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BEHAVIOR OF INELASTIC ELECTRONS
Teh Yu Tan
Inorganic Materials Réséafch Division,'LawréncelBerkéley Laboratory and

Department of Materials Science and Engineering, College of Engineering;
University of California,»Berkeleyg.California

ABSTRACT
This study is an investigation into certain aspects of the behavior

'of electrons after they become inelastic in a crystal. Except for brief

discussions in places where circumstances require, it is not our intention

to treat the various inelastic scattering mechanisms.

Inélastic'electroné cafry iﬁformatigﬁ such as image and éharacteristic
lqss spectrum of the specimen.:‘In a diffraction paﬁtern; théy élso form,‘
liﬁe and band‘intéﬁsitj distributioné known aé Kikﬁchi pétférhs.‘ Attheory,
which is é,pplilcabie to calculations of both Kikuchi profiles and imagés |
formed by inelgétic electrons, is formﬁlétedfin terms of Bloch WaVés for
which absorptions of both elasfié and‘inelasfic éleétfdns are considered.
Analytlcal solutlons of the problem of Kikuchi intensity dlstrlbutlons
for a four-beam case (two elastlc and two 1nelastlc beams) is obtalned.

It is shown that the follow1ng aspects of the behavior of the Kikuchi pat—
tern are explalned: (1) the formation of the Kikuchi line pair, (2) the
formation of the Klkuchl band and 1ts changes in 1nten51ty from excess to
def1c1ent,v(3) the Kikuchi line contrast reversal, and (h) the varlatlons
of the Kikﬁchiiline spacing with specimen_thickness.v C@nsideration of

a systematic many-beam case for a ihick crystal shéws that f6r this case
the Kikuchi pattern mayvbe simply.calculafed from sdms of rocking cﬁrve

intensities.
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The design and.opérational schematics of an- energy analyzing micro-

scope constructed atiBérkeiéy is given in thé second part bf this thesis.

It is thoughf thét the'applicébilitj of this technique tb microanalyéis o v

of local_cﬂemical c?nstitutiéns of a crystal specimen_By.anﬁlyzing
Variations'ih'plasmén:losé sﬁéctrum ié limited to Al baSié'alloys.lAThis
is sd, becéuse other ﬁéterialS-do not poséess a weld defined éhafp plasmon
loss‘épectfﬁm._‘Hdwever, éxpérimenfs could be.perforﬁed by appiying this
tecﬁﬁiaue‘té'measurements of other charaéteristic losses ofvfhé crystal;.
.Such as the energy band gap of a semiconductor.

. A.réview of the dynaﬁical theory of (elastic)_electron diffraction
-in cry§tals; which fofms thé necéssary background knowledge.of this study,
is given iﬂ the appendix; vSince.many.similaf or equivalent”developments
can be found'iﬁ most texts and iitératureé on the subject, mathéﬁatical ‘
details afe avoided Wheﬁvpossible. Soluﬁions of the.many beam and(image
problems ére'formulated in termsléf the dispersion matrix. = Methods for
-calculating this matrix‘are given; The disperéibn matrix is of phjsical
importance‘because it réveéis the mulfiple,scattering nature of thevﬁloch

waves'formed in the crystal.

Y




I. INTRODUCTION | )
During the course of a-difffaétibﬁ expérimént in the électfon
michscopé,‘a certéin fraction of th¢ high energy electrons Qill suffer
from‘inelaStié'scattefings, thereby.iosing a émailvamount>of energy..
These electrqns are called inelastic.eiectrons. _Inelastic scattéfing of
electrons»ﬁay take‘piace by‘excitétions ofja nuﬁber of.eleﬁentaryuparticle-

waves in the crystal, e.g., a phonon, a plasmon, or the ionization of an

inner. shell electron; Iﬁ‘is not the purpose of ‘this Study to invéstigate

the various kihds of inelastic scattefing meéhanismé, but.rather,'thé

behavior of the electrons after they become inelastic.

Just iike the elastic elecﬁronég the iﬁélastic electrons will also

be Bragg reflected and form Bloch waves which are subject to further in-

elastié écatteringsvin‘the érystal.v.BefOre impihging‘upon fhevcrjstal,
eléstic élééfron beams can be manipﬁlated'to beﬁave:ﬁﬁch as a ﬁlanelwave
and are oﬁly'iimited By:the pérformance of the mitroécbpe._ Inelastic
electrdns afe, however, genérated insidé the\cr&stal wifh a lafgebéngular
sﬁread; Elastic.beams are éiiowed aloﬁg definite directions and'héncé
form spot patterns; on fhe other hand,‘the.large éngular spfead ofbin—
elastic electrons allows the formation ofﬁcontinuoﬁs intensity variations
guided by pairs of cones, which, when intersected by.thé feéording:piané?
approximafe_to 1ine pattefns: the Kikuchi patfern; :TﬁrOugh the.deﬁtﬁ of.
a thin specimen, elastic elecfroné ma& be regarded as’fully coherént.

Inelastic electrons génerated at a definite depth of the'crystal; how-

‘ever, lose coherency with elastic electrons as well as with other inelastic

electrons of the same energy state which were not generated within the

distance of a coherence length for the inelastic electrons.
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Depending,upon £he inelastig scattering mechanism,>the éoherenée
length of inélasfic electrons may range from a few angStroms‘(due to
excitation-dfba phonOQto a few hundred/anéstroms'(duélﬁo excitation of
a‘plésmonj. Bbth elasfic éﬁd inelastic electroﬁs form images. However,
imagés_pfoduééd by the noncoﬁeréntnineléstic électrons may 5e_sufficieﬁt—
ly differéﬁt from that produced byrelastié éiectrqné that cguse'obscuring
df'images to bccur. Thevdésirabiiity of the removal 6f images produced .
by inelastié électrohs leéds to the cdnéfruction of eﬁergy seiecting‘
microscopes. ‘Nevertheless, inelastic electrons should ﬁof be simply re-
garded as a total nuisénce,:because they carry inférmétibn in the form
.of ‘an energy loss épéctrum which is chafaéteristibrof}the material; When
properly displayed, informatién coﬁcerning the'electfonic structures of

the crystal may be obtained from these energy léss spectra. To this end,

enérgy analyzing microscopes>can be built{ The échematics'of the design,

fabrication, and possible'applicatibné of such a microscope construdted
at Berkeley will be discussed in the second part of this thesis..
Beside the variouS‘éxperimental fechniques for treating inelastic

electrons, it is also desirable that their behavior be studied and under-

. stood theoretically; As should be expected, there are many such theories

around. vHoweVer: to varying degrees of approximations, these theories
are all coﬁcerned with certainbtypes of ﬁarticuiaf inelastic scattering
mecﬁanisms_ﬁith the result that they are in general too comﬁlicated to
use. The.mathematicai complexity'of theée thgories also necessitates

ignoring the‘absorptions of both elastic and inelastic electrons,'_It

will be made clear in Chapter II that this ignorance ié,é'rather.drastic_

mistake. With these facts in mind, a theory, which is applicable to

o
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calculatiohs‘of'Kikuchi profiles as Wéll'as'images produced by inelastic

electrons, can be formulated in terms of Bloch waves for which absorptions.’

or both elastic and inelastic electrons afe»considered. In this theory,
the initially generated inelastic.electrons“are regarded as having

spherical wave fronts and during subsequent Bragg diffractions through

- the rest of the crystal they are treated as formiﬁg'Bloch wéves through-

out the section of thevfeciprocal spaée in which Bfagg diffractions of
inelastic electrons take place. This fheory is not restricted to any
particular'ineléétié scattering mechanisms, because in the formulatibh

the various scattering .amplitudes aré treated as parameters. The success

of this theory is demonstrated by Calcﬁlations on some special cases of

Kikuchi patﬁerns.
The study of the ordinary dynamical thedry of éleétron diffraction,
given in the Appendix, was initiated as a necessary background knowledge

in carrying out this Wérk. .The solutions of the many beam pfoblem are

derived from the dispersion matrix. The use of this matrix allows solu-

-

tions of problems with multiple excitations eaéilyvobtainable, such as

the Bragg fescatterihg of inélastic electroﬁsﬁ The“properties'of the
dispersion matrix and methbds_for éalculating this matrix.are discussed

in detail. Thé iﬁter—beam énd inter-Béanch (of £he'di§persion surface)
multifle‘scétfering ﬁaturé of thé Blocﬂ waves iﬁ the crystal isvméde _
clear thrqugh the‘use, and only through the ﬁse, of'the dispersioh>matrix;
A more accurate and fastér method'fof_computing.imaée pfbbléms:is developed

3 .

also by use of this mafrix; |



v

II. A THEORY OF KIKUCHI PATTERNS

A. Origin of the Kikuchi Pattern

In addition to the presence of the Bragg spot patterh due to
elasticiscattering of the incident‘eléctron beam, 'single crystal
diffractiph patterns often coﬁtain a diffuse background intensity

distribution and a complex pattern of lines and bands known as Kikuchi

pattern. These patterns are formed by inelastically scattered electrons.

" Inelastic electrons contribute‘to the diffuse background in general,
however, a‘certain portion of theée eleétrdns, fér Which'the Bragg law
of feflebtion is satisfied,'fbfms'the Kikuchi péttern; vAséociated
‘ﬁith each (ﬁkl) reflecﬁion, thére:is'a pair of Kikughi lines;rsﬁetween‘
~these two lines, an excess or deficiency in eiectrons may be'preSept.
The (hk%) pair of the Kikuchi lineélis usually 6bsérVéd to be
perpehdicﬁiaf tofa line jéining the (000) ahd'the‘(ﬁklj spots, as shown
in Fig. II.1. o R -
Anvelémentary geometric theofy.explaining the formation.ané
constrast of the Kikuchi linesvmay-be atfained by following Kikuchi.l
When only a kinematical diffraction condifion is satisfiéd by the
incident eiastic electron beam, the "diffraCted"_line-of the pair, i.e.,
the line nearer to the (hkf) spot but further away from the‘(OOO)_spot,‘
always contains én excess number of eiectrons, while.the'"transmitted"-_
line alwéys suffers froﬁ é deficieﬁcy of_electroﬁél In this simple
theory phe,inelastié electrons are regardéd as rigid'particles, thereb&»

the interactions due to their wave properties are ignored. A further

oo
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assumption is that, on traﬁeling-thrdﬁgh'the rest of the crystal after

the inelastic electrons are generatéd, they-aré Bragg reflected oniy

once.

Now consider the subsequent Bragg reflection of inelastic
electrons whiéh suffered only a smalllenergy loss. Referping'to
Fig. II.2, let thé inelastic scattering occurs at P, whiéh, after the

inelastic scattering, becomes the origin of a spherical wavelet. The

- angular distribution of the ihélasticaily scattered electrons is peaked

in the directién of the incideht béam, op, énd théiintensity of these
eléctrohé aecreaées monotonically with increasing.scaftéring angle.
Variatidns ih this intensity distribution occur Because in certain
directioné;nia_and r, the Bragg law of_reflectioﬁ is satisfied. The
ray pg will then be reflectedAintd difection aq', and.ﬁ; into rr'..
Since op is making-a'smaliér'aﬁgie with ﬁalthén 5?, the intensity of
the inelastic_elecfréns is:gfeater'albng pq than 5?.\'Cdnééquéntiy,
ﬁhe,intensity along qq! becomes greater than that'albng'FF'. Wﬁen all
possibie diréctions for: relections from a given set éf crystal planes

are considered, it is immediately seen thaf.the directions along which

gains or losses of inelastic electrons occur are given by two cones of

rays with a=sémi-vertex angle of 90°'; eB, as shown in Fig; I1.3. These o
cones of.fays”bf iﬁelastic elécfrgné intersect the.viewing.screen or
photo plate sgme,distance away from thg crystalvto form two braﬁcheé
of ‘a hyperbola which»can be closelj‘apprOximated-to straight lines;
dué to the sméll value of GB.- It is seén from this simplé theory“

that thevénguiar separation between the two lines.of the Kikuchi pair

P
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i transmltted (deficient)
I » T ‘line ' _
' band
(hkl) o _ _
‘ l - diffracted (excessive’)
) ~line .

Fig. IT.1 Geometry_of'Kikuchi nattern upon‘obsérvation.

o .
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v,Flg II 2 Geometrlcal explanatlon of the black—and—whlte
' ‘nature of the Klkuchl llne pair.



Idcident'beam

/Reflecting plane

‘Deféct cone
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F"ig. II1.3 .Inelas't‘ic‘_electrons_ generated at an imelastic -
scattering center p have spherical wave front,
but only along directions in two. ¢ones separated
by a Semi-Vertex angle 6_ the Bragg condition
. N B . :
is exactly satisfied. .



~is 26B3 an in#ariant,'andAthat>theItwo lines are plaéed_symmétrically

" on both'sides of tﬂe (hkﬁ) plangs.'»When specimen is tilted, the Bragg
.spots do not ﬁove,vbutvthe.individual.qup chaﬁges inﬁenéity, 'On the
other hand,.the Kikuchi. 1ines move with thé speéimeﬁ.és if they are fixed
to the_(hk%) latticé.planes,-so.thét‘their direétidnvandvmagnitude bfv

' movémeﬁf revéal fhé ofientafion éhaﬂge of fhe érystal; Notice that in
the cfyétalg'ﬁany differént éeté of Bragg'conditions.may be.satisfied

by the ineigsfic.electrons,'hénce even,in fhe two-elastic-béam_case,

the diffraction pattern contains many pairs of Kikuchi lines.

B. Some Intricacies in the KikuchivPattern

_Alﬁhough Kikuéhi's simple theory is capable of expléining the
origin andicontrastvof the Kikuchi lines,'it suffers‘from ité own over-
simplified assumptions. Notice in this theory not:only that the wave
propérties of'all'elegtroﬁs are ignored as well gs only one source is
considered; but also that.this argﬁment is strictly gedmetrical and
. thus makes its applicability restrictedbto only the two cones of rays
ofvinelastic.electrons separated by an angle 205-

More intricacies of the Kikuchi patterns arise because of the

the following reasons: (1). there is always more than one elastic -

electron beam to serve as a source of inelastic electrons, (2). because .

of their wave property, electrons are always interacting dynamically,'
(3). interactions between Kikuchi electrons due to different sets of .

diffracting planes- occur.
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, Unlike the elastic éiectfons which can be manipﬁiaféd to enter
the érystal in well collimated béams'and.hence'may possess a well defined
planar wave_ffént to start with;.inelastic électréns thaf are generated
havevsphérical'ﬁaVe fronts. One immédiate consequence of this property
" is that for inelastic éieétrons traveling in directiqné'édjacent tovthe
two Kikuéhi cones, Bragg'léw of reflection ié nearly satisfied, thus |
electronvinﬁehsity diétiibutions adjacent to the fwo lines of the
_Kikuchi'pairlhas to be froperly considered. In fhe_region between the
two lines of fhe'Kikuchi pdif; there exists a hon—negiigible‘elecfron
intensity dikstribﬁtion, ‘knoyrn as a Kikuchi band. The intensity of a
Kikuchi baﬁd ié'obséfved to éhangé'frdm an excess to‘a‘deficiency>of
electrons with an incfease of spédimén thickness.or a decrease of

incident electron beam.energy.2’3

'Similar to the subsidiary maxima
of Kossel patferns in x—rays,vthe subsidiary ﬁaxima of Kikuchi patterns
have also Been obéerved for years, as described by Uyéda et.al.

When dynamical diffraction condition for the ihgident elastic
beam is satisfiéd, situations become even more compliéated;  Thomas‘and

Bell5

observed that,vwhen Bragg condition is.exéctly'satisfied, fﬁe two

»lines of the Kikuchi pair may Cﬁénge their_contrast.  This phenomenon.
is specimeﬁ.fhickness depeﬁdeht. Neﬁ‘eXperimental evidences éurrently

. reported By Tan,'Bell and '/I‘homvas'6 alsb shpwg coﬁtrdry'to the predictidn
,éf Kikuchi’s‘simplé-theéry,:which haérbecome almost a common bélief,
that.the Kikuchi angle (Bragg angleS_fof Kikuchi electrons) shduldv

always be 20_, that the apparent Kikuchi angles can be quite different

B,
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from the corréSponding-Bragg angles. This result is-also specimen thick-

ness depeﬁdentﬁ

C. A Review of_the Exiétigg Theories

..S.j.nc'e Kikuchi's explanation of the origin of Kikuchi lines in 1928,1
the Kikuchi patterns receiyéd no adeqﬁate attehﬁion:until i935 when:Léue7
pfoposed a;fheéry of Kossel pattéfns in X-ray diffractiéns in whichra |
spherical wave is tfeatedidynamicaily.' In this theory Laue used,fhe
reciprocity>theorem of optics to simplify thé necessary mathematics. He' 
" also proved the reciprocity theorem for electrbns and triedvto explain
the Kikuchi patterhs by extending the Schrodingér equation to ‘the case

that a sofée of electrons is present inside the crystal. Laue's theory is

superior in the sense that it treated the spherical wave ahd adopted the

. 9

dyﬁamical treatment. Later, Laue's theory was extended by Lamla,8 Artmann,
and Fues and Riedello for the expléﬁation bf Kikuchi.envelopés aﬁd bahds-
Theories baséd on Laue's ofiginal'work‘suffer ffom one COmmén shbrfcoming;
that in Laue's theory only>é point soﬁréé, or; a source df size smaller
than the wa&e—length of the electron is chsidefed. As a result , the
intensity of the Kikuchi pattern is perfectly determined‘by the orientation

of the crystal relative to the viewing screen and is independent of the

incident direction of the elastic electron beam.

Although in 1948 Laue presented his theory in revised form.in-which : _ " 5

the source was regarded as the resulf of inelastic scattering'and was
extended through out the crystal, the theory was not:fufther déveloped to
‘draw .any conclusive results.ll Howevér, in 1955 Kainuma arrived5at the

same conclusion Laue did and applied the theory to a tight binding model
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of a crystal to calculate the.Kikuchi intensity pquiles. ‘Hé succeeded -
in correcting Laﬁe'évresult to'bfing out the contraét df ﬁhe Kikuchi line
intensity as disguéseq in association with that of Fig. II.1. A Kikuchi
band‘structuré:ﬁas élso.eQidenfifrom Kainﬁma's_theory. However, the
intensify in'ﬁhe béﬁd is réstficted to alwéyS'having_aﬁ’excéss of electrons.12

Sinceythen Kikuchi patterns have received extensive studies in association

with different mechanisms of géneréting inelasfic electrons. The physical

N

processes that are responsible for thévﬁroduction of inelastic electrons

" involve the‘genération of many different types.df élementéry excitations

- in the'cryStal. Of these different excitations three types have usually

been considered to be'thé major factoré.iﬁ the'production of' inelastic
eléctroﬁ85 They are the thérmal diffuse séattering.(ﬁhdhon eXcifatioﬁé),
inﬁer shell: electron éxcitations'and plasmon excitatioﬁs. Dﬁe fo the
extfemely-smail ambunt of energy loss involved with'thé'phonon excitations,
aside.from:thé factbthat they do‘give risé to Kikuchi_pétterﬁs,'inelastic
electrons generated by this‘ﬁechanisﬁ.are ﬁSﬁally_not'separabié'from the
elaéti¢ electrbns iﬁ Qrdinarj élecfron.microscopic‘ﬁofk.' Cn'tﬁe'other
hand, inner shell electfon excitations and plasmon‘exCitations involve .
relatively large energy lésSes:(e;g., greaﬁer.than several ev as com~
pared to"less than_O;OQ,ev for pﬁondn excifatibns), theée energy losses'
X | 13-15 |

can be measured_by.ah‘eﬁergy'énalyzer, In ordinary image work thé

inelastic electrons thus'generated'can be filtered out by the use of &an

B L . 16-19
energy selecting microscope.”
The inner_shell electron excitons_wére studied by Kainuma in hisl,

theory ovaikuchi'pattérns.lg. in thié_théory a Thoﬁas-Fermi model of

atoms is used. In 1957, Yoshioka's work on justifying the imaginary pért
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of the lattice potential.by Fourier aﬁal&sis.ofithe ﬁatrix elements of
the intéractioh Hamiltonian of inelastic scatﬁefing;.in wﬁich a:ﬁight
binding modél bf cfystal was‘ﬁsed to pfoduce tﬁe inner shell electron
excitations, was a majbr achievement in electrén Ihicroscopyf20 Plaémén
excitation, or the collective excitatibn of condubtion'band electrbns,/
was first sfudied by Bohm énd ?ines,21 and later by Ferrell;ez, The.
plasmon exéitations have a coherenée lehgth of‘typically sevefal_hundrea
éngstfoms, céubied ﬁith the small ehérgy'loss and momentum transfer inf’
. volved, this 1ong coherencé_length.accounts for the simiiarity in images
: producéd from plasmon scattered electrons and from Bra.gg»bel’ams.23

To varying”dégrees.of approximations,'thermal diffuse scattering
(phonon scattering) is a more extensively studied area. Hall and ﬁirsch
treated the Bragg beams as/Bloch waves.of'the two beam dynamicél theory
and the inelastic electron beams resulting from phonon excitations as
plane waves.Qh' Thisvapéroéqh waé'usefﬁi in explaining anoﬁélousvébsorp—
tion, but could not givé the detailei intensity distributions of the
thérmally'scatteréd electrohs. This wofk was eXtenaed from an Einsﬁein
model fo a éne phonon énd to an aéproximate mény’phohon Debye‘modelvby

Hall.25

Yoshioka and Kainuma26 used the fundamental.equéfions for dy-
namical diffusé scattering deﬁeloped by Yosio‘k‘a,aO to study fhérmal
absorption from elasﬁic waves, in which, when éonsidering specific cases,
the interactions between the diffuse waves were ignored. Other.theorie§,
using a weaﬁ beém approaéh or time—independent'perﬁurbation methods,

27

have been fqrmulated by several workers, e.g., Kainuma and Yoshioka,

29

Fukuhara,28 and Kainuma.

