
" 

Subm.itted to 
Physics in Medicine and BiDlogy 

. ,:., '!."'::,' !(( 

Bffli<£UY lAI,DUATORY 

UC I ::5 0 1::1/5 

1,,18 .{y AND 

[)(:,r;UMEI"-IT5 S[ C TION 

ANAL YSIS OF STATISTICAL ERRORS FOR 
TRANSVERSE SECTION RECONSTRUCTION 

DONNER LABORATORY 

R. H. Huesman 

September 1975 

LBL-4278 I 
Preprint C". 

Prepared for the U.S. Energy Research and 
Development Administration under Contract W-7405-ENG-48 

For Reference 

Not to be taken from this room 



DISCLAIMER 

This document was prepared as an account of work sponsored by the United States 
Government. While this document is believed to contain COlTect information, neither the 
United States Government nor any agency thereof, nor the Regents of the University of 
California, nor any of their employees, makes any walTanty, express or implied, or 
assumes any legal responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not 
infringe privately owned rights. Reference herein to any specific commercial product, 
process, or service by its trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof, or the Regents of the University of 
California. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof or the Regents of the 
University of California. 



o 0 o 6 6 

-Analysis of Statistical Errors for 

Transverse Section Reconstruction 

R. H. Huesman, Ph.D. 

Lawrence Berkeley Laboratory 

University of California 

Berkeley, California 

-September 1975 

ABSTRACT. The relationship between expected errors in 

the reconstruction of a transverse section from projec-

tions at multiple angles and the statistical errors of 

the projections is derived: 0p = or ~ (1.6D)/(nd
3
), where 

0p is the rms error of the reconstruction, or is the rms 

error of the projections, n is the number of projection 

data points, D is the linear dimension of the reconstruc-

,tion region and d is the linear dimension of the recon-

structed cells into which the reconstruction region is 

subdivided (resolution length). The results are applic-

able to x-ray or nuclear particle transmission as well 

as radioisotope emission studies. 
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1. Introduction 

Techniques for reconstruction of the 3-dimensional distribution 

of density in an object from projections at multiple angles have 

received extensive investigation and review, particularly for x-ray 

transmission (Gordon and Herman 1973) and photon emission from 

radioisotopes (Budinger and Gullberg 1974). However, the important 

problem of noise propagation and the analysis of the expected uncer-

tainty in a reconstruction has only recently corne under investigation 

(Chesler 1975, Barrett et. a1. 1975). The present work provides a 

quantitative basis for estimating errors in a transverse section 

reconstructed from multiple projections. The results are applicable 

to x-ray or nuclear particle transmission as well as nuclear medicine 

image reconstruction. 

The circular area to be reconstructed has diameter D, and is 

subdivided into small square cells of dimensions d x d. The area 

to be reconstructed consists of (n/4) (D/d)2 cells, each of which is 

assumed to contain uniform density. The data consist of a collection 

of line integrals of the density over n coplanar paths through the 

transverse section. The paths traverse the reconstruction region at 

regularly spaced intervals and at regularly spaced angles. The 

geometry of the reconstruction region and an example of the paths for 

line integrals at one angle, e, are shown in fig. 1. ·For the model 

chosen' (uniform density in each cell) the relationship between the 

th line integral Ii and the density, Pj , in the j . cell is, 

Ii = .~ R,ij Pj (1) 

th th 
where R,ij is the line length of the i path through the j cell, as 

shown in the inset of fig. 1. (R, •• is zero if the i th path does not 
1.J 
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intersect the jth cell.) 

2. Reconstruction and Error Analysis 

th 
The backprojection (simple superposition i~age) B~, for the k 

cell -is defined to be the line integral times the line length through 

that cell summed over the n paths, 

D r 
nd i 

(2) 

3 The choice of the normalization factor D/(nd ) is explained below. 

By substitution of eqn (1) into eqn (2), the backprojection can 

be written in terms of the density as, 

Bk = D r tik t ij Pj 
nd3 ij 

(3) 

Defin:f.ng the matrix M by the expression, 

l\j = D r tik t ij 
nd3 i 

(4) 

and substituting into eqn (3) , gives, 

B.. =LM. P 
-k j -Kj j 

(5) 

so that the backprojection vector is just the density vector multi-

plied by the matrix M. A diagonal element of M is given by, 

(6) 

but the fraction of line lengths which are non-zero is about dID 

th " 
(only about ndlD of the line integrals intersect the j cell) and 

when non-zero t ij is about equal to d (the linear dimension of a 

cell) so that 

Mjj""!::: D nd d2 -3 -:n= 1 
nd 

-2-
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. 3 
Thus the normalization factor D/(nd ) makes the matrix M roughly 

independent of the numbet of line integrals and the geometry of the 

reconstruction region. 

