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" SCHRODINGER EQUATION FOR SCATTERING WITH ENERGY LOSS 

* R. Lipperheide 

Lawrence Berkeley Laboratory 
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Berkeley, California 94720, USA 

Abstract: 

An attempt is made to establish a model Schrodinger equation for the 

description of heavy ion scattering with energy loss. This equation is linear 

and can be related to the quantal coupled.channels approach. A possible 

parametrization of the model Hamiltonian is considered. 
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Schrodinger equation with an energy-losing potential. Energy non

conservation in the Schrodinger picture can be connected with an explicit 

time dependence of the scattering potential between two heavy ions: 

( _ i. ;)/at 0 (1) 

To describe energy loss in the relat-ive motion owing to internal excitation, 

the energy-losing potential must contain only positive frequencies, 

L. v (t) (2) = 

Transforming eq. {1) to the energy dependent form 

( E + 

--..JL 
we see indeed that the term V (G)) , W > 0 , appears in a source term via 

....._, 

which current from wave function components cf(!,E') with energy E' is fed into 

components cpC!JE)with the lower energy E = E' - 6J , thus describing energy 

loss. 

The initial condition for the solution of eq. (1) is that it start out 

as a free normalized wave packet with mean momentum~0 • The corresponding 

boundary condition for eq. (3) is 1 that the solution X(~ E}must consist of T _, 
an incident free wave at energy E

0 

Y2. i k-r 
[ ~(E-E)] e -.-

(4) 

a.re 

plus terms at all energies which asymptoticall~ely outgoing. Here ~(x) 
is a narrow distribution about x = 0, normalized to unity. Equation (3) 
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automatically restricts the solution to energies E ~ E0 , as is most easily 

seen by a perturbation theory argument. Asymptotically we have 

. ''l. ,: .ft . .,.. 
[ ~ ( E - £)] e ..._o - + 

i It Y' 

Frn. E)-=- (5) 
I "(' 

) 

where the scattering amplitude F(Jl,E) determines the differential cross 

section per unit energy for final energies E ' Eo: 

.L~ ! 2.. (6) I F(_n_ E) I - ':::" 