Takagi includéd dynamical interaction of diffuse waves, and, in the
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case of_two'beaﬁs in thick érystals,‘showed that the thermal diffuse
: , . : v : o
scattering can form Kikuchi patterp.3o Later, his wdrk was extended by
Fujimotd and Kéinuma to thin cryétéls.3l ‘Gj¢nnes’;0hsidered diffuse waves
as n-beam dynamic. Assuming incoherent diffuse scattering from each |

region of the crystal,32 he achieved a quélitative'deséription of the

profileé of Kikuchi lines and bands. 'Based on the theory of Cowley and

Pogany_,33 Doyle numerically computed the intenSity'distributions of the

thermal diffusé scattering along a systematic row of excitations in which
| 34

the n-beam interaction and-bartial coherenée~were considered.” Most re-
cently, Hall discussed the crystal thickness dependence of Kikuchi bands

" due to thermal diffuse scattering.?’/_5

D.  Formulation of - the Theory
Consider the intefaction of high energy'electrOns with a crysﬁal.

The Schrodinger equation of the systemis

v

{' LN T H(:r,f:,).—E} e > =0, ()

where' q isithe:crysﬁalbcoordinate, Hc(q) is the Hamiltonian (erergy) of
the.crystal,.rris the electron coordinate and H(r,q) is the interaction
Hamiltonién betwéen the eleétron and the_crystél.‘ We . will not specif&

the explicit_form of the interaction Hamilton in this-theory; buﬁ:rather,
a phénomeﬁoldgiéal:descriptién will be inﬁrodu@ed latér.‘ Physicaily this 
corrésponds:tovignoring the dgtailed iﬁteraction (inelastic scattering)
mechanism, and descfibing the:résult phenémenoibgically. Thé-total wave
function ‘%(Y,ﬁ))» may'be.expressed as the prodﬁéfsbof the'érystal states |

\‘%lq)) and rhe e rve‘:’i’e“.‘\"“‘a elecrronic ""T“fes 1>

1l

3 ‘l‘ rf%f),)) = i_ ijn}s'cqu)}_, o (1m.2)
: : J : . .
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where the_crystai energy states are given by

He g 1> = B o>, | . (11.3)

The sﬁbstitution of Eq. (II.2) intoqu. (IT.1) and then the multiplication

of the Hermitian conjugate of the erystal states, i.e., 2-‘< quLQQl 3
: . J )

- yield

{—'_T‘ vt He () - tE-Eo')g l-%(»ﬂ>'=~;{-° H; V0>

P AN

{_i\f_ v, +H vy - (BE-E; )E Ww)>~~iH \‘I'N')> (II-S).

W

where

Using a tight bonding model for the crystel aﬁd neglecﬁing the influence
of Bragg reflections on the inelaetic_electrons, i;e., assuming the
interaétion”betweeh fhe electroﬁ and the‘cryetal is-ﬁurely electrostafic
and the inelastic electrone are appfoximated by theif ésymptotie'fo;m,
Yeshiokaeo_was able to show fhat the influence of the ineleetic elec-

" trohs, i.e., the term-é:*{ HPuﬁ>on the rlght hand side of Eq. (II.L),
J¥

is to effectlvely 1ntroduce an imaginary part into the lattice potentlal*-

for the elastic electrons (the Fourier serles form of the quantlty )
Hg(r)). Thﬁs, by dropping the ket notation, Eq. (II.4) reduces to the

wave equation of elastic electrons

\SVHAR 'kbr + i Ur L“'GXJ} \l» (x)- o, ' (T1.7)

e

(IT.L)
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wherquZ‘is_coﬁéler ~ The meaning'of the various quantities and the
solutioﬁ of‘43ﬁb ls described in detail in the appendix, however, with
the script “o" now used to denotebthe ground state of the crystal and
correspondlngly the elastlc electrons _ |
| On the rlght hand side of Eq. (II 5) the terms % F4 |+ > represent
San '
the electrons scattered 1nelast1cally into or out of the ith state
for.J < i, electrons 1n_state»j‘are‘inelastlcally scattered into state i.
and these terms are the source_terms for the state ig.for'j > i, eleo—
trons In the state i are scattered into‘states J and these terms are thus
representing the absorption of electrons‘in state_i; Upon casting the
absorption terms as the lmaginary part of the lattice potential, and
_noticing'that'among the source terms_oﬁly the term ¥Vi4g is large

enough to be kept,_Eq. (II.5) is readily_reduced to.

WETY g e g II1.8)
A L

Notice that.in Egs. (II.T)_and.(II.8) the‘total.electron lntehsity is
automatically conserved} For high energy electroﬁs, the energy aiffer—
ence betweeh the elastic and inelastic”electrons is very small compared

to the energies of.the electrons. The crystal potentials for—the elas=-
tic and 1nelast1c electrons are then v1rtually the same for a falrly thlck
crystal. In a .crystal the relatlon qJ\q) ¢>(g) is always true and
hence the quaptlty Ho(r) is practlcally‘equal to’ Hi(r)i It folloys that.
the real parts of thetcrystal potentials ofvboth the elastic and the ln-
velastic electrons:are'the same. vThis is necessarily_so; since the‘real'

parts of the. lattice potentials give rise only to elastic scatterings;
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Because the imaginary parts of the-lattice,potehtials are effectivély

due to multiple inelastic scatterings, the difference between that of the

elastic and‘inelastic electrons may~an»be neglected only if the crystal -

is thick enough to allow many multiple inelastic scatterings to occur.
The solution of Eq. (II.7) is given by the usual Bloch wave solutions

of the dynamical'thédry (with absorption):

) ’ ‘ . "“ ¥ | ‘ | .
Vi) e D Cog €77 Roe. : (I1.9)
‘ 2

,Correspondingly, a Bloch wave type of solution may also be assumed for

the inelastic electrosn, i.e.,
L _ Lo k{ f : _ .
'\k Wyry= 3 Gn € h . - (I1.10)
_ ' h : .

It should be'néticed at this point that the inélastic scattering process
is to scatter elastic electrons in each Bloch wave Cbﬁ exp(2m iioﬁ-F)

-into every'inelastic beam Ci vexp(2ﬂiEi ) , hence the interaction

h h

Hamiltonian Hé'describing the inelastic scattering proéess is-actually
a matrix composed Qf elements Hig fdr_all‘ﬁ and h.. Accompanying the
small energy loss due to the inelastic scattering process, a sméll
momentum traﬁsfer must also occur. This momentum tfénsfer can only be
" furnished by the matrix element HiE, and we may hepce write

Tih -

ch oAbk sani ekt 0
Hc,e\_ = HO“‘?\ e

’ ' :v e _'vv(II.ll)

where

Lk s ' | |
A ‘ch\ = 7 kc~€\. - "z;t\ . ‘ (I1.12)
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Aldng the direétioﬁs the elastic electrons propégate, i.e., directions
for which Eiﬂ‘z'EOH (where i dehotes the Qbordinates parallel to the
crystal sﬁrface),‘ this ﬁbmentum tfansfef is.éompletely specified by
theFQuanﬁity Air = Eor ; Eif’ thehdiffefence of the z-components of thé
wave veétors_feférfed té theVSYﬁmetrical orienfation of tHekéiaatic
beam. This précedure correépbndé to a lowering bf'the dispersion sur;
face of the'elésfié electrons to oﬁtéin part of thé‘dispersion surface
of the inéiastic electrons.“AGénerally, however, since the initial in-
elastié eléctron waves generated.have.sphericél wéve fronts, therefore
achntinuous distribution betie—pdints on a numbér_of branches of the
dispersion,surface of &ariou; potential ePérgies; i.é., a range of Ei”’
must be conéidergd, Thevquantity Hig"may then be. obtained by adding
to'AEr anoﬁher.incremehtal momentum AE,»this situationvis shoyn in

Fig. II.h...The quanfity Ak .does not fﬁrther introduée ahy_total energy

difference between the eléstig and inelastic electrons besides that

specified by‘AEr. It does imply, hbwever, that for inelastic electrons

on the same branch of the diépersion surface butvhavihg different values

of Ak, although their total energiesvaré the same, due td the potential
differences represented by each different tie-pbint, their kinetic en-
Al | . .

ergies are different.

The substitution of Egs. (II.9), (II.10), (II.11) and (II.12) into

Eq. (II.8) yields
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Fig. II.L. The dispersion surface of elastic beams (solid line)
is lowered to obtain part of the dispersion surface
of the inelastic electrons (broken line). The quantity

Akr specifies the total energy difference_between the

elastic and inelastic -electrons whereasak specifies only -

the potential (and hence the kinetic) energy differences
" between inelastic electrons propagating in different
directions.
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Upon letting,the,coefficients of each'liﬁearly_independént term

‘T) to zero, we get a set of secular equations in the wave

ih
vectors k.. and the Bloch coefficients C,
ih ~ ih
Culha mthaty v 2, G Uiy
: ' b ‘ (II1.1%)

= ZM_ 2_ H& Czne\".

Equation (IT.14) may be“writtenrout invexplicit_form for the (m+l) beams

~of the inelastic éleCtrons:

I3 N e o Y '
Ué' W ‘kna , U %;-éh “dl Coal
. 2 A
; R
! ' . (-03"
) . (o
. ‘ S ' ."_ -_ o 7.?_. “‘._. by R 0 .
_\ ' 03‘“‘ _ A C ”k“‘ “Q‘a“«l a‘\’.('“a“‘/ B R

©(§.15)

In writing down Eq.’(II.ls)vit is assumed that there are (n+l) beams for

the elastic électrons, where m > n. Equation (II.15) is & set of in-

homogeneous algebraic equations of the'Bldch,amplitﬁdes Cih" The wave

vectors can be Obtained by sélviﬁg the homogeneous part of Eq. (11.15)
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and (m+1) alJ._owed‘ vé.lues of the wave vectors k, in wiil ’r;e obtained. 'W.ii.:h _
each value of the ailoﬁedrwave veetors, Eq.'(II 15) can then be used to
_ uniquely detefmine the Blseh aﬁplitudes. HoWever, iteshould be desir-~
'eble to. formulete<the problem'info'a set of linear diffefential'equations
of z-coordinate only (whlch is Just the equlvalent of that of the elas—
thc electrons). For this purpose, use the approx1mat10n that k Y Ih 5)

2 Re.kh»r)) k y"h;{‘* S:h} : . where Sah.i'i(kxn*'k) "/ Re (kiv),

Equatlon (IT. lAJ may be written as

("2.,‘ E*Szh)*'{" Q“agv._

R~
3 (11.16)
Al ' ‘
= 1,;\‘: (Hop )oty Cly |
vhere J = L1, ot ol Cgﬁgoa if § >n + 1, and 3' =-Rb?k-)'
' \ . 3 € \.YV‘

In Eq. (1I1.16), the factor °<é is a phenomenologically introdﬁced-
parameter to spec1fy the fact that, due to the presence of‘anemalous'
absorption, not all types of waves-contribute to thevgeneration of in-
elastic elecﬁrons equaliy. When multiﬁlied by 2omi exp -(om i kgz z),

Eq. (II.16) becomes

kJ (—'Jk .Q”C’fvizﬁ‘k;ivi):: lﬁ\\’v(k;.,f's.;;‘)(:;t\'
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Upon summing all j types of waves, Eq.
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Ak

/
i""‘?\ ' \*o{;(iv)’

= T ne % CRer + San ) \-l’,;k(l

(II.lT) yields

E'

L2 (ziE

(i1.18)

are the_scattering factors for inelastic

electrons, and w1ll be treated as parameters in the calculation of Kikuchi

patterns, and ‘+ gu

11\\k4\r ’
fi‘* (c{~ * is a set of modified Bloch

waves in which the Bloch amplltudes are those of the elastic beams

'(Weighted) but their wave vectors are_those of the corresponding inelastic.

beams. On writing out expiiéitiy in & matrix form for the (m+1l) beam

case, Eq. (II.18) yields ‘
- h:Y* S;o

A
d
_(ﬁ\t

R 44351

’

+ i

.

f +

or, in vectorial form,

d ey - ¢ .+ F'i /(*
av;%(.i) t.'lm. é""’. ”; iy %,f}:’)'

= LTy
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(T1.198)

(II.19b)
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Iﬁ‘should be noﬁiced that exéepﬁifor‘fhe d?iving‘term-sz,IEEQi) }'Eq..
(I1.19) is identical to thé set of iihear‘difféfential,équafioné for .
eléstic electrons. .Becéuse of the inelastic’eleétréns, all elastic
beams serve as éourcés,‘and the initiali&vgenerated inelastig waves have
spherical Véye’fronté,vthe desighation'of ' 44°(é)' v. .is cbmplétely
arbitrary and'hence may Just be conveniently‘chosen to.be the beam which
is nearest td;the transmitted elastic béam oo . In*ﬁhe derifation of
the above quations'it is assumed that if an elastic bégm is excited

" in the crys#al t£en a corresponding_inelastié beam must- also be gxcited,.
however, an inelastic team may be excited without the exéitation.of a
corfespondingly iabéléd elastic beam. ‘Therefore, the_numbers df'beams
and allowed wave vectors:of the elastic eiectfons aré lesé than thaﬁ_of'
the inelastig electrons. .Neverthelesé,'the elasticveiectrons“may'also
be viewed ‘as composed of (m+l) beams buf those 5eams for which £+#40,
él,“', én ére having'gerb excitation strengtﬁ. vMoreover, féf the ex-
cited (n+l) beams each beam may also be regarded as having (m+l) types
of waves for'which if } n f 1, then the.Bloch amplitude.Cgh,for that
type of wave-is zero. The matfix element fiz' in Eq;.(II.lQ) specifies
the relatife amount of electrons scattered from each elastic 3eam'ﬁ

into the ineléstic beam.iabeled h, and is a function of the scattering
angie between the two beémé ponsidered. It is also evident f;dm Eq.
(I1.15) that in this formulation the initial inelastic ﬁaves dug only

to the so-called iﬁtra—band traﬁsitiohs are'allowe&. |

For purpose of simplifying thé computations, with the_transformations
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d)‘ (*) = ‘\l’;;‘h\.) e‘lﬁt‘ RQ\,k{v>%,

(II.20a)

A . aniRe (Ripd2 ' o
TS R T I i S, (1r.20b)

X < Wit Re Yy, o (IL.20e)
(I1.204)

S | - . (1I.20e)

Equation (Ii;lé) may be written as | | .”t'
(b ) [¥Ye By o By | [ $w)
'a? ‘ : R e e

. N Al ~ .
! . . . f L o
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or

' 'J -.‘ - -‘2) + © (b/(t) : : S ‘
ar _C:-Ei’u) = /i, qv)‘( a ° o - C (I1.21p)
\L * ‘t "'L‘l
w_hﬂere cd. T T ——4—-—%—1&—'- He—f\

The solution of Eq. (II.21) is given by

4

R

©
Ead ~ I
.o~

P @ = @ -2 (204 f

. .where é(‘tfk)_ is the .disper‘sion mati"ix éf 'thé honidgeneoﬁs system_aﬁd is
equal to egp[é(t—a)].
‘t Careful examinations of Eq..(II.22) revealvanother important charac-
téristic of the dispersion matrix, tha£ is, the dispersion ﬁatrix is the
Green's func%idn of the system. Iﬁvgeneral, thé Greeg'é function of any
system can nev-er be simply equal to ﬁhe solution of its aséociafed
homogeneous system. In our formulation of the'probleﬁ, the Greenfs func-
tion is eaéily‘obtaihed, i.e., it is juét tﬂe aispersion’ﬁ;trix'of the
associated hoﬁogéne&us system. In fhe'paper of Kainuma,le ﬁowever, the
Green's function of the systém is not so readily obtainable,vénd Kainuma
simply used the solution of‘the corrésponding homogeneoqs sjstem for the
Green's function of his sé-called reciprocal waves. In this.sense, the
theory of Kainuma and other rélated | worké ére»in.error;

Since the inelastic electron waves generated have é spherical wave
fronf, it appears that in order to solvevthe problem,'all values of Eix
must Be coﬁsidered for all beams. 'However, we shal; ége} from the follow-'

ing theorem for the case of an infinite number of systematically exci_ted

(- F 'CP'(_/\) d) . .(.II.A22)H
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beams, that this needs only to,be‘done through the first Brillouin zone

for all beams; or for a single bean, say; wio’ for all values of Eix'

THEOREM : CQnSider a systematié row of excitations of inifinite number

‘of beams for which the elastic beams are fixed, then the set of linear

differential equations given by Eqs.'(II.19)'and'(iI.2l)-are redundant
with respé¢f to the-systemétic row of reciprocal lattice Vectors con~

sidered, i;e;; for integers £, m
\»‘bé (Rext 30 = \}“u;m)g (Rex ). o 1Le3)

Proof: For purpose of proving this theorem, we replace the last term

on the right hand side of Eq. (IT1.19) by a single excitation column

matrix f(ie*). Equation (II.19) may now be wxitténvas
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A direct c.émbarison reVegis‘that Eq. (A)_is_exactiy like Eéﬂ'(B), if
and only ifL» o
\l’;‘é(ku*‘a’ \"' (k.y) 9
Y, (L#}*fa ) ‘-}’ (f&w)

and in generdl

%}5 (#<1* W‘3 )’fvj¥(g4g@)g(;k;x) . .. T . E

It‘is evident from this theorem that for the.ma#y—beam case, the
rangejof Rix»néed only'tp be consiaered inside the firét Brilloﬁin zqne,
or considérfonly onevof the Bloch Waﬁes, e;g., \he(k“)fqr éll of Eix
For finite number of beams considered,.this theorem, i.e;,qu. (1I1.23),
is of course not ékactly satisfied;.’The acéuracy‘éf'£he results then

depends on the value of Eix as well as the number of beams considered.

