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ABSTRACT 

, 

Radiative decays of n and . n 1 allow us to dis-

tinguish between fractional and integral charge quark models. 

Accurate measurements of n 1 + yy and + -11 1 + 1T 1T.y are 

essential to test the analysis and the preliminary conclusion, 

which favors the,assignment of fractional charges. 

Since the original formulation of the quark model, several 

compelling-considerations have motivated the introduction of a "color" 

SU(J) degree of freedom, with nine quarks instead of three. This has 

been accomplished in two classes of mode1s, distinguished by whether 
1 . 2 

the quarks are assigned fractional or integral charges. 

Theoretical fashions may at a given moment prefer one model or the 

other, but on the basis of direct experimental evidence it is very 

difficult to decide between the two possibilities. As long as non-

singlet color degrees of freedom are,not excited, the spectroscopic 

and deep inelastic predictions of the two mode~s are indistinguishable. 

Since it is conjectured that color may never be excited3 or that the 

threshold is at ultra-high energies, 4 it is not clear when--or even 

if--the issue can be resolved experimentally. 
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fthi i ""' h • 5 The purpose o s note s to empl=s~ze t e ~que :vole 

of the 11(549) and 11 1(958) mesons in providing experimental evidence 

6 of the quark charges. We find that the measured rates 

r(11 + yy) and r(11 + 1T+1T-y} and the ratio 

r(11 1 + 1T+1T-Y)/f(11 1 + yy) are most consistent with the assignment of 

fractional charges. The rates r(11 1 + yy) and r(11 1 + 1T+1T-y) are 

not yet known. Careful measurement of tbese rates is crucial for .~ 

assessing the reliability of the analysis presented here and for 

choosing between the two quark models. 

are determined by ·the low energy theorems of chiral 
.~ 
7 symmetry which are exact to any finite order in perturbation theory. 

A 
0 The analagous theorem for 1T + yy provides a principal 

c 
motivation for the introduction of a color SU(J). Both color models 

predict the same ·rate for ,..o + yy, but because of the SU( 3) single~·' 
(,.$ 

component of 11( 549), the prediction for n + yy is different in the 

( ~ two models for the SU(3) singlet component the predictions of the two 

models differ by a factor of two in the amplitude) • We will see tS?~t 

the measured rates for n + yy and require a small 

negative mixing angle e, in agreement with the mass mixing formula 

which gives e = -11°. Even though the angle is small, the rates for 

+ -11 + yy and n + 1T 1T y are quite sensitive to the singlet component 

of the n. However, the analysis of the 11 decays which follows is 

not very sensitive to the precise value of e. In particular, ~ 

any value of e, the integral charge model predictions disagree with 

the measured rates. 
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The largest source of uncertainty is the application of the 

PCAC smoothness hypothesis, There do exist successful low energy 

applications of vector dominance, which require extrapolations over 
. 8 

comparable ranges of mass. Here this problem can only be approached 

empirically: the n and n' poles may or may not dominate the 

continuum in these applications. The PCAC mass extrapolations, the 

validity of PCAC for the SU(J) singlet current, 9 and the assumed 

n-n' mixing are best tested in this context by-testing the predictions 

of the models against the experimental values of the four decay rates 

being considered. 

The amplitudes for the n decays are 

(1) 

(2) 

where ~ and k are photon polarizations and momenta and p± are 

1T± momenta. Taking In) = cos e tn8) - sin e I n1 ), the low energy 

theorems 10 are 

(3) 

h (0,0, ... ) n . (4) 

where F1T = 95 MeV is the PCAC constant for the pion, F8 and F1 

are the analagous constants for n8 and n1, and ~ = 1( 2) for 

quarks of fractional (integral) charge. We use SU(3) symmetry to 

relate F8 = F1T; the experimental validity of the SU(3) relation 
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F = F suggests that this is a reliable application of SU(J). 
1T k 

Previous authcrs6 used Eq. (3) with the assumption that 

Fg = F
1

; in dynamical terms, this amounts.to assuming that the singlet 

and oct·et qq wave functions have equal valuefl at the origin. Since 

n and n' are far from being ideally mixed, the binding energies in 

the singlet and octet are very different, casting some doubt on the . -~ 

assumption F
8 

= F
1

. Of course, it is.conceivable.that F8/F1 · is less 

sensitive to singlet-octet differences than the binding energy: it 

would be interesting to study this question in dynamical models. 

Here we sidestep our ignorance of F8/F1 and (to soma extent) 

of e by using r(n + yy)/f(n + 1T+1T-y) = 7.60 ± 0.25,11 which is the 

most reliable of all 
F8 

determine r. tan e. 

the experimental quantities we consider, to 
12 FB . 

The result is r. tan e = -0.12 ± 0.016 
F 1 

and i: tan e = -0.05 ± 0. 007 for integral 
1 . 

1 
for fractional charges 

charges. Notice that these results agree qualitatively with the 

usual quark model n-n' mixing hypothesis, .i.e., for 

F8/F1 - 0(1) > 0, e must be small and negative. 

