 1_ l 1_ 

0 1. 0 2.0 :5.0 1.0 5.0 
+ (sec) 

0 100 200 ~00 100 500 
+ ·<sec) 

Fig. 8 



-93-

2.0 ~ 
-------1.0 

·. 0.0 

2.0 

1.0 

0.0 

0 100 200 ~00 100 500 
t C sec} 

XBL7S8-S811 

Fig. 9 



(f) - 1 4 
0 ..... 

m 
0 
- -16 

- 18 

-94-

• •• • 
• 

a measured noise 

- step response 

••• de Ita function response 

-3 -2 -1 

XBL758-S812 

Fig. 10 
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---------LEGAL NOTICE---------__, 

This report was prepared as an account of work sponsored by the 
United States Government. Neither the United States nor the United 
States Energy Research and Development Administration, nor any of 
their employees, nor any of their contractors, subcontractors, or 
their employees, makes any warranty, express or implied, or assumes 
any legal liability or responsibility for the accuracy, completeness 
or usefulness of any information, apparatus, product or process 
disclosed, or represents that its use would not infringe privately 
owned rights. 
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