One of the factors that must be éonsidered'before going on further

into the details of the calculation of the Kikuchi pattern, is the

coherence broperty of the electrons. We have so far regarded the elec-

trons generated by the source, i.e., the electron gun, as monoenergetic

with a constant rate of emission, i.e., the electron wave generated is
monochromatic.' Nevertheless, electron waves generated from a real

physical sonce-can never be strictly monochromatic, and should be

described by a spectral line with a definite width. The produced elec-

trons may be expressed, according to Fourier's theorem, as the sum of

strictly monochromatic and hence infinitely long wave trains. The'theory '

presented so far is essentially concerned with a'single component of

et
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thiSvFourier representation. With a monochromatic_sdurce, the electron
waves propggdting through any point P invspace is 6f qonstént amplitude
‘while the‘pﬁéSe varies linearly with‘time., This i; no longer the case
with any real source: the_amplitﬁae andbphase undergo irfegular“fluctua_
tiéns, the iaﬁidity 6f which.depehds essentially on thé spéctral width
Av.  The amplitudé remains substantially éonstant'only during a time
interval of<< ;%Z , in such a time.interval.the change of the relative
phase of any two Fourier cbmponenfs is much lessvthén'én and the ad-
dition of sﬁch;componénts represenfé a wave which in this £ime interval
‘behaves like>a monochromatic wave with the mean freqﬁency of the two.
This is not‘frué for ény much longer time intervals.  The characteristic
time interﬁal ﬁ*’=;£; is.called thé coherence timé; |

Equi#alently, at a fixed time to,‘along the‘path.tﬁe electroh‘tfavels,
‘any two ppinté plvand‘p2-separated by-é distance d will see a monochroma-
tice waﬁe as haﬁiﬁg évconstgnt‘ampiitddelat both‘points_with é phgse diff'
feren;e Lﬁ.7( ;>where A is;the.ﬁave.length. Thié is not true for any
" electron ﬁaves prdduced by abfegiisource.v The.diffefénée of the‘phases
between the poiﬁts.due to two Fourier.components is much‘less.than 2m

- 1 : . . :

only if d<< f‘—; , and the addition of this two components yields es-
sentially a cénstant amplitude at the two points éonéidered; In this
small spaéé.interval the_wave may be regaﬁded,as monoéhrométiciﬁith the
mean.Wave_leﬁéth of the two. The characteristic aiétance interval
vis célled the coherence lengﬁh. |

‘The recorded expérimental results of:a_diffraction experimént may

be viewed as the interference pattern from all the wavesvinvolved, i.e.,
N r . 0

the result may be interpreted as that produced by Secondary waves emitted
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by all scatteférs albng the path thegwave propagaféd._ The physicgl
significance of the coherence length is:theh the measure of the distance
over whichvﬁwéfequiyalent polychromatic sources would produce a perfect
interfe;encg ﬁattern. 'This_means>w§ must expect strong.ihterference
between the waves generated at.the two points if their separation.is very
much sﬁallerAfhan fhe coherence length of fhe wafes, épd'no interfefence
at all if fﬁe tw§ points;afe separated by a distancé mﬁéh longer than
fhe cohefenqe lengfh. In the latter case only the sum of the intensities
produced by indi%idual Fourier components of the WaVes would be recorded.
Despite the polychrqmatic nature of the electroﬁ ﬁaves produced by
a real soufée, in diffraction experiments‘the incident (elastic) electron
waves are aiways'considered as‘fﬁlly coherent; i.e., as if'the electron
‘waves are tfuly mbﬂochrdmatic. This is 50 because iﬁ diffraction experi-
-ments the:crystals studied uéually are o% thicknesses much smaller fhan
the coherence length of electron.wa%es used, e.gf;'at lOQ‘kv,v%i=-£% q;|oX:
if AE is taken as 1 ev, the coherence length of the'elecfrons is approxi-
mately 3700 A. For much thicker crystals the above conclusion is not
true, hoﬁever, in practice this is é>case Qf seldom interest since then
the electrons will be praétically all abéorbed; an experimental coﬁdition
éertainly can be avoided. In an alternative way, this conclusion may
also be arrivéd>at éuantﬁm mechanically. By the time the electron beam
reaches the épecimen, the wave packet of one electron has spread over a-
region large in dimensions compared to the crystal thickness. Taking
‘the probabiiity amplitude of finding the electron.at any point in the
crystal af a'given_time as a constant is thergfore a good approximétioh;
elastic scéttering 6f thié wave ﬁacket can then bé lbcalizéd within the
crystal, so it is therent; o - |
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For iﬁélastic'electrons generaﬁed within the crystal; however, as a
» result of tﬁe random,phase shift due to fhe inelastiévscaﬁteriﬁg, the
electrons will not possess as.long a éoherence.length as the élaétic
electrons. vIt is then only necessary to consider the-interference of
tée-waves'generated withih a coherence length;.i.e.;'wéﬁe amplitﬁdes
should be édded only over the‘range of‘a coherence’léngth within which
the waves geﬂérated from eaéh{pé&f ié glosely dofre;@téd. The resulfant
3'inteﬁsity:oflthe inelastic electrons will'ﬁe the sumiof intensities
ﬁréduced of slices, each-has a thickﬁesé equal to the coherénce léhgth
of the.eléétrOns. | | | | .
The coiiegtive excitation:of conduction band;éleétrons (a‘plasmon)
is:cohereﬁt typically over é few hundréd aﬁgstrbmsl. Coupled with the
small amdunf df enérgy ana ﬁomentum transfers ihvoivéd;-this long co-
herence length accounts for both the high directiohalityQQ' (in the
direction.ofvtﬁe.elastic beams) of the plasmon‘scatfering'and the re-
markable similarity in the images.produéed from tﬁe plasmon écattered

23

inelastic>electrons and the eléstic Bragg_ﬁeéms; " For phonon excita-
tions, the réhge of coherent ihteraction‘between thefdiffusely scattered
waves iévthe.iength of thé phénqn iﬁ the direction'qf the incident beam
and is‘Very shért.- For.innér shéll electron excitatioﬁs, the random
»ipnization pfocess usually 1eavés the genefated iﬁélasﬁic ele¢trons
with no appreciable coherence length whatsoever. ‘ : I ;:f
‘Becausé of the felativeiy largg_scattering ahgiesjinvqlfed, for
Kikuchi paﬁtéfns to form at all, only the inelasfic.electrons produced
by phonon and ‘edec7ronﬂc _scattering contribﬁte significantly. It
is thus oﬁl& hecessary to treat the inelastic electrohs as fully in-

coherent. On solving Eq. (II.21) for specific cases, a thin slice
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approach may'bévadopted:_withiﬁ.the élicevan iﬁcremehtal inelastic wave
is gehe'i'af-:éd‘, _aé given by thé' last coluﬁn mat"ri-}'_c of Eq (II-.21.), ‘and
upon traveling_through the rest of the crystal, Bragg qiffractions occur,
as déééribed‘fyvthe rest,of‘Eq. (II.21).u Finallyrtﬁe intensitiés from
each'slice may:be summed‘up to find the tétal intensity. This procedure

is equivalent to taking the initial wave ¢i(§3 = 0 for all to but there

exists a delta function type of source at each slice of the crystal which |

=gives‘the'inéfemental ampiitude of the wave. Thus, for the final in-

tensity, Eq. (II.21) new yields

i

vl;m).JfI*\d %Hrﬁ>§[dtfuuwjgak1)

o L

LHEH
T

_ jf‘ Jf { : 'd__)\). CE(:\)\)} [q:g(r “’y} )E ‘;(v\);:!*
| | ~(11.214)

]

where § cf\f{\ (,f A )} is -a diagonal squaré ma:tkri'x |
(Oeqa;c(r.")\') _‘O Lo
© <Q4w}’*) - ©
: R ;1A

and * denotes the complex conjugate. Finally, the ihtensity distributions

’

of the inelastic electrons is given by

il . ) ) C :

!
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Taw) =2 Igoo)y., (II.25)

vabo

E. 'Special'Casés of'the Kikuchi Pattern

It is'cléar,that many bean considerations Will be‘reqﬁired for
éalculatingzﬁhé Kikuéhi patterns for 5 géneral case. fSﬁch a case Wili.
be,diécussed latef.b Howevef, bedéuse of_ﬁhe fact tha£ in this formulg_
tién abéorpfiqns of both the elastic and inelastic_électrons are con-
' sidered, it will soon be clear ﬁhat fdruthe purposé,of explaining a
majority aspeéts of the behaviéf of the Kikuchi pattérﬁ; a two-beam
(for inelaétic:electrohé)bapproximation'ﬁill be suffiéient. One advantage
- of using this-épproximation is ﬁhat the solutions of'fhevintensity
equatibnsvgréQreédilj 65£ainable-ih ahaiyticél forms; vFor inelasfic
electfons heid}atltwo beams, theﬁ:with’reference to the diffraétién-
conditioﬁs df the inéident.elastié beam,.the résuits m#Y be categorized
in three Eéses: (i) The asymmetric éﬁé beam case. - in this'case'the
elastic eleétron beaﬁ is incident at an aﬁglé td the diffracting pianes
greater than the-correéponding Bragg angle, the fesult is the formétion
of the blaék4and—white (deficieﬁt and excess in the number of e;ectrons)
v»Kikuchi line pair;-(Q) The symmetrical 5ne beam'éase.' In this case the
elastic électron.beam is incident in a direction pagallel tofthe‘diffraéting
planes and results in thg formation of a symmetrical Kikuéhi band.i.Thé f.
Kikuchi Band'is observed to change froﬁ an excess (white band) to a
deficiency (black baﬁdj.of electroné_with an increase of spécimen'thickf:'f
ness or a decrease of thé ihcideﬁt electron beam accélerating voltage;

and (3) The dynamical two-beam case. In ‘this case the elastic electron



3

beam:is,inqident at an éhgle equal to or nearlyvéqualito the Bragg ang1e'
and hencevéafisfying tﬁe dynamicalrdiffraéfion conditiqns. As may be
expected,’fhié is the most compiicatedband iﬁtefesﬁiﬁg case. Dependent
:Qn the iength of the operating reciprocal lattice véctor, the Kikuchi
pattern iﬁ this case,méy‘exhibit a pair of.lineé thSe contrast may re-
verse as the $pé¢imen thickness changes, or a pair df lines whésé spacing
varies with speciméﬁ thickness. |

For éll cases“considered,_the fﬁo-beam disperéién‘matrix for the

inelastic electrons must be used. This matrix is given by (see Appendix)

‘

Yio (X -2) Qwa(*~4§ 
Lt'i,(x‘:t) = . | . v .)
= { ' Y '
LT AL ALE (II.26)

where t is the crystal thickness. The quantities wio(t—z) and\wig(t—z)
are Just the wave funétions of the transmitted and the diffracted beams

in thé ordinary two-beam dynamical theory:

\L;wf§>:'ch W?uf1>§ac§ WSM~§)L1 .  (11.268)

*‘34:&\%) = L.{‘a ‘l"\ (.,.“1) + ,C":a %:'(kfi')“;v o | (II.26b)
and .qi(f-éj'zvC;=W:(ﬁ§5*f(§ ¢:X{f%L (11.260)
T e el bue 2,

47@1‘5 N (L' T . ’ e (II.26&)3

TR G

L= axp (Lo naks evm (e - SIS Ja-of | (11260
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Ytrer) = ep LT R (R %ﬁ" Je- b, (r06)
with o | ' v ]

M‘.; = % E\EW SN ?,2._ E,év'w;L

* (I1.26g)

being the absorption parameters of the type I and type II waves respec-
tively, and

: ’Q:t = Ke (kv‘ J (05 95 ° .(II.26_h)

Iﬁ writing déwn Eq. (IIfQG) we ﬂave adopted the conyeﬁtional use of the
quantities.that i o8, wWiE S(Re:(§§‘> (See Appendix for details).
In_tﬁe‘foliowingYWé présent:the résults in the order given above.
It is‘further asSumed that only ineléstic.eléctroﬂs‘in the first excited
state, i.e;; i =.l,‘contributés moSt sighifican£ly»in the fofmation'of

the Kikuchi'ﬁattefn. 'A'manyfbeam case shall also:be'considered.

1. Agymméﬁrié One-Beam Case--Formation of»ﬁhé Kikﬁdhi-Line Péir

In thisvcase‘the incident elasfic electféﬁ beam‘makes an angle with
the opefating_diffraction planes greater than the Bragg angle and hence
the rel—point lies well inside thé Ewald sphere. >W§ have noV, wo’ the
deviation parameter for‘the‘élastic beéﬁs, approaéhing infinity, Cio’
the Bloch coefficient of fhe type I wave of .the. elastic beam;'clqsely

equals unity and all other Bloch coefficients are_approximately zero.

e ' . S ' S
‘The absorption parameter of this excited beam is Y, = =7 . Under -

such circumstances, the intensity of the inelastic transmitted beam at .-

the vicinity'of the Bragg position is given by
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(from Eq. II.2k)

i oo  x, N | 1 | iq-.u ‘_1&3 P ;
et = aE i) { I B (oo Cao v e iy S
| ~ S |
A B I i s W - 1
: <L e N |
106 Iy . p _ . [ » E
(fo G+ %) .k S R
+ - hee Gy (e 50 - & T ']
i ) : : ,

: : At " - ie w g 2 '
+ 2 Re (foe G fc:’ Cig ) Cfoc Ciu s fod Cig) ]
| € L AEwE o
' _%ilo E;o . - ia ) ) ;

X[ é‘zﬂ/'&; ‘V-"'e-"‘.lﬂ/g*/‘* *iﬁgm’f/’fa]f -

¢

(IT1.27a)

and an identical expression for fhe diffracted beam is obtained if the

substitutions C% > C} R C? > C? R C% > C? R C? % C% are made in
: ic . Tig? Tio @ Tig?® Tig io’ Tig ‘io -

Eq. (II.27a) (where * means 'change to"), i.e., - . : : A

T Cwdie ¢ e TR
’}3(\'\)\/1 (-\Q,C-\O)Cab d)

f. I ,‘\°< (‘\)\,; (-;la ’ C\; » C“lt(-; , c-/(‘o')o'_ . (II.QTb) | .. . ) ‘
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By no£icing the fact that in this case fig'>? fii,’Eq.,(II.é7)
regdily yields a black-and-white pair of Kikuchi.lines.‘ The oscillating
‘terms in Eq..(II.QY) aré not very‘impoftant, unlésévthe speéimen is ex-
trémely thin. .Figﬁre II.S'showé'fhis situation for various specimen

thicknesses, where the values E;{:‘g ’

\
+ .

and flg/flo'=.0 are used. It is
oo’ “oo _

clearly seep‘that‘Iio(wi) always has a minimum value'in the.vicinity of

w, = O% while Iig(wi) always has a ﬁakimum value at-wi f 0. Hdwever,;
~for very ﬁhin_crystals, the maximum value of Iig(wi) may.#ot always be
larger than ﬁhe‘@inimum value of Iio(wi)' When'the'vélﬁe fii/fig é-o

_is gsed, Iié<wi) is symmetric in w; in fact, Iig(wi) is then proportional

_ 2 5. _ ; . , > T .
to l/(l+wi)l/2."lf the condition that féi/fii.: 0 is not satisfied, a

certain améunt_of asymmet?y-is-introduced into-botth;o(wi) and'Iig(wi)
aﬁd thereby broadeﬁing thésé intensitj curves. Thé'éXPerimental fact
ﬁhat_the Kikuchi line pair for a;small rel—vector:is a lesé pronouncéd
line pairréan>be explained by the aﬁdvé'disCﬁsion. '(l)v On moving

away from the.position w, =0 the function 1/(;+w§)%/2 falis 6ff‘more
?apidlyifér long rel-vectors, and (2) thg*eonditiqn fii/fig = 0 is not
well satisfied by short rel-vector diffractions. ‘When pointé on fhe
paif of lineé.aré far away from the central porition of &he pattefn, the

black-white nature of the‘lines at these points will also tend to be

diminished, since then féi/f;g = 0 is again not satisfied.

2. The Symmetrical One-beam case--Formation and Behavior‘of Kikuchi Bands
In this case the,élastié electron beam is‘parallel to the set ofv
diffraéting planes by which Bragg diffraction ofjthevinelastic electrons
occurs. - No appréciable.elastic'waves other than the type Ii wave of
' 2 10 -1 .2

the transmitted beam is excited, i.e., C =1, C = C =C = 0.
_ lolo} . 00 - og og
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Fig.II. 5e

‘Kikuchi 1in¢ pairs computed for varioué specimeﬁ-thicknesses, h
{a) -~ (d). Considerable amount of asymmetry is introduced into

the pattern if .ig,.io £ 0 as in (e). Parameters used
/ s - .
3 5 Y, 00 o0 - W3
( 8 - 228 — =0.3and — § = 1,3 = 0.225)
gto "gn‘.O'. } 1 ‘:3

o
corresponds approximately to that of a (111) Si diffraction.
The Kikuchi line pairs are observed in any diffraction pattern.
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etry of this case is that a transmiﬁted Bragg spot lies where the trace

The only pé?tiéibating absorptioh parameter ié‘ih; = . .The geom_
of fhe opefatiﬁg planés should be, and parallel.torthé diffiacﬁing planes,
the Kikuchi.patferh sécurs in a symmetrical intensity-distribution abouﬂ
the only Bfagg spot.‘ Because of this symmetry; the scattering factors

in this case;.f22 and fii, for the small region in‘thé reciprocal space
copsideréd,fmay bé.téken as being‘equal to each dthér;

- The equation of I. () in this case is identical fso-Eq.' (11.27a).

Hoyéver, the condition that fig = fig_now'yie;ds f%Oﬁ EQ- (II.27b) that

ig(wi) = Iié(-wi),_iﬁdicating that the Kikuchi pattérp is symmetric -
about the'tfacé of the diffracting planeé and is indeed a band structure.
vThe'experimental fact that the Kikuchilband cha#ges from an excess in
'electronsipo é;aeficieﬁcy:invelectrons'with an incfease in crystal thick-
ness drva decreaée in>#he incident,electrén beam voitage_may be ihterprétedv
from the inteﬁsity egugtions in:an elementary way. Conside? Iio(wi), by

. io _ Lig _ Ao
letting foo _foo ,f’ i i{

, T = t/5, » Ea. (II.27a) is reduced
[ - . ~ :

to

(LerGipiL e 3"
BN S a T, T3
+ CCae Qa)l(" e ° 8 )J”Uf
' 3‘. \' Y ':'+ & . . e D R
+ .ka.(. ot ( a)(( o C\;}) _\gﬂ 53“”1“@-‘;TE - (11.28.)

_J Prwg o §“3



=hh-

When the érystal is thin, the second term in the curly bracket on the
right hand.-side of Eq. (II.28) dominates, and the band is an excessive

n

one; for tﬁick crystals, however, the first term doﬁimatés and the band
is a deficient oné. Intensity profiles calculated from Eq. (I1.27) for
several crystaltthickngsses are shown in Fig. II.6.UlIt>can be clearly
seeﬁ from this_figure that the band may be very prondunced and that the
change from a very high intensity on one side of the Bragg position to
‘a'very low intensity on the other side of the Bragg ﬁosition ocecurs
witﬁin a vefyrsmall region of the reciprocal space. Furthermorg, it is
also worth‘mentioning that, regardless of ﬁhether the band is excessive
or deficient, there exists, in the immediate vicinity of the Bragg
position, anlintensity maximum accompaniedlbyran intensity minimum on
the other side of the Bragg position. This is anothef'well observed

phenomenon which was not explained in the previous theories.

