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MACROSCOPIC DESCRIPTION OF 1HE INTERACTION BETWEEN TWO COMPLEX NUCLEI 

W. J. Swiatecki 

Lawrence Berkeley Laboratory 
University of California 
Berkeley, California 94720 

1. 1HE MACROSCOPIC AND LEPTODERMOUS IDEALIZATIONS 

The word macroscopic means that the particle number A 'is large, i.e. 

A-1« 1, and that the discreteness of nucleons is disregarded. In addition I 

shall use the leptoderrnous idealization: 

Nuclear surface thickness 
Cube root of nuclear volume « 1, 

in virtue of which a nuclear shape may be defined. The central problem in macro­

scopic nuclear dynamics is to give an account of the time evolution of the shape 

of the nuclear system. 

2. 1HE SIXFOLD WAY~-A MADMAN'S EXPERIMENT 

To establish a broad framework for our thinking about this problem imagine 

the following experiment designed by a madman: a beam consisting of a mixture of 

all elements, with energies from zero to relativistic" impinges on a target also 

made of a mixture of all elements! What kinds of reactions would one expect in 

such a nightmare experiment? 

Figure 1 is an attempt to classify 

THE SIX FOLD WAY 

the fate of the stream of particles into 
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Fig. 1. An attempt to classify collisions between 
two nuclei into six main categories. 



six categories: Nuclei that don't Touch undergo Distant Collisions, where only 

electromagnetic interactions, modified by the tail of the nuclear potential, come 

into play. (Touching could be defined approximately as touching of the Fermi 

levels of the two systems.) Nuclei that touch but do not make Solid Contact 
undergo Grazing Collisions. (Solid Contact might be defined approximately as 

beginning when the half-density contour acquires the topology of a single ob­

ject.) Nuclei that make solid contact but do not Stick make Hit-and-Run Col­

lisions. (Sticking might be defined approximately in terms of the sharing of 
linear momentlUll~) Nuclei that stick but do not Fuse form a Binary System. (Fusion 

might be defined in terms of a loss of identity of the pieces, associated with 

a filling-in of the neck.) Nuclei that fUse but are not Trapped form a Composite 

System. The remainder are trapped in a potential energy hollow, and form a 

Compound System. 

The first problem in describing the above processes, whether quantally or 

classically, is to map the potential energy as a function of the shape of the 

system. 
3. 1HE POTENTIAL ENERGY OF A LEPTODERMOUS SYSTEM 

With certain qualifications it is possible to prove the following theorem 

about the functional form of the potential energy V(shape) of a thin-skinned 

system of vollUlle ~whose shape is specified by an (effective sharp) surface~. 

V(shape) = VBulk + VSurface Layer (1) 
where V Bulk = c1 ~, and 

VSurface Layer = c29+ c3%+ c4 g; + c,i 0+ 
+ corrections that tend to zero as r grows 

+ Proximity Energy Vp. (2) 
Here c1 •.. c,i are, for a fixed r, constants independent of shape. The shape 
dependence is given by the Proximity Energy Vp and by the following functionals 

of shape: .9 = area of surface~, % = integral over E of K(= ~1+R21), 
~ = integral over E of (~R2)-1, ~= integral over E of K2. Here R1,R2 

are the principal radii of curvature at a point on E. For a nucleus the terms 
-1/3 '-1 ' in c. are of order A(A )1. The last term in Eq. (2) is less familiar and is 
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the subject of the next section. 
4. 1HE PROXIMITI ENERGY/1/ 

The expansion in A-1/ 3 given above is an asymptotic/2/ expansion and fails 

if there are violent contortions in E, for example such that elements of the 
surface face each other across a gap or crevice whose width is of the order of 

the surface thickness. If this width D is only a slowly varying function of posi­

tion the additional energy may be approximated by 
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Vp ~ J Je(D)dx dy. (3) 

Here e(D) is the interaction energy per unit area between two flat parallel 

surfaces at separation D and the integral is over the gap or crevice, asswned 

to lie approximately in the x-y plane. 

