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Abstract: 

h • A model Schrodinger equat1on for scattering with energy loss is 

discussed. The equation is linear and is closely related to the coupled-

channels approach to elastic and inelastic scattering. A possible 

parametrization of the model for applications to heavy-ion scattering is 

considered. 
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l. Introduction 

In heavy-ion scattering with incident energies far above the Coulomb 

barrier, one generally observes considerable energy loss due to internal 

excitation of the outgoing fragments. If one focuses attention on those 

channels in which no or only a few units of mass and charge are transferred, 

one may consider these as quasi-elastic or -inelastic channels with roughly 

no rearrangement. In this case the system can be described in terms of the 

relative coordinate between the centers of mass of the scattering ions 

with the'channel energy as an additional, non-conserved parameter. Transform-

ing from the channel energy to its "conjugate" variable, the time, the 

description must then involve non-conservative interactions which depend 

explicitly on the time. 

An example for such an approach is provided by ·the quantized friction 

theory based on the ScbrO~inger-Langevin equation l-3). Here the single-

particle Schrodinger equation contains a time dependent "friction potential" 

proportional to the phase of the wave function, i.e. the velocity potential 

of the quantized motion. ~his term is chosen because in the classical 

limit, it gives rise to a friction force proportional to the particle veloc- · 

ity. By its construction, this friction potential makes the Schrbdinger-

Langevin equation nonlinear.· In particular, the friction potential vanishes 

-
for the class of stationary solutions, which therefore show no damping 

effects at· all, no matter how highly excited they are 2 ' 4). 

On the other hand, looking at the problem from the quantum-mechanical 

end, it is described by a system of coupled single-particle equations 

connecting the elastic and all inelastic channels. This system is a linear 

system coupling wave functions with different channel energies. We there-
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fore have a linear problem with.an interaction which is nondiagonal in the 

channel energy. In the corresponding time dependent description we are then 

also dealing with a linear equation with 8 time dependent potential. In the 

present paper, we discuss such a linear SchrOdinger equation for scattering 

with energy loss. 

In the next section we view energy loss as arising from current 

flow from the incident, elastic channel to channels with lower energy. The 

coupled-channels problem is reformulated in a way in which the explicit 

coupling goes only in 8 direction which is associated with loss in channel 

energy, while the ''back-coupling" is treated implicitly via absorptive 

(or more precisely, "dispersive") terms in energy conserving optical 

p~ten:tials. Thereby the problem becomes non-hermitian and time reversal 

non-invariant. Going over to a continuous averaged density of channels, a 

SchrOdinger equation results which is an integral equation in the energy 

variable. The correspond~ng time dependent approach is discussed in sect. 3. 

The asymmetric treatment of the coupling between channels with different 

energies has its analogue here in the requirement that the non-conservative 

time dependent potential contain only positive frequencies, thus becoming 

energy losing. In sect. 4 we turn to. the phenomenology of the approach and 

consider a possible parametrization of the model. Some concluding remarks 

are made in sect. 5. 

r 
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2. Coupled-channels approach 

If rearrangement channels are disregarded {we shall amend this later), 

the scattering of two heavy nuclei is described by a linear system of coupled 

equations: 

;;;0 vry (~) tv(;) (l) 

(\l+r-) 

Here the fUnction t (r) is the channel wave function for channel r--
internal excitation energy t.~; the elastic channel corresponds to 

r with 

f=O 
with E- 0 = 0, and E

0 
is the incident relative energy in the elastic 

channel. The terms Vf~(~) are the matrix elements of the nucleus-nucleus 

interaction taken between the internal states of the fragments in channels 

[J- and 'Y , respectively, with the coordinate ,!.. between the two centers 

of mass as a fixed parameter. The matrix V~~(~) is real and symmetric. 

In solving eq. (1) as it stands, one has to consider al1 channels 

simultaneously. Since the channels included in eq. (l) are associated with 

a complete set of internal states of the two nuclei, we. have some channels 

in which the excitation energy £f" is discrete, while in others it is con

tinuous; when the channel energy E r- = E0 - £!"' becomes negative, the 

channel is closed, and eq. {1) clearly contains an infinite number of such 

channels. In considering low excitations, the "close-coupling" approximation 

may be appropriate, where all but a few relevant open channels are discarded. 

