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ABSTRAcT 

The quantum nonperturbative analysis of Kroll and 

Watson for a 2-level system of near-adiabatic atom-atom 

scattering in an intense laser field mode is extended to 

treat a general multilevel system interacting with intense 

single or many field modes. A procedure for ·:solving 

rigorously the adiabatic eigenvalue problem for the whole 

charge-field system is given. A new transition probability 

formula is derived. Cross sections are ealcule.ted for the 

processes Li + H(r[+) + vfiw-+ Li + H(A1 t:+ or B1 7T) 

where v ~ 1. Analysis of transition in an atom due to 

intensity variation of a le.eer pulse shows that desired 

transition probability ( e .. g. , 1/2) per pulse may be achieved 

by varying the pulse parameters. For this, numerical results 

of Na(Js) + 2nw + Na(5s) and of Li(2s) + ~-+ Li(Js) 

are given. 

In this paper, we analyze two physical situations: (i) near

adiabatic atom-atom1 collision in an intense laser beam; and (ii) an 

atom1 being irradiated by a strong laser pulse. We are concerned 

with the calculation of probability of single/multiphoton bound-bound 

transition in the atomic system. There have been many experiments on 

mul tiphoton transi tiona in atoms and molecules in intense laser 

field. 2- 5 Resonant bound-bound transitions are often decisive in 

multiphoton ionization results. 2' 4 MOs~ theoretical analyses on this 

6-9 subject deal with isolated.-atoms or molecules. There are compara-

tively fewer theoretical studies of atom-atom collision in an intense 

laser field.lO,ll In experiment with an atomic gas, radiative transi

tion during atom-atom collision is significant compared to that of the 

isolated atoms. 5 

Kroll and Watson10 -~'ree.f'ter referred to as KW) have analyzed 

the interaction of a two-level nquasi-molecule" (the atom-atom in 

near-adiabatic collision) with an intense radiation mode. With similar 

approach, the present paper analyzes more general cases of a quasi-

molecule of finite number (n ~ 2) of discrete levels interacting with 

a finite number of intense field modes, thus providing treatment for 

greater variety of physical phenomena. Approximating the real quasi-

molecule with more-than-two levels is useful since the role of near-

resonant intermediate states in determining the multiphoton transition 

probability and of nonresonant levels in determining the energy shift 

are important. The analysis does not make any perturbation. expansion 

nor the rotating wave approximation. 9 It is not lirrdted to the electric 

dipole approximation. 
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In Section II, we write down the time-dependent equation for 

~ear-adiabatic atom-atom collision in intense laser modes. Level 

shifts and coupling between states are found from solutions of the 

adiabatic molecular eigenvalue problem in Sec. III. In Sec. IV, a new 

formula of transition probability between two shifted levels is 

derived. Section V contains two numerical.studies. Finally in Sec. VI, 

ve study transition in an isolated atom due to intensity variation of 

the irradiating laser pulse. 

II. TIME..:DEPENDENT EQUATION 

We consider near-adiabatic scattering of atoms in m field 

modes in a large cavity. The eigenvalues and eigenfunctions of the 

adiabatic molecular hamiltonian h are written as w and 4> a a 
respectiv~ly, with parametric dependency on the fixed internuclear 

configuration R. 12 Let the free-field hamiltonian and the charge-..,. 
field interaction hamiltonian be hy and h 1 respectiv~ly. l.3 We 

shall approximate the relative motion of the nuclei by classical 

orbits R( t). Then in the c .m. frame of the quasi-molecule, the 
"" 

hamiltonian describing the whole charge-field system is 

H ( t ) = h + h + h 1 
, where h and b.~. are functions of the orbit c . y. 

R(t). 10 
.... 

Since in scattering experiments, the initial state of the 

quasi-molecule is prepared before the charge-field interaction takes 

place and the final state is observed after the interaction has 

occurred, we therefore expand the total wavefunction 
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Substitution into the time-dependent Schrodinger equation for Hc(t) 

gives 

us.c a waca + hyca + L (<t>a,h'4>s)cS 
Bla 

( 2.1) 

where the term ( 4> ,h' 4> ) for radiative transition between nuclear a a 

"molecular states of the same electronic state and the term 

111 L c 8< 4> a' cP B) for collisional trans! tion have been neglected. 10 

B . 
We now expand the c in terms of the photon number states a 

rl(NA - vA) where NA is the initial mean number of photons in the 

.~th mode and VA > 0 ( <0) is the number of photons absorbed (emitted) 

by the quasi-molecule. That is 

where w is a particular w chosen for convenience of calculation, P a 
and {vA} denotes a set of m integers, corresponding to m modes. 