3. Dynamical Two-Beam Case-~Kikuchi Line Contrast Reversal and
Spacing Variations - ) '

Of all the two—Beam (inelastic electrons) cases, this is by far the\
most complicafed and intefesting case. The Kikuchi pattern in this case
exhibits several distinct behaviors, depeﬁding on the éperating‘rel—vector
and speciméﬁ'thickness. Because in this case‘the'two elastic beams
satisfy or‘nearly satisfy'the Bragg condition.exactly,;each'ofithe four
wa?és contribut¢ to the generation of inelastic eléctrohs significaptly;
Duevto thé'éresence Qf énomalous absorption, thé twpftypes of waves inv‘
each.beam dd not.contribute equally to phe generation‘of the iﬁelastic
electrons. Therefore,.to a Tirst approximation?@< j iﬁ Eq. kII.lY) may

be set proportiona% to the absorption parameter of the wave, i.e.,.
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Behavior of Kikuchi band: the band changes from excessiﬁe}to
deficient with increasing specimen thickness. Parameters used
for (111) si. ‘ E
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and an ideﬁtical exéression for'Iig(T)5 providgd thé'suﬁstitutions given
in Eq. (II.27)lis again used. Contrary to cases (II.e.1) éndv(II.E.E),
the various_;scillating terms in.Eq; (II.29) may»now'cdntribute significant-
ly. In all casés the.presencé of a band.type structﬁre’and sub—fringes’
is unavoidableﬁ ' » - |

’,The Kikuchi linglpair contrast reversal occurs for.émall rel-vector
diffractiohs for whigh acéuraté aliocatiéntof exact Brégg condition may
bé easily achiéved. This situatign<may be seen most éaﬁily by letting
only the mean ébsorption pérameter of the elastic beamsAbe present in
Eq. (II.29). _In.such:circumstances Iié(t) has a minimﬁm and'Iig(t)bhas
a.makimum at'Wi = 0 for t equal to any oddAmultipleS'df wgg/ﬁl and
.the situatioﬁ reverses‘fér t equal to any integer.multiples;of 33'(except‘
when t is équal to 0), i.e.,’the Kikuchi line pair revéfses its coﬁtrast
at intervals 6f hga/éi.. Wheﬁ'all aﬁsorptidn parameterslare considered,
the above discussiOns remain approxiﬁately»true. Howéver, it should Be'
mentioned that this reversal is primarily due to the Qscillaiiﬂg terms
in Eq. kII.29);>Which are fuhctibns of the speciméﬁ ﬁhickness, thus it
can be expected that this_phenomenon‘may also be'obserﬁed~at thicknesses
'other than_thé‘extreme situations mentioned above. Iﬁ pfactice, non-
uniformity in specimen thickness, local.bending of specimen, etc., will
also éffect:the_expefimenﬁél_results: The computed prdfiles demonétrating
ﬁhis effecf aré shown in»Figt IT.7. |

. In the éase of large'rel-véctérs; notice the fact fhét the length of -
the operating reciprocal lattice veéfor is large and ‘accurate allocafion v
of tﬁe exact .Bragg conditions beéomé very improbable, thus tﬁe incident

elastic electron beém could be considered to satisfy the Bragg conditiong



.
not exactly. Fbr:such a case, using the.value'wo ;'l, the Kikuchi patQ
tern_intensityvdis£ribﬁtions com?uted from Eq. (II.20) is given in

Fig. II.8.. It.is seen from these computed intensity cgrvésbthat the
Kikuchi line spacing in~ihis case varies as. a functibﬁ of specimen. thick-
ness, i.e.}'thé Kikuchi line.spaéing varies fromvlargef tokémallef than

" that of thé Bragg angle. To some extent, this effect also depends on. the
various ésciilatiﬁg terms in Eq. (11.29). This effecf may ‘be - compared to
so—célledvsizé>éffect of the many beam problem of elastic electfons.

4. A Many-Beam Problém

To sfudyvthe behavior of the Kikuchi pattern in-a more general case,
multipie'elagtic and inelastic beam interactions muSthe considefed,
barticulafly if the incident electron energy is high. ‘Without going into
such calculatlons in thls study, we will now use the speclal property
given by Eq (II 23) to show that the method of summlng up the rocklng
.curve intgnsities to calculate the Kikuchi patterns in the systematic
many beam céses may be derived from our ﬁheory. In order to avoid the
complexity bf:calcqlations, Thomas and Humphreys36 propésed, without"
proof, that:alpng a systematic row 5f excitations, the intensity dis-
tributions ofxthe Kikuchi pattern may be computed by simply summing up
all rocking curve intensities of each participating,réflectibn at every
deviation;'Eix, In thgif gomputatidns absorption of ﬁﬁe inelastic elec-
trons are‘éonéidered and'the results obta;ned are generélly in good-
agfeements ﬁith ekpérimental observations. |

Consider avsysteﬁaﬁic.many beam case, by virtuelof Eq. (II.23), we
need only'to calcu}ate wio(iix) for all values of Eix;. Assume now that

the crystal is very thick, and all excited elastic beams attenuate

the
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' -Kikuchi lineé contrast reversal at the vicinity of W. = 0.

(a). Normal contrast (black-and-white) for t equal fo odd -

- multiples of ¥ _/2. (b). Reversed contrast for t equal to multiples
_-ofg . If Wy = 0 is not satisfied, contrast reversal may occur
at o%her specimen thicknesses. ‘
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Kikuchi line spacing variations with specimen thickness.
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rapidly in the crystal,.hence all inelastic eiectrohs-ﬁay be viewed as
S > ‘
generated at the‘toﬁ'surface"of the crystal. Underbthis approximation,

we may write

S S o - e o
q”;;(kix-): = JO [ le-g (koo #-2) ‘k_”?"’n)_“*) _\/'3(‘?\‘,‘.),?-{)', ]

- - 0-g) .'{(~3) \"(—3) ot (- |
1,-6(—2)) ft‘-c f:a - wc‘_a‘z g(t)d‘é

X. ., o f::a) fco : &C‘d o ;.\;l/e/o. = utt.)i’)(o
N9 i g e L S

. fc\"’a) ~'§c¢(a oy . \‘vea = \(c)é{a
L " L u .. /

(II.30)

where wg(kix,t) is Just the wave function of the gth béam in the ordinary

dynamical calculations (see Eq. (A.13d)). The total intensity at a

deviation Eii is then .. : v : ;.'
']gu(;{{i,*)'::W%Fa \%Ia(i'\x,‘t)‘?"

If we furthér'negléct:the:interaction terms betweenléach wg(iix,t), we

have

S o o T v o - |
.I;c(haﬁ )= % lF?) \*%(h«\( ) .X).\ - - (.II..3%)_
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where 'Fé is a function of li':ifxi . Eq. (II.31) reveals that the Kikuéhi
intenéity is simply gifen by the weighted sum of tﬁe rocking curve in-
tensities. .fhé‘last assumption, i:e., the ignoranée of any interaction
termswpétweehxfhe wave functibns wg(iix’t)’ i?.juSt%fiéﬁ_only if Fhe 
=resultvébtainéd from Eq. (II.31) is considered to be fhé averaged in-
‘tensity over a ranée oflcrystal thickneés variations Which is largef |

‘than the peridds of all the neglected interaction terms.

F. Images Due to Kikuchi Electrons and Other Inelastic Electrons

In recent:years a considerable amount of interest has beeh paid to
high resolutibh‘microscopy aimed at improving the reéolving power of
ﬁicroscopes_to the atomic limit. During'thevcoursevofHSuch works for
crystals containing defects, image enhancement technigues become im-
borfant. There.aré-many methods to accomplish suchvtasks, for example,
the digita; éomputer with its éssociated video scanniﬁgvequipmént can |
be used inféonjunction with the microscope;s best perférmance to give

37 This type of technigque origihated from the

improved'ré§olﬁtion.
necessity ofﬂimage enhancement of space ?hotography,.and a result of
working op'méinly television images. -The technique'iﬁVOlves operations
of,' geometfié cqrrectién,'photometric correction, random noise rémoval,
periodic noise remo?al, énd modulation transfer function corrections
(compensatidnbfor attenuation of spatial high freqﬁeﬁcy.components).

Iﬁ electrép micrographs for images of ; periodi¢ nature (e.g.,.'
Moifé fringes), the signal to noiSe.ratio can be improved by translatiﬁg
and superiﬁposing the imége upon itself. In theléase of images of defects

(e.g., dislocations, stacking faults, and small perticulate defects);

however, situations can be quite different. The random noise in any -
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typicél ﬁicrqgraéh due td mishandling of tﬁe microsdoﬁe; i.e., poor
alignment,iﬁprdper focusing and exposure of the platéé; etc., may be
largely avoidéd by improving opérétional techniques of the microscope.

" In this casé; the random.hoise removal technique may aiso be applied to
improﬁe the quélity of the micrograph. A more important and predominant
class’of nbiSe is, however, the'images produced by inelastic electrons.
Since inelaétic.scattering must occur.in any-electfon diffraction ex-
périﬁent ofICrystals, the imaées produced by’inelastié electrons are an
unavoidable éharacteriStiC ﬁoise of both the cryétal.and the defects. In .
éomparisonvto>images produced by elastic electrons, these images aré of
§omewhat'weaker but nevertheless not negligible intensifies. .These images
generally differ‘from images prodﬁced by elastic electrons in the fol-
lowing aspects: (1) Image'poéitions are shifted; (2) More spatial
frequehcy éombonents may be prééent; (3) Imagé width is much bréader.

It should te noticed that although the inelastic éiéctféns generated by
plasmoﬁ excitations and inner shell electfqn'e§citéﬁion$ may be.removed
by an eneféy éelecting microscope, a majority of:thésé>electrons, Which
suffered an epergy loss of typically less than a few hundredth of’éne ev,
due to phonon excitations; are nevertheless out of tﬂe scope of any ‘
energy seieéting schémé.  Thus, when recorded on thé phbtoplgte, thesea
charactéristic_noiée imagéé superimpose with the images broduced.by eias—
tic’electroné and could lead to erroneous’interpretation of the ﬁiéfb;
graph. Fér example, they may smear the images of élésely spaced defects,
e.g.; thése df a aislbcation dipole, a super dislocation,.dissoéiafed
partial disloéations, closely spaced small particles. If théée noisé

images are intense enough, i.e., for the case of a crystal which is not
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too thin, they may also lead to wrong estimations of defect densities
‘since these images may appear to be spatially separated enough from images

of elastic electrons and may also introduce more spatial frequency com-

ponents to‘thé_image,of a single defect.

The désirabiiity of removing this kind of charaétefistic noise is
obvious. Expefimentally this could be accomplished.by essentially two
micrograﬁh;; oﬁe consiéting of images from both elaétic.énd inelastic
electrons; thé other consisting of images from inelastic electrons only,
and is done by moving. the aparture té enclose a portion of the Kikuchi
tine or juétvthe diffuse backgrounds surrounding the Bragg spot. These
two micrographs éould then be digitalized and subtracted to allow é new
micrographzfrée from these noise images to be cbnstructed. It should
be noticed; hdwever, that due either to translation.of the apartufe or
gun tilting, the lattef micrograph of inelastic electrons are taken from
a slightl&‘different diffraction condition. A first correction could be
made by using the averaged datalfrom more than onejmicfographs ofithis
kiﬁd taken frqmﬂmutually compensating orientations.relative to the
elastic beam.

Theoretical éalculations 6f.the.image profiles due to Kikuchi elec-
trons and other inelastic electrons arebreadily obtainable for the
general nfbeamvcase by using Eq. (II.24). The two-beam results obtained
for Kikuchi.electfon intensify distributions in Secfioﬁ I11.6 readily
vield the extinction contour due to these électrons for a wedge shaped
foil. This result is shown in Fig. II.9. - ' | L
- Careful examinations of Eq. (II.24) when applied to image probiems

show that there are two kinds of mechanisms responsible for images being
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produced bj.inelaétic electrons: (1) Informétiqn about images producedv:
by ineiasfic électrons, i.e., the res@onsible eiectroﬁé becomé ineiasﬁic
before reaching the displacément fields produced by the'defect and then -
pfodﬁce imagés upon traveling fhrough of'across theée displacements. |
(2) Images fprméd by elaéticvelectrons upon traveiing through or acrosé
the displééemeht‘fields-due to the defect, buﬁ théée'eiectrons subsef
quently suffeféd from inelastic scattering and the image information is
thus carried over to the newly generated inelaétic_elegtrons; Thé above
discussed Lmaée forming procesé fdr_images due to inéléstic e%ectfons

can be best visualized with a discrete~boﬁndary type of defect, e.g.,

a stacking fault. Of course, the total image due to inelastic electrons
is none thglless a superposition of images due to béth.of these mechanisms.
Therefore, it ‘is not sﬁrprising that the images prodﬁcedvby inelasﬁic
electrons is'natually fuzzier than thét due to elésfic eiectrons, i.e.,
a bréader ﬁiéth, more spatial frequency components;_shiffing of image

positions’, etc.
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IIT. AN ENERGY ANALYZING MICROSCOPE °

A. Introduction

Uﬁon trareling through the crystai, certain typee'of characteristic
excitations will unavoidabiy be generated byvthe eleotron beam; plasmone,
inner shell:eleetron excitations, phonone, ete. To generate these ex-
citetions,»energy must be supplied by the electrons:whieh then become
inelastic. 'Appreciable amounts of momentum.transfer usually accompany
any'inelestic soattering'and therefore change theVQirection of propaga-
tion of the.inelastie electrons. This momentum.transfer, together ;ith
the fact-tnet inelastic electrons lose coherency with the elastic electrons
as well as with other inelastic electrons suffering the same amount of
energy loss but being generated at different depthe»in the epecimen,
causes the'obscuring of images and diffraction patterns, as well as the
formation of Kikuohi'petterns; From the view—point‘of obtaining better
resolution, it is obviousl& desirable to remove theee inelastic electrons.
Tnls leads to the' development of the energy selectlng mlcroscope which
uses a number.of energy fllters capable of produc1ng an 1mage or dlffrac—
tion pattern free from certain klnds of inelastic electrons 16-19 . In-
elastic electrons generated due to.the excitation of a plasmon or the
1onlzatlon of ‘an inner shell electron have energy losses‘well over a few
ev and can ‘be euccessfully filtered out of the image and the dlffractlon
pattern formed by the elastlc beams. .However .those 1nelastlc electrons
which are generated byvexcitations of phonons have energy losses typrcally
under a fraction of one ev, and can not berfiltered out.

Undesirable es they appear to be in image work; the inelastic elec—

trons are not a total nuisance: they themselves carry information in the
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form of energyvdistfibutions which are characteristic of the material

unaer_study. For this reason, energy analyzers can be fabricated. Upon .
passing through a narrow slit, the energy loss spectrum of the material

may be displayediby»thefelectronsr Both images andfdiffréction»patterns remm

may be examiﬂed in this manner and knowledge concerning the electronic
structures 6f§the materials studied can be obtained. This in turn can
be used to méaéure the chemical constitution of microscopic regions of _ i

13,14 Therefore, measurements of the ioss spectra of elec-

the>Speciméh.
trons in an eiéctfon microscope should provide a pdwerful method of
microanalysis if reasonably high resolving pover of‘thévspectrometer couid_ | i
be achie&ed.
The resolving power of the electrqn spectrometer is defined as E/AE, %
where E is electron beam voltage and AE is the voltage resolution. Several %
factofs tend to limit the resolving power of a spectrometer. - The firsf
major limitation is imposed by the precision of electron optics and the
vstability of the high voltage supply. However, the stability of the high | :
voltage supplieé need not be critical if the electfdﬁs are slowgd down
before analysis. This can be done by electrodes co;nécted to-thé high
voltage sourcé which supplies the microscope. The fesolving power is also‘ o :
1imited by thevspread in‘energy'of the electron beam from the thermionic
gun and by fhermal motipn of electrons. The two lattefzfaétors are quan—‘
tum statistical proceS$es, and, if-ﬁot céunteracted by a monochrometer at : -ié

the electron gun, would limit the resoclution of the spectrometer to 1 to

1.5 ev.
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B. Energy Analyzing Device——-The Mdllenstedt Lens System
A largé:nﬁmber of devices suitable for energy analysis Has.been re-

15

ported in the iiterature. The main restfictions 65 the choice of devices
are that thé‘energy resolution should be of the ordef of 1 év_or iess,
and that théy should be readily adaptable to the iméging system of the
microscope. _The Qevices commonly,ﬁsed which meet these requirements in-
clude the Méliénstedt lens (eylindrical electrostatic) system, the cyl-
indricél magnetic lens and the electrostatic;mirror'magﬁetic lens systemé.
The device wé'chose to use in our energy analyzing microscopé is the |
MOllenstedt lens syétem. The reason for makingbthis‘chbice is twofoid:
(1) The théorétical value of the energy resolution of fhis device,

AE/E, éan‘réach (10-7), it is doubtful that any other device' can

approach this value;

39

(2) Tts design characteriétiés'are well known.
A cross-~sectional view of-this lenS'system‘is'éhown in Fig. IiI.l.
A finé slit, a feﬁ microné wide and 1 cm long; serveé as the electron
entrance aperature. The sli£ is aligned with its long dimension parallel
to the axes of'the éylindrical electrodes; Electroﬁé pass thfough the
slit S intova box-shaped electrode system at the anéde (groﬁnd) potential
and then through regions of high_ghromatié aberrations near the_two
cylindrical electrodes biased at cathode potential. Figufé IIT.2 shows
schematically'thé poteﬁtialvdiétributions of the région near the two
cylindrical eiectrodesQ ﬁIf the slit S is‘piaced at a suitable off-axis
bosition (Fig. III.3), electrons of different energies can be'dispersed

at the exit side of the lens system.



~T2-

III.1 The cross—sectional view of the Mollenstedt lens system,
where C is the cylindrical electrostatic lenses at cathode
potnetial, B is the box-shaped electrodes at anode (ground)
potential and S is the thin slit which serves as electron
entrance aperature.

XBL 7111-7679

Fig. III.2 A cross-section of the eylindrical lenses. showing.
' the equal potnetial surfaces in the region of the
saddle point S. ‘ '
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Fig. III.3 Electrons of two different energies.E and E-AE are

© - dispersed on passing through the Mollenst?dt lens ‘system,
where x, is the electron entrance coordinate, xq is the
‘electron exit coordinate upon the recording plane, Axg
is the slit width, A¢ is the angular spreading of the
"electron beam, d is the spacing between the two ground
plates, a is the radius of the cylindrical electrodes,
and c¢ is half the spacing between the two.cylindrical
electrodes.- : ' :

/
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Many authors have derived express1ons for the potentlal dlstrlbutlons
inp'ldeallzed electrode systems Wthh approx1mate those of practical in-

terest‘ A particular simple model the line charge model, has been

38 .

dev1sed by Metherell and Whelan. “In this model the lens- system is as-

- sumed to have two parallel and 1nf1n1tely long llne charges placed rough—'r

ly at’ the center position of the cylinders. From-the resultS»thus ob~-
tained suipable equipotential surfaces,may_thenhbehchosen to simulaﬁe the
cylindrlcal elecprodes of the analyzer.’.Although the line‘charge model
does not'possess equal‘potentlal surfaces of eXacply circular shapes,
Metherellvand Whelan38 and'Metherell39 have shown that lt represents a
good approximation of the practical circular electrodes of the s&stem.
The potential functions can be used to calculatelthe cardinal.points,
-aberrationvcoefficient, ete., of‘the system. The dispersion properties
of the lens system can be best understood by eiamining the dispersion and
resolutlonvln a plot of the entrance and exit coordlnates XO and Xl of a
mpnoenergetlc electron beam passing through the lens (Flg III ha) The
trajectories of electrons arriving atlpoints ri.correspondlng to the
extrema l,72, 3, 4 of Fig. III. ba as well as’anfelectron rejected by
the system are shown in Fig. III.hbef, respectiuely. In the absence of
space charge effects, stray fields, etc., an infinite number of extrema
occurs in the X, ~X%, curve. The extremum n=e corresponds'to the case in
which phe electron enters the region between the electrodes and passes‘
through:the saddle point S in a direction perpendicular to-the axes of
the two cylindrical electrodes, and becomes trapped by the lens and |

oscillates through the saddle point. If X is increased beyond this

point the system behaves like a mirror and the electron is reflected back.
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" ¢/a =.67 d=1.0cm .

c - d £
XBL 7111-7681
Fig"III.h. (a) The Xo*;Xi curve. (b) ~- (e) Tfajéctories‘of electrons

arriving at x) -corresponding to. extrema 1 to 4 in (a).
() Trajectory of an electron reflected by the system.
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The most important factor. controlling the behavior of the lens is’
the value of the parameter c/a (Fig. III.3), upon which the general Torm

of the X -X, curve depends. If the value of c¢/a is varied, four dif--

ferent types'of~xéfx -eurves- can be produced. It is thereforefconvenient,ﬁg

1

to divide the aﬁ'_&;er into four classes, depending upbn the sign of x

1
and cos (Fig._fifJB). The definitions of the four lens classes are
given in Table III.1.