But in "deep inelastic" scattering with large Q values there seems to be 

no natural cut-off in the number of channels to be included in a coupled-

channels approach. 
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Guided by the consideration that the net. effect of the couplings in 

eq. (l) is to feed current from the incident channel with energy E
0 

to in

elastic channels with lower energy E f < E
0

, we may approach the solution 

of the system (l) in a stepwise fashion, proceeding from the elastic channel 

in the direction of channels with ever increasing internal excitation. Order-

ing the channel labels in the order of increasing energies Ev (with degen

eracies taken care of appropriately), we divide the set of channels Y into 

a set w1 th 'f = V < f' and a set with for any 

given channel f . The system (l) then separates into two coupled systems 

~<f- oO 

(E"r- -T- v,.r) i, - ~0 vr~ '/'y + r V(; ~v (2) 
Y>/ ) 

= ~V- 1J, + V- t. (3J 
'-:' Y'j_ ]~ IIJ-1. f• 
2: -o I 

r1() 

"' [( E f- ( c, -tfl-T) f•;;, - V, ,, ] '(,7, 

y >f . . 

Inverting the matrix on the left-hand side of eq. (3) in the subspace of 

channels v
1 

Y 1 > f
of the wave functions 

eq. (2), 

with 

, we express the channel wave functions 'l.t-- in terms . lv 

t r and 'tV" with -::- < r ' and therefore' from 

Y< p- . 

- f;o vr~ {7) 't~ 
(4) 

) 



0 0 ~1.¥. I.! !~1 Q [~ 4 4 1..,1 0 5 2 

- 7 -

V + L V- ( · 1 v) ~· r r ~ v, . r" E - c c: - .:~) -t 1 "1 _ T- _ _ y r < 5) 
, > r . . , 1 'I" v' > 

(6) 

where [ stands for the diagonal matrix 

In the system (4) the channels are coupled via a triangular coupling 

matrix• The elastic channel r = 0 is uncoupled; it is described by the 

- . Schrodinger equat1on 

0 . (7) 

This is the familiar optical-model equation for elastic scattering, where 

the optical potential is in principle given by eq. (5), i.e. Feshbach's 

generalized optical-model potential 5). The first inelastic channel is 

explicitly coupled only to the elastic channel, but loses current to the 

second, third, etc. channels via the imaginary part of the optical potential 

1J
1 

• So it goes down through the channels (cf. Fig. 1) until the last open 

channel with E f = 0, which is explicitly coupled to e.ll previous channels 

but no longer suffers absorption into.other inelastic channels, since there 

are none left that are open and have energy lower than E t . In principle 

one could go on and compute the closed channels with E r- < 0, but since 

these are only virtually excited, they are of no interest to us. 

Clearly, part of the problem has been transferred to the determination 

of the rather complicated operators vr an~ lf~. But intuition mey save 

us from actually calculating these quantities. It is seen from eq. (5) 
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that the potential 'lJ t'- (E) in channel f at energy E f" = E is quite 

similar in structure to the optfcal potential in the elastic channel, 'IJ
0

(E). 

Therefore we may simply replaee it by one of the commonly used phenomenal-

ogical expressions for the optical potential at the energy in question. The 

coupling potentials ·1Jf~ (E) may be simplified by dropping the double sum 

on the right-hand side of eq. (6), since is made up of terms with non-definite 

sign (in contrast to the double sum in eq. (5)). Since moreover, the dis

persive part of 1) f't , which this double sum represents, does not play the 

essential physical role that it has in the optical potential, its neglect 

appears quite reasonable. In this fashion, we replace eq. (4) by 

(8) 
v:::. 0 

This system is to be supplemented by the boundary condition that only the 

channel wave function with r = 0 contains an incident plane wave, while 

the remainder are purely outgoing: 

+ 
-{ 

' 
(9) 

/\ 2 
where !f = 2mE fJ- • The absolute square o:f the scattering amplitude f (- (!t' E f ) 

determines the cross section ~f (ll,Ef) in channel (. Fbr the inelastic 

channels, f > 0 , one may also write 

::: 

where 

r >0 
) 

(10) 
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Ir 
1 ( t~ 't ) - .2, m i \1 c. c. (ll) 

I - F 

is the current density in channel r· 
All channels suffer absorption due to current loss to channels with 

lower energy. This isover-compensated in the elastic channel by the incid-

ent flux, and in the inelastic channels by the current gain via the source 

terms provided by the coupling to the channels with higher energy. This can 

be seen in more detail: Comparing eqs. (l) and (8), we find that 

00 

<-+r .I"' tj 'ft 1 = ~ lw, <ir, Vrv lv) < o) (12) 
"v"/f-

since by eq. ( 5.), Im 1Jf is non-positive. Using eq. (8), we have for the 

example of two inelastic channels 

o. 
) 

= < i 1 \ 1M 1Jt i1) + l~ < lf1 1\(o t) 
- < tY 1. ) lY\'\ ul 't 1 ) -+ 1.AT1 r 0 / 0 j 

::= Im< 'f 2. _, v; 1 '\f 1 ) + k <' t 2 V 2 o '+ o) 
) 

+ 1A'i_ ~0 > o. 