Thus b{v }(a) is the probability amplitude that the charge-field 
A 

system is in the electronic state a with · { vA} photons "absorbed". 

With the excellent approximation for intense field modes 

we obtain from Eqs. (2.1) and (2.2) 

m 

+ [ ( 2.3) 
y=l 

. . 



where y = vt/a is a dimensionless time variable defined in terms of 
0 

any convenient constant speed v and Bohr radius a
0

; and 

is the "unperturbed eigenlevels" of the noninteracting hamiltonian 

h + hy; and 

is the "photon energy". In the subscript set {vy ± 1} of the last 

term in Eqs. ( 2. 3 ) , all the component indices are the same as those in 

the set · {"A.} of the first and second terms except the rth• for which 

one has.. v. ·. ± 1. i:nBtead. ·y . . . The upper and lower sign in Eqs. ( 2. 3) 

corre~pond ·to the use or' the electric dipole14 interaction 

~. n1 "15: . ito ana, · ...... ,· 
' 

h' - L:. ~~·!,(0) + 
i 

and 

h' [ ~ - -pi •A(O) 

i 
~c"' ... 

respectively.. We have used both forms in our numerical calculations, 

though it is believed that the h~ is a better approximation in 

. . 16 
treatment wher~ higher levels are neglected. For plane wave modes, 

G~(o,e i •) ' ~ e•:A J r. •. -~ qi!:i~~·EA { 1 1 
\.. ~ wa - wB l 

\ "RWA. ) 
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+ 
G~(a,a) - 0 

where Ix = ~Nx~Wx/V is the intensity of the ~th mode (cavity 

volume V). If the linear polarizations and a set of real $a are 

chosen, then G~(Gx) are real and symmetric (antisymmetric). 

III. ADIABATIC EIGENVALUE PROBLEM 

For calculation of transition probability, we use the level 

shifts and the coupling between states, obtained below by solution of 

the adiabatic eigenvalue problem. We write 

where (E{y ),ij is the "adiabatic eigensolution" to b.e found. 

adiabatic limit 

Use of these expressions in Eqs. (2.3) gives 

f. {vX}a) 
With ~{v;x_}a'~ · labeled such that as the interaction 

+ 
G~(a,B) + 0 

E{ } + w{v,}( a) , "x a 1\ 

(3.1) 

In the 

(3.2) 

"l>.,-J. ·-
' ~. 
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it can be shown from Eqs. (3.2) that if a particular 
• ( - { P>. +~}a) 
1s found, then E{pA+uA}a'a · for the same 

can be obtained by 

and 

We proceed to solve Eqs. (3.2). 

A. Single Field Mode 

Converting Eqs. (3.2) into matrix notations and dropping the 

mode index, we let 9,± be the n x n matrix [a±(a,e)], ,£ be the 

n x n diagonal matrix [CE - W"(a)}>ae] and ~" be the n-component 

column vector. Then Eqs. (3.2) become 

+ D a· = a-(a + a ) 
'"'""" 11" 1111\1-1 - \1111\1+1 , 

( 3.3) 

for all v. 

At y where an adiabatic level of interest (p,cr) is not in 

near resonance with any other levels, we let 

a(a) = d(a)a(o) 
\1 \1 p 

(3.4} 

for all (v ,a). Thus d (cr) = 1. Upon substitution of Eqs. (3.4), 
p 

·and factorizing out ap(cr), Eqs. (3.3} become 

Defining T for . v > p by 
t"'\1 

d. T d 1 
"'" ""'" R'J-

( 3. 5} 
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We obtain directly from Eqs. ( 3. 4) the ~ecurrence relation for Jv• 

Similarly for v < p, we define T' by 
W\\1 

d :: T' d 
"'" .. w ""'v+ 1 

and obtain from Eqs. (3.5) 

AB be-fore 

T 1 + 0 as v + -- • 
~\I 

(3.6a) 

(3.6b) 

( 3. 7a) 

(3.7b} 

Alternatively, if <Jl r 1 exists, then defining ~, Jv 
and H' by 

""" 

+ 
T - l.f" H 
~\I 

'W'I\1 "'" 

\1 > p 

and 

+ 
T' - u- H' 