The backprojection is just a matrix multiplication with the 

density vector, and if the problem is well posed, the density vector 

can be obtained after a matrix inversion. Since the matrix M may 

be very large, inversion is usually impractical. This problem is put 

aside for the moment and returned to below. 

In order to investigate the uncertainty in the reconstruction, 

the density vector is expressed in terms of the inverse of the 

matrix Mas, 

(8) 

Since the rms errors of different line integrals are uncorrelated, 

the rms error of p. is the sum of the rms errors of the contributions 
J 

from each Ii added in quadurature, 

(9) 

where a(Pj ) and a(I i ) are the rms errors of Pj and Ii respectively. 

If the rms errors of all Ii are equal to aI' 

a2 
(p

J
') ( DaI )2 L M~l M~l L £. £ 

--3 k Jk Jm. 1kim 
nd m 1 

(10) 
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and substi tution from eqn (4) gi ves, 

])(12 
I 

nd
3 

It is well known that the operation of backprojection is 

(11) 

simply a convolution with the function l/r (Budinger and Gullberg 

1974) . Therefore the diagonal elements of the matrix M are equal, 

and the off-diagonal elements decrease proportional to the reciprocal 

of the distance between cells. That is, Mjk is proportional to the 

reciprocal of the distance between the kth and jth cells. Since the 

matrix is in practice very large, an attempt has been made to find an 

-1 approximation to M which is also a convolution but which is limited 

in extent. 
-1 . . th th 

M' k has been set equal to zero when the J and k cells 
J . 

-1 
are greater than a specified distance apart, and the remaining Mjk 

which best satisfy the relationship, 

(12) 

in the least squares sense have been found, where 0jk is the Kroneker 

-1 
delta. For. all ranges of non-zero Mjk tried, the diagonal element 

(central element of the convolution) has remained stable and is 

equal to 1. 6. 
-1 . 

A second approach to finding the convolution M was also tried. 

In this approach the 2-dimensional Fourier convolution theorem was 

used. In our case the theorem states, 

(13) 

where F2 indicates 2-dimensional Fourier transformation and * indicates 

convolution. Solving for F2(p), 

(14) 
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and the desired convolution is, 

-1 
M 

o .~ 6 7 

(15) 

where F;l is the inverse Fourier transformation. With this approach 

-1 . 
the. central element of the convolution M was also found to be equal 

to 1.6. 

-1 
Setting M .. equal to 1.6. in eqn (11) gives, 

JJ 

or, 

where a is the rms error of all reconstructed cell densities, 
p 

there is no j-dependence on the right-hand side of eqn (16). 

(16) 

(17) 

since 

This derivation assumes that the uncertainty of all measured 

line integrals are equal. This is not a serious drawback, si~ce a 

practical estimate can be made using eqn (17) when this assumption is 

not true. 

Although the logic of the derivation follows a particular re-

construction technique (convolution of the backprojection) the result 

is more general. The result is also applicable to the conventional 

convolution technique, as it has been shown that the two linear 

operators are equivalent (Budinger and Gullberg 1975). 

Finally, it must be stressed that eqn (17) gives errors of the 

reconstruction due only to statistical errors of the line integrals. 

Systematic errors due to the particular reconstruction technique used 

are not treated here. 

-5-



3. X-lay Transmission 

For an x-ray transmission device it is assumed that a water bath 

surrounds the reconstruction region and that the object to be recon-

structed has approximately the same linear attenuation coefficient as 

that of water. This situation is depicted in fig. 2, and it can be 

seen that the total path length for the transmissions of x-rays along 

any of the n paths is approximately equal to a distance L of water. 