The remaining dependence on cos e in Eqs.(3) and (4) is 

moderate provided that e is small. For instance, for 6 = -11° 

we have for the fractional (integral) charge model 

r(n + yy) = 283 ± 21 eV (258 ± 16 eV) and r(n + 1T+1T-y) = 38 ± 1 eV 

(32 ± 0.6 eV). The fractional charge model is in better agreement 

with the experimental values13 f(n + yy) = 324 ± 46 eV and 

f(n + 1T+TI-y) = 43 ± 6 eV. For any value of 6 we have 

the upper bounds f(n + yy) < 294 ± 22 eV (268 ± 17 eV) and 

f(n + 1T+1T-y) < 39.3 ± 1.3 eV (32.9 ± 0.6 eV) for fractional (integral) 

quark charges. For integral quark charges the upper bound for 

+ - . n + TI TI y 1s -1! standard deviations below the experimental value. 

.-
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If the n were a pure octet state, e = 0, then we would have 

. predicted, for both f-ractional and integral quark charges, that 

r(n ~ yy) = 164 eV and r(n ~ n+n-y) = 28.7 eV~ Thus we see that 

singlet-octet mixing has a major effect on these decays even if e is 

small. 

As we acquire additional experimental and theoretical under-

standing of the parameters e and F8/F1 , it will be possible to use 

the n decay rates to distinguish more sharply between the two quark 

models. For instance, if e = -11° were established, then it would 
F8 

follow from the above analysis that ~ = 0.62 ± 0.08 (0.26 ± 0.03) 
1 

for the fractional (integral) charge model. A value like 

F 
~ = 0.26 ± 0.03 differs so drastically from the naive expectation 

1 
F . 
~ = 1 that it might imply. dramatic differences in the singlet and 

1 
.. octet wave functions. D,r.namical bound state models (e.g., bags) could 

provide insight into the plausibility of such a value. If, for 

instance, it were established that F = F and 8 = -11°, then we 8 1 

would have f(n ~ TI+TI-Y) = 45 eV for both models but 

r(n ~ yy) = 379 eV and = 696 eV for fractional and integral charges 

respectively: It is very suggestive that the naive assumptions, 

F
1 

= F8 and e = -11°, provide such a good description of the data if 

we assign the quarks fractional charges. 

n 

Most of the assumptions underlying the preceding analysis of 

decays are best tested by comparing the·analagous results for the 

nl decays with experimental data. The nl decays are also of great 

interest because they are more sensitive to the quark charges,'since 

nl is taken to be primarily an SU(3) singlet. A detailed discussion 
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will be presented elsewhere; here we indicate the difficulties and 

state some of the results. 

Only experimental upper bounds are established for r(-n 1 ~ yy) 

and r( n 1 -~ n + n-y) •11 The branching ratio for n 1 ~ yy is consistently 

determined by different experiments but there is considerable disagree-

+ -ment about the branching ratio for n1 ~ n TI y. Taking the range 

of values reported14 for nl ~ + .-
TI TI y we find that 

f( n 1 ~ ~ + TI-Y )/f( n 1 ~ YY) VarieS betWeen 9,1 ± 2, 2 and 17 ± 3, 

Given these experimental uncertainties, it is best to use the.,,, 
F 

values of ~ tan e determined above. from the reliably measured ra~ 
+ 1 

r(n ~ n n-x)/r(n ~ yy). Then the remaining dependence of r(,n I -+'. YYJ}. 
~'-

and f( n 1 
. ~ TI + TI-y) on 8 includes (for 8 ~ 0) a strongly varying J;\ -

factor. sin-2 e. But in the ratio r(n 1 ~ TI+TI-y)/f(n 1 ~ yy) this 
C· 

factor cancels and for -e .5 17° · the remaining dependence. on e is 

far less severe. For 0 < -8 ~ 17° we have 

for fractional charges and 

1 8 > r(nl ~ TI+TI-y) > 0 for integral charges. At e = -11° the 
• t( n_1 ~ yy) "' 

ratio is 5.4 ±. o;2 for fractional charges and 0.5 ± 0.1 for integral 

charges. So for this range of e the prediction of the fractional 

charge model is much nearer to the range of the data. Better fits to 

f(n 1 ~ TI+TI-y)/f(n 1 ~ yy) can be obtained for large values of 8, but 

then the predictions for the more reliably measured n decay rates 

fail by two standard deviations or more. 



-;_.1: 

CONCLUSION 

For the integral charge quark model there is no good fit to 

the available data, regardless of the values of 8 and F8/F1 . For 

fractional quark charges the available data is fitted with the 

intuitively plausible choices of F8 IF 1 ;,; 0( 1) and 8 small and 

negative. For instance, in the fractional charge model taking 

F8 
rtan 

1 
we find 

e = -0.12 ± 0.016 to fit the ratio r(n + 1/1r-y)!r(n + yy), 
F8 -

that the choice e = -6° implies that r = 1.14 ± 0.15. 
1 

For the measured quantities we then compute r(n + yy) = 291 ± 22 eV, 

The predictions for the n decays are in excellent agreement with 

experiment and the prediction for the ratio of n' decays is one 

standard deviation below the lower range of the available data. 

Accurate data for the rati.o of the n' decays and for their absolute 

rates will allow us to test the validity of. this analysis and to 

decide whether the quark model with fractional charges can consistently 
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