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BEHAVIOR OF INELASTIC ELECTRONS 

Teh Yu Tan 

Inorganic Materials Research Division, Lawrence Berkeley Laboratory and 
Department of Materials Science and Engineering, College of Engineering; 

University of California, Berkeley, California 

ABSTRACT 
tl 

This study is an investigation into certain aspects of the behavior 

of electrons a·fter they become inelastic in a crystal. Except for brief 

discussions in places where circumstances require, it is not our intention 

to treat the various inelastic scattering mechanisms. 

Inelastic electrons carry information such as image and characteristic 

loss spectrum of the specimen. In a diffraction pattern, they also form 

line and band intensity distributions known as KiJs.uchi patterns. A theory, 

which is applicable to calculations of both Kikuchi profiles and images 

formed by ine~astic electrons, is formulated in terms of Bloch waves for 

which absorptions of both elastic and inelastic electrons are considered. 

Analytical solutions of the problem of Kikuchi intensity distributions 

for a four-beam case (two elastic and two inelastic beams) is obtained. 

It is shown that the following aspects of the behavior of the Kikuchi pat-

tern are explained: (1) the formation of the Kikuchi line pair, (2) the 

formation of the Kikuchi band and its changes in intensity from excess to 

deficient, (3) the Kikuchi line contrast reversal, and (4) the variations 

of the Kikuchi.line spacing with specimen thickness. Consideration of 

a systematic many-beam case for a thick crystal shows that for this case 

the Kikuchi pattern may be simply calculated from sums of rocking curve 

intensities. 
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The design and operational schematics of an energy analyzing micro­

scope constructed at Berkeley is given in the second part of this thesis. 

It is thought that the applicability of this technique to microanalysis 

of local chemical constitutions of a crystal specimen by analyzing 

variations in plasmon loss spectrum is limited to Al basis alloys. This 

is so, because other materials do not possess a wel."l defined sharp plasmon 

loss· spectrum. ·However, experiments could be performed by applying this 

technique to measurements of other characteristic losses of the crystal, 

such as the e~ergy band gap of a semiconductor. 

A review of the dynamical theory of (elastic) electron diffraction 

in crystals, which forms the necessary background knowledge of this study, 

is given in the appendix. Since many similar or equivalent developments 

can be found in most texts and literatures on the subject, mathematical 

details are avoided when possible. Solutions of the many beam and image 

problems are formulated in terms of the dispersion matrix. Methods for 

calculating this matrix are given. The dispersion matrix is of physical 

importance because it reveals the multiple scattering nature of the Bloch 

waves formed in the crystal. 
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I. INTRODUCTION 

During the course of a diffraction experiment in the electron 

microscope, a certain fraction of the high energy electrons will suffer 

from inelastic scatterings, thereby losing a small amount of energy. 

These electrons are called inelastic electrons. Inelastic scattering of 

electrons may take 'place by excitations of a number of elementary particle-

waves in the crystal, e.g., a phonon, a plasmon, or the ionization of an 

inner shell electron. It is not the purpose of this study to investigate 

the various kinds of inelastic scattering me~hanisms, but rather, the 

behavior of the electrons after they become inelastic. 

Just like the elastic electrons, the inelastic electrons will also 

be Bragg reflected and form Bloch waves which are subject to further in-

elastic scatterings in the crystal. Before impinging upon the crystal, 

elastic electron beams can be manipulated to behave much as a plane wave 

and are only limited by the performan~e of the microscope. Inelastic 

electrons are, however, generated inside the crystal with a large angular 

spread; Elastic beams are allowed along definite directions and hence 

form spot patterns, on the other hand, the large angular spread of in-

elastic electrons allows the formation of continuous intensity variations 

guided by pairs of cones, which, when intersected by the recording plane, 

approximate to line patterns: the Kikuchi pattern. Thrci'ugh the depth of 

a thin specimen, elastic electrons may be regarded as fully coherent. 

Inelastic electrons generated at a definite depth of the crystal, how-

ever, lose coherency with elastic electrons as well as with other inelastic 

electrons of the same energy state which were not generated within the 

distance of a coherence length for the inelastic electrons. 
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Depending upon the inelastic scattering mechanism, the coherence 

length of inelastic electrons may range from a few angstroms (due to 

excitation of a phono~to a few hundred~angstroms (due to excitation of 

a plasmon). Both elastic and inelastic electrons form images. However, 

images produced by the noncoherent inelastic electrons may be sufficient-

ly different from that produced by elastic electrons that cause obscuring 

of images to occur. The desirability of the removal of images produced 

by inelastic electrons leads to the construction of energy selecting 

microscopes. ~evertheless, inelastic electrons should not be simply re-

garded as a total nuisance, because they carry information in the form 

of an energy loss spectrum which is characteristic of the material. When 

properly displayed, information concerning the electronic structures of 

the crystal may be .obtained from these energy loss spectra. To this end, 

energy analyzing microscopes can be built. The schematics of the design, 

fabrication~ and possible applications of such a microscope constructed 

at Berkeley will be discussed in the second part of this thesis. 

Beside the various experimental techniques for treating inelastic 

electrons, it is also desirable that their behavior be studied and under-

stood theoretically. As should be expected, there are many such theories 

" around. However, to varying degrees of approximations, these theories 

are all concerned with certain types of particular inelastic scattering 

mechanisms with the result that they are in general too complicated to 

use. The mathematical complexity of these theories also necessitates 

ignoring the absorptions of both elastic and inelastic electrons.. It 

will be made clear in Chapter II that this ignorance is a rather drastic 

mistake .. With these facts in mind, a theory, which is applicable to 

'• 

·~·· 
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calculations of Kikuchi profiles as well as images produced by inelastic 

electrons, can be formulated in terms of Bloch waves for which absorptions 

or both elastic and inelastic electrons are considered. In this theory, 

the initially generated inelastic electrons are regarded as having 

spherical wave fronts and during subsequent Bragg diffractions through 

the rest of the crystal they are treated as forming Bloch waves through­

out the section of the reciprocal space in which Bragg diffractions of 

inelastic electrons take place. This theory is not restricted to any 

particular inelastic scattering mechanisms, because in the formulation 

the various scattering amplitudes are treated as parameters. The success 

of this theory is demonstrated by calcUlations on some special cases of 

Kikuchi patterns. 

The study of.the ordinary dynamical theory of electron diffraction, 

given in the Appendix, was initiated as a necessary background knowledge 

in carrying out this work. The solutions of the many beam problem are 

derived from the dispersion matrix. The use of this matrix allows solu~ 

tions of problems with multiple excitations easily obtainable, such as 

the Bragg rescattering of inelastic electrons. The properties of the 

dispersion matrix and methods for calculating this matrix are discussed 

in detail. The inter-beam and inter-branch (of the dispersion surface) 

multiple scattering nature of the Bloch waves in the crystal is made 

clear through the use, .and only through the use, of the dispersion matrix. 

A more accurate and faster method for computing image problems is developed 

also by use of this matrix. 
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II. A THEORY OF KIKUCHI PATTERNS 

A.· Origin of the Kikuchi Pattern 

In addition to the presence of the Bragg spot pattern due to 

elastic scattering of the incident electron beam, single crystal 

diffraction patterns often contain a diffuse background intensity 

distribution and a complex pattern of lines and bands known as Kikuchi 

pattern. These patterns are formed by inelastically scattered electrons. 

Inelastic electrons contribute to the diffuse background in general, 

however, a certain portion of these electrons, for which the Bragg law 

of reflection is satisfied, forms the Kikuchi pattern. · Associated 

,with each (hk~) reflection, there is a pair of Kikuchi lines. Between 

these two lines, an excess or deficiency in electrons may be present. 

The (hk~) pair of the Kikuchi lines is usually observed to be 

perpendicular to a line joining the (000) and the (hk~) spots, as shown 

in Fig. II.L 

An elementary geometric theory explaining the formation and 

constrast of the Kikuchi lines may be attained by following Kikuchi. 1 

When only a kinematical diffraction condition is satisfied by the 

incident elastic electron beam, the "diffracted" line of the pair, i.e., 

the line nearer to the (hk~) spot but further away from the (000) spot, 

always contains an excess number of electrons, while the ''transmitted" 

line always suffers from a deficiency of electrons·. In this simple 

theory the.inelastic electrons are regarded as rigid particles, thereby 

the interactions due to their wave properties are ignored. A further 
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assumption is that, on traveling through the rest of the crystal after 

the inelastic electrons are generated, they are Bragg reflected only 

once. 

Now consider the subsequent Bragg reflection of inelastic 

electrons which suffered only a small energy loss. Referring to 

Fig. II.2, let the inelastic scattering occurs at p, which, after the 

inelastic scattering, becomes the origin of a spherical wavelet. The 

angular distribution of the inelastically scattered electrons is peaked 

in the direction of the incident beam, op, and the intensity of these 

electrons decreases monotonically with increasing scattering angle. 

Variations in this intensity distribution occur because in certain 

directions,.pq and pr, the Bragg law of reflection is satisfied. The 

ray pq will then be reflected: into direction qq', and pr into rr'. 
Since op is :inaking a smaller angle with pq than pr, the intensity of 

the inelastic electrons is greater along pq than pr. Consequently, 

the intensity along qqt becomes greater than that along rr'. When all 

possible directions for relections from a given set of crystal planes 

are considered, it is immediately seen that the directions along which 

gains or losses of inelastic electrons occur are given by two cones of 

rays with a.semi-vertex angle of 90° 8B' as shown in Fig. II.3. These 

cones of rays of inelastic electrons intersect the viewing screen or 

photo plate some distance away from the crystal to form two branches 

of a hyperbola which can be closely approximated to straight lines, 

due to the small value of 8B. It is seen from this simple theory 

that the angular separation between the two lines of the Kikuchi pair ' 

·,I 
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f 
ba.'1d 

transmitted (deficient) 
·line 

diffracted (excessive) 
·line 

Fig. II.l Geometry of Kikuchi pattern upon observation. 

0 

1 
q r 

XBL 7111-7676 

Fig. II. 2 Geometrical explanation of the black-and-white 
nature of the Kikuchi line pair. 
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Incident beam 

XBL 7111-7677 

Fig. II. 3 Inelastic electrons generated at an iRelastic 
scattering center p have spherical wave front, 
but only along directions in two ~ones separated 
by a Semi-Vertex angle ~B the Bragg condition 
is exactly satisfied . 
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is 28B' an invariant, and that the two lines are placed symmetrically 

on both sides of the (hk£) planes. When specimen is tilted, the Bragg 

spots do not move, but the individual spo_t changes intensity. On the 

other hand, the Kikuchi lines move with the specimen as if they ar~ fixed 

to the (hk£) lattice planes, so that· their direction and magnitude of 

movement reveal the orientation change of the crystal. Notice that in 

the crystal, Iha.ny different sets of Bragg conditions may be satisfied 

by the inelastic electrons, hence even in the two-elastic-beam case, 

the diffraction pattern contains many pairs of Kikuchi lines. 

B. Some Intricacies in the Kikuchi Pattern 

Although Kikuchi's simple theory is capable of explaining the 

origin and contrast of the Kikuchi lines, it suffers from its own over­

simplified assumptions. Notice in this theory not only that the wave 

properties of all electrons are ignored as well as only one source is 

considered, but also that this argument is strictly geometrical and 

thus makes its applicability restricted to only the two cones of rays 

of inelastic electrons separated by an·angle 28B. 

More intricacies of the Kikuchi patterns arise because of t4e 

the following reasons:_ (l). there is always more than one elastic 

electron beam to serve as a source of inelastic electrons, (2). because 

of their wave property, electrons are always interacting dynamically, ; 

(3). interactions between Kikuchi electrons due to different sets of 

diffracting planes- occur. 

.. r : 
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. 
Unlike the elastic electrons which can be manipulated to enter 

the crystal in well collimated beams and hence may possess a well defined 

planar wave front to start with, inelastic electrons that are generated 

have spherical wave fronts. One immediate consequence of this property 

is that for inelastic electrons traveling in directions adjacent to the 

two Kikuchi cones, Bragg law of reflection is nearly satisfied, thus 

electron intensity distributions adjacent to the two lines of the 

Kikuchi pair has to be properly cons~dered. In the region between the 

two lines of the Kikuchi pair, there exists a non-negligible electron 

intensity distribution, known as a Kikuchi band. The intensity of a 

Kikuchi band is observed to change from an excess to a deficiency of 

electrons with an increase of specimen thickness or a decrease of 

incident electron beam energy. 2 •3 Similar to the subsidiary maxima 

of Kossel patterns in x-rays, the subsidiary maxima of Kikuchi patterns 

4 have also been observed for years, as described by Uyeda et al. 

When dynamical diffraction condition for the incident elastic 

beam is satisfied, situations become even more complicated. Thomas and 

Be115 observed that, when Bragg condition is exactly satisfied, the two 

lines of the Kikuchi pair may change their contrast. This phenomenon 

is specimen thickness dependent. New experimental evidences currently 

reported by Tart, Bell and Thomas6 also show, contrary to the prediction 

of Kikuchi's simple theory, which has become almost a common belief, 

that the Kikuchi angle (Bragg angles for Kikuchi electrons) should 

always be 28B' that the apparent Kikuchi angles can be quite different 
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from the corresponding Bragg angles .. This result is ·also specimen thick-

ness d~pendent. 

C. A Review of the Existins Theories 

Since Kikuchi's explanation of the origin of Kikuchi lines in 1928,1 

the Kikuchi patterns received no adequate attention until 1935 when Laue7 

proposed a.theory of Kassel patterns in X-ray diffractions in which a 

spherical wave is treated dynamically. In this theory Laue used the 

reciprocity theorem of optics to simplify the necessary mathematics. He 

also proved the reciprocity theorem for electrons and tried to explain 

the Kikuchi patterns by extending the Schrodinger equation to the case 

that a sorce of electrons is present inside the crystal. Laue's theory is 

superior in the sense that it treated the spherical wave and adopted the 

8 9 dynamical treatment. Later, Laue's theory was extended by Lamla, Artmann, 

and Fues and Riedel10 for the exp~anation of Kikuchi envelopes and bands. 

Theories based on Laue's original work suffer from one common shortcoming: 

that in Laue's theory only a point source, or, a source of size smaller 

than the wave-length of the electron is considered. As a result , the 

intensity of the Kikuchi pattern is perfectly determined by the orientatibn 

of the crystal relative to the viewing screen and is independent of the 

incident direction of the elastic electron beam. 

Although in 1948 Laue presented his theory in revised form in which 

the source was regarded as the result of inelastic scattering and was 

extended through out the crystal, the theory was not further developed to 

draw any conclusive results.
11 

However, in 1955 Kainuma arrivedat the 

same conclusion Laue did and applied the theory to a tight binding model 

... 

,•. 
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of a crystal to calculate the Kikuchi intensity profiles. He succeeded 

in correcting Laue's result to bring out the contrast of the Kikuchi line 

intensity as discussed in association with that of Fig. II.l. A Kikuchi 

band structure was also evident from Kainuma's theory. However, the 

12 
intensity in the band is restricted to always having an excess of electrons. 

Since then Kikuchi patterns have received extensive studies in association 

with different mechanisms of generating inelastic electrons. The physical 

processes that are responsible for the production of inelastic electrons 

involve the generation of many different types of elementary excitations 

in the crystal. Of these different excitations three types have usually 

been considered to be the major factors in the production of inelastic 

electrons. They are the thermal diffuse scattering (phonon excitations), 

inner shell electron excitations and plasmon excitations. Due to the 

extremely small amount of energy loss involved with the phonon excitations, 

aside from the fact that they do give rise to Kikuchi patterns, inelastic 

electrons generated by this mechanism are usually n.ot separable from the 

elastic electrons in ordinary electron microscopic work. On the other 

hand, inner shell electron excitations and plasmon excii~ations involve 

relatively large energy losses (e.g., greater than several ev as com-

pared to less than 0. 02 ev for phonon excitations), these energy losses 

' ,' 13-15 can be measured by an energy analyzer. . In ordinary image work the 

inelastic electrons thus generated can be filtered out by the use of an 

' l. t• . 16-19 energy se ec 1ng m1croscope. 

The inner shell electron excitons were studied by Kainuma in his 

12 theory of Kikuchi patterns. In this theory a Thomas-Fermi model of 

atoms is used. In 1957, Yoshioka's work on justifying the imaginary part 
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of the lattice potential by Fourier analysis of the matrix elements of 

the interaction Hamiltonian of inelastic scattering, in which a tight 

binding model of crystal was .used to produce the inner shell electron 

excitations, was a major achievement in electron microscopy.
20 

Plasmon 

excitation, or the collective excitation of conduction band electrons,' 

21 . 22 
was first studied by Bohm and Pines, and later by Ferrell. The 

plasmon excitations have a coherence length of typically several hundred 

angstroms, coupled with the small energy loss and momentum transfer in-

volved, this long coherence length accounts for the similarity in images 

. 23 
produced from plasmon scattered electrons and from Bragg beams. 