With the help of eq. (12), using the hermi tici ty of V f- y , we have 

( 13) 

<''i'0 ,Iwt ~ 1fo) ==- (I}'y\ <''Y1 ,V10 'h)+ k<'tl. }\{ 0 'If;,>) ::::- k{~o- W2~ o < 0; 

(14) 
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We see that the current loss in channel 0 has two components, -w t+- 0 - w
2 
~ 

0 
, 

which appear again as current gains+ w1~ 0 and+ w2 +- 0 in channels i and 2, 

while the current loss in channel i , - w2 +-i , appears as a. current gain 

+ w
2 
~ 

1 
in channel 2. The current gains and losses in all channels balance 

out, since by the hermiticity of the original system (1), the current summed over 

all channels is conserved, 

00 

L } v . J J3 .. 
r-=o ~ .-.....f" 

It seems natural to interpret the quantities 

0. (15) 

(16) 

as "partial probabilities" for the current flow from channel Y to channel f , 
but it must be realized that the right-hand side of eq. (16) may have 

either sign. 

Although the original equations (l) contain a. real symmetric inter-, 

action and are therefore time reversal invariant, the system (8) no longer 

is,. since it contains the complex optical potential 1J
0

(E f.L. ). This has come 
I 

about through the incorporation in ~(E f)' of the boundary condition that 

there be only outgoing waves in all channels with energy lower than E f- (giving 

rise to the appearance of+ i"l in eq. ·(5)). The same situation occurs 

already in the usual optical-model equation for elastic scattering, eq. (7), 

where the time-reversed solutions do not satisfy the equation with an 

absorptive potential Dl
0 

, but an equation with the complex conjugate, 

productive "optical potential". 
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Averaging over channels. In typical heavy-ion scattering situations at 

energies above the Coulomb· barri-er, the number of channels to be included 

in eq. {8) is very large. Going over to a continuous distribution of 

channel energies, we may write instead: 

( E - e - T - 1J (E- c:) )JJ 
o o o IT-t e 

..,o) 

= (17) ., 

where V{ c, e' ) is an average of the matrix element V f ::t (see below) and 

~ (e) is a smoothed form of the combined level distribution of the two nuclei, 

~(e) J 
(18) 

with g p-- representing the degeneracy of the level E.f. Strictly speak

ing, most of the levels will of course have continuous excitation energies, 

corresponding to particle decay of the fragments. However, one may assume 

that an average level density still makes sense. In line with this, one 

must argue that the target (or projectile), although excited above the 

continuum threshold, still holds together long enough during the scattering 

that the use of optical potentials with a range appropriate to scattering 

of essentially bound nuclei is justified. 

The wave function t k e (for ·clarity we have indicated the incident 
""O' 

momentum ~0 ) represents an average of the channel wave functions t f- ·in 

the interval £. - d..t.j 2 < c f" < E. + d.e /2 . This will in general be 

an average over very many channel wave functions, and one might suspect 

that these have random phases and average out to zero. However, sirice the 

functions f f" are expansion coefficients in the expansion of the total 

wave function y in terms of internal fragment states f f' , 
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their pha.ses depend on the (arbitrary) choice of pha.ses for the states 

q? ~ (cf. refs. 
6' 7 ) ). By a judicious choice of the latter, the pha.se 

of fr- can be made to vary smoothly with f. over the whole range of excitation 

energies, leading to a non-vanishing average function JVk £ which 
) . -o> 

depends smoothly on e (in ref. 1 these considerations were restricted 

to a small interval de ). We thereby transfer the possible randomness of the 

pha.Ses of the "} f to the pha.ses of the <f f- . 