~..fl. t1. E .Ito I 

The requirement that during scattering the wave may lose energy but not 

probability current, implies E 
0 

~~~ (4r•), L.. V f C•l> + Im <~t~>, J :c' V\.~t:J .frE/) )= o. <7l 
o E 

The second term in eq. (7) receives contributions only from those components 

"' 
in the bra (f{E) which have energy E A( E0 , and contain only outgoing waves; thus 

£ Eo E + t- e: 
f;c<$£E),Itr~Vfr=)f =- jJE(j;E"~J(E"J)Vrc'~EJimG/E)JJ£'Vt£~E)f(E)>), (s) 
o o e• E. 

where G+(E) = (E + i~ - T- V)-1 . Since the r.h.s. of eq. (8) is negative, 

" we see that the introduction of the energy losing potential Vi'(r w) requires _, 
;_· the presence of absorption in the energy conserving potential, Im V < 0 

This has a natural interpretation (cf. eq. (3)): the wave component ~(~)at 

energy E receives current influx via the source term from components ~(E~ ·at 
AJ 

higher channel energies E' > E; but since in turn this wave component c:p ( E:) 

appears again in the source term for. components ~ ( i) with E < E, feeding 
,..., 

current into the latter, this current loss for cp (E) must be accounted for by 

an absorptive part in the energy conservihg potential \1, 
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Condition {7) reads in the time dependent description 

DO 

f Jt < tp{t) I ( I~ v ~ /... 
I~ Y to) q,t~:; / 0 

' 
(9) 

-,0 

which implies, using eq. (1), the conservation of probability: 

= o. 

The condition of probability conservation thus gives rise to a relation between 

VL . 
the energy losing potential and the absorptive ~art of the energy conserv-

ing "ophical" potential. This relation is rather indirect, hoWever, as it in-

valves the wave functions and an integral over channel energies or equival-

ently, time. An analogous relation between the imaginary part of the optical 

potential and the friction force appears in the perturbation theory of 

nuclear friction. 2 

The appearance of a complex potential in the Schrodinger equation {1) 

makes the latter-time reversal non-invariant. This irreversibility arises 

from the circumstance that the energy loss is built into the equation itself 

(rather than into the boundary condition on the solution) by demanding that 

VL contain only positive frequencies. 

Coupled channels approach. It is interesting to note that eq. ( 3) is 

closely analogous to the usual system of coupled elastic and inelastic chanHels, 

(£- e -T-V ) t = L vr., '(Y' (10) 
o r tt Yeo ) 

("'Tf) 
where the ¥;. are the channel wave functions and ~ is the internal 

excitation energy of the fragments. Ordering the channel labels according 

to increasing excitation energy ~ (with degeneracies taken care of appropri-

ately)' we can eliminate, in the equation for a given channel r ' 
coupling to all channels with lower channel energy E_, = E

0
- £v , 

the 

E < E , 
v f.-

,. 
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i.e. higher excitation energy e
11 

"> } and obtain 

( E - T r 

with 

lf. (E) = r . 

(11) 

) (12) 

V {e) ~!+I ~v (·----) V r"- = 1 ~,'Y' t E+- c. + £.r-- H VY' ii'y 
(13) 

(>,14) 

In eq. (11) the channels are coupled via a triangular coupling matrix. The 

elastic charuiel t=O is uncoupled, and is described by the optical-model 

equation 

( £0 - T - ~ (l\) ) t -= 0 (14) 
J 

where the optical potential 1J,: is given by eq. (12) with t= 0 (Feshbach's 

generalized optical potential 3 ) , but would in practice be constructed ph en-

omenologically. The first inelastic channel is explicitly coupled only to 

the elastic channel, but loses current to the second, third etc. channels 

via the imaginary part of rr1 . So it goes down to the last open channel 

with Ef'- = 0. The optical potential U"1.JE)in channel f'- (eq. (12)) 

d at energy Ef = E is quite similar in structure to the optical potential in the 

elastic channel 
1 

V: (E). In the coupling terms ~y we neglect the sum on 

the r.h.s. of eq. (13) since, in contrast to the analogous sum in eq. (12) J 

it consists of terms with indefinite sign. Thus we write tJ (E);::, V v in eq. (11). 
. r~ r-

In typical inelastic heavy ion scattering situations the number of 

channels to be included in the system (11) is very large. Going over to a 
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continuous distribution of channel energies we may write 

t_ 

) v L ( £ ) E I) + E I J..£ I (15) 
0 

where the "channel density wave function" 

(16) 

4 is the average of the usual channel wave function in the interval 

E.-J.t. < } < t +~£ multiplied by the square root of the average number ·of channels 

per unit excitation energy. The integral kernel on the l.h.s. of eq. (15) is 

= 0 
) 

I 

V ( r · e f.') { ~ u. ~;' 
... ) I J ) 

I 

c.< £ J 

I E>E 
..... (17) 

where V( "(' · £ £) is some average matrix element of the internuclear interaction _, I 

I 
taken between internal states with excitation energies £ and ~ . If one 