To varying degrees of approximations, thermal diffuse scattering 

(phonon scattering) is a more extensively studied area. Hall and Hirsch 

treated the Bragg beams as Bloch waves of the two beam dynamical theory 

and the inelastic electron beams resulting from phonon excitations as 

24 plane waves. This approach was useful in explaining anomalous absorp-

tion, but could not give the detailed intensity distributions of the 

thermally scattered electrons. This work was extended from an Einstein 

model to a one phonon and to an approximate many phonon Debye model by 

Hal1. 25 Yoshioka and Kainuma26 used the fundamental equations for dy-

20 namical diffuse scattering developed by Yosioka to study th.ermal 

absorption from elastic waves, in which, when considering specific cases, 

the interactions between the diffuse waves were ignored. Other theories, 

using a weak beam approach or time-independent. perturbation methods, 

have been formulated by several workers, e.g., Kainuma and Yoshioka, 27 

28 Fukuhara, d K 
0 29 an alnuma. 

'l'akagi included dynamical interaction of diffuse waves, and, in the 

• .... ! 
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case of two beams in thick crystals, showed that the thermal diffuse 

scattering can form Kikuchi pattern. 30 Later, his work was extended by 

31 Fujimoto and Kainuma to thin crystals. Gj¢nnes considered diffuse waves 

as n-beam dyhamic. Assuming incoherent diffuse scattering from each 

region of the crysta1, 32 he achieved a qualitative description of the 

profiles of Kikuchi lines and bands. Based on the theory of Cowley and 

Pogany,33 Doyle numerically computed the intensity distributions of the 

thermal diffuse scattering along a systematic row of excitations in which 

b . . t t . d t . 1 h . d d 34 M t the n- eam ln · erac lon an · par la co erence were consl ere . os re-

cently, Hall-discussed the crystal thickness dependence of Kikuchi bands 

due to thermal diffuse scattering.~5 

D. Formulation of the.Theory 

Consider the interaction of high energy electrons with a crystal. 

The Schrodinger equation of the system·is 

(II.l) 

where q is the crystal coordinate, H (q) is the Hamiltonian (energy) of 
c 

the crystal, r is the electron coordinate and H(r,q) is the interaction 

Hamiltonian between the electron and the crystal. We will not specify 

the explicit form of the interaction Hamilton in this theory, but rather, 

a phenomenological description will be introduced later. Physically this 

corresponds to ignoring the detailed interaction (inelastic scattering) 

mechanism, and describing the result phenomenologically. The total wave 

function \ iJ:' \Y, (l >> may be expressed as the products of the crystal states . 

l~jl~))" UJH.\ ,-he Ltne">?c ... (.\1"''3 ti«Lt-r-c.·~·(.; ':ltc,:1'e~ l'hln>~ 

l ~ l ~I 't ) > = ~ I t j \.") > I t_, l 't) > , 
.J 

(II. 2) 



-14-

where the crystal energy states are given by 

(II. 3) 

The substitution of Eq. (II. 2) into E<1. (ILl) and th€m the multiplication 

of the Hermitian conjugate of the crystal states, i.e.,~< tjupj' 
J 

yield 

(II. 4) 

(II. 5) 

where 

(II. 6) 

Using a tight bonding model for the crystal and neglecting the influence 

of Bragg reflections on the inelastic electrons, i.e., assuming the 

interaction between the electron and the crystal is purely electrostatic 

and the inelastic electrons are approximated by their asymptotic-form, 
' 

Yoshioka20 was able to show that the influence of the inelastic elec­

trons, i.e., the term-~ 1-\~Pf',tt)>on the right hand side of Eq. (II.4), 
. J.Q 

is to effectively introduce an imaginary part into the lattice potential· 

for the elastic electrons (the Fourier series form of the quantity · 

H0
(r)). Thus, by dropping the ket notation, Eq. (II.4) reduces to the 

0 

wave equation of elastic electrons 

(II. 7) 

.-· I, 
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where U0 is complex. The meaning of the various quantities and the 
g 

solution of t}oli) is described in detail in the appendix, however, with 

the script 1"o" now used to denote the ground state of the crystal and 

correspondingly the elastic electrons. 

On the right hand side of Eq. (II. 5) the terms ~- f-f ~~- > represent 
j-\-\ J . J, 

the electrons scattered inelastically into or out of the ith state: 

for j < i, electrons in state j are inelastically scattered into state i 

and these terms are the source terms for the state i; for j > i, elec-

trons in the state i are scattered into states j and these terms are thus 

representing the absorption of electrons in state i. Upon casting the 

absorption terms as the imaginary part of the lattice potential, and 

. noticing that· among the source terms only the term H ~ ~0 is large 

enough to be kept, Eq. (II. 5) is readily reduced to 

(II. 8) 

Notice that in Eqs. (II.7) and (II.8) the total electron intensity is 

automatically conserved. For high energy electrons, the energy differ-

ence between the elastic and inelastic electrons is very small compared 

to the energies of the electrons. The crystal potentials for the elas~ 

"' tic and inelastic electrons are then virtually the same for a fairly thick 

crystal. In a crystal the relation cpc,\V ~ 4> ~ l~) is always true and 

hence the quantity H~ (r) is practically equal to H~ (r). It follows that 

the real parts of the crystal potentials of both the elastic and the in-

elastic electrons are the same. This is necessarily so, since the real 

parts of the lattice potentials give rise only to elastic scatterings. 
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Because the imaginary parts of the lattice potentials are effectively 

due to multiple inelastic scatterings, the difference between that of the 

elastic and inelastic electrons may now be neglected only if the crystal 

is thick enough to allow many multiple inelastic scatterings to occur. 

The solution of Eq. (II.7) is given by the usual Bloch wave solutions 

of the dynamical theory (with absorption) : 

'+' .. \.¥-) -
( II.9) 

Correspondingly, a Bloch wave type of solution may also be assumed for 

the inelastic electrosn, i.e., 

(II.lO) 

It should be noticed at this point that the in~lastic scattering process 

is to scatter elastic electrons in each Bloch wave C0~ exp(2n ik
0
£·r) 

into every inelastic beam Cih exp(2nikih·r) , hence the intera~tion 

Hamiltonian Hi describing the inelastic scattering process is actually 
0 

a matrix composed of elements Hih for all ft and h. ot\. Accompanying the 

small energy loss due to the inelastic scattering process, a small 

momentum transfer must also occur. This momentum transfer can only be 

furnished by the matrix element H~~' and we may hence write 

' (II.ll) 

where 

(II.l2) 

.. 
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Along the directions the elastic electrons propagate, i.e., directions 

for which kill = k011 (where II denotes the coordinates parallel to the 

crystal surface), this momentwn transfer is completely specified by 

the quantity 6k = k ~ k. , the difference of the z-components of the r or 1r 

wave vectors referred to the symmetrical orientation of the ela~tic 

beam. This procedure corresponds to a lowering of the dispersion sur-

face of the elastic electrons to obtain part of the dispersion surface 

of the inelastic electrons. Generally, however, since the initial in-

elastic electron waves generated have spherical wave fronts, therefore 

a continuous distribution of tie-points on a number of branches of the 

dispersion surface of various potential e~ergies, i.e., a range of kill, 

must be considered. The quantity H~t' may then be obtained by adding 

to 6kr another. incremental momentwn &,. this situation is shown in 

Fig. II.4. The quantity 6k does not further introduce any total energy 

difference between the elastic and inelastic electrons besides that 

specified by L\k • It does imply, however, that for inelastic electrons . r 

on the same branch of the dispersion surface but having different values 

of 6k, although their total energies are the same, due to the potential 

differences represented by each different tie-point, their kinetic en­
\ 

ergies are different. 

The substitution of Eqs. (II. 'l) , (II.lO), ( II.ll) -and ( II.l2) into 

Eq. (II.8) yields 

..... :~ ..... 
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I , 

. /1 
/

-J 

-j li:.~-. 
~oh 

h -h 

XBL 7111-7678 

Fig. II. 4. The dispersion surface of elastic beams (solid line) 
is lowered to obtain part of the dispersion surface 
of the inelastic electrons (broken line). The quantity 

0 k specifies the total energy difference between the 
r . -

elastic and inelastic electrons whereas4k specifies only 
the potential (and hence the kinetic) energy differences 
between inelastic electrons propagating in different 
directions. 

. .. ' ~ 
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( II.l3) 

Upon letting the. coefficients of each linearly independent term 

exp(2Tiikih·r) to zero, we get a set of secular equations in the wave 

vectors kih and the Bloch coefficients Cih: 

l. -

c~ < ~~ .. - 1 ~.:~11.) + _-2.__ C;: 4 u~-~ 
~' ~ 0 

- 2 ~ ~ H ~~ Cc.-~ . -~ ·~ 
(II.l4) 

Equation (II.l4) may be. written out in explicit form for the (m+l) beams 

of the inelastic ele~trons: 

U­
~· 

( 

·~· 

0 

( ii. IS) 

In writing down Eq. (II.l5) it is assumed that there are (n+l) beams for 

the elastic electrons, where m > n. Equation (II.15) is a set of in-

homogeneous algebraic equations of the Bloch amplitudes Cih' The wave 

vectors can be obtained by solving the homogeneous part of Eq. (II.l5) 
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and (m+l) allowed values of the wave vectors kih will be obtained. With 

each value of the allowed wave vectors, Eq. (II.l5) can then be used to 

uniquely determine the Bloch amplitudes. However, it should be desir-

able to formulate the problem into a set of linear differential equations 

of z-coordinate only (which is just the equivalent of that of the elas-

tic electrons). 
l.. - 1 

For this purpose, use the approximation that ~~Y-Ik.;~.o\ ~ 

~· Y< e l ~.: t) { ~ ~ ~ - R: l ·~ ~.: "'j 
Equation (11.14) may be written as 

J . J / c.J l 
(. l ~' - k~ t: + -s,. ~ ) + L_.. ..; ;:; ~ 
.... 11 • r ~ ~ ~ a ~ 5 J; ~~ 

where j = 1, n+l; C~fJ. = 0, if j > n + 1, and 

(II.l6) 

In Eq. (11.16), the factor is a phenomen~logically introduced 

parameter to specify the fact that, due to the presence of anomalous 

absorption, not all types of waves contribute to the generation of in-

elastic electrons equally. 

Eq. (11.16) becomes 

When multiplied by 2rri exp (2rr i k~ · z), 
lZ 

' 

QA(r Ll. Ti~ ~:~ ~ J 

(II.l7) 
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Upon summing all j types of waves, Eq. ( II.l7) yields 

(II.l8) 

f-~\.. 4"-; '\~h where c-t.,."':: - ..,,_ r- c...f, are the scattering factors for inelastic 

electrons, and will be treated as parameters in the calculation of Kikuchi 
• -k. J -

( 
J ~;;; _i"'-.'Y 
c~'- is a set of modified Bloch lJ-~'~ ~ ~ D(j patterns; and 

J 

waves in which the Bloch amplitudes are those of the elastic beams 

(weighted) but their wave vectors are those of the corresponding inelastic 

beams. On writing out explicitly in a matrix form for the (m+l) beam 

case, Eq. ( II.l8) yields 
~~0 t\v k' -t Sio ;} !~~· ~!a .... •t 

t,~, J ta, I 

cti 
·: L.'lh --- ~-\y~ S.; &I d.!- . ~1 

0' a.-a·-
'ha .... _l,._;. R~t + s,o~ ~i~ ... ~ 1a~ 

f~ 
. I ~ o' . I fo 'tv-o (>\) c;,d' f~a" 0 . -u 

•. }j I 1 ~ ~·' 1\ ~· 
,. 

"'~3. fi>C I 
c~, oa- 0. '• i.) 

-t 

' \k~~ 
{~''-/ ' I 0 .e r-~- ~ ~~~ 

~ 

fo~ .. 0--0 ()" c. a, 0 

(II.l9a) 

or, in vectorial form, 

(II.l9b) 

II 
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I . f 

It should be noticed that except for the driving term 'F tf'o H> ·, Eq. 
~ ...... 

(II.l9) is identical to the set of linear differential equations for 

elastic electrons. Because of the inelastic electrons, all elastic 

beams serve as sources, and the initially generated inelastic waves have 

spherical wave fronts, the designation of i:S completely 

arbitrary and hence may just be conveniently chosen to be the beam which 

is nearest to the transmitted elastic beam ~o~ • In the derivation of· 

the above equations it is assumed that if an elastic beam is excited 

in the crystal then a corresponding inelastic beam must also be excited, 

however, an inelastic beam may be excited without the excitation of a 

correspondingly labeled elastic beam. Therefore, the numbers of beams 

and allowed wave vectors of the elastic electrons are less than that of 

the inelastic electrons. Nevertheless, the elastic elec-t.rons may also 

be viewed as composed of (m+l) beams but those beams for which~# 0, 

g
1

, ... , gn are having zero excitation strength. Moreover, for the ex­

cited (n+l) beams each beam may also be regarded as having (m+l) types 

of waves for which if j > n + 1, then the Bloch amplitude c;h for that 

type of wave is zero. The matrix element fih' 
ofl in Eq. (II.l9) specifies 

the relative amount of electrons scattered from each elastic beam 11 

into the inelastic beam labeled h, and is a function of the scattering 

angle between tpe two beams considered. It/is also evident from Eq. 

(II.l5) that in this formulation the initial inelastic waves due only 

to the so-called intra-band transitions are allowed. 

For purpose of simplifying the computations, with the transformations 

,...,._._ 
·~ 

' . ' 

' 
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ch ~ < ~) -::. 'h~u) e-1.11 ~ R.'i?.. \. k.;. ... > t: • 

cpc;_(t) "-'o~<~) 
-1.11~ R~ ( ~~y)t 

'::. e , 

' 

Equation (II.l9) may be written as 

r ci'.ocf) 

d P.3.ctJ 
-at ' -

·, 

4'~~..!*) 

. 
{~ 

\ ~. fee 
t 

fi3.., 
eo 

'S, (..,) 
..,. , 
~ .. 

'$,'.., $.: ..... ) 
f~ 0 ' f~o ... 

0 ()3· ca .. 

f~~ .. -.. f~ ;: 0 

! . 