For the family of gap or crevice functions D(x,y) defined implicitly by 

N 
L c Dn = axZ +! yZ (= r Z), 

n=O n a 

where a is an area-preserving transverse stretching parameter, Eq. (3) leads to 

the simple result (independent of a) 

N 
V = 1T L n c I n-l' P 

1 
n 

where r I If e(D)dD, n 
s or 0 

are moments of the universal interaction function e(D). The lower limit s or 0, 
distinguishes between gaps (in which case D has a least value s and, for nega­
tive s, the two objects overlap) and crevices (in which case D is zero at a finite 

value of r, given by reo, and there is no density doubling.) The case N = Z, for 
which the relation between D and the "stretched" cylindrical radius vector r is a 

conic section, gives 

(4) 

where, for gaps, 10, II are two "universal" functions and, for crevices, two 

"universal" constants, characteristic of the material of which the surfaces are 

made. Gaps or crevices corresponding to the following shapes are covered by Eq.(4). 

(For crevices the overlapping portions are erased.) (i) For two juxtaposed 

coaxial parabolo~ds with radii of curvature at tips Cl ' Cz and tip distance 

s (which may be negative): cl = ZR, Cz = 0, where R = ClCZ/(Cl + CZ) = C. 
(ii) For two equal coaxial spheroids with semi-axes C, B (C along the line of 

centers) and tip distance s: cl = BZ(C + ~)/CZ, Cz = -BZ/4CZ. For spheres C = B. 

(iii) As above but with one spheroid infinitely large (i.e. a plane): 
Z Z Z Z. . 

cl = ZB (C + s)/C , Cz = - B IC. (lV) For two equal juxtaposed hyperboloids 

with axes C, B, (C along the line of centers) and tip distance s: 

cl = BZ(C - ~)/CZ, Cz = BZ/4CZ. (v) As above, with one hyperboloid degenerating 

into a plane: c
1 

= ZBZ (C-s) /CZ, Cz = BZ /CZ. (vi) Single hyperboloid of one or two 
sheets: cl = 0, Cz = BZ/4CZ. (vii) Coaxial juxtaposed circular cones with semi-
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opening angles aI' a2 and tip distance s: c2 = (cot a1 + cot az)-Z' c1 = - zsc Z' 
(viii) In addition, for the case of a gap between two coaxial elliptic para­

boloids with tip distance s, with radii of curvature Al and B1 in the principal 

planes of curvature through the tip of paraboloid 1, and A2, BZ for paraboloid 2, 
and azimuthal angle cp between the principal planes of curvature of 1 and Z: 

cl = 2R, c2 = 0, where 

(
1 + 1).2 (1 1) 2 A A Bl3 sm cp + Al3 + AB cos cp. 
1 2 1 2 1 2 2 1 

By taking the negative derivative of Vp with respect to s in case (i) (which is 

a lowest order approximation to the general case of arbitrary gently curved sur­

faces with least separation s) we arrive at the following Proximity Force 

Theorem: "The force between two gently curved surfaces as a function of the sep­

aration degree of freedom is equal to the interaction potential per unit area be­

tween two flat surfaces, times 2n into the geometric mean of the principal radii 

of curvature of the gap width function.'~ Thus 
a Vp 

F(s) = - __ = 2n R e(s). (5) 
as 

The (universal) function e(s) vanishes for s beyond the range of the sur-

face width, has a minimum of about minus twice the surface energy coefficient 

y when the surfaces are in solid contact at s ~ 0 (and the two bodies have 

combined to make approximately uniform bulk matter), and then rises linearly to 

infinity as the bodies pile up, with s going to negative values. It follows that 

the maximum attraction between two gently curved bodies is Frnax ~ - 4nRy. 