'"'" ""\1 """ 

\1 < p 

we obtain either directly from Eqs. (3.5} or from Eqs. (3.6} and 

(J.7), the relations 

H 
!>'\I [ ! + u± H u±]-1 

.• "'v+l.,..v+l.,.v 
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and 

with 
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l!.v + !,.. as v + 00 

H' .... v 

H' + ±I as ... v tl"' 

+[I - ~ H' ~1-l - "" ..,.,v-1 ~v-1 "''V 

v + -co • 

Thus with a cut-off value M, we let JM+l = 0 and 

T ' 0 ,..-M-1 • 
Or if we take the approach using H-matrices, we let 

( 3.8) 

(3.9) 

H__ = I, 
... ""M+l ... 

H' = +I 17 For a given,physical system, the smallest 
""-M-1 -....,· 

value of M is determined accordtng to the accuracy desired by running 

a few numerical tests. Starting from these limits we can generate all 

other 'k(-M < v(;.p) < M) by the recurrence relations. Thus .g.p±l 

can be expressed in terms of ,ip. With dp( a) = 1 known, all other 

(n - 1) d (a 'I o) are obtained by solving the n - 1 inhomogeneous 
p • 

linear equations obtained from the (vr= p)th set of Eqs. (3.5) 

with a i a. 

Finally use of the (v p, a = o) equation of Eqs. (3.5) 

gives 

E = Wp(o) + [ G±(o,8>(T~_1(8,y) ± Tp+l(S,y))dp(y) 
S,y . 

where dp(a) 1 has been used. This equation is used to find the 

adiabatic eigenvalue 

trial value Wp(a). 

E by successive iteration, starting with 
pa 

The second term on the right is the shift of the 

unperturbed level WP(a). For low intensity, it agrees with the value 

given by perturbation theory. 
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Near y where two levels (p,a) and (~,T) are nearly 

degenerate (for example, Fig. 1) we let 

a (a) = d (a) a (a)+ s (a) a (T) , v \) p v ~ 

for all v,a. It follows that 

0 

To find d (a)'s, which are independent of a (T), we substitute 
~\) . ~ 

( J.lO) 

(3.11) 

dv(a) ap(a) in place of av(a) in Eqs. (3.3) and obtain equations . 
the same as Eqs. (3. 5). Thus all the .A, can be found by the :same 

procedure as before except for .lll (assuming T > a and ll > P). 

For v = ll, since we cannot use the "singular" equation (v = 1,1, 

a= T) ·to find the d's, Ill is obtained (i) by filling its 

(a = T )th row by zeroes .to satisfy ,Sll( T) = 0; and ( ii) by directly 

inverting the rest of the ( n - 1) equations with v = ll \to obtain 

the other (n- 1) rows. The sv(a)'s are found similarly by 

substituting sll(a) all(T) in place of av(a) in Eqs. (3.3). 

Defining J.v by £v = l~-l for v > ll and ~ by 

~\) = X~v+ 1' we note that :f..v = lv for \.1 < v ~ M 

for -M ~ v < P. 

and V' = T' 
•"\/ 1'11\V 

Finally, the characteristic equation resulting from the 

(~,T) and (p,a) equations of Eqs. (3.3) with substitution of Eqs;· 

(3.10) for ap±l(a) and a~±1(a) has roots 



E 
ll 

where 
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wP(cr) - wP(cr) + L G±(cr,e)G-P-l(B) ± dp+1<eD 

e 

w~(T) = wll(T) + L G±Ct,e>Gil-1<e> ± sll+1<e~ 
e 

are the "shifted levels", and · 

G - L G±(cr,e)~p-1(~) ± sp+l<e>) 

e 

L G±(T,e)~ll-l<e> ± dll+l<e~ 
e 

(3.12) 

is the coupling constant. The last equality is based on hermiticity. 

We may use any one of the expressions of Eu and E
1 

for iteration to 

find (Eu•!u) and/or (E1,::-). The minimum of the level separation 

Eu - E1 is the "point of closest approach" around which we calculate 

the trans~tion probability. 