' i \ i-.. - - . f • ~... . oa, . oa .. 0 

~~~-'"') cp.\o {:t) 

!.~1-1") <\>~a .<lt) 

2~ 
"" 4>· !t) '& .. 

. -. 0 
~ fc 

(11) (:.t ) 

. -. 0 <Pe3, (Jt) 

<Pe~,}.tJ 
c 

- - ·0 
0 

(II.20a) 

(II. 20b) 

(II. 20c) 

(II.20d) 

(IL20e) 

>;• 

-:.: 

: 

,:_,, 

;,_. 

i~_: ~ 

(II.2la) 
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or 

(II. 2lb) 

where 
4 .,.., '!f;ll .;, h 
---~~~ . H ()-t.. 

·~ ~ 

The solution of Eq. (II.21) is given by 

where ~ (t-.>t) is the dispersion matrix of the homogeneous system and is 
'::t . . 

equal to exp[A(t-A)]. 
~ 

Careful examinations of Eq. (II.22) reveal another important charac-

teristic of the dispersion matrix, that is, the dispersion matrix is the 

Green's function of the system. In general, the Green's function of any 

system can nev-er'be simply equal to the solution of its associated 

homogeneous system. In our formulation of the problem, the Green's func-

tion is easily obtained, i.e., it is just the dispersion matrix of the -

associated homogeneous system. In the paper of Kainuma,12 however, the 

Green's function of the system is not so readily obtainable, and Kainuma 

simply used the solution of the corresponding homogeneous system for the 

Green's function of his so-called reciprocal waves. In this. sense, the 

theory of Kainuma and other related works are in error. 

Since the inelastic electron waves generated have a spherical wave 

front, it appears that in order to solve the problem, all values of k. 
l.X 

must be considered for all beams. However, we shall see, from the follow-

ing theorem for the case of an infinite number of systematically excited 

I I 

...... ! 
I 
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beams, that this needs only to be done through the first Brillouin zone 

for all beams; or for a single beam, say, ~. , for all values of k .. 
lO lX 

THEOREM: Consider a systematic row of excitations of inifinite number 

of beams for which the elastic beams are fixed, then the set of linear 

.differential equations given by Eqs . (II .19) 'and· (II. 21) are redundant 

with respect to the·systematic row of reciprocal lattice vectors con-

sidered, i.e., for integers £, rn 

(II. 23) 

Proof: For purpose of proving this theorem, we replace the last term 

on the ri,ght hand side of Eq. (II.l9) by a single excitation column 

matrix ft~~,.). Equation (II.l9) may now be written as 
"' 

Ill 
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to ch~x) ~~\'+ s_~ I I '\:0 (~,-)() 
~!a .l3 .. a 

d 
c{t_ ~c l~~qJ 

( l I tc,(~.:>() 
= 2.7\1. ..... ·- k.r + Sc. 

d 1a 
-

, 

c~~~ 
. ' 

'f~ C~t'X) I I A~~ c1,l() " 
... Ly+ s~ 

.. i 

d. !,.0 d-1~ 
... 

-f l~,)(-~) 
+ f ( k~~ ) • 

f<k~·x+~) 
(A) 
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Consider i ± (h.: I( -t- a) . , Eq. (A) then becomes 

" 

I I 'tatk;•tjJ ~<~r+ Sc. ·-
,~'!a ~1;La 

d 
~ fc(k,·l(~~) = 

~~ tk~+~) 

I -·- kr+Sj *"(~'"+~) 
~!a ~!d 

-
I I 

k.y.+ s ... a- -.. 
't3 f~t,"t ~) 

;:) ~ ).d ~~';} 

-
f t~~~) 

-t ·f(bJ(+~) 

r l ~-l(+ )_~) ~ 

(B) 

II, elf 
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A direct c omparison reveals that Eq. (A) is exactly like Eq. (B), if 

and only if 
-

't_ ·a rk-.'1( -1- ~) = 'to l ~~~'I( ) ' 

'\' 0 ( k.-~ -+ j ) - tY ';) ( k .. '( ) ) 

and in general 

(C) 

It is evident from this theorem that for the many-beam case, the 

range of k. need only to be considered inside the first Brillouin zone, 
J..X 

or consider only one of the Bloch waves, e.g., 'l. (. L. ) for all of k. . l\<) R.'l( J..X 

For finite number of beams considered, this theorem, i.e., Eq. (II.23), 

is of course not exactly satisfied. The accuracy of the results then 

depends on the value of k. as well as the number of beams considered. 
J..X 

One of the factors that must be considered before going on further 

into the details of the calculation of the Kikuchi pattern, is the 

coherence property of the electrons. We have so far regarded the elec-

trans generated by the source, i.e., the electron gun, as monoenergetic 

with a constant rate of emission, i.e. , the electro:r: wave generated is 

monochromatic. Nev~rtheless, electron waves generated from a real 

physical source can never be strictly monochromatic, and should be 

described by a spectral line with a definite width. 'rhe produced elec-

trons may be expressed, according.to Fourier's the~rem, as the sum of 

strictly'monochromatic and hence infinitely long wave trains. The theory 

presented so far is essentially concerned with a single component of 

! ' 

' 

/ 
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this Fourier representation. With a monochromatic source, the electron 

waves propagating through any point p in space is of constant amplitude 

while the phase varies linearly with time. This is no longer the case 

with any real source: the amplitude and phase und·ergo irregular fluctua-

tions, the rapidity of which depends essentially on the spectral width 

6v. The amplitude remains substantially constant only during a time 

I 
interval .(j t < < ..., ).}. ' in such a time interval the change of the relative 

phase of any two Fourier components is much less than 27f and the ad-

dition of such components represents a wave which in this time interval 

behaves like a monochromatic wave with the mean frequency of the two. 

'l'his is not true for any much longer time intervals. The characteristic 

t 
time interval .,;f ";. - is called the coherence time. A)) 

Equivalently, at a fixed timet , along the path the electron travels, 
0 

any two points p
1 

and p
2 

separated by a distance d will see a monochroma­

tic wave as having a constant amplitude at both points with a phase dif­

ference l. il ~ , where >-. is the wave length. This is not true for any 

electron waves produced by a real source. The difference of the phases 

between the points due to two Fourier components is much less than 2rr 
, A1. 

only if d <.< .4;>- , and the addition of this two components yields es-

sentially a constant amplitude at the two points considered. In this 

small space interval the wave may be regarded as monochromatic with the 

mean wave length of the two. The characteristic distance interval 

is called the coherence length. 

The recorded experimental results of a diffraction experiment may 

be viewed as the interference pattern from all the waves involved, i.e., 
.(" 

the result may be interpreted as that produced by secondary waves emitted 

ill 
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by all scatterers along the path the· wave propagated. The physical 

significance of the coherence length is then the measure of the distance 

over which two equivalent polychromatic sources would produce a perfect 

interference pattern. This means we must expect strong interference 

between the waves generated at the two points if their separation is very 

much smaller than the coherence length of the waves, and no interference 

at all if the two points are separated by a distance mucn longer than 

the coherence length. In the latter case only the sum of the intensities 

produced by individual Fourier components of the waves would be recorded. 

Despite the polychromatic natlire of the electron waves produced by 

a real source, in diffraction experiments the incident (elastic) electron 

waves are always considered as fully coherent, i.e., as if the electron 

waves are truly monochromatic .. This is so because in diffraction experi-

ments the crystals studied usually are of thicknesses much smaller than 

>- E .i-the coherence length of electron. waves used, e.g. , at 100 kv, - =- - ~ 1 o , 
4).. 4 ~ 

if 6E is taken as l ev, the coherence length of the electrons is approxi-

mately 3700 A.. For much thicker crystals the above conclusion is not 

true, however, in practice this is a case of seldom interest since then 

the electrons will be practically all absorbed, an experimental condition 

certainly can be avoided. In an alternative way, this conclusion may 
"i 

also be arrived at quantum mechanically. By the time the electron beam 

;reaches the specimen, the wave packet of one electron has spread over a -'~; 

region large in dimensions compared to the crystal thickness. Taking 

the probability amplitude of finding the electron at any point in the 

crystal at a given time as a constant is therefore a good approximation; 

elastic scattering of this wave packet can then be localized within the 

crystal, so it is coherent. 

I! 
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For inelastic electrons generated within the crystal, however, as a 

result of the random phase shift due to the inelastic scattering, the 

electrons will not possess as long a coherence length as the elastic 

electrons. It is then only necessary to consider the interference of 

the waves generated within a coherence length, i.e., wave amplitudes 

should be added only over the range of a coherence length within which 

the waves generated from each.part is closely correlated. The resultant 

intensity of the inelastic electrons will be the sum of intensities 

produced of slices, each has a thickness equal to the coherence length 

of the electrons. 
' 

The collective excitation of conduction band e·lectrons (a plasmon) 

is coherent typically over a few hundred angstroms. Coupled with the 

small amount of energy and momentum transfers involved, this long co­

herence length accounts for both the high directionality22 (in the 

direction of the elastic beams) of the plasmon scattering and the re-

markable similarity in the images produced from the plasmon scattered 

inelastic electrons and the elastic Bragg beams. 23 For phonon excita-

tions, the range of coherent interaction between the diffusely scat,tered 

waves is the length of the phonon in the direction of the incident beam 

and is "very short. For inner shell electron excitations, the random 

ionization process usually leaves the generated inelastic electrons 

with no appreciable coherence length whatsoever. 

Because of the relatively large scattering angles involved, for 

Kikuchi patterns to form at all, only the inelastic electrons produced 

scattering contribute significantly. It 

is thus only necessary to treat the inelastic electrons as fully in-

coherent. On solving Eq. (11.21) for specific cases, a thin slice 
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approach may be adopted: within the slice an incremental inelastic wave 

is generated, as given by the last column matrix of Eq. (IL21), and 

upon traveling through the rest of the crystal, Bragg diffractions occur, 

as described by the rest of Eq. (II.21). · Finally the. intensities from 

each-slice may be summed up to find the total intensity. This procedure 

is equivalent to taking the initial wave <J>. (t) = 0 for all t , but there 
J. d 0 

exists a delta function type of source at each slice of the crystal which 

gives the incremental amplitude of the wave. Thus, for the final in-

tensity, Eq; (II.21) new yields 

(II.24) 

where ) d t~ l.t -A ) } , is a diagonal square matrix 

0 0 

0 - ' . 0 

0 0 ... '. .. 

and * denotes the complex conjugate. Finally, the intensity distributions 

of the inelastic electrons is given by 

Ill 
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(II.c5) 

... 
E. Special Cases of the Kikuchi Pattern 

It is clear that many beam considerations will be required for 

calculating the Kikuchi patterns for a general case. Such a case will 

be discussed later. However, because of the fact that in this formula-

tion absorptiqns of both the elastic and inelastic electrons are con-

sidered, it will soon be clear that for the purpose of explaining a 

majority aspects of the behavior of the Kikuchi pattern, a two-beam 

(for inelastic electrons) approximation will be sufficient. One advantage 

of using this approximation is that the solutions of the intensity 

equations are readily obtainable in analytical forms. For inelastic 

electrons held at two beams, then with reference to the diffraction 

conditions of the incident elastic beam, the results may be categorized 

in three cases: (1) The asymmetric one beam case. In this case the 

elastic electron beam is incident at an angle to the diffracting planes 

greater than the corresponding Bragg angle, the result is the formation 

of the black-and-white (deficient and excess in the number of electrons) 

Kikuchi line pair; (2) The symmetrical one beam case. In this case the 

elastic electron beam is incident in a direction parallel to the diffracting 

planes and results in the formation of a symmetrical Kikuchi band. The 

Kikuchi band is observed to change from an excess (white band) to a 

deficiency (black band) of electrons with an increase of specimen thick-

ness or a decrease of the. incident electron beam accelerating voltage; 

and (3) The dynamical two-beam case. In this case the elastic electron 
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beam. is incident at an angle equal to or nearly equal to the Bragg .angle 

and hence satis:t'ying the dynamical diffraction conditions. As may be 

e;xpected, this is the most complicated and interesting case. Dependent 

on the length of the operating reciprocal lattice vector, the Kikuchi 

pattern in this case may exhibit a pair of lines whose contrast may re....:! 

verse as the speci~en thickness changes, or a pair of lines whose spacing 

varie:> with specime'n thickness. 

For all cases. considered, the two-beam dispersion .matrix for the 

inelastic electrons must be used. This matrix is given·by (see Appendix) 

t 
4\o (,t --i) 4'3 (H) J 

~~(t-'t:) - ' ~ t 
t-id ~:t- ~ ) '\'-i 0 <t-~) 

(II. 26) 

where t is the crystal thickness. The quanti ties 1jJ. Ct-z) and .1/J. ( t-z) 
1.0 l.g 

are just the wave functions of the transmitted and the diffracted beams 

in the ordinary two-beam dynamical theory: 

and 

where 

'\'.;.
3

tf-t) 

t~ 

·.1 
c H. 

tt - 't: ) 

_, 
l. 

I 

*~ lt-1) 

..... 
-::. c, ~ -+ c ... a 

... 
*~ 

I - (_ >.e: l t- ~) + (-\(; 

\ l + 

(II. 26a) 

~~~~-~); (II.26b) 

~ .. t.(t·i)) (II.26c) 

(II.26d) 

J 1+\v· .. )llt-'l)J (II.26e) 
~-.;:- ' 

. ~~ 

•. 
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(II.26f) 

with T . 'tHJ·• ., (II. 26g) 
~"'a" \ 

being the absorption parameters of the type I and type II waves respec-

' ti vely, and 

(II .26h) 

In writing down Eq. (II.26) we have adopted the conventional use of the 

quantities that ~.: ~ a.a.e,.) w,: s, Re t'S3) (See Appendix for details). 

In the following we present the results in the order given above. 

It is further assumed that only inelastic electrons in the first excited 

state, i.e., i = l, contributes most significantlyin the formation of 

the Kikuchi pattern. A many-beam case shall also be considered. 

l. Asymmetric One-Beam Case--Formation of the Kikuchi Line Pair 

In this case the incident elastic electron beam makes an angle with 

the operating diffraction planes greater than the Bragg angle and hence 

' the rel-point lies well inside the Ewald sphere. We have now, w , the 
! 0 

deviation parameter for the elastic beams, approaching infinity, c1 ' 
00 

the Bloch coefficient of the type I wave of .the elastic beam, cl9sely 

equals unity and all other Bloch coefficients are approximately zero. 

f I 
The absorption parameter of this excited beam is _.t.f 0 -:: 5:., Under 

such circumstances, the intensity of the inelastic transmitted beam at 

the vicinity. of the Bragg position is given by 

I i, I·' 

! 
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(from Eq. II.24) 

-1- 1 W·):. 
""0 \ " i 

• i 

10 c't. r'a cl. "1. 
'tiT ;:t I I . 

~ f .. ., + bo 'a ) [ -~ - l.i) (-, t- !;a .[1-+'"·· H J + "'" e ~'-' e 3,( 
I -- -

'3{0 ~~ .. 1; ~ J \+ .._; :..1. 

] 

, ":t I·~ , · . _ l if tl! ,' + 1.. n ~ J , + \'-'~\. :t/r «\ Jj ,. )( [ e - v ~ .. c - . e '1.0 (] 

(II.27a) 

and an identical expression for the diffracted beam is obtained if the 

substitutions c~ + c~ , c~ + 2 c~ 2 c~ c~ are made in C. ' + c. , + 
lO lg lO lg lg lO lg lO 

Eq. (II.27a) {where +means "change to"), i.e., 

c i ~ • c , ~ . c "'3 ) 

(II.27b) 
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·By noticing the fact that in this. case fio » fig . Eq_. (IL27) 
00 00' 

readily yields a black-and-white pair of Kikuchi lines. The oscillating 

terms in Eq_. (II. 27) are not very important, unless the specimen is ex-

tremely thin. Figure II.5 shows this situation for various specimen 

thicknesses, where the values ~' ·~ ~ ,' and fig /fio = 0 are used. It is 
5co S.._ c 00 00 

clearly seen that I. (w.) always has a minimum value in the vicinity of 
10 l 

w. = 0, while I. (w.) always has a maximum value at w. = 0. However, 
l lg l . ' l 

for very thin crystals, the maximum value of I. (w.) may not always be 
lg l 

1 th th · · 1 f I ( ) When the v~lue fig/fio = 0 arger an e m1n1mum va ue o io wi . 
00 00 

is used, I. (w.) 
lg l 

l/(l+w~)112 . 
l 

to 

is symmetric in w., in fact, I. (w.) is then proportional 
l lg l 

If the condition that fig/fio = 0 is not satisfied, a 
00 00 

certain amount of asymmetry is introduced into both I. (w.) and I. (w.) 
10 l lg l 

and thereby broadening these intensity curves. The experimental fact 

that the Kikuchi line pair for a small rel-vector is a less pronounced 

line pair can be explained by the above discusion. (1) On moving 

away from the position w. = 0 the function l/(l+w~)112 falls off more 
l l ' 

rapidly for long rel-vectors, and (2) the condition fig/fio = 0 is not 
00 00 

well satisfied by short rel-vector diffractions. When points on the 

pair of lines are far away from the central porition of the pattern, the 

black-white nature of the lines at these points will also tend to be 

diminished, since then fig/fio = 0 is again not satisfied. 
' 00 00 

2. The Symmetrical One-beam case--Formation and Behavior of Kikuchi Bands 

In this case the elastic electron beam is parallel to the set of 

diffracting planes by which Bragg diffraction of the inelastic electrons 

occurs. No appreciable elastic waves other than the type II wave of 

the transmitted beam is excited, i.e.' c2 = 1, c1 = 
00 . 00 

ill 
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Kikuchi line pairs computed for various specimen thicknesses, 
(a) - (d). Considerable amount of asymmetry is introduced into 
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The only participating absorption parameter is M~ = 
~" . 
5oo 

The geom-

etry of this case is that a transmitted Bragg spot lies where the trace 

of the operating planes should be; and parallel to the diffracting planes, 

the Kikuchi pattern occurs in a symmetrical intensity distribution about 

the only Bragg spot. Because of this symmetry; the scattering "factors 

in this case, fio and fig, for the small region in the reciprocal space 
00 00 . 

considered, may be taken as being equal to each other~ 

The equation of I. (w.) in this case is identical to Eq. (II.27a). 
. lO l 

However, the condition that fio = f~g no~ yields from Eq. (II.27b) that 
00 00 

I. (w. ) = I. (-w. ) , indicating that the Kikuchi pattern is symmetric 
lg l lO l · 

about the trace of the diffracting planes and is indeed a band structure. 

The experimental fact that the Kikuchi band changes from an excess in 

electrons to a. deficiency in electrons with an increase in crystal thick~ 

ness or a decrease in the incident electron beam voltage may be interpreted 

from the intensity equations in an elem~ntary way. Consider I. (w. ) , by 
lO l 

letting fio 
00 

to 

= fig = f 
00 ' ' 

, T = t/~ , Eq. (II.27a) is reduced 
g 

(II.28) 
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When the crystal is thin, the second term.in the curly bracket on the 

right hand side of Eq. (II.28) dominates, and the band is an excessive 

one; for thick crystals, however, the first term donimates and the band 

is a deficient one. Intensity profiles calculated from Eq. (II.27) for 

several crystal thicknesses are shown in Fig. II.6. It can be clearly 

seen from this figure that the band may be very pronounced and that the 

change from a very high intensity on one side of the Bragg position to 

a very low intensity on the other side of the Bragg position occurs 

within a very small region of the reciprocal space. Furthermore, it is 

also worth mentioning that, regardless of whether the band is excessive 

or deficient, there exists, in the immediate vicinity of the Bragg 

position, an intensity maximum accompanied by an intensity minimum on 

the other side of the Bragg position. This is another well observed 

phenomenon which was ·not explained in the previous theories. 

3. Dynamical Two-Beam Case--Kikuchi Line Contrast Reversal and 
Spacing Variations 

Of all the two-beam (inelastic electrons) cases, this is by far the 

most complicated and interesting case. The Kikuchi pattern in this case 

exhibits several distinct behaviors, depending on the operating rel-vector 

and specimen thickness. Because in this case the two elastic beams 

satisfy or nearly satisfy the Bragg condition exactly, each o~ the four 

-
waves contribute to the g.eneration of inelastic electrons significantly. 

Due to the presence of anomalous absorption, the two types of waves in 

each beam do not contribute equally to the generation of the inelastic 
:.!.,:,-. 

electrons. Therefore, to a first approximation,(;~ j in Eq. (II.l7) may 

be set proportional to the absorption parameter of the wave, i.e., ., 

i 
.. ! 

/ 
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and an identical expression for I. (T), provided the substitutions given 
J.g 

in Eq. (II.27) is again used. Contrary to cases (II.E.l) ffi1d (II.E.2), 

the various oscillating terms in Eq. (II.29) may now contribute significant-

ly. In all cases the presence of a band type structure and sub-fringes 

is unavoidable. 