Introducing a unit of length b proportional to the width (diffuseness) of 

the surface, the proximity potential may be written in terms of a dimensionless 

universal function ~(s): 

Vp 41TyRbe<l>(s), (6) 

where r e(s)ds, ~(s) (2yb)-1 s sib. 

s 

J. Randrup, using W. D. rkYers' version of the Seyler-Blanchard nuclear 

Thomas-Fermi method/3/ has calculated the universal nuclear function ~, to which 

an excellent analytic approximation is (see Fig. 2): 

~(s < 1.2511) } (s - 2.54)2 - n (s -2.54)3, (7) 

with n 0.0852 ~ 1/12. 

~(s > 1. 2511) 3.437 exp(-s/0.75). (7a) 
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Fig. 2. 

The universal nuclear function <p(n. The 
circles give the cubic and exponential ap­
proximations joined smoothly at the dashed 
line. The dots are the continuation of the 
cubic to where it touches the ~ axis at 2.54. 
The Fermi levels touch at ~t = 2.71. 

The following values of the parameters entering Vp would be reasonable for a nu­
clear system with total neutron, proton and mass numbers N, Z, A: 

Surface Energ/4/ y = 0.9517 [1 - 1. 7826 (N A Z) J:::l - 2(N A z) 2 MeV/fm2, 

Surface Width/ 5/ b z 1 fm, Nuclear Central/5/,/6/ Radius C = R - b2/R, 

where R = Effective Sharp Radius = (1.13 + 0.000ZA)Al / 3fm ::: 1.15 A1/ 3 fm. 

5. ACCURACY OF TIlE LEPTODERM)US TIIEOREM 

First a comparison with the exactly soluble mathematical model of Krappe 
and N~7/ of two sharp spheres (surface separation s), whose volume elements 

interact by a Yukawa interaction of range ~ and strength written as Vo/4~a3 
For a single such sphere of radius R the exact energy is 

V = Vo [-4~R3/3 + 2~aR2 + O.R - 2rra3 + 2~a(R + a)2 exp (-2R/a)] With 

Vo = 2.2105 MeV/fm3, a = 1 fm, R = 1.2 Al / 3 fm this gives: 

V = - l6A + 20A2/ 3 + 0.A1/ 3 - 13.89 + l3.89(1.ZAl / 3 + 1)2exp (-2.4Al / 3) MeV 

= - 250 + 125 + 0 - 13.89 + 0,55 MeV for A = 16.625. Equations (1) and (2) 

applied to this case give V = 2.2105 MeV/fm3 
[r+ a~2 + 0.%-3a3~ /32-

a~/8] = - Z50 + 1Z5 + 0 - 13.89 MeV. For two equal spheres separated by s the 
exact additional interaction energy is V. t/4~a2y = - 4(p cosh p - sinh p)Z. 

. -1 . ill 
(0 + 2p) exp(-o + Zp), where p = Ria, 0 = s/a and y is the surface 
energy coefficient given by aVo/Z. This amounts to -9.35 MeV for 0 = 0 and 

-Z.95 MeV for 0 = 1. The Proximity Formula applied to this case (using for the 

radius of a Krappe-Nix sharp sphere, generating a diffuse potential, the mean 
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between the central radii of the density and potential distributions) gives 
_I 2 1 -1 Vp4na y = - 2 (p - p )exp(-a - 2p), which amounts to -9.51 MeV for a = 0 

and -3.50 MeV for a = 1. 
The second comparison is with the Orsay Group calculations/

8
/ of the inter-

action potential as a function of the separation degree of freedom for 17 pairs 

of model nuclei described by the "energy-density formalism." As required by the 

proximity theorem the 17 potentials are approximately reducible to a universal 

function whose appearan(:e is quite similar to our <1>. The absolute magnitudes 

th ·"3 ·11 th·· th f 63eu 197A are also about e same. F1gure 1 ustrates 1S ill ecase 0 + u. 

Fig. 3. 