B. Many Field Modes 

For the sake of clanty, we will indicate the generalization 

of the above method to many field modes with the case of two modes. We 

shall use this in the numerical example in Sec. VB. Equations ( 3. 2) 

for two field modes may be written in the form 

G±( ) .,. :v
2
-l ± Av +1 

2 
(3.13) 

where 

and 

D (v a. v•a.•) 
l'"i\V

2 
1 ' 1 

+ 
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+ G~(a,a' )(ov v'+l 
1 1 

± 0v v'-1)] ' 
1 1 

+ 
- ov v' G2(a,a') 

1 1 

For transition where photon number of only one mode changes, that mode 

should be assigned the role of mode 2 here. Equations (3.13) has the 

same form as Equations (3.3) for one mode. Thus the solution is 

similar as before, even though D" are not diagonal. For near 
""v2 

resonance between levels (p1p2cr) and (ll1\l2T), for example, we write 

(3.14) 

for all a, -~ ~ v1 ~ ~, and -~ ~ v
2 
~ ~~ and use component 

equations ( p1p2cr) and ( Jl
1

Jl
2 

T) to obtain the corresponding 

characteristic roots as in Equations (3.12). The level shifts and the· 

coupling constant contain additive contribution from each mode. 

IV. A TRANSITION PROBABILITY FORMULA 

Suppose we have (near) resonance occurring between two levels 

"1" and "2" near y = 0. Then only the probability amplitude b1 

and b2 will vary significantly while all other bv(a)'s in Eqs. 

(2.3) may be approximated by their adiabatic counterparts given by 
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Eqs. (3.1 ). We may use either a~ 
""" 

2 
or !. , the resulting difference 

18 of such choice being small near the point of closest approach. 

Substitution of Eqs. (3.1), Eqs. (3.10), or (3.14) into ~he component 

equations "1" and "2" of Eqs. (2.3) gives 

dbl 
i-- W'b dy 1 1 = Gb2 

( 4.1) 

where Wi and G are respectively the shifted levels and coupling 

constant defined before. The boundary conditions are that in the 

remote past b2 = 0 and jb
1

j = 1. Now we derive a new formula 

useful when the shifted levels have two well-defined relative slopes 

b and _b', 

W' - W' 2 1 
{

/ aa -by 

- + b'y y > 0 

y' 0 

where a is the minimum level_ separation. See Fig. 1. The only 

drawback in the above approximation is the introduction of discontin-

uity of slope of W2 - WJ. at y = 0. However, the advantage is that 

without further approximation a transition probability formula can be 

derived rigorously and is applicable even when a = 0. 

We introduce, with k1 = ~y WJ.(y')dy' 

-ik 
U(y) e 1 

( i~l 
.a ) e 

4 

e-12Yl .b' 2 

-1-y 
e 4 

for 

y ~ 0 

y > 0 
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into Eq. (4.1) and obtain, neglecting the small dependency of G on 

y,l9 

0 y ~ 0 

0 ' y > 0 . 

We need to find only the solution U(y; jaj,jbj,jb' I); for the solution 

* U(y; -jaj,-jbj,-lb'j) = u.(y,jaj,jbj,jb'j) as can be shown easily 

from the above equations. 

Now with definitions • 

z 

-i!! 
y b 'i e 4 

+ 

the above equations are reduced to the Weber's equations20 

2 

·F· ~ $)u(z_l .d U( z_) 1 0 
dz2 2 y~O 

2 + .. 2] d U( z+) 1 z+ 
2 -- U(z ) -0 

dz+ 4 + 
y > 0 

where n - ip n' ip' - 1, 

G2 
p' 

G2 
p - o' - 'i)T" 
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For y < 0, the solution satisfying tP.~ boundary condition 

and lb1 l = 1 in the "remote past" (i.e., lbty - ~~ » 1) 
b 

G '- !!p 
U(z_) = ~ e 4 D-n-l-iz_) 

' b 

A general solution for y > 0 is 

U(z ) = L D 1 1(-iz+) +MD 1(-z+) 
+ -n - n 

where L and M are coefficients to be determined by demanding 

continuity of 

L·= 

M 

where 
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D3 -
( _,J•) 

D-n~-1 b~l e 4 ' 

D4 -
G _,~) 

D -n I -2 b ~; e 4 ' 

( ')>) 
D~ - D 1 ~e 4 

n \.b . 