simply · sets VL ( £ 1 e.' ) = Vi' ( e. - e. 1
) ) then with E0 - £ = E, E

0 
- £' = E' , 

.E . 

= f 
0 v ll E I- E ) 4> t: I d. f '. 

£+ 
(18) 

Identifying c/>, (.!.) with cj> ( r
1 
E) , we find that eq. (18) is the same as 

eq. (3) (the integral in eq. (3) is effectively cut off at E' = E
0

, owing to 

condition (4)). The square of the outgoing part of the channel density wave 

function (16) yields the scattering cross section per unit excitation energy, 

as in eqs. (5) and (6). The energy conserving optical potential 1[, (E) ~ tJf. (.r;). 
is complex and time reversal non-invariant because in rearranging the original 

time reversal invari.ant system (10) to obtain eq. (11)., the boundary condition 

of outgoing waves in all channels with lower channel energy has been incorp

orated in 1Jf (E). The current conservation relation (7) follows from the 

hermiticity of the original coupled channels problem (10). We see that in phys-

ical content, the "smoothed-out" coupled channels problem (18) is closely anal-
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II 

ogous to a linear (as opposed to ref. S ) Schrodinger equation with a time 

dependent potential. 

Application to heavy ion scattering. In heavy ion scattering at higher 

energies, transfer reactions with exchange of only a few mass or charge units 

may still be regarded as "quasi-inelastic" events. Channels involving substantial 

rearrangements as well as nondirect and "fusion" processes may be accounted 

for by an additional absorptive term in the energy conserving potential V 

of eq. (1) or (3). Then, of course, the equality sign in eq. (9) must be 

replaced by a "greater than" sign. 

For actual calcUlations, the potentials in eq. (3) have to be parametrized 

phenomenologically. The energy conserving potential V( 1') ~ lJ ( y- f) might be 
0 • 

chosen equal to some current optical potential describing elastic heavy ion 

scattering (plus the Coulomb potential). Giving it a dependence on channel 

energy may account for differences betweem entrance and exit channels. The. 

energy losing potential yL(y- E~E) may be surmised to have the spatial dependence 
-) 

of the imaginary part of the optical potential; if it is spherical, energy is 

lost while angular momentum is conserved. Its dependence on W=E'-E > 0 might 

be that of a decreasing exponential, 'if(r E~E)•i'(r )exp[ -(E' -E)/ .A ] : for given E, _, -
the coupling is to channels with higher E'> E only, and as E" is increased away 

. ( I • ) from E i.e. the internal excitation energy £ 1.s decreased away from· E. there 

is ever less overlap in the coupling matrix elements of eq. (17); moreover, 

the channel density - I y (£) decreases exponentially. One would expect A to be 

less than a few MeV, so that the coupling is bet~een channels with neighboring 

energies. Besides on the difference E'-E, 
-.~L V will presumably also depend 

on the channel energy E itself. We may take 
....,L 
V as real and assign a smoothl~ 

varying sign to it (perhaps negative, in extrapolation from yL (1' > c.J~o) where - , 
it becomes the average nuclear interaction). Although yL arises from a large 

sum of almost random tnatrix elements, it should vary smoothly since it appears 
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in eq. (18) where the channel density wave functions on the left- and right-

hand sides have, by our choice, smoothly varying phases (7xtending the con

siderations of ref.~ on the phases of the channel functions to the whole 

range of excitation energies). As to the magnitude of y1 (~) ... } 
. a very 

crude estimate based on eq. (8) yields 

< 
3oo 

where yL is the mean strength of yL(r) ... . 
Numerically, one would- reduce eq. (18) to a discrete system of coupled 

equations whose number depends on the step width one chooses fQr the energy 

integration~ Since the coupling matrix is triangular, no matrix inversion is 

required, i.e. the separate "channels" are computed one after the other in 

order of decreasing channel energy, starting with the elastic channel at 

energy E
0

. A "channel" at energy E couples explicitly only to those with 

E'> E while the coupling to channels with E' < E (including the closed ones 

is implicit, via the properties of the potential 1r which are determined vo 

phenomenologically. One may do the calculation by partial wave decomposition, 

but it would certainly be helpful if c12.rrent semi-classical methods could 

be extended to the case of complex, time dependent (or energy losing) 

potentials considered here .. On the other hand, it is clearly not evident at 

this point whether our way of treating inelastic scattering, which simultaneously 

describes energy loss and absorption, will in some limit reduce to the 

classical picture of friction with a force proportional to the velocity. 
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