Introducing the "channel density wave function" 

(19) 

(where we have switched from the label t to E = E0 - € ) , we obtain 

( E -T- tT; (!: ; t) ) +' ('!_ j t:.) 
_a 

where 

V L( !._ i £,c') - h(.") V (! i €,€') {fr:•) {or 
I 

E > c J 

0 for- (21) 

. I 
The quantity V(r; £,e) is an 

range c- d.t/2 < ·Er< ~-rdefl 

average of the matrix elements Vfv(~) in the 

1 E
1

- J..£/2 < tv< f
1
+ J.E/2.. The V fY 's should 

have nearly random signs: The original V ~v 's, which are matrix elements 



0 0 i) .., J;,J 4 0 "~ 0 ~ 
r•· 

I 0 

- 13 -

between basis states A; chosen real by convention (and convenience for '1 ,..,.,. . 
their properties under time reversal) are expected to have nearly random 

' 
signs because of the many internal degrees of freedom involved. The rephasing 

of the f is unlikely to remove this randomness ?)_ Therefore, the average 
~-'-

matrix element V(r; i, ~·,) is much reduced in magnitude compared to a typical 

v rv(~); if the average in given intervals £ ± dc/2, c.'± d£/2 is over 

N and N' terms, respectively, one might expect the reduction factor to be 

(NN')- .x.f2, where eX. ~ 1 (0(= 1 for complete randomness). In the 

"energy losing potential" ~(r; €, c'} this is compensated by the presence ,_ 

of the channel density factors ~ ~ (E) "" r?-12 

On the other hand, looking at the integral equation (20), where the 

f k (E) have smoothly varying phases over the whole range of energies E 
-o ' 

and lf
0 

is a non-random , phenomenologically chosen function, the kernel 

VL must be smoothly varying, too. We conclude from this that by our 

rephasing procedure the randomness has at least been removed from the 

average quantity ~-

The boundary condition for the solutions of eq. (20) is, using eqs. (9), 

(18) and (19), 

) (22) 

where d ( € ) is a smoothed-out [_ function With a peak at zero internal 

excitation energy c = e 0 = 0, i.e. E = E0, and 

v f(f) 
(23) 
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is the average scattering amplitude f ( Jl, E)...) in the interval E. - clE./2. < E.!'-
. • JL . 

< c + cl.t/2. (denoted by fk (.12.)) multiplied by the square root of the averaged 
... QlE 

channel density. The square of the amp}.itude (23) determines the summed 

scattering cross section into all channels in the interval dE: 

(24) 

Fbr use in the integral equation (20), one may conveniently make the 

following replacement in the boundary condition (22): 

where '§ ( £ ) is the smooth extrapolation of the level density to £ = 0. 

In the elastic ch8.nnel equation corresponding to eq. (7), the £function 

drops out, while in the inelastic equations (20) with E < E0 , it is folded 

into the integral kernel. 
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3. Time dependent description 

The averaged coupled-channels equation (20) is an integral equation in 

the energy variable E. It is of interest to investigate the corresponding 

time dependent formulation. Without losing any essential physics, we assume · 

for simplicity that in eq. (20), lT0 'is independent of energy, lJ 0 (_;:;E) ~ 

V0 (!:), and V£ depends only on the energy difference E- c'. = E' - E: 

-iL(r; e, ~') ~ -iL(r; e - e' ) = -iL(r; E' - E). Then we obtain 
..... -

In going from eq. (20) to (22), we have extended the lower limit E+ in the 

integral in eq. (20) to - CXJ , using.the fact that by eq. (21), 

.vL(r. E 1-E) = 0 
""') for E' ..::: E. (26) 

Furthermore, we are allowed to replace the upper limit E0 by + aJ, since 

the boundary condition (22) in conjunction with eq. (26), leads only to 

solutions of eq. (25) with E $ E0 anywas-, as is best seen by a perturbation

theoretical argument. 

Introducing the time dependent wave function 

1 
- 21C (27) 

, 
we then obtain from eq. (25) the time dependent Schrodinger equation 

. d 'l r' ( - \ at -t T -t u o r:) + (28) 



16 

where 

V
L · -i.CtJt 

( r · w) e. dw 
.-,) 

(29) 

is a time dependent pc>tential which contains only positive frequen<::ies. This 

correspc>nds to energy~ from the wave packet cp k (;:_;t) describing the 
.. o 

relative motion of projectile and target. we have here a situation similar 

' 
to the interaction of a charged particle with the electromagnetic field, 

where the interaction term with pc>si ti ve frequencies describes creation of 

photons, i.e. energy loss in the particle ~tion. Indeed, one may view 

the inelastic scattering of heavy ions as being effected through the creat-

ion of excitation modes in the fragments, in a loose analogy to bremsstrahlung 

(where these excitation modes are free photons). Unfortunately, we are not 

aware of a quantal theory for the equation of motion of a charged particle 

undergoing bremsstrahlung (with the photon degrees of freedom eliminated); 

otherwise., this would have been helpful in establishing more detailed prop

erties of the energy losing potential yL(r;t) . ... 
The boundary condition {22) corresponds to an initial condition for the 