The Kikuchi line pair contrast reversal occurs for small rel-vector 

diffractions for which accurate allocation of exact Bragg condition may 

be easily achieved. This situation may be seen most easily by letting 

only the mean absorption parameter of the elastic beams be present in 

Eq. (II. 29). In such circumstances I. ( t) has a minimUm. and I. ( t) has 
l.O J.g . 

a maximum at Wi = 0 for t equal to any odd multiples of 53 /z.. and 

the situation reverses for t equal to any integer multiples- of ~(} (except 

when tis equal to 0), i.e., the Kikuchi line pair reverses its contrast 

at intervals of .3-a/z.. When all absorption parameters are considered, 

the above discussions remain approximately true. However, it should be 

mentioned that this reversal is primarily due to the oscillating terms 

in Eq. (II.29), which are functions of the specimen thickness, thus it 

can be expected that this phenomenon may also be observed at thicknesses 

other than the extreme situations mentioned above. In practice, non-

uniformity in specimen thickness, local bending of specimen, etc., will 

also effect the experimental results~ The computed profiles demonstrating 

this effect are shown in Fig. II.7. 

In the case of large rel-vectors, notice the fact that the length of 

the operating reciprocal lattice vector is large and accurate allocation 

of the exact Bragg conditions become very improbable, thus the incident 

elastic electron beam could be considered to satis~y the Bragg condition~ 
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not exactly. For such a case, using the value W = 1, the Kikuchi pat­a 

tern intensity distributions computed from Eq. (II .20) is given in 

Fig. II.8. It is seen from these computed intensity curves that the 

Kikuchi line spacing in -this case varies as a function of specimen thick..., 

ness, i.e., the Kikuchi line spacing varies from larger to smaller than 

that of the Bragg angle. To some extent, this effect also depends on the 

various oscillating terms in Eq. (II.29). This effect may be compared to the 

so-called size effect of the many beam problem of elastic electrons. 

4. A Many-Beam Problem 

To study the behavior of the Kikuchi pattern in a more general case~ 

multiple elastic and inelastic beam interactions must be considered, 

particularly if the incident electron energy is high. Without going into 

such calculations in this study, we will now use the special property 

given by Eq. (II.23) to show that the method of summing up the rocking 

curve intensities to calculate the_ Kikuchi patterns in the systematic 

many beam cases may be derived from our theory. In order to avoid the 

36 complexity of calculations, Thomas and Humphreys proposed, without 

I 

proof, that along a systematic row of excitations, the intensity dis-

tributions of the Kikuchi pattern may be computed by simply summing up 

all rocking curve intensities of each participating reflection at every 

deviation, k. . In their computations absorption of the inelastic elec­
lx 

trans are considered and the results obtained are generally in good 

agreements with experimental observations. 

Consider a systematic many beam case, by virtue of Eq. (II.23), we 

need only to calculate ~- (k. ) for all values of k. . Assume now that 
· 10 lX lX 

the crystal is very thick, and all excited elastic beams attenuate 

.. : 
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·Kikuchi line contrast reversal at the vicinity of W. = 0. 
(a). Normal contrast (black-and-white) for t equal io odd · 
multiples ofS /2. (b). Reversed contrast fort equal to multiples 
.ofSg· If W0 § 0 is not satisfied, contrast reversal may occur 
at o~her specimen thicknesses. · 
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rapidly in the crystal, hence all inelastic electrons may be viewed as 
' 

generated at the. top surface ·of the crystal. Under this approximation, 

we may write 

;,( 

:.t . 

J. r .... (;, 

. 1\·J) i (-a> f~<-a > 

fct-a> ftc (, 5 

fio 
c (-~) 

r~ 
(.C 

fH 
cd 

' ~ ~ t c\.- ()) ' 'a . fcc ·~ fo~ 

~ ·t: d ~ ~ { k ~·X I :t ) ' 
1 

-
lfr_ck,~,J-t) Yafh;'(,t-t)· ·] 

I ' 

·r '"~(r->C)/-a el-a) 

to'c ·-:. Slc.)'Xo 

'tea -=- \te:)ola 

(II.30) 

where ljJ (k. ,t) is just the wave function of the _g_th beam in the ordinary 
g lX 

dynamical calculations (see Eq. (A .13d)). The total intensity at a 

deviation k. is then 
lX 

- (.. 

1-'~("k,·-<,"X) ~-~~ "fd "t~(~~x,i:)\. 
If we further neglect ·the interaction terms between each ljJ (k. , t) , we 

g lX 

have 

" (II. 31) 
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where F is a function of jk. I. Eq. (II.31) reveals that the Kikuchi g . lX 

intensity is simply given by the weighted sum of the rocking curve in-

tensities. The last ass'umption, i :e., the ignorance of any interaction 

te,rms b~tween the wave functions 1)! (k. ,t), is justified only if the g · lX .· - - " . · __ 

•result obtained from Eq. (II.31) is considered to be the averaged in-

tensity over a range of crystal thickness variatio.ns which is larger 

·than the periods of all the neglected interaction terms. 

F. Images Due to Kikuchi Electrons and Other Inelastic Electrons 

In recent years a considerable amount of interest has been paid to 

high resolution microscopy aimed at improving the resolving power of 

microscopes to the atomic limit. During the course of such works for 

crystals containing defects, image enhancement techniques become im-

portant. There are many methods to accomplish such tasks, for example, 

the digital computer with its associated video scanning equipment can 

be used in conjunction with the microscope's best performance to give 

improved resolution. 37 This type of technique originated from the 

necessity of image enhancement of space photography, and a result of 

working on mainly television images. The technique involves operations 

of, geometric correction, photometric correction, random noise removal, 

periodic noise removal, and modulation transfer function corrections 

(compensation for attenuation of spatial high frequency components). 

In electron micrographs for images of a periodic nature (e.g., 

Moire fringes), the signal to noise ratio can be improved by translating 

and superimposing the image upon itself. In the case of images of defects 

(e.g., dislocations, stacking faults, and small'pa .. rticulate defects), 

however, situations can be quite different. The random noise in any -

\ 
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typical micrograph due to mishandling of the microscope, i.e., poor 

alignment,improper focusing and exposure of the plates, etc., may be 

larg~ly avoided by improving operational techniques of the microscope. 

·In this case, the random noise removal technique may also be applied to 

improve the quality of the micrograph. A more important and predominant 

class of noise is, however, the images produced by inelastic electrons. 

Since inelastic scattering must occur in any electron diffraction ex-

periment of crystals, the images produced by·inel;:~.stic electrons are an 

unavoidable characteristic noise of both the crystal and the defects. In 

comparison to images produced by elastic electrons, these images are of 

somewhat weaker but nevertheless not negligible intensities. These images 

generally differ from images produced by elastic electrons in the fol-

lowing aspects: (l) .Image positions are shifted; (2) More spatial 

frequency components may be present; (3) Image width is much broader. 

It should be noticed that although the inelastic electrons generated by 

plasmon excitatioils and inner shell electron excitations may be removed 

by an energy selecting microscope, a majority of these electrons, which 

suffered an energy loss of typically less than a few hundredth of one ev, 

due to phonon excitations, are nevertheless out of the scope of any 

energy selecting scheme. Thus, when recorded on the photoplate, these 

characteristic noise images superimpose with the images produced by elas-

tic electrons and could lead to erroneous ·interpretation of the micro-

graph. For example, they may smear the images of closely spaced defects, 

e.g., those of a dislocation dipole, a super dislocation, dissociated 

partial dislocations, closely spaced small particles. If these noise 

images are intense enough, i.e., for the case of a crystal which is not 
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too thin, they may also lead to wrong estimations of defect densities 

since these images may appear to be spatially separated enough from images 

of elastic electrons and may also introduce more spatial frequency com-

ponents to the image- of' a single defect. 

The desirability of removing this kind of characteristic noise is 

obvious. Experimentally this could be accomplished by essentially two 

micrographs; one consisting of images from both elastic and inelastic 

electrons, the other consisting of images from inelastic electrons only, 

and is done by moving the aparture to enclose a portion of. the Kikuchi 

line or just the diffuse backgrounds surrounding the Bragg spot. These 

two micrographs could then be digitalized and subtracted to allow a new 

micrograph free from these,noise images to be constructed. It should 

be noticed, however, that due either to translation of the aparture or 

gun tilting, the latter micrograph of inelastic electrons are taken from 

a slightly different diffraction condition. A first correction could be 

made by using the averaged data from more than one micrographs of this 

kind taken frommutually compensating orientations relative to the 

elastic beam. 

Theoretical calculations of the. image profiles due to Kikuchi elec-

trons and other inelastic electrons are readily obtainable for the 

general n-beam case by using Eq. (II.24). The two-beam results obtained 

for Kikuchi electron intensity distributions in Section II.6 readily 

yield the extinction contour due to these electrons for a wedge shaped 

foil. This result is shown in Fig. II.9. 

Careful examinations of Eq. (II.24) when applied to image problems 

show that there are two kinds of mechanisms res:ponsible for images being 

' ,. 
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produced by inelastic electrons: (1) Information about images produced 

by inelastic electrons, i.e., the responsible electrons become inelastic 

before reaching the displacement fields produced by the defect and then 

produce images upon traveling through or across these displacements. 

(2) Images formed by elastic electrons upon traveling through or across 

the displacement fields due to the defect, but these electrons subse-

quently suffered from inelastic scattering and the image information is 

thus carried over to the newly generated inelastic electrons. The above 

discussed image forming process for images due to inelastic e~ectrons 

can be best visualized with a discrete boundary type of defect, e.g., 

a stacking fault. Of course, the total image due to inelastic electrons 

is none the less a superposit~on of images due to both of these mechanisms. 

Therefore, it is not surprising that the images produced by inelastic 

electrons is natually fuzzier than that due to elastic electrons, i.e., 

a broader width, more spatial frequency components, shifting of image 

positions, etc. 



-68-

(\ 

I \ 34 

32 

30 

28 

26 

24 

22 

r- -' 
I \ 

--TRANSMITTED LINE 

I \ - ---DIFFRACTED LINE 

I \ 
I I 

I 
I 

~ 18 
w 

\ 
\ 

~ 16 \ 
\ 
\ 
\ 
\ I 

- \ J 
\. 

0 

J''ig.II. _9 

(\ 

I \ 
I \ 
I \ 
I \ 
I \ 

\ 
\ 

Computed extinction contours due to Kikuchi electrons for the 
case W = W. = 0. This curve also illustrates the contrast 
revers~l of1 Kikuchi line pairs. 

XBL 7110-7481 

.-



LJ :) 
.. , 

J .;~ -~ i) ~) u ~J ~~,I J '\ 4 ~i 1!._.) 

-69-

III. AN ENERGY ANALYZING MICROSCOPE 

A. Introduction 

Upon traveling through the crystal, certain types of characteristic 

excitations will unavoidably be generated by the electron beam; plasmons, 

inner shell electron excitations, phonons, etc. To generate these ex-

citations, energy must be supplied by the electrons which then become 

inelastic. Appreciable amounts of momentum transfer usually accompany 

any inelastic scattering and therefore change the direction of propaga-

tion of the inelastic electrons. This momentum transfer, together with 

the fact that inelastic electrons lose coherency with the elastic electrons 

as well as with other inelastic electrons suffering the same amount of 

energy loss but being generated at different depths in the specimen, 

causes the obscuring of images and diffraction patterns, as well as the 

formation of Kikuchi patterns. From the view-point of obtaining better 

resolution, it is obviously desirable to remove these inelastic electrons. 

This leads to the development of the energy selecting microscope which 

uses a number of energy filters capable of producing an image or diffrac-

. 16-19 
tion pattern free from certain kinds of inelastic electrons. In-

elastic electrons generated due to the excitation of a plasmon or the 

ionization of an fnner shell electron haye energy losses well over a few 

ev and can be successfully filtered out of the image and the diffraction 

pattern formed by the elastic beams. However, those inelastic electrons 

which are generated by excitations of phonons have energy losses typically 

under a fraction of one ev, and can not be filtered out. 

Undesirable as they appear to be in image work, the inelastic elec-

trons are not a total nuisance: they themselves carry information in the 
I 
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form of energy distributions which are characteristic of the material 

under study. For this reason, energy analyzers can be fabricated. Upon 

passing through a narrow slit, the energy loss spectrum of the material 

may be displayed by the electrons.- Both images and diffraction -patterns 

may be examfne'd in this manner and knowledge concerning the electronic 

structures of the materials studied can be obtained. This in turn can 

be used to measure the chemical constitution of microscopic regions of 

- . 13 14 
the spec1men. ' Therefore, measurements of the loss spe~tra of elec-

trans in an electron microscope should provide a powerful method of 

microanalysis if reasonably high resolving power of the spectrometer could 

be achieved. 

The resolving power of the electron spectrometer is defined as E/L'IE, 

where E is electron beam voltage and l'!E is the voltage resolution. Several 

factors tend to limit the resolving power of a spectrometer. _-The first 

major limitation is imposed by the precision of electron optics and the 

stability of the high voltage supply. However, the stability of th~ high 

voltage supplies need not be' critical if the electrons are slowed down 

before analysis. This can be done by electrodes connected to the high 

voltage source which supplies the microscope. The resolving power is also 

limited by the spread in energy of the electron beam from the thermionic 

gun and by thermal motion of electrons. The two latter __ factors are quan-

tum statistical proc-esses, and, if not counteracted by a monochrometer at 

the electron gun, would limit the resolution of the spectrometer to l to 

1. 5 ev. 

i' 

i 
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B. Energy Analyzing Device--The Mollenstedt Lens System 

A large number of devices sui table for energy analysis has been re-

t d . th l.'t t 15 por e 2n e l era ure. The main restrictions on the choice of devices 

are that the energy resolution should be of the order of 1 ev or less, 

and that they should be readily adaptable to the imaging system of the 

microscope. The devices commonly .used which meet these requirements in-

elude the Mollenstedt lens (cylindrical electrostatic) system, the cyl-

indrical magnetic lens and the electrostatic-mirror magnetic lens systems. 

'rhe device we chose to use in our energy analyzing microscope is the 

Mollenstedt lens system. The reason for making this choice is twofold: 

(l) The theoretical value of the energy resolution of this device, 

6E/E, can reach (lo-7 ), it is doubtful that arty other device can 

approach this value; 

(2) Its design characteristics are well known. 39 

A cross-sectional view of this lens system is shown in Fig. III.l. 

A fine slit, a few microns wide and 1 em long, serves as the electron 

entrance aperature. The slit is aligned with its long dimension parallel 

to the axes of the cylindrical elec~rodes. Electrons pass through the 

slit s into a box-shaped electrode system at the anode (ground) potential 

and then through regions of high chromatic aberrations near the two 

cylindrical electrodes biased at cathode potential. Figure III.2 shows 

schematically the potential distributions of the region near the two 

cylindrical electrodes. If the slit S is placed at a suitable off-axis 

position (Fig. III. 3), electrons of different energies can be dispersed 

at the exit side of the lens system. 
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?is. III.l The cross-sectional view of the Mollenstedt lens system, 
where C is the cylindrical electrostatic lenses at cathode 
potnetial, B is the box-shaped electrodes at anode (ground) 
potential and S is the thin slit which serves as electron 
entrance aperature. 

XBL 7111-7679 

Fig. III.2 A cross-section of the cylindrical lenses showing 
the equal potnetfal surfaces in the region of the 
saddle point S. 
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Fig. 111.3 Electrons of two different energies.E and E-6E are 
dispersed on passing through the Mollenst:edt lens 'system, 
1.rhere x

0 
is the electron entrance coordinate,. x1 is the ' 

electron1. exit coordinate upon the recording plane, 6x0 
is the slit,width, 6¢ is the angular spreading of the 
electron beam, d is the spacing between the two ground 
plates, a. is the radius of the cylindrical electrodes, 
and c is half the spacing between the two cylindrical 
electrodes. 
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Many authors have derived expressions for the potential distributions. 
I . . 

in idealized electrode systems which approximate those of practical in-

terest. A particular s·imple model, the line charge model., has been 

devised by Metherell. and Whelan. 38 ·In this model· the- 1.ens ·system is as-

sumed to have two parallel and infinitely long line· cha:rgeg placed rough-

ly at'the center position of the cylinders. From the results thus ob-

tained suitable equipotential surfaces may then be chosen to simulate the 

cylindrical electrodes of the analyzer.· Although the line-charge model. 

does not possess equal potential. surfaces of exactly circular shapes, 

·. 38 39 . 
Metherell and Whelan and Metherell. have shown that it represents a 

good approximation of the practical circular electrodes of the system. 