Table III.1. Definitions of the four lens classes and their
approximate range of c/a.
Class Sign of X Sign of cos . Approx. range of :z/a
I - : - e > 0,32
Ir - - + ' 0.32 > 0.19
111 : o+ + 0.19 > 0.049
Y o+ : - 0.0k9 > 0.03k4

The electron trajectories tangential to the first four pairs of

caustic envelopes at y=0 in the different lens clasSés are shown in

Fig. IIT.5. Examples of X X, curves for the four lens classes are

1

: .. 7 : R
shown in Fig. III.6 for three sets of curves corresponding- to different

positions of recording plane on which X, is measured. Notice that for

lens clasées II and IV the effect of projection below the plane y=0

causes the first extremum of the X ~X; curve to disappear. If the ex-

1

treme values of x, in the xo—xl curves are plotted'as é function in y,

1

thevcurves SO obtained will give the caustic envelopes of the system
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Fig. II1.5 Schematic electrdn trajectories_tangential to the
first four pairs of caustic envelopes at y = 0
(7ig5. TIT1.3) in the first four different lens classes.
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Fig. IIT. 6 xo«~xl curves for lens of (a) class I, ¢/a = 0.4, d = 1,
(b) class II, c/a = 0.25, (c) class III, ¢/a = 0.1, and
(d) class IV, ¢/a = 0.0L. Notice that the first extrema

are vanished for cases (b) and (d) for y larger than zero.
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(Fig. III.?a).f The'disappearahce of ﬁﬁe first exfremum in the'xo—xl
curves for'léns_claéses 11 and Iv corresponds»to-a aisappearance of the
vfirst pair.of céustic envelopes with projection;in'thesé classes
(Fig. III.Tb). /

The lénsbsystem behavior passes from class I to'ii to III and to
IV with decféase value of'é/a.. Still further:reduction in c/a values
causes the.lené to repeat this cycling'of classes in the above ﬁentioned
order. There is no theoreticalllimitvto the numbef of ranges of c/a
values cofrespéhding to arpérticular lens class. The;oécillations of
electrons in the regién of ﬁhe saddle point responsible for ﬁhe fdrma-
%ion of high order caﬁstics is also responsible for the cycling of iens
.classes. |

The dis?efsion of the analyzer can be understdod'by reference to the
'Xo—Xl curves for eleétrons of_slightly differént ehergies. FiguievIII.S
shows for eléétrons of energies E and E-AE in the region of the first
and second ethema, electrons entering‘the analyzef aﬁ X, will arrive at
the recording_plane separated by Axl. bThe dispersion of thg ahaiyzer '
Bxl/aE is thé quantity Axl/AEvtaken in the limit AEQO. The dependence

of axl/BE on x, for various positions of the recording plane is given in

1

Fig. III1.9. It should be noticed that the dispersion.has non;zero values

, curves for lens classes I and III,

at the'firsﬁ eXtremﬁm'of ﬁhe_xo—x
but is zero for fhg other'successive extrema. This is also trqe for
Jlens cla;sgsfli ana Iv pfdvided that the recording‘plane intersects the
two céustié enVelopes‘produced\by these systems. i.‘If,-however, the

recording plane should lie below the points of intersection of the two

innermost caustic envelopes of these classes of lens, then the dispersion
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(a) )

XBL 7111-7684

Fig. III.7 Behavior of caustic envelopes produced by the Mollenstedt
lens system: (a) for lens classes I and III, and (b) for lens
classes II and IV. The first caustic envelope vanishes for
lens classes II and IV for positive values of y.
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Fig. III 8 Schematic x0~~xl curves for electrons of two
different energies E and E -AE. The dlsper51on of
the system is defined as Limit !Ax /AEI

AE~>Q :
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(c)‘ S : (@)

XBL 7111-7686

Fig. III.9 The behavior of the dispersion (2x;/3E) as a function
of x, for different projection distances y, where d = lcm,
E = 100 keV, dx1/3E is in unit of microns/volt; and (a)
lens class I, c/a = 0.4, (b) lens class II, c/a = 0.1,
(&) lens class IV, c/a = 0.0k, : -
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at all extreﬁa appearing on the fecording ﬁiane is‘zero. Therefore,
it can be coﬁciuded that the dispersion of an anaiyZer of any iené class
is zero at all but the first caustlc edges of the system

The"energy resolution_is limited by two factors: (1) the size of
the slit, Axo, which forms the entrance aperature‘fprithe electrons; and
(2) the angular divergence of the beam, A¢‘(Fig. III;3). It.is obvious
from the xé—xl cufves that a parallel ménoenergetic'begﬁ passing through
an entrance slit of width Ako wili arrive at the recqrding pléne in a

X, |

strip of width $ X, = j;~—<>xu to the first order bf small quantities.

X

The variation of le/axo can be obtained directly from the X ~X, curves.

At the eXtrema.of the X =X curve,.Bxl/on is zero and hence so is Ax

1 1

to the first order. In general, the energy spread is given by

o DE AR yaX . - . '
‘ = z= o I1T.1
(eB)s = (55 )U5T0) X, o (117.1)
Thus, a parallel beam containing electrons of two discrete energies E and
E-AE can be:resolved, if upon arriving at the recording plane their .
separation Axl is greater than le. A similar consideration shows that
the resolution limited by the angular divergence of the beam, Ap, is

given by
G = 2GR

Metherell and Whelan9 have shown that (AE)¢ énd (AE)S are of the
same order of magnitude if A¢~_l0-h rad and AXO~ lum. In practice a

8lit width of about 5 m is usually employed in the'Mallentedt analyzer
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for which‘thé'éﬁtrance slit lies in the final image pléﬁe of thé elec-
tron micros;opé. At 100 keV for typical maénifications.qf E0,00bx or .
less, the value of A) is in the range of 5X10—8 to 5de_7 rad. In such
,cases:%he.resoiution'limited by. Ap is thereﬁoreinegligiple ip»qgmpayiéqp_
to that limited by Axo. From Eq. (III.1) it is seen that high resolution
(E/AE) is obtained when (Exl/aE) is large and (Bxl/axé) is small. The
operating posiﬁion of‘the slit should thereforebbé.thaﬁ Value of X at
»which'the firsf extremum éf the X "X curve occurs.. The classes II and
iV lensés are not suitable for use as an energy analyzer because the
recording plane does not in generalﬂinterseét the innermost caustic'_
envelope.  Cléss I aﬁd IIT lenses usually will yield hiéh resoluﬁion as

well as good dispersion.

C.- Instrumentation

Since the design details shall be given in a separate report, we
will only describe the schematics of the Mollenstedt lens energy analyzing
electron microscope constructed here at Berkeley. The Mollenstedt lens:

is mounted below the final image screen of a Siemens I electron microscope

so that full advantage of the spatial resolution offered by the microscope

could be'taken} Since the final image screen of the microscope is un-—

touched, normal microscopic work i1s undisturbed. A sChematié outline of
the'instrumént is shown’in'Fig. IT1.10. The analyzer section extends

from the base of the camera chamber C2

of the microscope to the floor.

The control console of the mlcroscope upon which C usually rests is re-

2
moved and moﬁhted onto a separate trolley to allow extension of the

microscope column. The entraﬁce slit unit S of the analyzer is suspended

from a trolley T which allows translation and rotation of the slit
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IIT.10 Schematic of the Mollenstedt lens energy
analysing electron microscope.
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assembly for eligﬁment purpose. The trolley T is housed in the camera

chamber C whieh means that the image cannot be reeerdea on'plates

2
stored in CQ'i? the usual menner. 'Therefore, the prejector tube 35 mﬁ
camera is usedfto record ‘all images and diffraction patterns. The .. ——
length and Vidth of the aperaturing slit of the analyzer can.be adjusted
by using controls mounted.outside the vacuum and ceupled to the slit
essembly by sliding rods and universal joints. The electrode system of

the analyzer is housed in a vacuum chamber V which is attached to the

final viewing‘chamber and lastly the final camera chamber C The

37

M&llenstedt lens system consists of a’pair of horizental earthed plates

with largebentrance and exit slots (5x2 cm). A pair of parallel cylin-
drical'eieetrodee at beam potential is supported midwayvbetween the

. plate electrpdes by the’porcelain insulator of e'normai Siemehs gun
assembly.

\The analyzer electrodes were designed followihg the criteria for
.dispersien and resolution given in Sec. III.B. Sincevhigh resolution is
.attaineq only for small separations of the eylindrical'electrodes and
the reverse ievtrue for high dispereioﬁ, the design of the electrode
system is therefore a compromise between these two factors. It is found
that reasonable performance is obtained if radius of ﬁhe'cylindrical
electrodes end thevgap betweeh'them are in the:range-of 0.2 tov0.25band-
0.05 to 0.1 times the spacing between the two ecarthed plate electrodes,
respectively. The resolution at maximum dispersion limited by slit

‘width alone should then be about 3x107°

for a slit width of 5 um.
Slits used in optieai spectrometers are unsuitable for electron

‘energy analysis since the slit widths employed in the latter case are of
. \
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the order of a few microns and small scale roughneSs.éf fhe edges will
then lead,to.undesirable streaking effects in the recorded spectra. A
method whichvsuccessfully coped With this problem is to use gold coated
glass rod slits. Each élit edge piece of g Hilger spectrbgraphic slit
unit is milied.down and recessed in, as indicated in Fig. III.11l. Fine
glass rods_of‘diameter of about 0.3 mm are gluéd to ﬁhebmilled and
- recessed edges using a conducting glue. After the glﬁé is dried, the
"slit edéeS'are thoroughly éleaned with suitable sﬁlveﬁts.énd then coated
with ailayer o% evaporated gold about 1000 A thick. To provide a
ténacious'la&ér of gold the evaporation must be carfied out as slowly as
possible.' '»' . _ ; ' : By )
The‘diménsions adopted for the analyzer electrdde system.are given

in Table III.2.

Table III.2
System _ ' . 1 o2 3
Separation of earthed electrodes (in.) 5 11/16 v &
Diameter of cylindrical electrodes (in.) 15/16  31/32 1
. / o
Gap between cylindrical electrodes (in:) 3/16 5/32 1/8

S1it width (um) ' ' <Sum < Sum < Sum

The high tension cable, which normally carries the filament and
cathode lines to the microscope, is fed into'anvéuxiliary H. T. tank

(Fig. ITII.12). This tank is primarily used as afjunction box so that

_the high voltage applied to the electron gun is also applied to the
Mollenstedt lenses.  The high voltage supplying the.Méilenstedt lens.

is obtained by center tapping the two filament leads so that any small
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evaporated gold

glass rod

glue

XBL 7111-7688

. Fig. IIT.11 Cross—sectional view of the slit edge piece
for the electron energy analyser.
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Fig. III.12 Outline of the auxiliary H. T. tank and
' calibration unit.
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high.voltage instability would effect thé\electronigﬁhiand the lenses . » '
simﬁlténéquély and equally. Thié is neéeséary because'to thg first
order approximation there will then be no spatial displaéement of the : v
loss,spectrum.occurring at thé recording plane dugltqqsmgilryoitag?
- fluctuafions.i The calibfation circuits are designed to dperate by
light éwitchés.ﬁo simulate the required energy losses. The safety de- . :
vice G, a diééharge tube connecting the éathoae line:fo the Méllenstedt
high voltége supply cable,-is absoluteiy nécessary-for; if otherwise,
damage.to ghe high voltage cable and various componéﬁts in the Siemens
high voltage supply unit may occur, should any (high voltage) diSchérge | | !
“in the Mollenstedt lens chamber occur. |
| D. Operations

Becausé of the.liﬁited space avallable in the Siemens I microscope

room an aﬁxiliary pumping system which was planhed to be ﬁsed at the

vacuum chamber V which houses the Méllenstedt lens system was finally

omitted from the construction. It was found that despite the added

large volume under vacuum, the original Siemens pumping system is ade-
quate to méintain a good vacuum with a sdmeﬁhat‘élowér initial pumping
 down speed. Nevertheless, under the’pfesent éondition;,experimentsvcan'
bnly bé'pérformed with ease up to 80 keV. At 100 keV, high QOitage : | ;
discharges.éccur_in the Méllénstedﬁ lens chamber several minutes after |
the high'véltage is switchea on. The exact reason fdr.this discharge ' w,é
is uncleafg hbwevér; it is found that contamination’éf cylindrical lenses o é
(at.high Volﬁage)wconsfitutes the major nuisance.':vaproperly cleaned, . _ :;

a'no—dischargé condition may last for as long as half an hour at. 100 keV.
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Proper alignment of the slit mechanism with the lens system may
appear difficult, but it is not a formidable task. The slit should at
first be_éompletely openéd.toballow the observation of the caustical
pattern, and fhen combinéd opefatiéné of:the Slit‘positioning, rotationai,
and width controls één be used to obtain the slit image. " The image of
the slit is observed to'give the best performance if it is placed at a
'position_of about.1/5 of the total separétionvof_the firét péir of

caustic envelopes. Final adjustment has to be made with a specimen in
the microscope upon which a loss spectrum of the_material coula be ob-
“served on the final viewing screen. Once the slit is'properly aligned,
the contréls of ﬁhe slit unit should not be touched during the entire
experimentai_period. Care must be taken so as not‘tolﬁver-close the

slit width‘control mechanism, otherwise the evaporated léyers of gold

on the two glass gods which constitute the slit mechanism may be chopped
off by the slight touching of the two rods. When fhié happens, the
reﬁaining-giaés surface will become charged locally and the lens system
will then producevenergy loss Spectrumvwith no spétiél stability.

Thg main. obstacle in operating the -analyzer liés, however, iﬂ the
lack of suffiéient intensity on the final viewing écréén.‘ This is due to
the small éﬁﬁrance aperture used (slit width is oﬁly'about 5 um).‘ This
lack of intensity makes the observation of the loss épeétrum on the
viewing screen a painstakiﬁg effort for the ordinary human eyes. This
also necessitates the use of an exposure time of ab@ut two to four
minutes.duriné which obscuring Qf the recorded‘lOSS'SPectrum may occur
due to exceséive higﬁ voltage fluctuations or mechaﬁicél vibratién of

the environment.
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The rahge(of_energy loss spectrum measurable is about 60 ev at an

operating:potential of 80 keV. Although a calibrétioh circuit is designed
and built, at the present stage it has not been put ‘to use. Calibrations

areitherefofe npw‘doneiby compgrispn of loss spectrum of a material whose

e

characterisf osses are well known (for example, Al has loss lines at

15.3 ev, 30; Ty ete.). In the range of about 0 to 25 ev, the system

seemé to behéVéﬁlinearly, and hence calibration shouid not present too ' !

serious a problem. |
Enérgy_reSolutioné obtained are of the orderfof 1 to 1.5 ev. It is

doubtful this figure could be significantly improved since this represents

a limitation imposed by the thermally emitted eleétron'beam.

E. Possible Applications

The energy analyzihg microscope can be operated to record the loss » [
spectrum either of electrons forming a selected area diffraction pattern

or of those éontributing to the images of a micrograph. Several examples

of such loss spectra aré shown in Fig. III1.13. 1In Fig; III.lethe loss
spectra are respectively that of the bright field imagés of (a) A1-1% Ag,
(b) Si, (c) Cu-10% Al, and (d) selected area diffraction pattern of Si.

The lines SO; Sl’ Sz.etc., as indicated are the zero loss, first and
second plasmon losses, etc.,_respeétively.' The lossvlines.in Fig. II1.13 |
all appearéd to_be curved..vThis curvature is due;paftly to enq caps fitted‘ 4
to the Cylindrical-lenées, but more importantly due to the fact that the
trajectories of the electrons entering the slit af different points along
the long dimensioﬁ'of,fhe slit making diff;fent anglés with the optical

axis of the system (Fig. III.14). The analyzer is only sensitive to the o

component of the électron momentum perpendicular to tﬁé plane containing
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Fig. I1I.13 Con,

Examples of characteristic loss spectra displayed by the energy
analyser at 80 keV, where Sg, 51, etc. are the zero loss, first
plasmon loss lines, ete. (a) Al - 1% Ag, S = 15.3 eV, (b) Si,
S1 = 16.8 eV, (c) Cu - 10% Al, S; = 20 eV, and (d) from Si SAD,
the energy difference (0.5 to 0.9 eV) G displayed by the tails
of the diffraction spots and the quasi-zero loss line is thought
of due to the Si energy band gap.
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XBL 7111-7690

" Fig. I1I.14 Illustration explaining the reason for the
’ " curvature formation of the energy loss lines.
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the axes of the cylindrical(lens eleétrodes; AElecffoﬁé“of the same
energy arrifihg'at points 1 ahd'S (Fig. IIT.1k) on‘theyentrance slit have
,

normal components of momenta less than,that.of an electron arriving at
point 2. The result is_thatAthe aﬁalyzer registers an‘apparént eﬁergy
loss for\eleétrons.l and 3, and this leads to the curvaturebof the loss
linesvshown invFig; IT1T.13. For the purpose of energy analysis, this
véurvature ig uﬁimpoftant since the calibration spectrum from a material
with known loss lines or from calibration circuitry will bear the same
effect.' |

Most~e¥pefiménts‘involving the usé of an energy analyzing electron
microscope haVe relied uﬁon measurements of'the loss sﬁectra of electrons
contributing‘to iméges rather than diffraction patterné. The reéson is
that a éelectéd‘érea diffraction pattern contains'ihfbrmation’averaged
out over én aréa of spécimen of -the order of several microns acroés,-
whereas with ép‘image the spaﬁiai resolutiqn, as limited by the width of
the énalyzer entrance slit, is of>the order of several Angstroms. This
means the eﬁefgy analyzing microscope provides a powerful tool for micro-
analysis, i.e.} for measuremeﬁts_of the chemical compositioné of micro~
scopic regions of the spécimen. Such types of appligafions of the
energy analyzing microscope are found to be usefﬁl in determining the

40,h1 and in deter-

compdsitioﬁs_of binary alloys, single or multiphase,
mining the influences on concentration gradiants duevto structural im- .
. perfections, such as a grain boundary, a dislocation, a stacking fault,

etc.13,1h,h1

All these applications make use of the plasmon losses of
the specimen. ’According to the simple free electroﬁ'model for'plasmon

excitation, the energy loss Ep is given by
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Eﬂp’ = ﬁ_(é%?in gzi.q')VQ” o _.- ii: (III.3) .
where n is‘thefnumber of free elécfrons per unituvoiume and the other
.notations hévé their usﬁal physical.meaning. ConseQuehfly, the varia-
tion of Eé with changes in local élloying compositions can be expected
since this ﬁeaﬁs a variation in n, the nﬁmberbof free .electrons avail-
able per unitivolume, due both to an addition or subfractioniof free
electrons énd'é chanéing in atomic spacing inﬁroduced’by the présence
~of a second species of_atoms;