The proximity potential Vp between 63 eu 
and 197 Au (circles) compared with the 
Orsay Group calculations with two sets of 
parameters. Set II (dashed curve) is the 
preferred choice. 
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6. WE FROZEN IDEALIZATION 

If all the degrees of freedom except the separation s are frozen one can 

have a lot of fun with the cubic or cubic-exponential approximation (7,7a) to 
the nucleus-nucleus interaction. Thus let us write the interaction, including 

Coulomb energy, as 

VCr < r l ) = Vp + V Coul, 

= 47fY C b( - i 02 
+ n 03) + (ZTZpe2/r1) (1 

= (ZTZpe2/r1) (1 + klo - k2 02 
+ k3 03): (8) 

Here ZTe, Zpe are the target and projectile charges, r1 (equal to ~ + cp + 2.54b) 
is the distance at which the cubic nuclear interaction comes into play, 0 is the 

dimensionless penetration variable (rl - r)/b, v is b/rl (about 0.1 for many 

systems), and k(o) stands for the cubic whose coefficients are 

6 
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1 -1 -1 Z 
~ = v, kZ.= v(Z-X -v), k3 = v(nX + v), where X is a dimensionless "Coulomb 
Parameter": 

Coulomb repulsion at r1 
Nominal maximum nuclear attraction 

Finally Et is ZTzpeZ/r1' a natural energy unit of the problem. The distance r1 
is a natural 1ength--it is also close to where the Fermi levels of the nuclei 

would touch, and is thus approximately where nuclear reactions would begin to 

occur. Here is a list of analytical results that follow: Touching 
Z ( :::: reaction) cross section (Jt:::: 'TIT1 (1 - E/E). It starts from zero at the 

touching energy Et (see Fig. 4). Barrier position 0B and height B in 

3000 

2000 
&J 

E 

b 

000 

o 

s=254fm 
IBAr + 121Sb 

40 51 

I 200 300 
Et B (Et Eon (MeV) 

Xal7&9-4074 

Fig. 4. A scattering diagram for gAr + I ~ I Sb 
calculated using analytic formulae. The 
cross sections for penetrating to various 
values indicated on the right are shown 
by the dashed curves, some of which, 
for lower energies, are intercepted by the 
curve urn' The circles are recent experi­
mental measurements (by H. Gauvin et 
aI., to be published in Physics Letters) 
which suggest penetrations to about 0.8 -
1.2 fm beyond solid contact. 

V(r): 0B = 00(1-/1- Ao), B = Et k(8B), where 80 == kzl3k3 and A is a "Pocket Param­
eter" defined by A:: 3k1k3/k~ = 1ZnX . (1 + v2X/n)/(1 - ZVX)Z :::: X/(l - ZvX)Z for 

small v, ::: X for very small v. The "pocket" in VCr) spills out at A 't= 1, 
z-:---:::-z- cn Z 

i.e. at a critical Coulomb parameter X = [/(3n + v) + Zv - (3n + v))/4v cr 
- (1 + 4v)-1. The critical (limiting) value of 0B is then (!z - vX )/3(n+vZX ) cr cr 
:::: Z(l + Zv)/(l + 4v). The limiting value of B is B = Et (l + Zv/3(X- 1- Zv)) cr cr 
:::: Et (l + Zv/3(1 + Zv)). The depth of the pocket in VCr) is 4k~EtC1-A)3/Z/Z7 k;. 

The cross section for penetrating to below a pre-assigned distance r is 

~rZ(l - VCr)/E) Csee Fig. 4), except that with decreasing energy same of these 
hyperbolae are intercepted by the curve (J, which then gives the cross section . m 
for penetrating to r. The equation for (J is 7IT

ZC1 - VCr )/E) , where r locates m m m m 
the maximum in the effective energy VeffCr) when this max~ osculates the energy E 

CVeff is VCr) + L Z /ZMrZ, where L is the angular momentum and M the reduced mass 
of the system). The value of r is r 1 - b8, where ° is the lowest root of the m m m 
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cubic K(o) = E, where E = E/Et and K(o)= i + K15 - K202 + K~03, with 
1 -1 1 2 3 -1 5 -1 2-Kl = 2 (X + v), K2 = - 2 v + (2 n + v)X ,K3 = 2 v(nX + v ). The pocket in 