The potential functions can be used to calculate the cardinal points, 

aberration coefficient, etc., of the system. The dispersion properties 

of the lens system can be best understood by examining the.dispersion and 

resolution in a plot of the entrance and exit coordinates x
0 

and x
1 

of a 

monoenergetic electron beam passing through the lens (Fig. III.4a). The 

trajectories of electrons arriving at points x1 corres~onding to the 

extrema: l, 2, 3, 4 of Fig. III. 4a as well as an electron rejected by 

the system are shown in Fig. III.4b-f, respectively. In the absence of 

space charge effects, stray fields, etc., an infinite number of extrema 

occurs in the x
0
-x1 curve. The extremum n=oo corresponds to the case in 

which the electron enters the region between the electrodes and passes 

through the saddle point S in a direction peq:>endicular to the axes of 

the two cylindrical electrodes, and becomes trapped by the lens and 

oscillates through the saddle point. If x is increased beyond this 
0 

point the system behaves like a mirror and the electron is reflected back .. 
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Fi.:> III.4 (a) The x0 ---x1 curve. (b) -·- (e) Trajectories of electrons 
arri vine; at x1 corresponding to extrema 1 to 4 in (a). 
(:!:') Trajectory of an electron reflected by the system. 
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The most important factor controlling the behavior of' the lens L.s· 

the value of' the parameter c/a (Fig. III.3), upon which the general ~orm 

of' the x -x curve depends. If' the value of' c/ a is varied, four dif'·· 
0 1 

ferent types of' -x -x -curves can be produced. It is therefor.e convenient_. 
0 1 

to divide the an~:J..,yzer into four classes' depending upon the sign of xl 

and cos8 (Fig. ril.3). The definitions of the four lens classes are 

given in Table III.l. 

Table III.l. Definitions of the four lens classes and their 

aa~roximate range of c/a. 

Class Sign of x1 Sign of' cos Approx. range of :-../a 

I ·oo -+ 0.32 

II + 0.32 -+ 0.19 

III + + 0.19 -+ 0.049 

IV + 0.049 -+ 0.034 

The electron trajectories tangential to the first four pairs of 

caustic envelopes at y=O in the different lens classes are shown in 

Fig. III.5. Examples of x
0
-x1 curves for the four lens classes are 

shown in Fig. III.6 for three sets of curves corresponding-to different 

positions of recording plane on which x
1 

is measured. Notice that for 

lens classes II and IV the effect of projection below the plane y=O 

causes the first extremum of the x
0
-x

1 
curve to disappear. If' the ex-

trerne values of x1 in the x
0
-x

1 
curves are plotted as a function in y, 

the curves so obtained will give the caustic envelopes of the system 

.. 
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CAUSTICS 

1 2 3 4 

XBL 7111-7682 

Fig. III.5 Schematic electron trajectories tangential to the 
first four pairs of caustic envelopes at y = 0 
( J· 1:.:. III. 3) in the first four different lens classes. 
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Fig. III.6 x
0
--xl curves for lens of (a) class I, c/a = 0.4, d = l, 

(b) class II, c/a = 0.25, (c) class III, c/a = 0.1, and 
(d) class IV, c/a = 0.04. Notice that the first extrema 
are vanished for cases (b) and (d) for y larger than zero. 

.. 

--1 
I 



'• 

L) 
.. 

d iJ .. r / i ~,; r.) ;.; 't. • .-'! ·~ .. - <.) pj 

-79-

(Fig. III. 7a). The disappearance of the first extremum in the X -xl 
0 

curves for lens classes II and IV corresponds-to a disappearance of the 

first pair of caustic envelopes with projection.in thes~ classes 

(Fig. III.Tb). 

The lens system behavior passes from class I to II to III and to 

IV with decrease value of c/a. Still further reduction in c/a values 

caus~s the lens to repeat this cycling of clas.ses in the above mentioned 

order. There is no theoretical limit to the number of ranges of c/a 
( 

values corresponding to a particular lens class. The oscillations of 

electrons in the region of the saddle point responsible for the forma-

tion of high order caustics is also responsible for the cycling of lens 

.classes. 

The dispersion of the analyzer can be understood by reference to the 

x -x curves for electrons of slightly different energies. Figure III.8 
0 1 

shows for electrons of energies E and E-6E in the region of the first 

and second extrema, electrons entering the analyzer at x will arrive at 
. 0 

the recording plane separated by 6x
1

. The dispersion of the analyzer 

3x
1

/3E is the quantity 6x
1

/6E taken in the limit 6E~o. The dependence 

of 3x1 /3E on x 1 for various positions of the recording plane is given in 

Fig. III. 9. _ It should be noticed that the dispersion has non-zero values 

at the first extremum of the x -x
1 

curves for lens classes I and III, . 0 

but is zero for the other successive extrema. This is also true for 

.lens classes II and IV provided that the recording plane intersects the 

two caustic envelopes produced, by these systems. If, however, the 

recording plane should lie below the points of intersection of the two 

innermost caustic envelopes of these classes of lens, then the dispersion 
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(a) (b) 

XBL 7111-7684 

Fig. III.7 Behavior of caustic envelopes produced by the Mollenstedt 
lens system: (a) for lens classes I and III, and (b) for lens 
classes II and IV. The first caustic envelope vanishes for 
lens classes II and IV for positive values of y. 
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Fig. III.8 Schematic x
0
--x1 curves for electrons of tvo 

different energies E and E -A E. The dispersion of 
the system is defined as Limit /t..x/f..E/. 
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Fig. III.9 The behavior of the dispersion (~xl/4E) as a function 
of x 0 for different projection distances y, where d = lcm, 
E = 100 keV, ~x1/~E is in unit of microns/volt; and (a) 
lens class I, c/a = 0.4, (b) lens class II, c/a = 0.1, 
(d) lens class IV, c/a = 0.04. 
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y'· 

at all extrema appearing on the recording plane is zero. Therefore, 

it can be concluded that the dispersion of an analyzer of any lens class 

is zero at all but the first caustic edges of the system. 

The energy resolution is limited by two factors: (1) the size of 

the slit, 6.x , which forms the entrance aperature for the electrons; and 
0 

(2) the angular divergence of the beam, 6.¢ (Fig. III.3). It is obvious 

from the x
0
-x

1 
curves that a parallel monoenergetic beam passing through 

an entrance slit of width 6.x will arrive at the recording plane in a 
0 . 

strip of width to the first order of small quantities. 

The variation of Clx
1

/Clx
0 

can be obtained directly from the x
0 
-x

1 
curves. 

At the extrema of the x
0
-x

1 
curve, Clx

1
/3x

0 
is zero and hence so is 6.x1 

to the first order. In general, the energy spread is given by 

(III.l) 

Thus, a para+lel beam containing electrons of two discrete energies E and 

E-6.E can be resolved, if upon arriving at the recording pl~ne their 

separation 6.x
1 

is greater than ox
1

. A similar consideration shows that 

the resolution li~ited by the angular divergence of .the beam, 6.¢, is 

given by 

. . 9 
Metherell and Whelan 

same order of magnitude if 

(III.2) 

have shown that (6.E)¢ and (6.E)s are of the 

-4 6.¢- 10 rad and 6.x - l)..IIn. In practice a 
0 

slit width of about 5 m is usually employed in the Mollentedt analyzer 
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for which the entrance slit lies in the final image plane of the elec-

tron microscope. At 100 keV for typical magnifications. of 20,000X or. 

less, 
-8 -7 the value of 6¢ is in the range 0f 5x10 to 5Xl0 rad. In such 

cases the resolution limited by 6¢ is therefore_negligiJ:>le in comparison 

to that limited by 6x . From Eq. (III.l) it is seen that high resolution 
0 

(E/6E) is obtained when ('ax
1

/dE) is large and (ax
1

/ax
0

) is small. The 

operating position of the slit should therefore be that value of x at 
0 

which the first extremum of the x
0
-x

1 
curve occurs. The classes II and 

IV lenses are not suitable for use as an energy analyzer because the 

recording plane does not in general_ intersect the innermost caustic 

envelope. Class I and III lenses usually will yield high resolution as 

we'll as good dispersion. 

C. · Instrumentation 

Since the design details shall be given in a separate report, we 

will only describe the schematics of the Mollenstedt lens energy an~lyzing 

electron microscope constructed here at Berkeley. The Mollenstedt lens-

is mounted below the final image screen of a Siemens I electron microscope 

so that full advantage of the spatial resolution offered by .the microscope 

could be taken. Since the final image screen of the microscope is un-

touched, normal microscopic work is undisturbed. A schematic outline of 

the instrument is shown in Fig. III.lO. The analyzer section extends 

from the base of the camera chamber c2 of the microscope to the floor. 

The control console of the microscope upon which c
2 

usually rests is re­

moved and mounted onto a separate trolley to allow extension of the 

microscope column. The entrance slit un~t S of the analyzer is suspended 

from a trolley T which allows translation and rotation of the slit 
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Fig. III.lO Schematic- of the Mollenstedt lens energy 
analysing electron microscope. 
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assembly for alignment purpose. The trolley T is housed in the camera 

chamber c
2 

which means that the image cannot be recorded on plates 

stored in c
2 

in the usual manner. ·Therefore, the projector tube 35 mm 

camera is use·d to record all images and diffraction patt.erns. The 

length and width of the aperaturing slit of the analyzer can be adjusted 

by using controls mounted outside the vacuum and coupled to the slit 

assembly by sliding rods and universal joints. The electrode system of 

the analyzer is housed in a vacuum chamber V which is attached to the 

final viewing chamber and lastly the final camera chamber c
3

. The 

Mollenstedt lens system consists of a pair of horizontal earthed plates 

with large entrance and exit slots (5x2 em). A pair of parallel cylin­

drical electrodes at beam potential is supported midway between the 

plate electrodes by the porcelain insulator of a normal Siemens gun 

assembly. 

The analyzer electrodes were designed following the criteria for 

.dispersion and resoluti.on given in Sec. III.B. Since high resolution is 

attained only for small separations of the cylindrical electrodes and 

the reverse is true for high dispersion, the design of the electrode 

system is therefore a compromise between these two factors. It is found 

that reasonable performance is obtained if radius of the cylindrical 

electrodes and the gap between·them are in the range of 0.2 to 0.25 and 

0.05 to 0.1 times the spacing between the two earthed plate electrodes, 

respectively. The resolution at maximum dispersion limited by slit 

width alone should then be about 3Xl0-5 for a slit width of 5 lliD· 

Slits used in optical spectrometers are unsuitable for electron 

energy analysis since the slit widths employed in the latter case are of 
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the order of a few mic.rons and. small scale roughness of the edges will 

then lead to undesirable streaking effects in the recorded spectra. A 

method which successfully coped with this problem is to use gold coated 

glass rod slits. Each slit edge piece of a Hilger spectrographic slit 

unit is milled down and recessed in, as indicated in Fig. III.ll. Fine 

glass rods of diameter of about 0.3 mm are glued to the milled and 

recessed edges using a conducting glue. After the glue is dried, the 

slit edges are thoroughly cleaned with suitable solvents and then coated 

with a layer of evaporated gold about 1000 A thick. To provide a 

tenacious layer of gold the evaporation must be carried out as slowly as 

possible. 

The dimensions adopted for the analyzer electrode system are given 

in Table III. 2. 

Table III.2 

System 1 2 3 

Separation of earthed electrodes (in.) 5 11/16 

Diameter of cylindrical electrodes (in.) 15/16 31/32 1 

Gap between cylindrical electrodes (in;) 3/16 .5/32 1/8 

Slit width (]Jm) ~5]Jm 

The high tension cable, which normally carries the filament and 

cathode lines to the microscope, is fed into an auxiliary H. T. tank 

(Fig. III.l2). This tank is primarily used as a 1 junction box so that 

the high voltage applied to the electron gun is also applied to the 

Mollenstedt lenses. The high voltage supplying the Mollenstedt lens 

is obtained by center tapping the two filament leads so that any small 
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Fig. III.ll Cross-sectional view of the slit edge piece 
for the electron energy analyser. 
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Fig. III.l2 Outline of the auxiliary H. T. tank and 
calibration unit. 
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high voltage instability would effect the electron gun and the lenses 

simultaneously and equally. This is necessary because to the first 

order approximation there will then be no spatial displacement of the 

loss spectrum occurring at the recording plane due to small voltage 
~ .. - - -. - - - -

fluctuations. The calibration circuits are designed to operate by 

light switches to simulate the-required energy losses. The safety de-

vice G, a discharge tube connecting the cathode line to the Mollenstedt 

high voltage supply cable, is absolutely necessary for~ if otherwise, 

da.mage to the high voltage cable and various components in the Siemens 

high voltage supply unit may occur, should'any (high voltage) discharge 

'in the Mollenstedt lens chamber occur. 

D. Operations 

Because of the limited space available in the Siemens I microscope 

room an auxiliary pumping system which was planned to be used at the 

vacuum chamber V which houses the Mollenstedt lens system was finally 

omitted from the cons.truction. It was found that despite the added 

large volume under vacuum, the original Siemens pumping system is ade-

quate to maintain a good va-cuum with a somewhat slower initial pumping 

down speed. Nevertheless, under the present condition, experiments can 

only be performed with ease up to 89 keV. At 100 keV, high voltage 

discharges occur_in the Mollenstedt lens chamber several minutes after 

the high voltage is switched on. The exact reason for this discharge 

is unclear, however, it is found that contamination of cylindrical lenses 

(at high voltage) constitutes the major nuisance. If properly cleaned, 

a no-discharge condition may last for as long as half an hour at 100 keV. 

I 

-·· '! 
i 
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Proper alignment of the slit mechanism with the lens system may 

appear difficult, but it is not a formidable task. The slit should at 

first be completely opened to allow the observation of the caustical 

pattern, and then combined operations of the slit positioning, rotational, 

and width controls can be used to obtain the slit image. The image of 

the slit is observed to give the best performance if it is placed at a 

position of about 1/5 of the total separation of the first pair of 

caustic envelopes. Final adjustment has to be made with a specimen in 

the microscope upon which a loss spectrum of the material could be ob-

served on the final viewing screen. Once the slit is properly aligned, 

the controls of the slit unit should not be touched during the entire 

experimental period. Care must be taken so as not to over-close the 

slit width control mechanism, otherwise the evaporated layers of gold 

on the two glass rods which constitute the slit mechanism may be chopped . ' 

off by the slight touching of the two rods. When this happens, the 

remaining ·glass surface will become charged locally and the lens system 

will then produce energy loss spectrum with no spatial stability. 

The main obstacle in operating the analyzer lies, however, in the 

lack of sufficient intensity on the final viewing screen.• This is due to 

the small entrance aperture used (slit width is only about 5 ~m). This 

lack of intensity makes the observation of the loss spectrum on the 

viewing screen a painstaking effort for the ordinary human eyes. This 

also necessitates the use of an exposure time of about two to four 

minutes during which obscuring of the recorded, loss spectrum may occur 

due to excessive high voltage fluctuations or mechanical vibration of 

the environment. 
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The range of energy loss spectrum measurable ,is about 60 ev at an 

operating potential of 80 keV. Although a calibration circuit is designed 

and built, at the present stage it has not been put to use. Calibrations 

are therefore now done by comparison of loss spectrum of a material whose 

characteris~:~:8::;rosses are .well known (for example, Al has loss lines at 

15.3 ev, 30 ~ 6, -·e;:V., etc. ) . 
··;.I.·.:,.·· 

In the range of about 0 to 25 ev, the system 
;o:_' ' 

seems to behave linearly, and hence calibration should not present too 

serious a problem. 

Energy resolutions obtained are of the order of 1 to 1.5 ev. It is 

doubtful this figure could be significantly improved since this represents 

a limitation imposed by the thermally emitted electron beam. 

E. Possible Applications 

The energy analyzing microscope can be operated to record the loss 

spectrum either of electrons forming a selected area diffraction pattern 

or of those contributing to the images of a micrograph. Several examples 

of such loss spectra are shown in Fig. III.l3. In Fig. III.l3 the loss 

spectra are respectively that of the bright field images of (a) Al-l% Ag, 

(b) Si, (c) Cu-10% Al, and (d) selected area diffraction pattern of Si. 

The lines S
0

, s1 , s2 etc., as indicated are the zero loss, first and 

second plasmon losses, etc., respectively. The loss lines in Fig. III.l3 

all appeared to be curved. This curvature is due partly to end caps fitted 

to the cylindrical lenses, but more importantly due to the fact that the 

trajectories of the electrons entering the slit at different points along 

the long dimension of the slit making different angles with the optical 

axis of the system (Fig. III.l4). The analyzer is only sensitive to the 

component of the electron momentum perpen&icular to the plane containing 
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Fig. III.13 
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XBB 7111-5742 

Fig . III.l3 Con. 

Examples of characteristic loss spectra displayed by the energy 
analyser at 80 keV, where S0 , s1 , etc. are the zero loss, first 
plasmon loss lines, etc. (a) Al- 1% Ag, S1 = 15.3 eV, (b) Si, 
S1 = 16.8 eV, (c) Cu- 10% Al, s1 = 20 eV, and (d) from Si SAD, 
the energy difference (0.5 to 0.9 eV) G displayed by the tails 
of the diffraction spots and the quasi-zero loss line is thought 
of due to the Si energy band gap. 
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ANALYSER 

3 

RECORDPTG PLANE, 

XBL 7111-7690 

Fig. III.l4 Illustration explaining the reason for the 
curvature formation of the energy loss lines. 
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the axes of the cylindrical lens electrodes. Electrons of the same 

energy arriving at points land 3 (Fig. III.l4) on the entrance slit have 

normal components of momenta less than ,that of an electron ar.ri ving at 

point 2. The result is that the analyzer registers an apparent energy 

loss for electrons 1 and 3, and this leads to the curvature of the loss 

lines shown in Fig. III.l3. For the purpose of energy ana.:).ysis, this 

curvature is unimportant since the calibration spectFum from a material 

with known loss lines or from calibration circuitry will bear the same 

effect. 