1;n this case the function p to be reconstructed is the linear 
, , 

attenuation coefficient, uSually denoted by ~. N x-rays are in
o 

d ' al th, d umb f h jecte ong the ipath, an Ni , the tier emerging rom t e 

opposite side of the water bath is counted. The eXpected value for 

Nt is given by 

so that, 

N e 
o 

-I 
i 

(18) 

(19) 

There are several contri~utions to the nils error of Ii stemming from 

the uncertainties of both No and Ni • For the purposes of this ex~ 

ample the uncertainty of N is neglected, as it is usually small. 
o 

It is also assumed the uncertainty of Ni is purely statistical 

[ cr(Ni ) = ~ ] so that the rms errOr of Ii is,' 

= 1 

IN. 
1 

(20) 

Since the n paths all traverse about an effective distance L 

-p L of water, each N. is approximately equal to N eo, where p is 
100 

the linear attenuation coefficient of water. Therefore the i-sub-

scripts may be dropped and, 

(21) 
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Substituting eqn (21) into eqn (17) gives, 

a ={§.6D P --
Nnd3 

(22) 

and the relative error is given by, 

(23) 

A simplified version of eqn (23) emerges if the thickness of 

the water bath is equal to the diameter of the reconstruction region 

and. the number of line integrals is equal to the square of the number 

of cells across the region, !.~., 

L = D (24a) 

n=(;r) 2 
(24b) 

For this special case, substitution of eqns (24) into eqn (23) gives, 

(25) 

Using eqn (21) and the assumption that I ~ P L o 
P D, eqn (25) can 

o 

be further simplified to, 

(26) 

which gives the relative error of the reconstruction of the relative 

error of the line integrals. For example assume that D = L = 27 cm., 

2 -1 5 
d = .15 cm (Did c 180), n = (180) , p = .19 cm and N. = N = 10 . 

o 1 

Then, 

1 
1 = ------~------- = 6x10-4 

(27) 

p DIN 
o 

(.19) (27) Il;;~ 
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and 

= (6xlO-4) I (1. 6) (180) (28) 

.4.- Gamma-Ray Emission 

For the case of gamma emission, the assumption of equal line 

integral errors is not valid, however eqn (17) may be used to obtain 

a practical estimate of the reconstruction errors by making an approxi-

mation to 01. Here the function p to be reconstructed has the dimen-

sions of counts per unit area. 

If the total number of counts detected is Q, the average number 

used to evaluate each I. is Q/n. (n = total number of line integrals) 
1 

Since a line integral is proportional to the number of counts used to 

evaluate it, its relative rms error is equal to, 

so that, 

° 1= 
I 

1 (29) 

(30) 

Assuming that p is approximately uniform over the reconstruction 

region, 

(31) 

Since the average distance across a disk of diameter D is TID/4, the 

average line integral is equal to, 

I ~ TIDp ~ 

""4 
TID 
""4 ~ 

TID 

~ 
D 

(32) 
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so that, 

ar '" g {f= / nQ 
D D 

Substituting eqn (33) into eqn (17) gives, 

I nQ "~1,.6Q 
D Dd3 

and using eqn (31) the relative rms error is given by, 

De fining q as the 

so that; 

number of ceunts 

a 
p 

per 

2 
4Qd

2 
q = pd = 

-2-
TID 

a 
2!. ~ 1.6D3 .-£. '" 

p 4 d3 

cell, 

4d
2 "fii --2 4qd TIqD 

3 For example assume that D = 27 cm, d = .15 ,cm and q = 10 

counts per cell. Eqn (37) gives 

... 1 (l.6TI) (27) 

, (4)(10 3) (.15) 

0.15 

5. Conclusion 

(33) 

(34) 

(35) 

(36) 

(37) 

(38) 

Given the size and number of cells in a region to be reconstructed 

and the number of events in the projection data, an estimate of the 

uncertainty of the reconstructed transverse section can be made in 

accordance with eqn (17), 

a 
p (17) 
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After separating terms of egn (17) and squaring, 

var(p) 
2 = 0 p 

(39) 

Thus the variance in the reconstructed function is related to the 

smallness in cell size and number of cells along a line integral. 

The noise in a reconstructed element relative to noise in the 

projections is proportional to as ascertained by com-

paring the relative errors under the realistic conditions of eqns (27) 

and (28). 

given by 

Since the number of cells in the reconstruction region is 

2 
\! = (rr/4) (D/d) , the noise amplification is proportional 

to, 

noise amp.~ a ~::!.. Q 
n d 

(40) 

For practical estimates of relative rms errors of the recon-

struction due to statistical uncertainty of the projections, the 

reader is referred to eqns (23) and (37) for transmission and emission 

respectively. 
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Figure 1. 

Figure 2. 

Figure Captions 

Geometry of the reconstruction region and an example 

of line integral paths at one angle, 8. 

Physical set-up for x-ray transmission where a water 

bath is used to equalize total path length for line 

integrals. 
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