Veff spills out when the maximum and minimum in Veff coalesce, whichjoccurs at a 
limiting value 8 given by D - U, where D = K2/3K3, U = (K~ - 3KlK3)~/3K3' The 

limiting energy at that moment is given by € = K(6). In terms of € the solution 

for om locating the maximum is given by 
1 -1 - 3 

5
m 

= D - 2U cos "3 {1T - cos [1- (£-£)/2K3U ] }. 

The depth and width of the pocket in V ff are given approximately by 
232 e 224 325 
"3 B2/B3 and 3B2/B3, where B2 = (2k2 - 6k30m)Et/b - 3L /Mrm, B3 = 6k3Et/b +12L /Mrm' 

The above formulas bring the discussion of nucleus-nucleus scattering in the 
frozen idealization within the realm of an analytic treatment. In particular, 

attempts to correlate fusion cross sections in terms of a "critical distance" of 

penetration/9/, can be carried out analytically. 

7. SCALING 
In the above theory there are two energies (Coulomb and nuc1ear)and two lengths 

(rl and b); hence the two dimensionless parameters X and v. It follows from dimen­

sional analysis that for two pairs of target and projectile combinations with the 

same X and v,. their dimensionless scattering diagrams (with a measured in units of 

nri and E in units of zTzpe2/rl) would be identical (if the frozen idealization were 

valid) . 
It turns out that in practice once X is matched for two pairs of nuclei, v 

I 

is approximately matched, so the situation is analogous to macroscopic fission 

theory, where properly scaled fission barriers, spontaneous half-lives, frag­

ment energies etc. should be primarily universal functions of the fissility pa­

rameter x. The following table lists two systems which are "similar" in the above 

sense. 

X ZTZP EtCMeV) 
2 7frl (mb) 

Hf180+ Ar40 
72 18 0.5542 0.4517 0.0796 1296 148.6 4954 

84 Kr36 + 84 Kr36 0.5531 0.4486 0.0819 1296 152.8 4688 

Note that A (or X) are roughly proportional to the fraction 

ZTZp/ Arl / 3 Ap1/3(Arl/3 + Apl/3), of which the numerator is often the controlling 

factor. The ordering of experimental cross-section data according to A (or X) 

8 
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might serve a similar purpose as the ordering of fission data according to x: the 

assessment of the validity of the underlying idealizations and the isolation of 

the expected deviations. 

8. OlliER DEGREES OF FREEDOM 

The expected deviations from the frozen idealization are associated with 

unfreezing: (~) Other shape degrees of freedom, (b) Fragment-orientation de-

grees of freedom/10/, (c) Internal degrees of freedom (this leads to dissipation). 

In connection with (a) J. Blocki is preparing an extensive atlas of nuclear po­

tential energy maps (primarily sums of Coulomb and surface energies). The param­

etrization is two spheres joined by a conic; each map is for a fixed mass 

asymmetry of the spheres and displays the deformation energy as function of elonga­

tion and neck degrees of freedom. Figure Sa shows such a family of shapes and 

the associated energy for a mass ratio 1:1, Fig. Sb for 1:4 and Fig. Sc for 1:19. 

The fissility parameter x for the whole system is 0.85 in each case (Z : 102). 

Colliding nuclei would come in from the right, touch at the top of the ridge, 

and either be trapped near the sphere (left lower corner) or re-separate, making 

use--as in fission--of the neck degree of freedom. Blocki's atlas covers x's from 

o to 1.5 and mass ratios 1:1 to 1:19. 