Most experiments involving the use of an energy analyzing electron 

microscope have relied upon measurements of the loss spectra of electrons 

contributing to images rather than diffraction patterns. The reason is 

that a selected area diffraction pattern contains information averaged 

out over an area of specimen of the order of several microns across, 

whereas with an image the spatial resolution, as limited by the width of 

the analyzer entrance slit, is of the order of several Angstroms. This 

means the energy analyzing microscope provides a powerful tool for micro-

analysis, i.e., for measurements of the chemical compositions of micro-

scopic regions of the specimen. Such types of applications of the 

energy analyzing microscope are f·ound to be useful in determining the 

compositions of binary alloys, single or multiphase, 4Q, 4l and in deter-

mining the· influences on concentration gradiants due to structural im-

perfections, such as a grain boundary, a dislocation, a stacking .fault, 

t 
13,14,41 . 

e c. All these appllcations make use of the plasmon losses of 

the specimen. According to the simple f:ree electron model for plasmon 

excitation, the energy loss E is given by 
p 
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E t- ( -2 / .)i/1. - r - t) . 4 " I) ~ . ./ • .... , (III.3) 

where n is the number o~ free electrons per unit volume and the other 

notations have their usual physical meaning. Consequently, the varia-

tion of E with changes in local alloying compositions can be expected 
p 

since this means a variation in n, the number o~ free electrons avail-

able per unit volume, due both to an addition or subtraction of free 

electrons and a changing in atomic spacing introduced by the presence 

of a second species o~ atoms. 

We feel that another promising kind of applications of the energy 

analyzing microscopy is the study of semiconducting materials. In the 

broad scope., this should include such studies as carrier concentrations 

due to doping levels, anomalous carrier concentrations at the p-n june-

tions and the energy band gap measurements. ·Preliminary considerations 

have suggested that the probability o~ accomplishing meaning~ul measure-

ments on doping levels is not too good, because doping levels in semi-

conductors are usually not high enough to allow any signi~icant changes 

in plasmon energy di~~erences to be measured. However, studies o~ 

anomalous carrier concentrations at a p-n junction shall remain as a 

highly promising area, especially when combined with ordinary microscopy. 

'l'he semiconductor energy gaps are usually o~ the order o~ l ,ev and can 

be well resolved by the analyzer. A possible example of such a case is 

shown in Fig. III.l3d, in which the quasi zero loss line consists of 

intem>i ty distributions from three di~fraction spots as well as that 

from the background smear intensities. The trailing intensities of the 
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spots are clearly resolved from that due to tne background radiations. 

Measurements on the spatial separations show that the energy differences 

ranging from 0.5 to 0.9 ev (the energy gap of Si is known to be 1 ev). 

The possibility that this energy difference may be~due to phonon scat­

terings is ruled out because (1) the measured energy difference is too 

large, and (2) phonon scatterings should have a continuous energy dis­

tribution, and (3) phonon loss cannot have angular range o-g. 

. I 
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IV. SUMMARY AND DIS,CUSSION 

In the first part of this work, a theory for calculating Kikuchi 

electron intensity distributions is formulated. It should be noticed 

that this theory is also directly applicable to problems of images 

produced by Kikuchi electrons as well as inelastic electrons which do 

not contribute to the Kikuchi pattern, e.g., diffuse background electrons. 

The theory is formulated in terms of Bloch waves for which absorptions 

of both the elastic and i'nelastic electrons are considered. The initially 

gener~ted inelastic electrons are treated as having spherical wave fronts, 

and during subsequent Bragg diffractions through the rest of the crystal 

they are regarded as forming Block waves at different deviations. As 

a departure from the previous theories of Kikuchi patterns, this theory 

is not restricted to any particular inelastic scattering mechanism, but 

rather, the various inelastic scattering amplitudes are treated as para-

meters. In this .formulation we considered the facts that elastic waves 

belonging to different branches of the dispersion surface do not con-

tribute equally to the generation of the inelastic electrons and that 

for the initially generated inelastic electrons, only the so-called intra-

band transitions are allowed. This theory is simpler both in concepts 

and in mathematics than the previous theories. 

Perhaps it should be menti.oned that dynamical theories using a 

complex lattice potential were originally formulated to specifically 

study the electrons scattered elastically in an "absorbing" crystal. 

Nevertheless, aside from those "equivalent absorptions", i.e., electrons 

that scattered out of the aparture or scattered into the weak beams 

neglected in the calculations, the term "absorption" is precisely a 
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description of the effects of inelastic scatterings on the elastic 

electrons. It is therefore not surprising that upon traveling through 

the crystal, in the company. of elastic scatterings, (Bragg diffractions), 

inelastic electrons in any sin.gle energy state should also suffer from 

further inelastic scatterings. Thus, as it is proper to represent the 

effect of inelastic scatterings on the elastic electrons by absorption 

terms, .it is also valid to include the effects of further inelastic 

scatterings of inelastic electrons at any energy state by similar 

absorption terms. This means, that in the Bloch wave representation of 

inelastic electrons at a single energy state, properly chosen values 

of the imaginary parts must also be included in each component of the 

crystal lattice potential. However, it should be mentioned that at this 

stage correct values of imaginary part of the lattice potential for 

inelastic electrons are not yet available from either experimental data 

or any theoretical estimations. 

In applying this theory to calculate the Kikuchi patterns, a two­

beam (for. inelastic electrons) approximation is adapted. It is also 

further assumed that only inelastic electrons in the first excited 

energy state contribute most significantly to the formation of Kikuchi 

patterns. The imaginary parts of the lattice potentials for the in­

elastic electrons in this calculation are chosen arbitrarily, in fact, 

just those for the elastic electrons have been used. All of these 

approximations involved should by no means be regarded as physically 

vigorous. Nevertheless, in comparison with previous theories, the 

succeEs of this formulation is evident in th_e sense that, contrary to 

most of the previous theories, which explained only one aspect of the 
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behavior of the Kikuchi pattern, details of a majority of the most 

important aspects of the behavior of the Kikuchi intensity distributions 

are explained. The versatility of this theory is :further evidenced by 

the :fact that the me-thod of summing up all rocking curve intensities 

for computing the Kikuchi pattern of a systematic many-beam case is 

shown to be a special case of this theory. In deriving this result, 

the approximations used are specifically: (l) only inelastic electrons 

in the :first ex
1
cited energy state contribute; (2) the crystal is thick, 

hence the elastic beams are replaced by a o~:function type of excitations 

at the top crystal surface; (3) ignorance of interactions between certain 

waves. It is clearly seen that all these approximations are at best 

of equal crudeness as those used in the two-beam calculations. According 

36 42 to Thomas and Humphreys and Thomas, however, remarkable agreements 

with experiments have been achieved by calculations using this method 

for the many.;..;beam systematic cases. All these facts suggest that in 

order to explain the various aspects of the behavior of the Kikuchi 

pattern, contrary to a common belief that inelastic scattering mechanisms 

play a central role, absorptions of both elastic and inelastic electrons 
I 

are the more important :factors needed to be considered. 

In comparing the calculated two-beam results with experimental 

observations,.the following quantitative discrepancies'are noticed: 

(1) In the contrast ~hange of Kikuchi band from an excess to a de:t:iciency 

of electrons with changes in specimen thickness, the computed results 

show that the band is di:ficient only if the crystals are very thick, and 

the change of contrast takes place through a large range in specimen 

thickness. It is experimentally observed that the contrast change may 
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occur within a relatively small range of specimen thickness, also, 

deficient bands may start to appear for crystals of thicknesBes smaller 

than the values shown by the computed results. (2) Although the computed 
' . 

Kikuchi line spacing v~riations are in good qualitative agreement with 

experiments, however, the range of excursion of the computed variations 

are somewhat smaller than those experimentally observed. (3) According 

Lo the computed results, the Kikuchi line pair should have the usual 

normal (black-and-white) contrast for thicknesses of any old multiples 

of ~g/2 and reversed contrast (white-and-black) contrast for specimens 

of thicknesses of any integral multiples of E;,g: Thus, the possibility 

of observing either the normal or the reversed contrasts 1are equal, 

however, experimentally it is more difficult to observe the reversed 

contrast. These discripancies between the caluclated and the experimental 
' 

results are mainly attributed to the approximations used in the calcu-

lations: (1} the calculations is two-beam, (2) only inelastic electrons 

of the first excited energy state are considered, (3) correct values 

/" 

of the imaginary parts of the lattice potentials are not available. 

Nevertheless, experimental conditions may also have important influences 

on the results observed. For instance, in any experiment, effects on 

the observed results due to small local bending of the specimen, specimen 

thickness variations and small deviations from any desired Bragg positions, 

etc., must be considered. Nevertheless, it shoul~ be mentioned that, 

many-beam calculations considering inelastic electrons of more than one 

energy state with properly chosen imaginary parts of the lattice potentials 

should lead to better results. 

Just as the elastic electrons are capaple of producing images of 
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defects in a crystal, so are the inelastic and Kikuchi electrons. Com-

pared to images produced by elastic electrons, those due to the inelastic 

electrons are characterized by broader image widths, more spatial fre-

quency components and perhaps also a shifting in image positions. This 

is so because, on becoming inelastic, the coherencies of these electrons 
( 

are lost with respect to the elastic electrons and, more important, even 

with respect to other inelastic electrons in the same energy state but 

which were generated from a different depth in the crystal. Subject 

to the same displacement field due to the defect, the final image obtain-

able from any inelastic electrons consists of information carried by 

(inelastic) electrons which went through two different image formation 

processes, depending upon whether the electrons became inelastic before 

or after traveling through the displacement field of the de:!'ect. If 
. . 

the electrons became inelastic before reaching the displacement field, 

then image informations are obtained by these electrons directly. On 

the otb,er hand, if the electrons became inelastic only aftel traveling 

through the displacement field, then image information is merely passed 

onto these electrons from their past history (while they were elastic). 

Since inelastic scatterings involve some random phase shifts to the wave 

functions of the electrons, it is suggested that this is a major reason 

for the fuzziness of the images due to the inelastic electrons. In 

practive, however, there is no way to separate these two processes, 

especially if the defect imposes a displacement field of infinite spatial 

extent to the crystal (e.g., that due to a dislocation or a small part-

icle). Images due to inelastic electrons are interesting primarily for 

the purpose of.characteristic noise (image) removal so that images 
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produced only by elastic electrons can be obtained and enhanced for 

better resolutions. 

In the second part of this thesis, the design and construction 

schematics of an energy analysing microscope are given. Possible appli­

cation of energy analysing microscopes are given. In principle, an 

energy analysing electron microscope should provide a powerful tool for 

microanalysis. A first kind of its applications is the study of metal­

lurgical problems involve measurements of plasmon loss spectra and their 

vru·iations with s~ecimen local composition changes. Physics of plasmon 

excitations tend to limit useful spatial resolutions as well as energy 

resoltuions the energy analyser can provide under its best performence. 

First, the plasmon wavelength limits the useful spatial resolution of 

the analyser to regions on the specimen of a diameter of the order 100 A 

or larger. This is so because plasmon oscillations in a solid is a 

quantized density wave of electrons with a particular wavelength within 

which all participating ele~trons oscillate collectively. Thus, in a 

region of the range of a plasmon wavelength, only the average electron 

density can be measured. The plasmon wavelengths of metals is of the 

order of 100 A or larger. Thus, although the spatial resolution limited 

by the energy analyser slit can be reduced to a value well below that 

of the microscope by simply increasing the magnification of the image, 

meaningful measurements can only be performed over regions separated by 

a distance sufficiently larger than a plasmon wavelength. 

In order to obtain dependable and meaningful results, fuil advantage 

of the energy resolution offered by the analyser must be taken. This 

ill 

•. 
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restricts the microanalysis studies 1of the composition problems to 

materials which posses sharply defined and well separated plasmon loss 

spectra. There is only one kind of material that meets this requirement: 

Al basis alloys. Other materials of metallurgical interests (Cu and Fe 

basis alloys, etc.) do not posses such a sharply defined plasmon loss 

spectrum. Instead of a sharp line like loss spectrum of Al, the plasmon 

loss spec~ra of these materials have an energy distribution in the form 

of a smeared band (see, for example, Fig. III. l3c, the spectrum of 

Cu- 10% Al). This wide band type of plasmon loss spectra made it im-

probable to accurately allocate the peak of the intensity distribution 

displayed by the analyser, let alone tackle the question of measuring 

from these spectra any small changes introduced by small composition 

variations. This phenomenon may qe understood qualitatively by con-

sidering the electronic structures of the atoms of the various materials. 

For Al, the n = 2 quantum level is complete. The three electrons at-the 

2 1 
outermost shell (3s , 3p ) behave closely to that predicted by the free 

electron model for plasmon excitations. On the other hand, the eight 

outermost electrons of Fe are distributed as 3d6 and 4s 2 , i.e., the 3d 

level is incomplete. These is a finite probability that these electrons 

couJd occupy the unfilled energy levels 3d7 to 3d10 for a short period 

of time, and thus making it unclear as to how many electrons should 

participate in the plasmon oscillations. The result is that the excit-

ation of a single mode of plasmon becomes highly improbable and hence 

the broad band type plasmon loss spectrum appears. In the case of Cu, 

although now then= 3 shell is complete (3d10 and 4s
1

), the several 

outermost energy levels are nevertheless very closely spaced and hence 
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these electrorts are tightly coupled~ In this case it is again true that 

there is no clear answer as to how many modes can be excited. It may 

be concluded.at this point that despite the high energy resolution and 

the extra-ordinarily fine spatial resolution offeri=d by the best per­

formance of the energy analyser, its appliability to microanalysis of 

composition variation measurements is perhaps limited to only Al basis 

alloys with a spatial resoltuion of the order of 100 A. 

Perhaps a more promising class of applications, not mentioned in 

the literature, is the measurements of doping levels, anomalous carrier 

concentrations at junctions and energy gaps of simiconductors. For 

example, Si has reasonably well defined plasmon loss spectrum (Fig. III. 

l3b). Although the prospects for doping elevel measurements are low 

(since the doping levels are usually too low to induce any significant 

plasmon energy variations), at the p- n junctions, anomalous carrier 

concentrations should be high enough to allow the microanalysis. technique 

to be applied. Energy analysing microscopes should also prove to be a 

useful tool for direct and easy measurement of the energy gaps of semi­

conductors. Of the order of 1 eV, characteristic loss spectrum due to 

the presence of the energy gap could be well resolved. One possible 

such example has been given by Fig. IlL13d. It should be noticed, how­

ever, that the energy analysing microscope could also be used to study 

the physical principles involving certain type of the charateristic 

losses. For example, the dependence of the excitation and dispersion 

of the surface and volume plamons with specimen thickness. 

- .. 



u ; j ~iJ ~ ,r "_I 
';.,} ~~ 1'1-...1 1~l ' '·' d ':/ , 

-10'7-

APPENDIX 

FUNDAMENTALS OF THE DYNAMICAL THEORY 

.. A.l. Solution of the Many-Beam Problem--The Dispersion Matrix 

'- The study of the ordinarY dynamical theory of electron diffractions 

rorms the necessary background knowledge of this work. For purposes 

relevant with this thesis, the problem shall be written in the form of a 

system of li·near differential equations so that solutions of the problem 

can be exclusively derived from the dispersion matrix of the system. 

High energy electrons entering the crystal is described by the 

Schrodinger equation ( Eq. (II. '7)) 

(A.l) 

Because of the periodic nature of the atomic arrangement in a crystal, 

in Eq. (A.l) the' crystal potential has been written in the form of a 

Fourier series and then normalized, i.e., 

(A.2a) 

1_! ~ --
' (A.2b) 

where g is a reci;Procal lattice vector. The quantity k =. (2me(E+V ) )112 
r 0 

/h is the mean refracted wave vector of the electrons in the crystal, 

which has been adjusted to account for the refraction due to the mean 
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For a centro-symmetric crystal, the relation V- = V- holds. In 
-g g 

general, V must be regarded as a complex quantity. This is necessary 
g 

I 

because on passing through a crystal, the electrons suffer from·an 

attenuation phenomenon called "absorption." Absorption of electrons is 

found to be diffraction dependent and are not uniform for all electrons 

(and hence the terms "anomalous absorption" and "anomalous transmission"). 

The introduction of an imaginary part into the lattice potential was first 

suggested by Honjo and Miham~43 as a phenomenological description of the 

absorption of electrons and was theoretically justified in part by works 

of Yoshioka,
20 

Hall and Hirsch,
24 

Ha1125 and Gj¢nnes.
44 

Because of the translational invariance of the periodic potential, 

the wave function of the electrons inside the crystal must also be 

periodic. Hence, the solution of Eq. (A.l) is given by the Bloch wave 

L> t. 45 
J.ll.nC lOll 

(A. 3) 

Following the procedure leading to Eq. (II.l8), Eq. (A.l) can be shown 

to yield 

(A. 4) 

where 

-s h "' I k x t h ~ -t ~ ) 'l /z R~ L L J , 
(A.5a) 

'· 
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• (A. 5b) 

In deriving Eq. (A.4) it is assumed that reflections of waves atboth the 

46 
entrant and exit surfaces of the crystal are neglected. This assump-

tion also allows the bolindary condition at the entrant surface to be 

reduced to 1j!
0 

= 1 and 1j!h = O, if h# 0. On writing out explicitly in a 

matrix form by letting ii = o, gl' g2' ... ' ~' Eq. (A. 4) yields 

't-(~)l kr: -t s .. 
__ ,_ 

--1 l r 't'c(-);) )_ 3-

*a'') i 
. -8. ~1- : --a.. : 

Nr:tSI ·+ II t3,(:C) r' ! 