:We feel that another promising kind of applicaﬁionS'of thé energy
analyzing microscopy is the study of semiconductinéAmaterials. In the
broad scoée; this should include such studies as carrier concentrations
due to do?ing’ le&els; a@oﬁaious carrier concentrations at the p-n junc-
tions and thé energy bandﬁgap measuremenfs. <Prelimina?y éonsidérations :
have suggesféd‘that thé probability of accomplishihgvméaningful measureQ
ments on aoping levels is not too good, becaﬁse dbping lévels in.semi—
conductors‘are'usually not high enough to allow any significant changes
in plasmon»ehergy differences to be measured; Howevér, studies of
anomalous carrier concentrations at a p-n junctioh shall'remain as a
highly_promisiﬁg_érea,‘espééially when combined witﬁ oidinéry microscopy.
The semicondnctor epergy géps_are usually of the order of 1 ev and can
 be well resolyed by the’ahalyéer. A possible éxamplé of such a case is
shown in Fig. iII.l3d, in vhich the quasi zero losS‘line consists of
intensity‘distributioﬁs from three diffraction spdts as well as that

from the background smear intensities. The trailing intensities of the
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spots afe Qiéarly.resolved from that due to the backgrbund radiations. -
Measurementskéﬁ:the spatial separations show\that the énérgy differenées
ranging froﬁ 0.5 to 0.9 ev (the energy gap of Si is-knoﬁt1to be 1 ev).
Thé possibility ﬁhat_this eneréy differenpe may beAduerto phpnonrscat—
teringé is fuled out because (i) the measured eﬁergy differencé-ié too

large, and (2) phonon scatterings should have a continuous energy dis-

“tribution, and (3) phonon loss:cannot have angular range o-g.
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IV. SUMMARY AND DISCUSSION:'
In the first part of this work, a bheory for c:al_cU‘..lating Kikuchi

electron'inténsity diétributidns is formulated. It Should be noticed
- that this theofy is also directly applicable to prbblems of images
produced bvaikughi electrons as well as inelastié électrons which do
not contribute to the Kikuchi paﬁtern, e.g., diffuse'background electrons.
The theory is formulated in terms of Bloch waves for‘wﬁich ébsorptions
of both thé eiastic and inelastic electrons are considefed. The initially
génerqted inelastic electrons are treatéd as having sphericél wave fronts,
and dqring éubSequent Bragg diffractions through thé rest of the crysfai
they are regafdédfas forming Block waves at differenﬁ deviatiogg. As
a departufe'from the’previousvtheories.of Kikuchi patferns,,this theor&Ii
is notvréétfiqted fo any particular inelastic scatterihg mechanism; bﬁf‘i
rather, the Qarioﬁs inéiastic scattering amplitudés_éfe treated as‘para— 2
meters . In.this.formulétion we considered the facfs that elastic waves
'belongingﬂﬁo different branches of the dispersion Surface do not con;
tribute,eéualiy to the géneration of the'inelastié éléctréns and that
for the initially generated inelastic electrons, only the so-called intfa—
‘band transitions are allowed. ‘Thié'thedry'is simpiér both in concepts
and in mathematiés than the previous theories. |

- Perhabs it' should be méntioned that dynamical theoriés uSing a
‘complex lattice potential were originally formulated to specifically
study the‘electrons scattered elastically in én "aﬁsorbing"vcrystal.
‘Neverthelééé, asidé from those "equivalent_absorptidns", i.e., electrons
that scattered out of -the aparture or scattéred into £he weak beams

neglected in the-caléulations, the term "absorption" is précisely a
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description”of the effects of inelastic scatteringéfdn_the elastic
eiectrons;_ it is thefefore_not surprising that upon fraveling throﬁgh
the crysfal,.in the company, of elasticvscatté;ingé, (Bragg diffractions),
inelastic eleétrons in any single éﬁergy state shodld:also suffer frqm
furthér’inelasfic scattérings.» Thus, as it is propef tb represent the
efféct of'inélastic scatteriﬁgs on the elastic electrons by absorption
germs,,it is also valid to include the effects of»furfher inelastic
scattefings of inelastic électfons at any energy sfate by similar
'absérpfion‘térms. 'Thié means , that in the Bldch wave representation of
inelastic eleétfoﬁs at a single energy state, properly chosen valués
of the imaginary parts must also be ircluded in each component of fhe
crystal lattice potential. However, it should be mentioned that at this
stage correct»values df_imaginary part of the léttice potential for
inelastic eleétrons are ﬁot'yet availablelfrom eithe: éxperimgntal data
or any theoretical esfimations. g

Iﬁ applying this theory tg calculate the Kikuchi patterns, a two-
beam (for. inelastic electrons) approximation is adépfed. It is also "
further assuﬁed that only inelastic electrons in thé first excited
energy state éontribute most significantly to the formation of Kikuchi
patterns. The imaginary pafts of the lattice potentials for the in-
elastic eieétrons in this calculationvare.chosen arbitrarily, in fact,"
Just thosé-for the eléétic electrons have.beén uséa; vAll of these
épproximations involved éhould by no means be regarded as physically
vigorous. Nevértheless, in. comparison with previoﬁs theories, the

success of this formulation is evident in the sense that, contrary to

most of the-previous'theories, which explained only one aspectfof £he

'
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behavior of the Kikuchi pattern, details of a_ﬁajdrity of’thé.most
importanﬁVaspects of the behavior of thebKikuchi_intéﬁsity distributions
are explaiﬁed. The vers;tilitylof this theory is further evidenced by
‘the fact fhat_the méthod,of éumming up all rocking éurve inténsities
for computihg the Kikuchi pattern of a systematic mény-beam case is
shown to be a specialvcase'of this theory. In'deriving this result;
‘the apperimatioﬁs used are specifically: .(1) only inelastic electrons
iﬁ the first efcited energy state contributé; (2) the crystal is thick,
" hence the éiastic beams aré replaced by a S-function type of excitations
at the top crjstal éurface; (3) ignorance of interactions between certain
waves. It is clearly seen that all these approximations are at best
of equal Qrudéness as those used in the two-beam éalpuiations. According
to Thomaé and'Hﬁmphrey536 and Thomas,h2 however, rémarkable agreements
with expefimgnts have been achieved by calculationé using this method
for the maﬁyFbeam‘Systéﬁatic casés, All these‘factﬁléﬁggest that in
order to expiain the various aspects of the behavibr of the Kikuéhii
paﬁtern, cbnffary to a common belief that inelastic scattering mechanisms
play a central role, absorptions of both elastic and inelastic electrons
/

are the moré important factors needed to be considered.

In comparing the'calculdted two-beam results with experimental
observatiéns,'the following quantitative discrepancies‘are hoticed;
(1) In the contrast ghénge of Kikuchi band from an excess to a deficiency
of electroné Qith changes in specimen thickness, the_éQmputed results
show that the_band is dificiént only if the crystals are very thick, and .’
the change Qf'cohtrast takes place thfough-a large raﬁge in specimen

thickness. It is experimehtally observed that the contrast change may
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occur withinﬁéfrelatively small range of specimen thickness,:also,
defieient bands may start to appear for crystals of'thicknesses smaller
than the.Values'ehown by the combuted resulfs; (2).Although ﬁhe.eomputed_
Kikuchi line:épacing:veriaﬁions are’ln good queliﬁative agreement with
experiments, hQWevef,.the range of excursion of the eomputed.#ariations
are somewhat Smaller than those experimentally obeerved. (3) According

Lq the computed results, the Kikuchi line pair sheula.have the usual
normel‘(bléek;and-white) contrast for thicknesses of any old multiples

of £g/2 and.fefersed contrast (thte—and—black) eontraet for specimens

of thicknessesfofvany integral multiples of &g. Thue, the possibility
of,obser#ing'either the normal or the revefsed contfaets,are eéual,
however, e#ﬁerimentallyvit is more difficulf'to observe‘the reversed
contrast. These discripancies between ﬁhe caluclated and the experimental
results ere mainly attributed to the approximationsrﬁsed in the calcu-
lations: (1) the caleulations is two-beam;b(Z) only inelastic electrons
of the.firsl excited energy state are considered, (3)'cerrect values

of the imééinary parts of the lattice potentials are-not available.
Nevertheless, experimenﬁal conditions may also have importent influences
cn the resultsvobserﬁed; For instance, in aﬁy experiﬁenf, effeéts on

the observedvresults due to small local bending of the specimen; speeimen
thickness VariatienSland smallideviations from any desired Bragg positioes,
ete., must,bevcensiaered; Nevertheless, it should'ee mentioned that,
many—beém celculations considering inelastic electrons-of more than ene
energy state with_properly chosen imaginary parts of the lattice-potentials
should lead to better fesults.

. Just as the elastic electrons are capable of producing images of
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defecis in é'crystal, so are the inelastic and Kikuéhi.electrons.  Com-
ﬁared.to images produced'by elastic electrons,‘thbée due to the inélasti?
electrons ére'characterized by bfoader image widths, more spatial fre-
quency‘compénénts and perhaps also a éhifting in imaée“positions. This
’is SO beéause,'on becéming ipelastié, the coherencies of these electrons
are lost Qith respect to the elasfic'electrons and, more important, even:
with respect to other inelastic electrons in the same energy state but
whiéh were'génerated from a differént depth in the cfystal. Subject

to the éamg.displagement field due .to the defect, the final image obtain-
able from:any.ineiasticjelectrons consists of inférmaﬁion carried by
(inélastic)”eiéctrong.which went through two differéht'image_forﬁation
processes,_depehding upon whether‘the electrons‘becamg inelastic before
or after traveling tﬂroﬁgh the‘displacemént field of the defect. . If

the electrons becéme inélastié béfore réaching ;he(displacement field,
then image:informations are obtained by these electrons directly. On

the other ﬁand, if the electrons became inelasticlohiy after traveling
through'the'displacement field, theﬁ image informaﬁiéh is merely passed
onto these electrons froﬁ their past history (while.they were elastic).
Since inelastic scatterings involve some random phase:shifts to the wave
functions éf the electrons, it is suggested that this is a major reason
for the fuzziness of the‘images due to the inelastic'electroné. 'iﬁ
practive, hoﬁe&er, §he£e‘ié'no way to separate thése two processes,
espebially-if the defect imposes a diéplacement fieid of infinite spatial
extent td the.cryétal (e.g., that due to a dislocatioh_cr a small part-
icle). TImages dué to ineiaétic electrons are intereéting-primaﬁily for

the purpose of characteristic noise (image) removal so that images -
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produced-dnly'hy elastic eiectrons can be obtained'and enhanced for
better resblutions. |

In the sécond part of this thesis, the design éﬁd construction
schematicsjbf‘an'ehergy analysing micfoséope are givénu Possible appli~
cation of’enérgy analyéing microscopes are given. 'in principlé, an
energy anélysiﬁg electroﬁ‘microscope shoﬁld providé:a powerful,tool for
microarialysisf A first kind of its épplications ié the study of metal-
.lurgical probiéms inyOlVe measurements of plasmon loés spectra and their
variations with spgcimen local composition changes. Physics ofbplasmon
excitations tend.to limit useful spatial resolutions as well as energy
resoltuioﬁé'tﬁe energy anal&ser can provide under its best performence.

First, the pléémon WaVelength limits the useful spatial resolution of

the analyser to régidns on the specimen of a diameter of the order 100 A

or larger. This_ié so because plasmon oscillations in a soiid isra
quantizedidénsity ﬁave of électrohs with a particular'wavelength within
which all'participating electrons oscillate collecti#ely. Thus, in a
region of.tﬁe range bf a'plasmon ﬁavelengthz only the AVerage electron -
density can Bebmeasured. The plasmon wavelengths of metéls is of the
order ofFlOO A or.larger. Thus, although the épatialvresolution limited
by the enérgy'analyser élit can be reducgd to a valué well below that"
of'the.microscope by simply increasing the magnifica%ion of the image,.
meaniﬁgful méasurements can only be performéd over regions separated by

a diSﬁance sufficiently larger than a plasmon wavelength.

In order to obtain dependable and meaningful results, full advantage

of the energy'resolution offered by the analyser must be taken. This

h
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restricts the microanalysis studies’of the composition'problems to
ﬁaterials whiéh posses sharply defined and wellAseparated plasmon loss
spectra. There is only 6ne kihd of materiai that mééfs this requirement:
Al basis alloys.b Other materigis of metallurgical.iﬁterests (Cu and Fe
basis alloys, éic.) do nét posses such a_sharply'definéd plaémon loss
spectrum., Iﬁstead of a sharp line like loss spectrﬁm of Al, the plasmon
ioss spéc@ré oflthese materials have an energy distribution in the form
of é smearéed band (see, for gxample, Fig. III. 13c, the spectrum of

.Cu - iO%'Ai)._ This wide band type of plasmon loss spectra made it im-
probable to accurateiy.allocate the peak of the intensity distribution
displayed by thé analyser, let alone tackle the quesﬁion of meaéuring
from these spectra any small changes introduced by sﬁall composition
variations.  This.phenomenon_may be understood qualitatively by con~
sidéring theielectrénic strucfures of the atoms of the wvarious materials.
For Al, thé n=2 quanfum levél is complete. The three electrons at the
outermost shell-(352, 3pl) behave closely ﬁo that predicted by the free
electron ﬁodél for plasmon excitations. On the other hand; the eight
outermost electrons of Fe aré distributed as 3d6'and hsg; i.e., the 3d

These is a finite probability that these electrons

could occupy the unfilled energy levels 3d7 to 3d}q for a short period

level iskincomplete.
ofvtime, and thus méking'it unclear as to how many electronsbshouldv»
partiéipafe in the plasmqn‘oscillatiéns. The resﬁlf is that tﬁe excit-
’ation of a single modé bf plasmon becomes highly imp:obable and hence
thevbroad_band type plasmon loss spectrum appears.b.In the case of Cu,
although now the n. = 3 shell is complete (3dlo and hsl), the several

outermost ehergy levels are nevertheless very closely spaced and hence
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these electroﬁé are tightly coupled, In this casevit is again true that

there is no clear answer as to how many modes can be excited. It may

i
[

be concluded at. this point that despite the high enefgy resolution and |

the extra—ofdinarily fine spatial resolution offered by the best per-

- formance of thévenergy analyser, its.appliability‘to microaﬁalysis of
composition,va?iation meésurements is perhaps limitéd to only Al basis
alloys'with a spéfial résoltuion of the order of 100 A. |

.vPéfhaps a more promising class of applications,.not mentioned in
the literature; is the measurements of doping levels; anomalous carrier
éonceﬁtratiohs at junctions and energy gaps of simicénductofs. For
example, Si hasvreasonaﬁly‘well defined plasmon losévépectrum (Fig. III.
13b). Although the prospects for doping'elevel méasﬁremenfs are low -
(since the doping levels are usually too low to induce.any significant

plasmon energy variations), at the p - n junctions, anomalous carrier

concentrations'should be high enocugh to allow the miéroanalysis technique

to be applied. Energy analysing microscopes should also prove to be a
useful toolAfo}‘direct and easy measurement of the enérgy gaps of semi-
conductors.’ 6f.the order of 1 eV, characteristic loss spectrum due fé
the presence.of the energy gap could be well resolved., One possible
such example:ﬁas been given by Fig. I1[.13d. .It should be‘noticed, how- |
evef,'théf the energy analysing microscope could alsb be used to study
Ithe physical pyinciples involving certain type~;f thé‘charateristic

losses. For examplé, the dependence of the exciﬁafion and dispersion

of the surface and volume plamons with specimen thickness.
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. APPENDIX

* - FUNDAMENTALS OF THE DYNAMICAL THEORY

A.1l. Solution of the Many-Beam Probleﬁ——The Dispéersion Matrix

~ The'étudy of the ordinary’dynamical theory of‘electron diffractions
torms the neceésary background knowledge of this wérk. For purboses
' relevan£ Qiéh'this thesis, the problem shall be wripten,in the form of a
’s&sﬁem of lihéér differential equations so that soiutioné of the prbblem
wcaﬁ bééﬂclﬁsively derived from the disberéion matrix of the system.
'Higﬁ énergy electrons entering the crystal 'is described by the 
Schrédinger‘ééuationv(Eq. (II.?)) |
g viaoant (ke Z Uy e™ 3rJ} W@ = 0. (A.i)

1%

Because of the periodic,natﬁre of the atomic arrangement in a crystal,
in Eq. (A}l)'the’cfystal potential has been written in the form of a
A Fourier series and then normalized, i.e., ~

_ LG Y
s v,e "

o . | (a.2a)

1

AVASS

{i

e
t h )V

(A.2b)

Uy

where g is a recipfocalvlattice-vector. The quantity kr 'V(Qme(E+VO))l/2

/h is the mean refracted wave vector of the electrons in the crystal,

which has been adjusted to account for the réfraciion due to the mean

’
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inner potentiaibvo. | , |
~.. For g ceﬁtro—symmetric crysﬁal,”the reiatibn_?_g~=.yé holds. In
general, Vg must bé regarded as a complex quantity{ ‘This is necessary

’

because on passing through a crystal, the electrons suffer from: an

"

attenuation phenomenon called "absorption." Absorption of electrons is

found to be diffraction dependent and are not uniform for all electrons

(and hence the terms "anomalous absorption" and "anomalous transmission").

~

Vi t

The introduction of an imaginary part into the lattice potential was first
_ ' 43 . .
suggested by Honjo and Mihama 3 as a phenomenological description of the

absorﬁtion of electrons and was theoretically justified in part by works

25

of Yoshioka,°C Hall and Hir_sch,2h Hall“’ and Gignnes. ¥

Because of the translational invariance of the .periodic potential,
the wave function of the electrons inside the crystal must also be

periodic. Hence, the solution of Eq. (A.1) is given by the Bloch wave
»functionh5
2w Lk +h)ev

-

Following the procedure leading to Eq. (II.18), Eq. (A.l) can be shown

to yield -

b fo G5 e woay
. cam d kS YDy 2 T Y. \r)j, |
—~ = ,k ky S 4l. RN B G

where T

.vai | Ry Lg + byt /G;Qe thy )y o
. o , o : ~ (A.5a)
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%, = Re k> U, | | (A.5b)

In deriving Eq. (A.4) it is assumed that reflections of waves at both the
’ _ - - . . L6 .

entrant and exit surfaces of the crystal are neglected. This assump-

tion also allows the.boundary condition at the entrant surface to be

L 0, if h# 0. On writing out explicitly in a

reduced to wo =1 and §

matrix form by letting & = 0, 8, ps---» &y Eq. (A.4) yields

4 o T Ny T
AL ket S -5 >3 5”2 )
) T kesooosgL | Y
. I o9, G -
RLS R N |
st 3 S - . (a.6)
ol | s
RN h) ~ = -‘ - Y ET
- ST SICXY

With the substitutions

, ‘ . ~L T Re(kv)z '
C#);‘(-f) = \h () Q | s e (A.7a)

(A."(c)‘
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\

Eq. (A.6) is further simplified into

i
i

. q)% ,‘\f’a)

b,
| by

or, in vectorial form

d e -
:;ff Sttr =

€ 4y ) (2 W,
ALY {
{
|
|

Q.( Eg‘)

.g\;-\) o 3 4 : q)c(*)

d - (~w)

PEASAE En:u-n (?3‘(_*)

‘ ' ' Bk 'f kS (A.8a)

s | %WJ

x

Subjéct'to the boundary condition that

r Cig)\. 7L

RGN

< A 5 ,f_ : (a.7a)

A dt), - ~ (A.8b)

(8.9)
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~the solution of Eq. (A.8) is

N 2w,

-
| k’\a,tﬂ
‘V‘éﬁ*/‘ _' I

/ :aifxl'o‘_ '

43{;;.“) ,

/.