~ ,llc \ 
D6 

a 4 - Dn~-1 ::"'I e J 
1 t a For lz+l = b y +::"'I» 1, we obtain the asymptotic formula for 

b 
b2(y) 

from which the transition probability is 

2 

I 
Jn, .~. n, --p .w --p 

lb 12 = L e 4 + M ( 21t) e 4 
2 r(l- ip') 

(4.2) . -

For the special case of a/bi >> 1 and a/b'i >> 1, we obtain 

lb212 • [ Yi.lal (1 - .-2"P') r ' 
which has desirable behavior with respect to a, G and b', but is 

independent of b. 
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V, NUMERICAL EXAMPLES 

The o~bit of the -relative motion of the colliding atoms enter 

into our calculation through (i) G(a,S) which depends on the orienta-

A 

tion of the internuclear axis relative to the polarization vector E; 

and (ii) the velocity dR/dt in the relative slopes 

that occur in the transition probability formulae. To take ( i ) into 

consideration, we integrate the differential orbit equation, using the 

unperturbed potential curves as a good approximation (though strictg 

speaking, the self-consistent shifted. potential curves should be used). 

The evaluation of dR/dt, final transition probability and cross 

section have been discussed in KW. 

A. Li and H Scattering 

As examples, we consider scattering of Li with H in an 

intense field mode with A = 0.826 ~ in the geometry of Fig. 2 for 

relative speed v = 5 x 105 em/sec. Values of w (R) and 
oo a 

-~ + "1 + 
( cflN, r r ~If! ) for the lowest lYing singlet states r r ' A . L ' 

u i ~i . a . . 
. 21 

and . BlTr are taken from Docken and Hinze. These three levels rep-

resent a fairly good approximation because according to the less 

accurate calculation of Bender and Davidson, 22 the higher levels all 

lie at least about one-photon (1'iw ::: 1. 5 eV) energy above the f17T 
level. We assume that the atoms are initially in the electronic 

-~,+. singlet ground state r ~ There are 1~, 2-photon resonant 

Al' + ti transition to L. near internuclear separa ons 

5.9 a
0

, and 3.7 a
0 

respectively; while 2-, 3-photon resonant 

transitions to BlTr occur at 5.1 a
0 

and 3.1 a
0 

respectively. Using 
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· f 1 lO 1 ul t d the transition probabili-a Landau-Zener-l~ke orrnu a, we ca c a e 

ties to these two excited states and the cross sections are presented 

in Fig. 3, We observe that only for low enough intensity are the 

2 't' t cross sections proportional to I and I for trans~ ~ons o 

and B+1T respectively, as expected from perturbation theory. 

B. Stimulated Emission by Field-dependent Lowering 

. 1 B . 23 of Potent~a arr~er 

We consider here colliding atoms with model adiabatic potential 

curves and dipole matrix elements illustrated in Fig. 4. Initially 

the quasi-molecule is in state. 4which has a potential barrier (e.g., 

due to avoided crossing) at ~· For R > ~· the dipole transition to 

the state 1 is forbidden, while for R < ~ it is allowed. For 

diatomics, the initial state 2 is achieved by some pumping. But for 

polyatomics, no pumping is necessary because the potential surface 2 

may represent. ground state of one configuration of the quasi-molecular 

complex while potential surface 1 corresponds to a rearranged conffi~

tion. At thermal relative velocities, the potential barrier is too 

high for the classical penetration (or too little quantum mechanical 

tunnelling) into region R < ~. One way to overcome the barrier is 

to lower it by a sufficiently intense laser field with a photon energy 

smaller than the. energy gap between level 2 and 3 in the neighborhood 

of ~· Once the quasi-molecule penetrates into the R < ~ region, 

it will most likely radiate near the classical turning point Rc at a 

second frequency. For case depicted in Fig. 4, part of the electronic 

energy upon photoemission is converted into relative kinetic 

energy of the colliding particles. 
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For numerical study, we consider the following unperturbed 

potential energy curves wi(R) (in eV) and dipole matrix elements 

(in AU) Mjk = (JI t ~ilk) for a model diatomic colliding system 

(of reduced mass = 20 x proton mass and relative speed= 105 em/sec), 

-5(R-3) 1.5e 

2 
w

2
(R) = 2.9 + 0.1~- e-1.6(R-3•75 )/ + 0.153 e~4 ·o(R-4 • 8 ) , 

w;CR) 4.285 + 1.2 e-3(R-3 ) , 

2 
~2(R) 3.033 e-1.515(R-3.2). 

~3(R) 4 e-0.7J8(R-4.85) 
2 

for R ~3.2 a
0

• We assume electronic· state 2 and 3 to have the same 

A-quantum number while that of state 1 differs from theirs by 1. 