I have nothing new to say about (b). Concerning (c) I would like to pose a 

question: 

9. IS NUCLEAR DYNAMICS, SUPERFLUIDITI ASIDE, DOMINATED BY ONE-BODY DISSIPATION? 

Ordinary viscosity in liquids is the result of two-body molecular forces 

which degrade nonuniform collective flows into heat. A different, one-body me­

chanism for exchanging energy between collective and internal degrees of freedom 

is the collision of particles with a moving container wall. This energy exchange 

between wall and particles, calculated to lowest order in the ratio of particle 

to wall velocities, is responsible for the Ideal Gas Law pV = RT! By going to the 

next order in the ratio of velocities, J. Blocki and M. Robel arrive at the fol­

lowing formula for the rate of energy flow E into a gas, (macroscopically at rest 

and with mass density p) composed of independent particles with average speed v, 

and contained in a vessel of fixed volume, whose walls deform with normal vel­

ocities specified by n: 

E = p vi il2 
d a . (9) 

[For a degenerate Fermi gas v = (3/4) (Fermi velocity).] This formula applies 
only for Inl« v, and for time intervals during which the original velocity 

distribution of the particles has not been modified substantially by the wall 

motion. To illustrate the order of magnitude of the dissipation predicted by the 

9 
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above formula B!ocki and Robel have added such a damping to the equations of 

motion of an idealized nuclear droplet vibrating irrotationally around the 

spherical shape in its ~th multipole mode. One may define a factor of over­

damping ll, which gives the number of times the dissipation term exceeds the 

value for which critical damping would occur for the given mode. The formula for II 

is 

where m is the nucleon mass and y the surface energy coefficient. The following 

table illustrates the degree of overdamping for 3 idealized nuclei and four 

harmonics (Lysekil/4/ nuclear parameters were used): 

• 
n=2 n=4 n=8 n=16 

20 
lONe 3.01 1.94 1.38 0.99 

l20S 50 n 5.24 2.88 1.94 1.37 

23~ 
92 9.46 3.58 2.27 1.58 

The damping appears to be huge (as with ordinary viscosity when applied to small 

systems/ll/), but note that contrary to conventionally damped drops the damping 

is largest for long-wavelength modes (and large systems). A high nuclear vis­

cosity is indeed implied by deep inelastic scattering, which suggests that nuclei 

often behave like two pieces of tar that get stuck but do not flow together. How­

ever, high two-body viscosity is inadmissible in fission/12/ where it would pre­

dict stretched out scission shapes leading to much too low fission-fragment 

kinetic energies. This stretching out is due to the stronger damping of short­

wavelength modes (like necking) compared to a general elongation. Since with one­

body damping the situation is just the reverse, it is quite possible that in a 

fission process dominated by one-body damping the scission shape would be mod­

erately compact and would reproduce the observed fragment energies. One difficulty 

that this might remove is the apparent lack of temperature dependence of the con­

ventional viscosity that would be deduced from fission (the fragment energies are 

practically independent of the excitation of the nucleus in-the range of a few 

to 100 MeV). This is difficult to explain with ordinary viscosity which should 

depend sensitively on temperature. For a Fermi liquid like He3 viscosity goes like 

T- 2, which is associated with the need to fin~ for the two colliding particles, 
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unoccupied two-body scattering states in the diffuse region (of width proportional 

to T) in the Fermi momentum distribution. In one-body excitations this problem is 

not present, and so the one-body dissipation might only vary slrnvly with temper­

ature. (The v in Eq. 9 would only change substantially when T: 20 MeV). 

It seems to me that in nuclear dynamics we may be at a stage analogous to 

the time around 1950 when, after some 15 years dominated by the prejudice that 

two-nucleon interactions were overwhelming, it was realized that, after all, a 

one-body approach, with independent nucleons put into a common container, was a 

fair starting point for discussing nuclear structure. The one-body, dissipation­

dominated, nuclear dynamics should be explored in the spirit of the fifties, by 

taking seriously the usefulness of the simple concept of a common container, 

also when its shape is a function of time. ~ 

Much of this work was done together with J. B}ocki, J. Randrup and C. F. 

Tsang. Work done under the auspices of the U. S. Energy Research and Development 

Administration. 
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