.)_ -~§. 4~ .. I 
cJ t;.-a~ I i .. 

= l. iT'\. 
A~ 

. I 
(A.6) 

l ~a~ t~>: I -- k<+ S3, I ---
~ ~- ~- t~ .. (~) . /- ~ s-. a-- 9·•<1· ....! 

With the substitutions 

(A.7a) 

(A.7b) 

wh 
(A.7c) 
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'j 

? = 
!~ ... - ~Sl 

(A.7d) . .::::,, ~~-"'~-~~.Q> 
, 

I 
) . ..., 

l -,, ~ 
-~~. 

I 
Eq. (A.6) is flirt her simplified into 

r 4)..c~) ... 
( L. ;,J,~ ''§;' ~-'.) ~.~-VI) 

i 
<f>"\0 I I 

I 

<+>~.~"'-) t3,(~) i 
>' 2 vJ, ~ ,'li-1\J 

I 
..) I I ! 

J :;:. I 
Cff ' (A.8a) 

' i 
I 

I 
I 
I 

-~: Yl 
21-J" t3!-*) cp3"(:J;), l > ,> . ) .)1\.V.-1) 

or, in vectorial form 

d cP (:t-> A ~ (:t) (A.8b) ·-Jt ,-v IX. ~ 

Subject to the boundary condition that 

0 

' (A.9) 

I o ,_ 



·. 

,-

. "\ 
~J ;j / / ' '--..,.1 \.·t ~~;\ >..r· 

-111-

-the solution of ~q. (A.8) is 

""")l 
r . 2. i.V," 's.~-t) 

I ·~ ' 
l. \J I 

1~1';~) i .:' • I 
I 

=] 1.1_/)(FI 

I 
i 

~~J~ l ~~ 'S;l"-1)- .. 
_)lV\ 

\. 

Define the dispersion matrix as 

cJ? ,_t -1 .. > ~ e 
~ 

A (.t-J.,) 
-~ 

~· ··~ 

.J ·~j ~) 

'!: ·; t - ,, ) 

r;, 1 ! : ( '_,, J 

t 

2.lJ"' 0 

\ 

Eq. (A.lO) may be wri~ten in the vectorial form _ 

(A.lO) 

ct.:;t > c ., 

j 

(A.l2) 
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Sturkey,
46 

Fujimoto47 and Niers
48 

have used the dispersion matrix to 

solve the electron diffraction problem. However, the properties of this 
I 

matrix are not fully discussed, reliable methods for calculating this 

matrix are also not given. It is easily deduced from Eqs.- (A.lO) and 

(A.ll) that the dispersion matrix has the following properties: 

I , 
. (A.l3a) 

(A.l3b) 

(A.l3c) 

Elements of the first column of the dispersion matrix havethe property 

(A.l3d) 

Eq. (A.l3d) is also true for elements of the first row of the dispersion 

matrix if the crystal is centro-symmetric. This iinportant property has 

been used in .Sec. 11. E. 4. The Bloch like -'coefficients ~.~ of each matrix 
IJ 

element obeys 

.,.' i 
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(A.l3e) 

and 

(A.l3f) 

• If the dispersion matri{C is calculated, then the probh~m of many 

beam diffraction in a perfect crystal can be considered as S•Jlved. 

However, Eq. (A.l2) does not yield the solution of Eq. (A.ll) so readily, 

because the exponential function of a matrix is not easily o'btainable in 

general. Although many methods for calculating the dispersion matrix 

exist, the study of this matrix has nevertheless been largely ignored. 

k>ide from the fact that this matrix is not so easy to calculate, per-

haps the main reason for this situation is that the solution of the many 

b<oam problem for a perfect crystal is not as interesting as the image 

problems, and it was thought that the study of the detailed solution of 

the dispersion matrix offers very little or no help in solving the 

image problems. It will be shown, however, that the.dispersion matrix 

is of fundamental importance in understanding the nature of electron 

diffractions, and that it is also of great practical advantage to use 

the dispersion matrix to solve the image problems. In fact, analytical 

' 
forms of the dispersion matrix are readily obtainable ·for the two and 

three beaJJl cases, and these analytical forms of the dispersion matrix 

allows the solution of image problems in these cases to be readily 
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computed. For the many beam problems, the use of the dispersion matrix 

also enables the computations of the images to be greatly simplified, 

and t,he usual. problem of electron intensity non-conservation encountered 

in other methods will simply_ not arise. FoF t~is reason, we will discuss 

several methods of calculating the dispersion matrix in the next section. 

A. 2. Methods for Calculating the Dispersion Matrix 

A.2.J. Method of Series Expansion 

The most straightforward (and the only widely used) method of cal-

culating the dispersion matrix is to use the series expansion 

(A.l4a) 

Eq. (A.l4a) is useful only when /J.t is very small and hence the approxi-

mat ion 

I -t (A.l4b) 

can be used. For large values of IJ.t, the series in Eq. (A .14a) con-

verges slowly and the calcul.ation becomes tedious. In comparison with 

other methods, however, it will soon be clear that the most serious 

s4ortcoming this method suffers from is the lack of an intermediate 

representation of the results obtained and hence little or no correlation 

can be deduced for purpose of extending the result at one specimen thick-

ness to another. 

one, 

Despite of this difficulty, this method is the most widely used 

because i:n the study of image problems where. A is not a constant 
:::: 
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matrix, it is thought that this is the only simple method; 

A. 2 .. 2. · The T·iethod of Laplace Transforms 

FoLlow i.ng the. rncthod of Laplace transforms given in any standard 

text, the transform oi· Eq. (A.l2) is, by letting t 1 = t-t ~ 
0 

"' 
q,(C:·) A (f.lS) 

·~ ~ 

or " -I 'L ¢a;J 
c.t?· ( '.)) \.S I -~) ¢rcJ-=-- ""' 

,....; 

""" 
.-v """ ...... ' 

"' 
,)-

. I -IJ q1 I o) 'e.' ~(,t ~co) -:::: i [ol_ -A) 
. ....... ~ 

vhere 

'I 

md-

In I<;q. (A.l6a), 

(A.l5a) 

(A.l5b) 

(A.l5c) 

(A.l6a) 

(A.l6b) 



-116-

I s 1 - 1 I = &..-tv~~~ 0 { ( ~ !. - ~) - ~ - -

In a system of n+l beams, A is a (n+l) x (n+l) matrix, hence the 
~ 

determinant is a (n+l) th degree polynominaiwhich may be written as 

'" C\ 1 S i" - . - . + 0. >'\-+I 

. ~~ .. . 1"- ~ \_ s - D( L )ft'\ lt • 
_ t<:.-~x,) 1 l~-cX1.) ---- f( 

(A.l7) 

Eq. (A.l7) is the characteristic polynominal of the system and a( 11 -- ·.~ ... 

are the eigenvalues, note that 

.. -n+l 

n+l = order of system, c.ncl triA denotes the sum of the principal minors 

of order i of the characteristic matrix A. In particular 
~ 

tr1 A = trace A, and tr~.,~ = 
'::::1 -

Each element of the adjoint matrix in the numerator of Eq. (A.l6a) 

is a polynominal of degree n; consequently 
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4\ ~) 1\cfjt'>L- ~ B- ~" t B-L ") ""'-t -t B,, 
-::::. ~ ~ (A.l8) - ::. 

~ I~ I - 11 s"~' +!\'(:>'1t + (\ "\+I 
~ 

where B, .• ~ ... , 
-~ - , ~"" are (n+l) x (n+l) matrices. B;y inspection of 

the matrix ( si - A) fo;,. any typical A, it is evidently 
·~ ~ 

I 

The task of computing the cofactors of (si - A) is quite laborious 
~ ~ 

when n>2; it may be avoided by computing instead the matrices of 

r 
by "' 

- the numerator and the coefr'icients ak of the denominator of 

means of the algorithm 

and 

- t 

k 

The dispersion matrix 

A, 

Laplace transform of <!·h) 

general form of ~ 1.. ~) 

tions and obtain 

" -~ ts) ( s I AS 1 --
"' -;::; -.J 

n+l (A.l9a) 

i\. 
(A.l9b) 

is the inverse 

In order to find the 

" , we expand ·<1: ('>) in partial frac-
% 

~ h' k 

£ . 

~'"P = -::.-·:>(r/ ' (A.20) .. r;;.' l "I l 
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where ·are the roots of' the 

characteristic equation; Eq. (A.l7), and m are their respective multi­
p 

plicities. After has been found by Eq. (A.l6a) or Eq. (A.l8), 
·~ 

the mat:dces -A rriay be- found by the technique for scalar coefficients, 
:::rp 

'l'he inverse Laplace transform of Eq. (A. 20) gives the required disper-

::;ion matrix, 

A ~~ ~ I . '"'r . ' Y"-1 

~ lt') [.. _o<r:t 2_.. ~yr :t e ·~ -=. e = (A.21) 
"- f"'l )':.I (.)--1)! 
"' 

It is thus seen that each term in the dispersion matrix generally con-

sists of a sum of products of' exponentials and polynominals in t' of 

degrees one less than the multiplicity of the corresponding characteris-

tic root. However, the existence of multiple roots and its multiplicity 

1n indicate the coincidence of m tie-points on the dispersion surface 
p p 

of' the diffraction problem, a situation which seldom arises. Therefore, 

the case of distinct characteristic roots is of special interest and in 

this case Eq. (A . 20) reduces to 

h~l 

~l' " 2.. ~ (~) -:::. , 
"" r ~' s ·- ~r -

Where the matrices A · are given by 
~p 

'"ii \ol.p-: :><.-) 
~ \ f 

(A.22a) 

(A.22b) 

. ' 

.. i 

.. ' 
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and Eq. (A.21) then gives 

1\'t I 
=><r~ l\cJa· ('>( I 4) i. -. 4 \t J) e p~ 

(A.23) -: 
..... p::.l If l~ . ~~ ) 
"" p 

~~r 

A.2.3. Method of Eigen-solutions 

It is well known from linear algebra that any square matrix A 

wr1o~-;r~ elements are real or complex nurribers and having distinct eigen-

values (which is the case of electron diffraction), there exists a 

similarity transformation matrix P, called the eigen-vector matrix, which 
""' 

will diagonalize the matrix A according to 
<::. 

or 

where A 
-::: is a diagonal matrix of the form 

(A. 24a) 

(A.24b) 

(A.24c) 

Once the eigenvalue matrix ]1... and the eigenvector matrix P and its 
~ . ~ 

-1 
inverse P are found, the dispersion matrix is simply given by 

-::: 

(A. 25a) 
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where 

(A.25b) 

It is more convenient to represent the dispersion matrjx in the Bloch 

like wave form 

<P ( t) 

(A.26a) 

For A symmetric, as is the case for a centro-symmetric crystal, then 
~ . 

p-l = pT, and Eq. (A. 26a) becomes 
"' ,.... ..,., '"" 

/ 

1-rhere 

sian matrix and in which 

(},. 
.. d 

k 
cp . . = 
lJ 

(A.26b) 

is the ijth element of the disper-

P ikp jk is the Bloch like coefficient of 

I" 
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the k_!h type of wave of the ij th matrix element. 

For computing the eigenvalues and the eigenvector matrix of a 

symmetric matrix ~· the Jacobi method is a nature clwice for its sim­

plicity and efficiency. The Jacobi method utilizes a series of two 

dimensional rotations to diagonalize the matrix A. A matrix of the form 
~ 

r 

0 

C; 

ll I 
=- I 

I 

l 0 0 

is used to transform A into 
~ 

0 .. 0 

0 c 

•(~ ··-~ tt> - c ~ ~ tl. ~ 
I I 

i 

s~~--t. . . (ct.¢ • 0 ..... j !_1.. )'~ 

0 {) .· ·1 
t_ t.. j t_!~ (,o I~.,; .. .._"" 

..;_ +~--- (c lv~_...,"' 

It is' easily shown in Eq. (A.27b) that 

(A.27a) 

(A. 27b) 
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(A.28a) 

Cci" .J.. I (I ' . 
~-r "'J) (A. 28b) 

(A.28c) 

and for other elements in the ith and j th row or column but k i i,j 

(A.28d) 

( \Ob ,J. (l ' L - .S~- _j CJ · L • 'f', JR 'f, \t< 

(A.28e) 

and elements not belonging to the i,j th row and column are not effected 

by this operation. We can put ~-· .\ = ~ . r. = 0 
. (J ) ' 

by choosing 

(A. 29) 

q .. 
\ \ 
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This procedure may be repeated for many times and evenc, .. ually we may get 

the diagonalized matrix as the limit of the product of these operations: 

(A.30) 

In practice, a sufficiently low threshold number may bf: set for the 

off-diagonal elements to limit the.number of operations necessary for 

obtaining a good a:pproximation for .A , and then the simultaneously 

yielded ~ andP is substituted into Eq. (A.26) to compute the dis-
"' 

persian matrix. 

Since the case of a non centro-symmetric cryst~l is not of much 

practical interest, methods for diagonalizing a general matrix, such as 

that of Housholder and that of Given's, are not discussed here. 

A.2.4. Comparison of the Methods for Calculating the Dispersion 
Matrix 

Of the three methods for calculating the dispersion matrix, only 

the series expansion method is so far widely u~ed. It is simple in 

concept and easy to use but suffering from the lacking of any intermediate 

step to represent the Bloch wavelike terms and is thus tedious in 

practice. On the other hand, both the method of Laplace transforms and 

the method of Eigen-solutions enable the elements of the dispersion 

matrix to be represented as sums of Bloch like waves. This ·allows one 

to calculate any number of ~esired solutions of different specimen thick-

ness by essentially computing a single set of coefficients for the 

Bloch _like waves (Eq. (A.26)). 
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The Laplace transform method requires the use of other means to 

find all the eigenvalues of matrix A, and is hence riot the proper method 
~ 

for solving the many beam problems of a centro-syrrunetric cyrstal. Ori 

the other hand; the Jacobi. method yields the eigenvalues, .the eigen- -

vector matrix and the inverse eigenvector matrix simultaneously. For 

simple canes (two and three beam cases), the Laplace transform method 

provides Emalytical solutions readily. 

A. 3. The Two-Beam Theory 

As an example of application of the methods of solutions (Sec. A.L) 

and also for use in Chapter II, we develop the two-beam theory in this · 

section. For the two-beam case it is customary to set the origin of 

the recip1·ocal space at the first Brillouin zone boundary, g/2. Absorp-

tionshall not be considered at this moment. We need k . = k c. os 8B, rz r 

and hence 

~r1.. -Rei. l_ k,. i ( k ti - k -l ) 't ~~ 
'l. 

- k(>l( 

~ 2.- Rd < ~d - k,) - R,.. s, (A.31a) 

R,_ k"l_ 'L~n d~n~R-i)-t ~~~ 
·"L 

r - a ::: - k~ X 

- 2. k~~ ( RH- t<~ ) + ~T ~ · (A.3lb) -

'l'he geometrical relations of the various parameters are shown in 

Fig. A.l, the dispersion surface (a plot of k VS k ) of the two-beam 
:Z: X. 

,. 
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case is shown in Fig: A.2. With the use of Eq. (A.31), Eq. (A.6) becomes 

ci 
--~-

C\ ~ 

transformed into 

f <\>y) I ~ 
lq,~it) J 

'"'\ l'"r Jl ~~ t ~) J. -"" -'a 
-~-- - -

L SJ . \L, ( t) 
~ n t /'}_ r d 

Eq. (A. 32 ) is 

(A.33) 

The Laplace transform of the dispersion matrix reads now 

-vrhere 

r 5.-+\tJ 

L -I 

· I l I 

.(a t- f 'l -Ji+\: J >t~\+l". <;J \,- rn.,• 

(!; I +(~ ---
<;+J lt\..1\. ~- -11+\-.J \. 
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Fig. A. 2 The two-'-beam dispersion surface_and the wave vectors of 
the four excited ,,raves in the crystal. 
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:: _L (. f+'. w ) 
"2. .fi-t~~ 

'l'he dispersion matrix is then 
/ 

/ 

I 

} 
"= '(1- .~) 

~- \1 i+ h.)l. 

4>' l r· lc U -.t,) + (c \':·)~) 

[ 'f 'f 

'4' l 1 < a . < .t ·..t¥ '~ cr <t-~c) 

1 ( t ~~c) -:: 
~ 

"l.t• 1 f· -v 

( O (:f ·~u)+ C~ (~ ·fc) Cc \t· ~~) -t C e ~:t -~.,) 

where 

-(A. 34b) 

(A.35a) 

(A.35b) 

Upon transforming back to the i representation, the dispersion matrix 

becomes 

(A. 36) 

... 
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where 

(A.37a) 

~-

(A.37b) 

In Eq. (A.37), the quantities 
/ 

) 
(A.38a) 

(A.38b) 

are the wave vectors of the type I and type II waves respectively. The 

wave fUnctions of the transmitted and the diffracted beams are simply 

given by 

( .1 , 1. I 
~ 'r (-i) (A. 39a) 

(A. 39b) 
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respectively .. The so-called type I and type II waves are respectively 

defined as 

When Bragg condition is exactly satisfied, 

Eq. (A.40) is reduced to 

l .. \ 

c (..""':> " d x '. e l ;; \ 

i.e., 

( A• 4oa) --

(A. 40b) 

W = 0 and k =-g,/2, 
X 

(A. 4la) 

(A.4lb) 

Eq. (A.41) shows that the two types of waves are waves progating in the 

z-direction with different kinetic energy and, alongx-direction, they 

form standing pattern with type II waves centered at each lattice plane 

andtype I waves in between the lattice planes, as illustrated in Fig. 