Scattering geometry is shown in Fig. 2, where ~ is the linear 

polarization £
1 

of the intense mode. The original barrier is 

0.02 eV too high for classical penetration. With high-intensity laser 

field wavelength chosen to be 1.0648 ~b the bump is lowerecLby about 

12 2' 0.04 eV at I
1 

= 10 W/cm • The colliding atoms for certain range 

of impact parameter (b = 0 to b = 1.97 a ) can now penetrate max o 

into the R < ~- region. The system has certain_ probability PI
2
(b) 

to radiate near Rc by stimulated emission into the second mode 

(£2 is chosen parallel to E1 ). The cross sections 

for stimulated emission into the second mode 
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[

bmax 

21T db 

0 

b PI (b) 
2 

are given in Table I, PI ( b ) being approximated by formula ( 4. 2 ) • 
2 

We assume that transition between_the shifted levels 2 and 3 near ~ 

is negligible, because of the large off-resonance 0.06 eV. Raising 

the third level by 0.4 eV higher changes the amount of potential 

barrier down-shift by less than 10%. Thus the selection of the third 

level (or high intensity laser wavelength) is not severely restrictive. 

An interesting effect occurs which is due to the fact that the 

coupling between the second and third levels depends on the angle 

between the internuclear axis of the colliding atoms and the space-

fixed linear polarization E1• Thus collisional ·systems with impact 

parameter b = 1.46 to 1.97 a
0 

can get into the region R < ~ but 

become bound due to the change. of this angle on the outgoing trip. 

Values for cross section for such "trapping" 

are given in Table I. The trapped colliding system will become a 

"vibrating" molecule that keeps on rotating relative to 

Following approximately the motion of the bound molecule in the 

intense beam shows that after five vibrations, the atoms are separated 

again. But while bound, they radiate predominantly near R , thus c 

enhancing oi by an amount ~o indicated in the last column of 
2 

Table I. 

. -
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VI. TRANSITION DUE TO INTENSITY VARIATION 

Intense laser field in experiments is often pulsed. The above 

theory can be adapted to treat transition in an isolated atom being 

irradiated by an intense laser pulse. 24 Now the amount of level shift 

of the atom is a function of intensity of the pulse, which is in turn 

a function of time. For a particular atomic system with proper choice 

of the laser A, one may get two pseudocrossings ~PC) per pulse as 

shown in Fig. 5. The final transition probability per pulse (assumed 

symmetric) is given by 

f = 2T(l - T) 

where T = 1 - exp( -2nG2 I I a I ) is the transition probe.bili ty10 at one 

PC. The relative slope between the two shifted levels w2 and WJ. . 

a 

is evaluated at the "critical intensity" I' ·at which the point of 

closest approach of the adiabatic eigenlevels occurs. 

The analysis below shows that desirable transition probability 

per pulse can be achieved by choice of pulse shape and pulse parameters. 
<:~· 

This may have important application in efficient optical pumping and 

in isotope separation. For example, to attain the maximum value 

1 f = 2 , the temporal slope of the pulse at I' is given by 

l~!l 2mS/R.n2 

where 

2/lao d(W_2 - W:i_ )I 
0 - G I v --id:.I-.;;;... ( 6.1) 
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For a gaussian pulse, I(t) 

This implies that for given o and I' , i;here is a pair of optimum 

values (I~, T' ) such that 

T' 

1 f equals 2 They are related by 

where o is in atomic units, I' in watt/cm2 and T' in second. 

The validity condition for applying the transition probability formula 

for T above requires that for a gaussian pulse, 

is to be satisfied. 

As examples, we have calculated the quantities o, I' 

characterizing the 2-photon transition from ground state Js to 5s 

of sodium atom and the 8-photon transition from ground 2s state to 

3B state of lithium atom. (Table II.) From these values, transition 

probability for any pulse may be calculated. States of J-8s, J-5p, 

J-5d, and 4-6f are included in the calculation for sodium atom; while 

states of 2-7s, 2-4p, J-5d, and 4-6f of lithium atom are used. The 

25 energy levels are taken from Moore. The magnitude of dipole matrix 

elements are calculated from work of Anderson and Zilitiz26 and their 

signs from Bates and Damgaard. 27 The range of wavelengths in the 

sodium case is chosen such that the Js and 5s levels are shifted 

into 2-:photon resonance because the 3p levels repel the Js level 

stronger than they pull the 5s level. In the lithium case, the 3p 
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states strongly shift the 3s level down into 8-photon resonance 

with the 2s ground state. 