~

’ ’ . ~
\Sa&‘l)v e S((—u)

Ll\j\ ) .‘:A§'(l'\‘)

gv'(wi.)‘ : &b\)v‘

Define the dispersion matrix as

’

=

f‘ ~y
C»v
O'

N J

~

. E‘(_“)'

g x/U""\_)

S

Jti)

( iR \")C Et(.-\_)
/
. 3. 2w,
( o (X'Xo) | :
_ A eV _ .
@ t-t) = € = ﬁ Q/XF
2 i , \
. \ ’ z /
§ Em Wnn)
g ,
Bg. (A.l_O).ma;yi ‘be, wi-_ii;ten in the vectorial form .

i

¢

cf% (-1 L)

i

(A.10)

(A.11)

(A.12)
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Sturkey,h6 FujimotoLLT and Niersh8 ha&e used the dispérsion matrix to
solve the electron diffraction problem. - However, thé properties of this
Smatrix are th fully discussed, reliable methodévfor‘célculaﬁing this
matrix are'a1so not given. It is easily deducedvfrpm Eqs.h(A;lO) and
(A1) thaﬁ thé'dispersion matrix has the following prééerties:

ng (fe-t.)= L

~ - (A.13a)

| é(xl-}c):?ékrl’x\) @i\t\‘*c)’
A i (A.13b)
— . ~,
it -2) = @ -0 |
) (A.13c)
\

Elements of the first column of the dispersion matrix havethe property

(A.i3d)

$,,atd= g (ar).

Bg. (A.13d) is also true for elements of the first row of the dispersion

matrix if the crystal is centro-symmetric. This important property has .

been used in-Sec. 11.E.l. The Bloch like coefficients %? of each matrix
. . \ . -

element obeys
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k=1 ‘ o o (A.13e)

and

o (A.13F)

If the qiépefsion'matrix is calculated, then the problem of mahy
beam diffraction in a perfect crystal can be considered as solved.
Howevér, Eq; (A.12) does not yield the solution of Eq. (A.11l) so readily,
because the exponential.function of a métrix is not easily obtainabie in
genéral. Although many methods_for calculating the dispersion'ﬁatrix
exist, thgvstﬁdy of this matrix has nevertheless been largely ignored.
Aside from’the fact that this matrix is not so easy to caléulate, per-
haps the main reason‘for this. situation is that the solution of the many
beam problem for a pérfect crystal is not as interesting as the image
problems, and it was -thought that the study of the‘détailed solution of
the dispersidnvmatrix offers very little or no help in solving thev
imagé‘problems; It will be shown,’howevér, that tﬁe_dispersion mabtrix
is of fundamental impértaﬁce.in undérstgnding the nafﬁre of.electrqn
diffraétions,.and that'it is aiso of great practiéal advantage ﬁo use
the dispersiqn matrix to solve'the'image problems.‘ Iﬁ fact, analyticél
forms of tﬁé dispersion matrix are réadily obtainéble'fo£ the two and
three béaﬁ cases, -and these analytiéal forms éf the dispersion matrix

allows the solution of image problems in these caseé.to be readily

U
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cqmputed. »For ihe”mény beam.problems, the use of tﬁé disperéion'matrix
also enabie§’£hé‘computations of the iﬁages to be greétly simplified,‘
and the usual problem of electrdn'intensity non-conservatién encounterea
- in other methqdé,wili simply not arjse.ﬁ_qu.tyis_;easén, we Yilirdispus§v
several methods of cal§ulating thevdisﬁérsibn matrix in.the next.section.

n .

A.2. Methods for Calculatingﬁthe Dispersion Matrix

A.2.1 Method of Series Expansion
The most straightforward (and the only widely used) method of cal-

culating the dispersion matrix is to use the series expansion

1 kS ’
ot + -

ax

_ As , .
L aty= €% = I Aers o (a.1ka)

Eq. (A.lka) is useful only when At is very small and hence the approxi-

,

mation
(A.1UDb)

can be used. For lérge values of Aﬁ, the sefies in Eq. (A .14a) con-
verges élOle and.the calculatién becomes tedious._viﬁ compariéon with
other methqu; hOWeyer,,itvwill soon bé clear that theAmosﬁ serious -

" shortcoming this ﬁethodvsuffers from is the,lack'of{éh_intermediéﬁe
representation of tﬁé'fesﬁifs ébtained and hence 1iftl¢ or no correlation
can Be dedﬁced for pﬁrpose of extending the result at §ne specimen thick-
ness to_éndthéf; | o

Despitévof‘this difficulty, this method is the most widely uéed

one, because in the study of image problems where A is not a constant
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matrix, it iéﬁthought that this is the only simple method.

+

A.2.2.° The Method of Laplace Transforms
Following the mcthod of Laplace transfdrms given in é.ny standard

text), the transform of :'Lq (A.12) is, by letting t' = t-t .,

(¢]
2 | A
s - ey = /i _%(5) |  (A.158)

A .. - ) ;
o '@\(5) - 'LS/I\ ~é)‘¢(o)’z iii(if) ' |
- ST | (A.15b)
o
Loe. C\)(I J?C):i Lgsl—A) J(&“‘) - |
i ' ' A | (A.15¢)
where
A 4 .
@(5):_ Kksz‘a)ﬂ} - L\é(s%',ﬁ) ;
b T )°£ - /,i) (A.16a)
and\ |
X AR A®-1.) oA
¢ ?(i ) = e = - = _ '. ~@»(s)
i . o ~ (A.16D)

In kg. (A.1l6a),
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a‘fa‘ (S;I\‘ /i ) = '(\C?M\ \\\(E*Y';"(.. CL &B% = Ai\,): [\(Sz)— :b)‘\)‘kj /‘

3

_\§I\,~‘ A‘J" - (e emd‘q b-f, <l j**—‘:—“ E’Q‘f“d‘jc{( S’i-é) ?

\S{}A\] = (,Q;(,,,WM of (sI ﬁ)

Lo NG -

‘In a system of n+l beams, A is a (n+1) x (n+l)v'mavtrix, hence the

~

determinant is a (n+l)'3_c_lg degree polynominal which may be written as

-~

N+

SLoAf = ™ e ausTr o Qe
- v e w YT | .
—u~-<> s x;) L (A.17)

Eq. (A.17) is the characteristic polynbminal of the system and o, " Xn

are the eigenvalues, note that

a. = (-—I)““Tri A I N R D bes v

N

n+l = order of system, and tr;A denotes the sum of the principal minors

of order i of the. éhara.cteristic matrix é In particular

tr) A = trace A, and trag 4 = [a].

Each element of the adjoint matrix in the numerator of Egq. (A.l6a)_

is g p'olynominal of degree n; consequently
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— (\(:?‘ (&S I_ A <+ Bi\ f
s = S 2) . — = ; (A.18)
4 1% :L\ ) (x'\ | S“* ‘+A\Sq" T * Qe E
where %\' , Q‘x v, Ty B\)\ are {n+l) x (n#—l) matricés. By inspection of
the matrix (sl - A) for any t

ypical A, it is evidently

B = L.

~
~

The task of computing the cofactors of (sI - A) is quite laborious

3

when n>2; it may be avoided by .computing instead the matrices

Ek of
' ) Yo . . . ’ g 4
- the numerator and the coefficients Qp of the denominator of %(S) by
means of the algorithm
N R S _
ah = T +roce (/5L Egk Y, k=1, 2, n+| (A.19a)
and
= v‘ ) = s 2, - " ‘
Bro = ABk v+ apyI » k= (A.190)
. - T AR - '
The dispersion matrix ¢@) = = is the inverse
, , , N ~ : :
Laplace transform of &) = (ST -A)Y! In order to find the
' . ’—‘{ . ~ X a . i
general form of C}_)\t) -, we expand ?}} (s) in partial frac-
tions end obtain .

DHH >

‘ “(t‘h E . \.(
(s) = (31:- )"‘:éf_”é : Voo

A g
,‘_’:" Y=r. P

g S

$
Cs- 2y

>p)
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where iélfy (p=1,2, ~kR$ne1) ‘are the roots of the

characﬁeristié equation, Eq. (A.17), and mp.are theirfféspéctivé multi-

plicities. After E§ () has been found by Eq. (A.16a) or Eq. (A.18),
~ : i

the matficesférp may.bé'feund'by'the techniqﬁe for scalar coéfficients;--

The inverse Laﬁlace transform of Eq. (A.20) gives the required disper-—

sion matrix,
(A.21)

It is thus.seen that_eagh term in the dispersion matrix generaily con-
sists of a sﬁm_of products of exponéntials and poiynominals in t' of
degréeé one ie?s th;n the multiplicity of the corresponding characteris-
tic root}"HoWéver, the existence of multiple rooté;ana_its multiplicity‘
1@p'indica#e the éoinciaehéé 5f mp tie-points bn theudispersion surface’
of the diffraétion prbblém, a situati-onvwhich seldom _é.a.ris.es. Therefore,
the case of distinct characterisfiq roots is of special interest and in

this case Eq; (A .20) reduces to

nel

v = 2 Ar - © o (a.22a)

r:.’ G - )l‘,

Where the matfices;ép-are_giveh by

A? = /Qw_ fw\g-xr) = ‘\.begl(o(&i— A)
e - S,—’)D(to ) ‘(blz.—é‘_ - . . - \O(P.,;,(‘_.)
_ . - e )

s " (A.22b)

i
i
i
|
i
i
1
!
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and Eq. (A.21) then gives R
Cone! - . .
. » et I (XpI - A .
- a4 o (Xp : )
huly = 7. € 4 == (A.23)
A e T oA p - XD |
AP

A.2.3. Method of Eigen-solutions

It is well known from linear algebra that any square matrix A
whose elements are real or complex numbers and having distinct eigen-
values (which is the case of electron diffraction),vthere exists a

similarity'transformation matrix g, called the eigen-vector matrix, which

will diagonaiize'the matrix A according to

v"eé‘?_ o

ol .
= \: é z s (K.2ha)
or
-
Q = Ejl; ?Z ) (A.2kb)

‘where M is a diagonal matrix of the form

J‘\'v_: [','X«v'_g-“], | | | ~ (a.2he)

Once the eigenvalue matrix 4&- and the eigenvector matrix g'and its

inverse Efl are found, the dispersion matrix is simply given by

f\»tl-’h)

- . - /,: *-2e) -
D2 )= @ - =

e

U=

|
v

? ,v | (A.25a)



_‘1'20...
where .

e%u.“= [ e A‘“*’*?’-&- 1

"(A.25b)

Tt is more convenient to represent the dispersion matrix in the Bloch

like wave form

AR
ty=e> - pPe

o>
A
Qv

=

oHr!

L Pk L e kh* hﬂ][PQJ

: [ i i Pk e/\hkfgkn PR

(A.26a)

R
For é symmetric, as is the case for a centro-symmetric crystal, then
-1 T L : . :
P~ =P", and Eg. (A.26a) becomes

| +
u) i[lk\k]"\“.

»H}4

»  7 (A.26b)
"4(.5.’;> AhhAj
\jk 4’

where i_l;k'
sion matrix and in whlch @?J = Pikpjk is the Bloch like coefficient of

'is the ijth element of the disper-
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the kth type of wave of the ij th matrix element.

For'computing the eigenvalues and the eigenvector matrix of a

symmetric matrix A, the Jacobi method is a nature choice for its sim-
; = G

plicity and efficiency. The Jacobi method utilizes a.series of two

dimensional rotations to diagonalize the matrix A.

N

F 1 o o o
- C
o | ¢
P . (e ,_,.‘..g;;q;' L0 e a1l vew
L}' N S
S - e, 0 [T e
L C 0 0 - b - 1

/[_ . t ) t!'\ Go feian

_ (o‘\)*ﬂ*\v\

is used to transform A into

o~

—
>
Q:,
(et
{!
~J
1
— 1
9 7’
-
[R—
(¢ —J

It is*easily shown in Eq. (A.27b) that

A matfix of the form

(A.27b).
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.. \ - : . 1 . L N | - ’ . .
,\ LT (e 4,' Ao+ kS\‘x« db, ('\J:) + 2 34)‘ (co ct)‘ G\‘.,).-, , (A.28a)
. \ - W i .
/\Jj ..: S\.\.~ (*;’ a_‘\' 4+ (m(#' qd\’é -2 .§~-- ¢‘ Cc’0¢’ ("\J' ) (A.28b)

)\\. = )\ = - ,S;...#‘(Lua ¢‘_((\“‘, -(‘Jj) + ( Lo;?h - SC\‘}_C". )Q.‘J‘i H (A28c)

and for ot_her' ¢lements in the ith and j th row or column but k # 1y

M 7 Al = o ¢, asy + S 4 Uik, (5.284)

I b S ' | |
Akj<: A)h - (§3¢.05k - s ¢, aip (A.28e)

-

and elements :ﬁot ‘belonging to the i,j th row and column are not effected

by this operation. We can put A = A «'. = O ' by .choosing

AP A A

17@s;h§3<¥ = ‘zfard' - o  (A.29)
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This procedure'may be repeated for many times and eveniually we may get

the diagonalized matrix as the limit of the product df'thesé operations:
- »T .. pT | : '
J\. = J,\w P\:« i \. 6 P. '”.J?“ :IT AI . (A.30)

- In practice; a sﬁfficiently_low threshold number may'be set for the
off-diagonal elements to limit the. number of operations necessary for

-~

obtaining é‘good_approiimation for 4\;/; and then the simultaneously
yielded {\L and P is substituted ;nto Eq. (A.26) to compute the difé-
persion matrix. | |
Sincé the case of a non centro—symmetric}cryéfai is not ofvmuch
practicalﬂinterest, methods for-diaéonalizing é gehera; métrix, such as

that of Housholder and that of Given's, are not discussed here.

A.2.4. Comparison of the Methods for Calculatiﬁg the Dispersion
- Matrix .

i

Of the three methods for calculating the disééréion matrix, only
the seriés expansion method is so far widely used. It is simple in
éoncept and easy to'use buf éuffering from the lackihé of any intermediate
step to febresent the Bloch wavelike terms and is thpé tedious in
practice.,_On_the other.hand, both the method of Laplace transforms and
the ﬁethod ofingen—solutions'enable the elements.of the dispersion
matrix to be>repre$ented asvéums of Bloch like waves. This-alloWs one
to'caléulaté any‘number of desired solutions of‘differeqt specimen thick-
ness by»esseﬁtially égﬁputing a.single set of coefficients for thé

~ Bloch like waves (Eq. (A.26)).
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-The Lapléce.£ransfofm method requires thé use>df'ofher meané to
find.all the eigenvalues of matrix é, and is.hencé;nof thevprgper ﬁethod
fér solving_tbe many beam.problems»of a centro-syﬁmetriq cyrstal. On
tﬁe other ﬂand; the JacobiAmethod yieldé the eigenvalues, .the eigen- -
vector matrix ahd:fhe in&ersé eigenVeétor matrix simﬁltaﬁeouély.' For
simple qase;'(two and three beam cases), the Lapléée tfansform method

provides analytical solutions readily.

A.3. The Two-Beam Theory
- As én example of application of the methods of solutions (Sec. A.2)

and also fof uSe'in Chaptér II, we develop the two—beém theory in this -

 sectioh. ‘For the two-beam éase it is customary fo set the origin  of

the reciprbcéi space at the first Brillouin zone boundéry, g/2. Absorp-

tionvshall nqﬁ be considered at this moment. We need krz = krcos QB’

2

s = gaB, w = s'gg, ké#g = kr

sine(ei3 +a8) x 94 ¢+ ‘kr(a“e = 9%* kS,
Io.;x = Ry 5i(Op YA€ -205) = 9% - kes,

and hence

h: ‘vkcl = 2 b.ri (kyi‘k{)"' 81/4 - ko:

ﬂ: ZAk;i (kri' h{)" hf S, ",'- ' ' (A;Sla)

'k:-;hg'i )"kyi'(h";hq )+ 3>ﬁ ‘h;k

.= 2 kya (Rya-kRa )+ k,s. . ' "~ (A.31b)

The geometrical relations of the various parameters are shown in

Fig. A.l;.the'dispersion surface (a plot of k, VS_kX) of the two-beam




s el b
L R I

-125-

- diftraets
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circle of radius kr
ahout, 0 '
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kv' about 0

. —circle of rajius

ky- ahont A

- (Ewald splere)

XBL 7111-7671 :

K

Mg, A. 1 Geometrical relations between Kv, kr’ 8_, &0, and s.
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case is shown in Fig. A.2. With the use of Eq. ('A.31)",' Eq. (A.6) becomes

S

>

XS Rya - 5 '5735 @) .
ST . L"l ,'AA, »4 : ,_2 ,_._‘\ - 7‘7 - - .v [ . it (A. 372) e e
C\% . '\P((;‘ \ ) - g '
L L U S
: g ' o
By letting . = rm%/gs , b= llvu)e‘lTé kf‘:" Eq. (A.32) is

transformed into. -

b7 [ oW 1 ¢, (1)

. f.{ . . (A.33) -
ax = o
| %W 1 Ny by
The Laplace'_ transform of the dispersibn matrix redds now
A =) . - StwW - | - ‘_
Ps) = (52“6) = [ }
~ ) ~ ~ ’ ~\ S -wW)
i ! 1 \ A \ L !
Cc ——— + (¢ ——— (4 ——— + (4
osrfter 0 O s R dstieae . 4 TR
' | ' T | R
b t( — 2 + (¢
C
3 S'Nﬁ_‘ d s-rwan SR s-dimgr
' (A.34a)

where
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Fig., A. 2 The two-beam dispersion surface and the wave vectors of
the four excited waves in the crystal. C
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i |- ) w T | wJ
- [+ - - o T — — ——t—— ,
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" 1he dispersion matrix is - then
p ‘

4
7/
C Wb g0+ G daray <5<}'(f-1<)r(5$<t»xa
?f— (% ?jc.) = ) ) ’ |
= | gt G $TR-2) C¥ie-g0+ (2dTan)
3 <7 SYM-AT Lo “| (a.35a)
where c'ﬁf"(.,;ic b)’.. _QALF['-.J I+'Q’~(>t-/fc)] ,

CTirAg sexp[ VRS 20) (4.350)

Upon transforming back to - the 11' representation, the dispersion matrix

‘becomes
¢ Pla-a+ iy 654?ya)ﬂngbg)
o Y(zez) = |
-~ i ) 2 i :
3 P2+ (3‘)&(140) A (2)+ L Piea)

’ (A.36)
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where
R : L1 3 : '
w+ (¥-3.) = .o_xr. [ ks rey ) , ' (4.37a)
Yraerey = o oxp Lhete-red 30 0 (A.37b)
In Eq. (A.V3T).,.the quantities )
}Q:' = kye = H’\\Jl/}'za ) (A'3?a)
k- ks (/2T

(A.38b)‘

are the wave vectors of the typé I and type 1T wavés respectively. The
wave functions of the transmitted and the diffracted beams are simply

given by - ' ' o .