A.3 :for the quantities fl. '/'1..,. ,and 'hz. ~J-: Identical to that of the 

energy gaps in band theory, the origin of the energy difference is Bragg 

reflection. In the band theory of bound electrons, in:i tially all 

electrons must have same kinetic energy so'that Bragg condition may be 

,,, '" 
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l·'ig. A. 3 lntensi ty distributions of the two types of waves: that 
of the type II vaves are centered at the atomic planes whereas 
that of the type I vraves are centered in betvreen the atomic 
planes. 

' I 
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satisfjed, arid because of the two resulting standing waves are centered 

ei tber at or in between t,he reflecting planes, the potential energy and 

hence the total energy of the two types of elect.rons are different. In 

-the case of electron diffraction, however, all electrons enter~ng the 

crystal from vacuum with same energy. Since the total energy must be 

conserved, thus, bcause the type II electrons are centered at the lattice 

planes and hence having a lower potential energy, their kinetic energy 

is consequently larger than that of the _type I electrons. Notice that 

all electrons in the crystal possess a somewhat higher kinetic energy 

than in the vacuum, because the crystal potential is negative. 
\ 

Absorpt'ion can be included in the two-beam case by replacing the 

·' Potential V by V + iV , and hence g· g g 

(A.42a) 

(A. 42b) 

(A.42c) 
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In Eq. (A.42), the quantities 
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, (A.43a) 
I 

(A. 43b) 

are respectivelY: the "mean" and "anomalous" absorption lengths. The 

absorption coefficients associated with the type I and type II waves are 

in turn defined as 

(A.43c) 

+ 
(A.43d) 

The physical meaning of the absorption lengths are straight-forward: the 

inverse of '3: is the measure of the average absorption power, and the 

inverse of is the measure of the Fourier coefficient of the 

absorption power associated with g. It is obvious·from Eqs. (A.43c) and 

(A.43d) that as w increases, the difference between the absorption co-

efficients )J
1 and )J

2 decreases. This is so because as w increases, more 

of the type II waves would be channeled between the atomic planes and 

more of the type I waves would be moved to the atomatic planes where the 

absorption power is by far the largest. 'l'o be physically realizable, the 
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relation 
I 

> 'S, 'must hold. 

A.4. Dynamical Multiple Rescattering Process of Electron Diffractions-­
An Interpretation from the Dispersion Matrix 

Th~ Bloch wave. type of solutions of' the diffraction problem implies~ 

that the electrons in the crystal are actually undergoing a dynamical 

rescattering process in the sense that the electrons propagating in one 

direction are constantly rescattered into other directions and vise 

versa. This rescattering is accomplished by the process of having the 

electrons of a tie-point on any one particular branch of the dispersion 

surface constantly rescattered into all other branches of the dispersion 

surface in all directions (including the direction these electrons 

originally were propagating) and vice versa. This process of multiple 

rescattering represents a possible way of interpreti~g the diffraction 

problem, which can best be understood with the use of the dispersion 

matrix. In fact, the various terms in the dispersion matrix describes 

specifically the amplitude, direction, and branch of the dispersion 

surface of the rescattering of one particular wave. 

To illustrate this process, consider the two-beam case. The solu-

tion of the dif'fraction problem at. any thickness z + .£.\ z may be expressed 

as the product of the dispersion matrix of argument ~ z with the solution 

at z, i.e., 

(A.44) 

·II 
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ltJhen writing out in explicit form, Eq. (A.44) becomes 

(A.45a) 

and a similar expression for ~ g ( z + A z). The physical meaning of 

Eq. (A.45a) is that ~ 
0 

at a thickness z + 4 z is due to the multiple 

rescattering of both types of waves of lf 
0 

and ~ g at z: on the right 

hand side of Eq. (A.45a), the first term is due to the type I wave of 

\f' 
0

(z) scattered into type I >·iave of~ 0 (z +.t. z), the second term is due 

to type II wave of ~ 
0 

( z) scattered into type I wave of .~ 
0 

( z +A z) , etc., 

and the 5th to 8 th terms are due to \f ( z). A similar situation holds 
g 

true for I~ ( z +.A z). Notice that for the case of a perfect crystal, 
l.g 

I~q. (A .4.!>1:\) is simply 

. (A. 45b) 

i.e., the rescattering process is as if the different types of waves are 

propagating independently. Nevertheless, this )ioes not mean that there 

is no mutual scattering among the different types of waves, but rather 

that the effect of mutual scatteing is merely balanced out, i.e., the 
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amount of electrons scattered from type I waves into type II waves is 

exactly equal to the amount of electrons scattered into type I waves from 

type II waves, thus there is no net transf'er of electrons between the 

is forbidden. If the crystal is deformed, however, then this situation 

is not true anymore,'" and images of the deformation will be produced. 

A second important characteristic of the dispersion matrix is, as 

shown in Chapter II, that it is the Green's function in problems where 

inelastic scatterings are involved. 

A.5. Image Problems 

A more important area of the diffraction problem lies in the study 

of images produced by defects in the crystals. All crystalline matters 

contain certain kindsof defects, e.g., dislocations, stacking faults, 

twins, small precipitates, grain boundaries, etc. These defects are 

important jn determining the properties of the materials. 

In a distorted crystal the electron wave function must still 

satisfy the Schrodinger equation; however, the crystal potential in this 

case is no longer that of the perfect crystal. Suppose the defect is 

produced by a deformation of the lattice of a perfect crystal which 

moves the atom at lattice point point d to d + R(d), then the potential 
I 

at an arbi i.rary point d is changed since it now depends on d - d. If 
_, 

the crystal deforms smoothly, the potential at d . will then in fact 

change from v(Y) to vCr-R(r)). The potential in the deformed crystal 

b . tt . f 11 . F · · . 49 can e wr1- en orma y as a our1er ser1es: 

• ! 
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(A.46) 

It is seen in Eq. (A.46) that the crystal distortion has the effect of 

modifying (the Fourier coefficients of) the crystal potential by mul-

tiplying the original constant Ug by a phase factor exp( -2 g.R(r)). It 

can be shown, provided R.Cr) varies only slowly with r (in fact, provided 

R(r) does not change significantly in a lattice distance), the Bloch wave 

type of solutions of the diffraction problem still hold. Except for cer-

tain particUlar cases, the problem will have to be solved numerically, 

the methods discussed so far may be directly applied to crystals contain-

ing defects, provided the modified crystal "potential is used. 

The differential equations for. the case of a deformed crystal may 

be easily derived by using the modified lattice potential, Eq. (A.46), 

in Eq. (A.l) and assuming a set of modified Bloch wave solutions: 

We then have 

\7). (~ 

~ijl~l" 

(A.4!) 

(A.48) 
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d d X7 l.. ( -) If the last terms involving , ___:__ v · of Ch ;r are -:)X ;)d 
neglected (the column approximation), then Eq. (A.48) becomes 

(A.49) 

An equi valeht but more general formulation of the image problems has been 

given by Howie a:nd Basinski, 50 in which they included the non-:column 

approximations. On writing out in the matrix form, and adapting the 

transformations given jn Eq. (A.7), Eq.(A.59) becomes 

q~\~) 

q:,j ,lit) 

or, in vectorial form 

:l. tJ I 

(A. 50a) 

' ! 
I • 

, ,J~ j , <l>a\") 

(A.50b) 

"• 
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'rhe solution of the many beam problem of a deformed crystal may 

again, in principle, be written as 

(A. 51) 

where ~ ( t~t ) is the dispersion matrix and is a function of 'RG). 
"'R o 

In 
....... 

contrary to the case of a perfect crystal, there is now no known m,ethod 

for calculating in general. The type of expression' 

(A. 52) 

is valid only if R is constant throughout the interval, 4 t, considered. 

Thus, the image problems can best be solved for each slice of the_crystal 

within which R(t) can be approximated as a constant. To have any 

acc'Llracy at all, however, this procedure then requires an unwarranted 

large amount of computing time. For this reason, it is a usual practice 

that Eq. (A.52) is approximated as 

(A. 53) 

It is also usually thought that the matrix~ is cmubersome, (since 

there is an exponential term exp(2 1f i~.R) associated with each off-

diagonal term of the matrix) and it' is therefore transforrrled into 

1,1 
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by substitution of 

. 51 
in Eq. (A. 50b), to find 
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' (A. 54a) 

(A. 54b) 

· (A. 54c) 

' The approximate dispersion matrix of the type of Eq. (A.53) may now be 

used to obtain an incremental solution 

I r 

¢ (~) t- 4 cp (At) 
"" 

(A. 55) 

r 1: 

II 
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By applying various numerical integration methods, the incremental wave 

function, , may be corrected for the sake of 

accuracy (the last term on the right hand side of Eq. (A. 55) indicates 

this operation). We shall refer this method as the direct-integration 

method. Upon iterating through the crystal, this method either yields 

results with low accuracy or requires a large amount of computing time. 

Independent of the numerical integration method chosen, this method 

suffers from an inherent difficulty which limits the usable integration 

interval, ~t. to extremely small values, if any reasonable accuracy is 

desired. For a many beam problem, the deviation parameters Wh can be a 

very large number, this causes the introduction of a non~negligible amount 

of integration error in each step. Depending upon the value of ~t chosen 

this will usually lead to an electron intensity non-conservation phenomen-

on in the results (aside from those due to absorpt-ion). This difficulty 

can be overcome by using smaller: values of ~t (but the computing time 

needed is then necessarily lengthened, especially for problems involving 

a large number of beams). Another difficulty associated with the use 

of Eq. (A:54) is that the term becomes a ~-function on 

crossing slices with an abrupt change in R (e.g., stacking faults, 

anti-phase boundaries, etc.).· This second difficulty can be avoided 

by using Eq. (A.50) instead of Eq. (A.54). 

We shall now derive a method which retains. the full mathematical 

rigor of the method of eigen-solutions and which completely eliminates 

the intensity non-conservation pro~lem. This approach utilizes a special 

property of the matrix ~ : that the eigenvalues of ~ are independent 

of R and are just those of the A matrix of the perfect crystal. Based 
~ 
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on this property. we can calculate the dispersion matrix of each slice 

from that of the perfect crystal, which/in turn is readily obtained by 

the eigen-solution method given in section A.2.3. The dispersion matrix .... 

thus obtained is identical to that· calculated -directly from the matrix-

~(t). 

Notice that the ~atrix ~ in Eq. (A. 50) may be written as 

(A. 56) 

vrhere ~R is a similarity transformation matrix given by 

- 1 Q~ [ l Ti \. 3-r-• . ~ ( 
-;. e· a r l( (A.57a) 

--1 
and it follows that Q-

R 
is given by 

--, 
Q R. -:. 
~ 

[ e~1-T" Ctr·-1' ~ s~y 1 • (A.57b) 

In Eq. (A.56) ~R=O is simply the ~matrix of the perfect crystal. It is 
- -v 

immediately seen from Eq. (A.56) that 

(A. 58) 
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Eq. (A. 58) means that the eigenvalues of the system are independent of R 

and are just those of the perfect crystal. However, when R changes, the 

c-orresponding eigenvectors must be changed according to ~; 'l'he physical 

interpretation of this property is straight-forward: since the deform-

able ion approximation amounts only to a shifting of the lattice planes 

by an amount R, but not any other physical properties, thus the character-

istic modes of excitation (correspond to the eigenvalues of~) are not 

effected by this shifting. However, the excitation strength of the modes 

(corre-sponds to the eigenvectors) is changed as described by 2:R·. 
. "" 

Although Eqs. (A.50) and (A.54) are mathematically equivalent, 

however, if the two equations are interpreted from the point of view of 

. ' 
an incremental solution, there is an apparently different physical mean-

ing associated with each equation. Equation (A.50) describes the in-

fluences of changing R as simple shifting of lattice planes and thereby 

changing only the excitation strength of each mode from slice to slice, 

but not any other physical properties. On the other hand, Eq. (A. 54) 

describes the. situation as a twisting as well as a shifting of lattice 

planes, therefore, the operational reciprocal lattice vectors will vary 

their directions, magnitudes, and hence the modes of excitation as well 

as the. excitation strength of each mode. This situation is illustrated 

in Fig. A.5 in the dispersion surface representation of a two-beam case. 

The dispersion matrix of a slice in which R 

given by 

= R , a constant, is 
m 

II, 
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j ____ -

XBL 717-7029 

Fig. A. 4 Physical interpretations of the two mathematically equivalent 
representations of the image problems: (a) in 1' representation 
(Eq. (A. 54):•, the lattice planes are twisting and shifting through 
the crystal, g changes direction and magnltude and hence the disper­
sion surface and all Bloch amplitudes; (b) in T representation 
( Eq. (A. )0) ) , the lattice planes were only shifted, nothing but the 
Bloch amplitudes are changed. 

I 
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(A. 59) 

The waves leaving one slice of thickness 4t with displacement R is 
m 

obtained by multiplying the dispersion matrix by the waves entering this. 

slice. Upon iterating through the crystal, this procedure results in 

(A.60) 

The dispersion matrix of the whole crystal is readily identified from 

Eq. (A.60) .as 

V\ 
-) 

~R (;1) ::: IT r 2R~ ~ R -::.o ~~~] (A.61) 
"" 

Q.::; I -==t 

1be right hand side of Eq. (A.6l) is called the Product Integral of 

Volterra. For problems with a discrete type of boundary (stacking 

faults, anti-~hase boundaries, etc.), Eq. (A.6l) is readily computed by 

a few matrix multiplications. 

For problems with continuous displacements, e.g., that of a <Lis.-

location, the product integral cannot be so readily computed. It is 

unfortunate at this stage that. numerical methods for computing this 

integral is not well developed, thus if p is calculated according to 

Eq. (A.60), either large amount of computing time is required or accuracy 

of the results must be sacrificed. Nevertheless, this procedure may be 
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modified slightly so that the dispersion matrix may be useq in con-

junction with ordinary integration methods to obtain the final results. 

Since all numerical integration method_:;; g.re designed to compute an in-

cremental solufion of the type_ 
\ 

4 ~ 
' 
( 4') [4<i {4t) J (/+a"t) -=.. + ( A.62) 

"V ....... ,....., ( <: ... ..,.....,,_ --r-~ lf 

we shall try to find an 4 <f>"(<>.f) in which the dispersion matrix is 

fully utilized, and this is simply 

l ~R (<1.~)- :~ ] p (* J. 
. "' 

(A.63) 

where is given by Eq. (A. 59). ·The computational step 

given by Eq. (A.63) is necessary since numerical intergation methods 

amount only to correct the incremental quantity 4¢ (4:0 at each step, 

and after the correction is accomplished numerically according to the 

method chosen, the wave functions leaving for the next step is then 

simply given by that of Eq. (A.62). 

An example of a screw dislocation is given in Fig. A.5, where the 

eigen-integration method refers to the method just discussed. For 4 t 

fixed, both the .eigen-integration and the direct integration method 

require about the same amoutn of computing time if many columns are 

involved. The integration routine used is the 4 th order Runge-Kutta 

method. Over the wide range of slice thicknesses chosen, it is clearly 

seen that the eigeri-integration method yields a result far more stable 

and accurate than the direct integration method. No noticable intensity 
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Systematic 12 beams along [Ill] row of diffractions. 
AI at 500 Kv. 
Ewald sphere kept on [222] reflection .. 
Column at X = 0.0 5t[lll] 

g = [000] 

Direct Integration ( tp') 

• • • • • • Eigen-Integration (lfJ) 
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Fig. A. 5a 
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l 

Fig. A. 5b 
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X 

Direct Integration ('/'') 

Eigen- Integration (IP) 
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Fig. A. 5c 

g = [222] 

X 

Direct Integration (f/J'l 

· Eigen-Integrotion (f/'l 
• .... 

XBL717-7.032 

Comparison of computed intensities of the three strongest beams of one 
/ column of a screw dislocation image using two different methods. The 

e:igen--integratjon method (applied to <l>, Eq. (A.50)) yields more accu-
r'ate result than the direct integrati~n method (applied to 4> · , Eq. 
(A.54)). When integration interval becomes large, results obtained by 
using eigen--integration method do not shovr serious intensity non­
conservation problem, whereas that by direct integration d.o. Integra­
tion routine used is fourth order Runge-Kutta. 
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non-conservation is introduced ·by the former method while the latter 

rriethod suffers from this problem severely when .6t is large. This is so, 

because the eigen-integration method uses the dispersi,on matrix fully 

while the direct integration-method-uses only- a first order approximati-on -

of the dispersion matrix. 1 This means that the eigen-integration method 
I 

should yield highly accurate results even when the 6 t is large, 

because for this method, errors introduced in the integration process 

can only come from one variable: R. 

.... 
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