It is found that for soidum atom irradiated by a gaussian 

8 2 pulse of A. = 0.602396 u, I
0 

= 6 x 10 W/cm and T = 1 nsec, final 

transition probability f = ~ is closely attained. Figure 6 shows 

the sensitivity of f to T over a range of wavelength. AB can be 

shown from analytic expressions above, the result is not so Sensitive 

to peak intensities.· 
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Table I. Cross. sections of stimulated emission cri , of 
2 

trapping crt' and of enhancement ~a as a function of 

the intensity of stimula,ted emission I 2. 

I2(W/cm2 ) cri (a ~) 
2 . 0 

crt(ao 2) ~cr(ao2) 

1 X 107 1.14 X 10-3 5.5 I 4.1 X 10-3 

I 4 X 107 4.54 X 10-3 I 
1.6 X 10-2 

I 5.5 I I 1 X 108 I 
1.14 X 10-2 4.1 X 10-2 

I 
I 

5.5 I 4 X 108 4.54 X 10-2 I 1.6 X 10-l 

! 
5.5 

1 X 109 1.13 X 10-l 5.5 4.1 X 10-1 

4 X 109 4.51~ 10-l l 5.5 1.6 i 
7 X 109 7.86 X 10-1 ' ' I I 5.5 

I 
2.9 

1 X 1010 l I 
1.12 ( 5.5 4.1 i 
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Table II. Values of critical intensity (I') and pulse-independent 

factor (o) in Eq. (6.1) for wavelengths (A) considered in 

(a) 2-photon transition in sodium (Js + 5s); and (b) 8-photon 

transition in lithium (2s + 3s). 

1( lJ) 

6·: 02 396E..,;Ol 

6.02395E-Ol 

6.02394E-Ol 

6.02392E-01 

6.02390E-Ol 
I 
16.02385E-01 

6.02380E-Ol 

6.02370E-Ol 

!6.02360E-01 

6.02350E-Ol 

6.02330E-01 

(a) Na 

l.OOE+07 

1. 74E+07 

2.55E+07 

4.00E+07 

5.50E+07 

9.50E+07 

1.35E+08 

2.10E+08 

2.90E+08 

3.75E+08 

5.25E+08 

' 1:851E-1711 

~5.605E-17 ll 
l1.204E-16 \ 

1
2.962E-16 

5.601E-16 

11.671E-15 
l 3. 375E-15 • 

8.17l.E-15 

1.558E-14 

2.606E-14 

5.111E-l4 

{b) u 

I'(W/cm2 ) l o(a.u.) 

2. 94060E+OO 1. 90E+07 3. 414E-49l 

2.94075E+OO I 5.JQE+07 1.264E-45 

2. 94100E+OO I 1.10E+08 14. 421E-43 

2.94150E+OO 12.JQE+08 l1.658E-40 

2.94200E+OO I 3.50E+08 I4.920E-39 
! I 

2.94250E+OO I 4. 70E+08 15.487E-38 ! 
2.94300E+OO I 6.00E+08 13.656E-37l 

2. 94350E+OO 7. JQE+08 : 1. 951E-361 
2.94400E+OO 8.65!+08 17. 714E-36 I 
2.94450E+OO !l.OOE+09 12.560E-351 

2.94500E+OO \Ll4E+09 17.443E-35 J 
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FIGURE .CAPTIONS 

Fig. 1. Shifted level structure for which a transition probability 

formula is derived. 

Fig. 2. Particular geometry for near~adiabatic scattering of two 

atoms in intense field. Internuclear axis is along k and 

the linear polarization £ is in the f - k plane. 

Fig. ). Inelastic cross sections for the process 

Li + H(_0L+) + vhw ~ Li +H(AlL + or· sttr) over a range 

of field intensity (A= 0.826 ~). 

Fig. 4. Potential curves and dipole matrix elements of model quasi-

molecule for study of field-dependent lowering of potential 

barrier. 

Fig. 5. Unperturbed atomic energy levels · Wi and :w2 are shifted 

1into multiphoton resonances at critical intensity I' of 

the intense laser pulse. 

Fig. 6. Transition probability per pulse, f, in Na( Js) + 2f'xiJ 

Na(Js) + 2!W + Na( 5s) at several wavelengths for a few 

gaussian pulses of the same peak intensity 6 x 108 W/cm2• 
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