\, (20 = Yl + o R o (A.39a)

0 ' g ‘ | g ' S
\‘}3(*?, = (-;) e f.'(jé VL(")’_a o - (A.390)
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respéctively.:‘The so=called type I and type II waves are respectively

defined as

7 \}‘1 \f() “;,‘ [,,('.: 61.7..' ,Lx,’(‘_' Gj'ez T.{'(%x.-*; ).:( J \,( l(% )-‘ 7 - ( A 408)

(A.40Db)

When Bragg condition is exactly satisfied, i.e., W =0 and EX =-g/2,

Eq. (A.4%0) is reduced to

R T (k; T - )/(L)

"}’1(; N -SI,\_\ T } x @ ] : (A.hla)_

\‘[rr(g) = (cb_ng‘,e . . ' (A.L41b)

Bg. (A.41) Shows that the two types of waves are waves progating in the
z-direction with different kinetic energy and, along. x-direction, they
form standing pattérn with type’II waves centered at each lattice plane
and type I Wavés'in.between theklattice planes, as illustrated in Fig.
: ‘ SN I » -
A3 for the quantities §; ¥y and Yy g . Identical to that of the
energy gaps. in band theory, the origin of the energy difference is Bragg
reflection. In the band theory of bound'electrons, initially all

electrons must have same kinetic energy so’that Bragg condition méy be

\
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atomic planes

- XBL 7111-7673

igs A. 3 Intensity distributions of the two types of waves: that
of the type IT waves are centered at the atomic planes whereas
‘that of the type I waves are centered in between the atomic
planes.

o
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satisfied, and because of the two resulting standing waves are centered

either at or in between the reflecting planes, the potential energy and

hence the tbtal_energy of ﬁhe two types of electrons are different. In

¥
i

'jfhe case of electron diffraction, however,‘ail electrons entering the
crystal"f;om'vacﬁum with éame energy. Since the total energy must be
conserved, thus, bcause the type II electrons are éentered at the lattice
planes and hence having a lower potentiallenergy, théir kinetic energy
is conseQue#tly larger than that 6f the type I elecﬁfoqs. Notice that
all electrons ih thé crystal'possess a somewhat higher kinetic energy
than in the Qacuum, because the crystal poténtial is‘negative.
AAbsorbtion'can be included in the two-beam case,by.replacing the

) o 1
otential V by V + 1V ‘and hence
p g vy g | gs _

k, — k} v A t( N f « | O (a.b2a)
. 2 Ry I :

- ol |
ks = hY%.~ Qfgjq:+ + \ Y ngﬁﬁi>" (A.42b)

- e A oy , _ ;
}Qz _.: ‘gyf ot 3 15 S VL SN (ZFEZ + :;Eggaii*) '(A.hgc)
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In Eq. (A.hé), the quantities

-Ec./ = Akva /Uc" o | ' (A.143a)

Ty o= ke Sug - S (a3

are respéctivelx the "mean" and "anomalous" absorption lengths. The
absorptioh coefficients associated with the type I and type II waves are

,in turn defined as

Mt L - — o . (A.43c)
' ié §5 o
‘;.&L - J + ‘ ) ) . . i -
~ O E‘;JML - | (A.L43a)

The physical meaning of the absorption 1engths are étraight—forward: the
.inverse of‘gé is the measure of thé average'absorpﬁioh-power, and the
inverse,of ié is the measure of the Fourier coeffiéiént_of.fhe
absorptioh pOwef assoéiatediWith g. It is obvious from Egs. (A.h3c)vandk
(A.h3a) that as W increases, the difference between the absorpﬁion co;
“efficients ui and u2 deéfeases.. This is_sb because as w increases, more
of the type 1T wéves would be chahﬁéled bétween the atomic pianes and.
more of the type i waves would be moved tQ the atomatic ?lanes‘where the
absorption powér‘is by'far the largest; Tévbe ph&sically realizable, the

¥
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. ; .
relation »~53 ':>f§¢ mu;t hold..

Ak, Dynamical Multiple Rescattering Process of Electron Diffractions--
An Interpretation from the DiSpersion Matrix

_ Thg Bioqh ﬁavertype_ofvsolutions of the diffraction problem implies-
that the electfons in the crystal are actually undérgping a dynamical
rescattering process-in the sense that the electrons'propagafing in one
direétion éfé éonstantly rescattered into other diréctioné.and vise

v , R v ,

versé. This rescattering is accomplished by the pfbceés of having the
électroﬁs'of"a.tie—poinf on any one particulaf branéh of the dispersion
surface_constaﬁtly reécattered into.ali‘other branchés of the dispersion
surface iﬁ all directions (including the direction>thé5e electrons
originally were pfopagating)'and vice versa. This'process of multiple
rescattering'represénts a possible way of interpreting'thevdiffraction
problem, Which canvbest_be understood with the use of the dispersion
matrix. in fact,_the va}ious terms in the dispersioﬁ matrix descfibes
specifically the amplitude, direction, and.brgnch of‘the dispersion
surface of ﬁhe rescattering of one'pafficular wave{> |

To.illﬁstraée this procesé, consider the t&o—béam case. The solu-
"tion of the diffraction problem at. any thickness 2 +<32 may be expressed
as the product'of the dispersion matrix of argumenf 4>Z.With the solution

at z, i.e.,

: \h(i'Tﬁt} kat) \*'g(oi) - i \h(g)
_ | = o " (ALLL)
\+3(}?Ai7 : \'*,La‘oi,) \h.(‘at) V(b(t) |

.
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When writing out in explicit form , Eq. (A.LL) becomes
’ ' it v fFi 2o ’
Yo(rat) = (L) $larst) + G (C i)
p : Y - .
+ S opier) + () P rrar)
iyl (PR SRS ]
4+ (¢ rrat) + (4 G4 (2) 2
R ke . ) Yty (A.45a)

t g G @) G b arar)

and'a similéf expression fdr‘?fg(z + a z). The phyéiéal meaning of

Eq. (A.hEa)‘is thaf'qfo abt & thickness z + 4 z isydue to the muitiple
.rescattéring of both types of waves of l*o and ?g at ;: Qn;the right
hand side of_Eq.'(A.hsa), the first term is due td3£he‘type‘1 wave of
‘L¥o(z) scatteréd into‘type I wave‘ofFfo(z +a 2), the second term is due
to type II wave of ?g(z) scattered into type I waveuof ?O(Z +az), ete.,
and the Szglto 8 th terms are due to ?g(z). A éimiiar situafion holds

true for qg(z +a z). Notice that for the case of a perfect crystal,

Lg. (A .45a) is simply

o -‘ S ! IR N
o (erar) = (o Ylarr) + (& Prerat), ~(A.h5D)
i.e., the rescattering.process is as 1f the different types of waves are
propagating indepéndently. Nevertheless, this does not mean that there
is no mutual scattering among the different types of waves, but rather

that the effect of mutual scatteing is merely balénced out, i.e., the
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amounﬁ of electrons scattered from type I waves into type II waves is

‘

exactly egqgual to the amount of electrons scattered into type I waves from
type II waves; thus there is no net transfer of eléctrons between the
~twoftypeS'of waveSu~~In~this’sense;~the”soﬁcaiied”intrﬁlband’trahﬁitibn

is forbidden. - If the crystal is deformed, however, then this situation

is not true anymore,” and images of the deformation will be produced.

A seéond important characteristic of the diSpersibn matrix is, as

shown in Chapter II, that it is the Green's function in problems where
inelastic scatterings are involved.

ALS. Iﬁage Problems

A more‘important area of the diffraction problem lies in the study

of images'produéed by defects in the crystals. All crystalline matters

contain 'certain‘kindsof defects, e.g., dislocations, stacking faults,

twins, small precipitates, grain boundaries, etc. These defects are
important in determining the properties of the materials. i
In a distorted crystal the electron wave function must still

satisfy the Schrddinger equation; howéver, the crystal potential in this

case 1s no longer that of the perfect crystal. Suppdée the defect is

produced by a deformation of the lattice of a perfect crystal which
- L - - — . |
moves the atom at lattice point point d to d + R(d), then the potential -

1 1

at an arbitrary point.d 1is changed since it now depends on d - d. If : o T

'

the crystal deforms smoothiy, the potential at d . will then in fact ’ , .

change from V(r) to V(r-R(r)). The potential in the deformed crystal

49

" can be writteén formally as a Fouriler series:
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N

_h iua MLF( 270 g RA¥Y) wrhﬂ 3 ¥, (A‘.bf6)

oy :’
\/Lk‘?' _1nw€ 0

It is seen'in_Eq. (A.46) that the crystal distortion has the effect of
modifying (the Fourier coefficients of) the crystal potential by mul-

" tiplying the original constant U, by a phase factor exp(-2 g.R(Tr)). It

g
can. be éhown;vbrovided‘ﬁ(f) varies only S5lowly wiﬁh,; (in fact, provided
lﬁ(f) doos not change significantly in a laftice distanco),'the Bloch wave
t&pe of solutions of the diffraction problem still hold. ‘Except for cer-
tain partlcular cases, Lhe problem will have to be: solved numerlcally,
" the methods dlscussed so far may be directly applled to crystals contain-
1ng defects, prov1d¢d the modlfled crystal potential’ is used.

The differential equatiohs for the case of a Qeformedvcrystal may
be easily derived by using the modified lattice pofenﬁial, Eq. (A.L6),
in Eo. (A.1) énd assuming a séf of modified Bloch ﬁévé solutions:
R

o ‘ Ry _
Yo = % Gy e "5 - (A1)

We then have

C -_-_’_9.‘_5 - - .
ki "R S (kyt S, )ria ST Gy

)

2N k (k"( QCL k kth ) VIV'CL, . - (A.48)
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: : : ' -k : -
If the last terms involving ,31_ ) 2 y VO -+ of C (F) are

neglected (the column approximation), then Eq. (A.48) becomes

_ _ - . _ o _ ééﬁ?T%;gdjgm'-”" o .
2 *“ - zr\\(k +§k)\¥h+-é: '—jr::f- ~‘¢3 i. (A.L9)
R ¥ T Sk

: Anvequivaleﬁt'but more general formulation of the image problems has been

given by Howie and BasinSki,BO in Wthh they included the non- column
approximations. On writing out in the matrix form, and adaptlng the

_traﬂsformatioﬁs given in Eq. (A.7), Eq.(A.59) becomes

i : - N N\
s - ’ \\ 9 Ve - i G Y J*
AW N T, e R g @neT ®)
: | e ¢
(A . =TTy R g‘
455 ) Eﬁ.e 2w,
d| - 1= | © | (a.508)
- 1 il ((a.50a
ax ) b
: ‘ L ./ ~ J /

or, in vectorial form

cs _ _ b. V' ,v ‘ , _
= YC/\(\"u) = Q\& qim, o “ .(A.SOIb)
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. The solution of the many beam problem of a deformed crystal'may

again, in ﬁrinéiplé, be written as
> %(7) =§R (*‘*c) (i)(tc)) E L. (A.Sl)

where Eﬁﬂﬁ(t;to) is the dispersion matrix and is a function of R(r). 1In

contrary to the case of a perfect crystal, there is now no known method

for calculating EEP (a) in general.‘ The type of expression’l

—~
~

alat) = QIQRQT

(A.52)

v

is.valid'dnlj it R is constant throughout the interval;-ﬁtg considered.
Thus, the'image problems canbﬁeéﬁ'be solved for eacﬁ slice of the;cr&stal
within whiéh.ﬁ(t) can be éppfoximatéd as a constant. To have any -
accuracy éﬁﬂaii, howévef,_this procedure then reqﬁifes an unwarranted
large amount of computing time. For fhis reason, it is a usual practice

that Eq. (A.52) is approximated as

NS PR e?’a = 1T+ Qe . (4.53)

-~

‘It is also usually thought that the matrix éR-is_cumbersome, (since

=~

there is an exponential term exp(2 T ig.R) associated with each off-

~diagonal term of the matrix) and it.is therefore transformed into



S .2 e T ’ '.\v
. 2w Ty i,
) ‘g“’ 2v~)\+% 3R
Ne= | | |
\ | ST R (A.Ska) -
’ Ol\ . -
L Sm - - ZTL\)“*H‘J" ) J

by substitution of
o v - ’*).i‘;;\ E ‘ S ' i
o (Ph (¥ )= ct;h”) © SR (A.5k4b)

in Eq. (A.50b), to find”»

~

% ¢ = RYCE | : : o " (A.5khe)

>

~

The approximate dispersion matrix of the type of Eq. (A.53) may now be

used to obtain an incremental solution

b rioty = (L+ Ap <) P @)

— dr)+ adat)

= d’,”_)+ [QR.(P_A?];@Y@JJ_ "(.A.55)v,
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By applying various humerical'integration Qethods,:the incrementai wéve
function, LA ¢;(4X) ' ,bmay be corrected fof thevsake of

aécuracy (the_lésf term on thé right hand side of Eq;-(A.55)lindicates
this operationj,i We shall refer this method as the direct-integration
method. Upoh.iferating through the crystal, this method either yields
-resulté with:lbﬁ accuracy or réquireé a large aﬁpuﬁt of computing time.
Iﬁdependéntvof the numerical integration method cﬁosen, this method
éufféfs from an inherént difficulfy‘which limits the usable integration
interval, At, to extremely small values,/if any reaéénable aécuracy'is
desired. .Fér a many beam problem, the deviation pérameters Wh can be a
very'large number, thié causes the intrédugtion of'a honTnegligible amount
- of integratioﬂ errdrvin each step. Dépending upon‘thé value 5f\At chosen
this will usually lead to an electron intensity noﬁ—conservation phenomeﬁ—
on in the fesults‘(aéide from thoée due to'absorptioﬁ). This difficulty
‘<Cén be 0veréome by usihg smallér valués of At (but‘the computiné time
ﬁeeded is then neceséafily 1eﬁgthened, especially fér problems involving
a large number of beams). Aﬁother difficulty associated with the use

of Eq. (A.SW) is that the term % 3 R becomes a §-function on
"crossing siices with an abrupt éhaﬂge in R (e.g., $tacking faults,
anti-phase boundaries, etg.). - This second difficu;ty caﬁ be avoided
by using Eq. ('A.sé) instead of Eg. (A.5L). |

We shall nOW'derive a metﬁgd théh retains. the full mathematical
rigor of the method of.eigeh—éolutions'and which completely eliminate;
thefintensity non—conservatién_probiem. This approach utilizes a special
property of ﬁhe matrix>§R : that'the eigenvalues of éR_arevindependegt

of R and are just those of the A matrix of the perfect crystal. Based
B : ‘ ;
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on this property, we cén calculate the dispersion‘métrii of eaéh slice
from that of the perfect crystal, which in turn is readily ébtéined by
the eigen—sOlUtion method given iﬁ section A.2.3._ The dispersion matrix
thusvobtained is:identicél tO’that“calculated’direcfly from the matrix-
A (t). -
. Nqﬁice ﬁhai the matrix éﬁ in Eq. (A.SQ) may. Be_ﬁritten as’

) '
Ar = Qo Aree S&. AT (#.56)

where Q_ is a similarity transformation matrix given by
X ,

R

—

0 = [-e?ﬁ\.gi"R EP,_] . o | . (A.57a)

)

- -1 ' .
and it follows that Qﬁ-, is given by T

ga, : [ eﬁu;sr"'«'& g?*} _ - '.(‘A.-S"(b)

In Eq. (A.56) A

R=0 is simply the A matrix of the perfect crystal. It is

»

immediately seen from Eq. (A.56) that

dt (A - A1) = AX. (G Aec Qp-AL)

(A.58)

13
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Eq. (A.58) méané»that the eigenv;lueé of the systeﬁ are independent of R
and are just those of the peffect crystal. However; when R changes, the
corresponding eigenvectors must be changed according to gﬁ; The physical
intérpretation.of this property is straight—fdrward: since the deform-
able ion‘approximation amounts only to a shifting of the lattice planes
by an amount R, but not any other physical properties, thus the character-
istic modés'of excitation (correspond to the eigenvélues Of,éﬁ) are not
effected by this shifting. Hoﬁever, the excitation_strength of the modes
(corréspondg.fo‘the eigenvectors) is changed as described by Q.- |
Although Egs. (A.50) and (A.5k4) are mathematiéally equivalent;.
»héwever,'if-thé ﬁwo‘eQuations are interpreted from the point of view of
‘aé increﬁental'soiﬁtion, there ié an apparently different physigal mean-— -
- ing associétea with each equation. Equation (A.SO),describes the in-
fluences of changing.ﬁ as simple shifﬁing of lattice planes and tﬁereby
cha@ging only the excitation'strength of each mode ffom siice to siice,
but not any other physical properfies. On the other hand, Eq. (A.54)
describes the situation as.a tﬁisting as well as é shifting of lattice
planes, therefore, the'operational,reciprocal latticé veetors will vary
theirvdire¢tions, magnitudés, and hence the modes of excitation as well
as the excitation stréngth of each mode. This situation is illuétrafed
in Fig. A;5 in the dispersioﬁ éurface representation:of a'tWo—beém'case.
The disp?rsion matrix of a slice in whiéh R = ﬁm, a constant, is

given by



¢
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I'ig. A. L Physical interpretations of the two mathematically equivalent
representations of the image problems: (a) in & representation '
{Eq. (A.54)7, the lattice planes are twisting and shifting through -
the crystal, g changes direction and magnitude and hence the disper-
sion surface and all Bloch amplitudes; {b) in @  representation
{fig. (A.50)), the lattice planes were only shifted, nothing but the
"Bloch amplitudes are changed.
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= x R - (a.59)

The waves leaving one slice of thickness <st.with displacement ﬁm is
obtained by multiplying the dispersion matrix by the waves entering this
slice. 'Uponbiterating through the crystal, this procedure results in

. /
§ -l

TQQ (o) Qng]§ ¢ (.60)

):

CP () =

TL -

X:

The dispersion'matrix of the whole crystal is readily identified from
‘Bg. (A.60) as

T N P %u].{ (a6)

i

a2

o)

=1

'Tne right hand side of Eq. (A.61) is called thevPrOductlIntegral of
Volterra. For-problems with a.discrete type of boundary (stacking
‘faults, anﬂi—phase boundaries, etc.), Eq. (A.6l)’is readily computed by.
a few matrix multipllcations. |
For problems with continuous displdcements,te.gl, that of a dis-
locafion, the_product iutegral cannot be so readily coméuted.‘ It is
unfortunace et'fhis‘stage that .numerical methods for computing this
integral is not well developed thus if Cb is. calculated accordlng to
(A.60), elther large amount of computlné flme is requlred or accuracy

of the results must be sacrificed. Nevertheless, this procedure may be
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modified slightly.so that the dispersion matrix may be<used in con-
junction’wiﬁh ordinary ihtegration methods to obtain the final results.
Since all numericél\integration methods are designed to compute an in-

~cremental solution of the type‘,_... e el I
. v

<# (£12%) = 4> (61) + [. ¢ (At)]ccnmg+@¢ (A.62)

we shall try-to find an ‘A<$h(4?) in which the dispersion matrix is

fully utilized, and this is simply

N

adet) = [ Ppend- T ] b)) ' C(a.63)
where %R'(f.?) is given by Eq. (A.59). -The _compﬁtational step
given byA%q.'(A.63)-is neéessary sinée numerical intergation methods
amount Bnly'ﬁo correct the incremental quantity Axﬁléf) at each étep,
and after_ﬁhev;brrection is accomplished numericallj accqrding té the
method éhosen,vfhe wave functions leaving for thé ﬁext_step is_fhen
simply given by that of Eq. (A.62).

An exémple of a screw dislocation is given ianig;-A.B, where the
eigen—integratioh‘mgﬁhod refers to the method just diséusséd. For ‘A t
fixed, both theﬂeigen;integrationvand the airect infegration“metﬁod
.req@ire'aboqttthe sa@e émoutn of computing time if mény columns are
involved. The infegrétion routine used is the 1 th. order Runge-Kﬁtta
method. dvér theVWide‘fénge of slice thicknesses chbsén, it is clearly
seen that the eigen-integration method yields‘a resﬁlt»far more sﬁablé

and accurate than thé direct integration method. No noticable intensity
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Comparison of computed intensities of the three strongest beams of one
column of a screw dislocation image using two different methods. The
¢igen-integration method (applied to ¢ , Eq. (A.50)) yields more accu-
rate result than the direct integratign method (applied to (P_ ., Bg.
(A.54)). When integration interval becomes large, results obtained by
using eigen-integration method do not show serious intensity non-
conservation problem, whereas that by direct integration do. Integra-
tion routine used is fourth order Runge-Kutta. : -
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non-conservation is introduced by the former method ~»Whilé the l.étfer
method sufféfs f%om this problem severely Vhen.At is_largé. This 151505
because thé éigeﬁ;integration method‘uses the éisperéion matrix fuily-
while the. direct integrationwmethod~uéesvonly-é fifst drder-approximation~"
of the disperéion matrix. ' This means that the eigen—integration method
should yield highly accura%e results- even when the | Ait is large,\

. | _
' becauée for this mgthod, errors introduced in the inpegration procéss

‘can only come from one variable: R.

o
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