solution f k (;:;t): for t ~ - ro , the solution must go over into a free 
~o A 

normalized wave packet with mean momentum ... ko = (E0 , !o): 

th (r·t) ~ 
l!o ... l t~-oo 

here the . d( ... ) are smoothed-out f-functions (usually sharply peaked 

Gaussians with unit area). Except for the angular part, the wave packet on 

the right-hand side of eq. (30) is seen to be the Fburier transform of the 

incident plane channel density wave function in eq. (22). 
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We also could start the di~cussion of scattering with energy loss with 

the time dependent description,by writing down eqs. (28) to (30) first, 

relating them to the coupled-channels approach later. Taking eq. (28) as 

starting equation; we Fburier transform it to eq. (25) using eqs. (26) and 
' . 

(29). Equation (25) is then interpreted as providing current flow from the 

incident "channel" E0 to those with lower energies E < E0, as in the 

previous section. Defining a current density by 

J (t ., E) 
""" - (31) 

we find that the incident current density 

(32) 

is then a current density per unit energy, with the total, energy integrated 

incident .current per unit area given by }Jm. 

The requirement that during scattering the wave may lose energy but 

not probability current, implies that the divergence of the total, energy 

integrated current density vanishes: 

\1· J ('f'. E') 
-- ..... -> . 

0 (33) 

0 

Integrating over space and using eqs. (25) and (26), we find 

L., (t!E)
1 
f~' t(E1-E:)f(E'))) = 0. (34) 

E+ 
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The. second term in eq. (34) receives contributions only from those com

ponents in the bra < f (E) which have energy E < E0 , and which therefore 

contain only outgoing waves: 

(35) 

where G+(E) = (E + i1J - T - t(
0

)-1 • Equation (34) then becomes 

E . E . E . ( 36') 

= -JlE( rd:' (fCf'J, VL(E'~£)1, G-:CE) f d:• V 'rt'-E)+(E') >), 
Eo 

o £+ E~ 
r J.E <4(E))lm ~ f(E)> 

0 

which cannot be satisfied for a real potential ~' since then the left-hand 

side would be zero while the right-hand side is negative. The introduction 

of the energy losing potential ;.(t) containing only positive frequencies 

requires the presence of absorption in the energy conserving potential 1{;", 

0. 
(37) 

That 1J6 ~ust be complex is easily understood from the fact that the energy 

losing potential ;.(r;t) of' eq. (29) is necessarily complex and, because 

of over-all current conservation, its imaginary part must be compensated 

in some wrzy by the other potential appearing in eq. (28), vi.z. ~· Equation 

(37) is of' course in accord with the interpretation, in the previous sect

ion, of' 1r 
0 

as an optical potential. 

Again, the appearance of' the complex potential v;, makes the Sc~d

inger equation (28) time reversal non-invariant, and thus introduces irrev-

ersibility into the problem. (Note that the presence of the energy losing 

potential ~(r;t) by itself does not violate time reversal invariance, as 
Olt. 
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long as v-L(r; GJ) is real; for then v-L(r; -t) = - [ v-L(r;t )] *, which is the -
condition for time reversal invariance.) 

The condition (34) reads in the time dependent description 

t>O 

j J t < ~ (t ), ( 1~ '\Jo + ·· lrn. V L ( t)) 4 ( t)) 
-00 

which implies, using eq. (28), 

0 
) 

i.e. probability is conserved. 

o, (38) 

(39) 

Probability current conservation is seen to give rise to a relation 

between the absorptive part of the energy conserving "optical potential" ·'ll;, 
and the energy losing potential v-L. This relation, however, involves the 

wave function and an integration over channel energies (or time, in the · 

time dependent description), and is therefore rather indirect. In physical 

content it corresponds to the relation between the imaginary part of the 

optical potential and the friction force occurring in the perturbation 

theory of nuclear friction 8). 

We note from eq. (29) that f'(r;t) is analytic in the upper complex 

t plane, so that its real and imaginary parts satisfy a dispersion relation 

in the time t: 

. 'Re 
Irrt V L ( r .,t' ) 
tI-t (40) 
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Going back to the energy components ("channels") of the wave function, 

we can define the net current gain per unit volume of the "channel" E in 

the interval dE at the point r by -
v-l(:·>E) ctE; 

and the net energy gain per second and unit volume at the point r is therefore --
(41) 

0 

or, using eq. (33), 

(42) 

This gain in energy density may be negative or positive, but the total, 

space-integrated energy gain is negative, i.e. the total energy decreases: 

Eo 

) dE ( f.-E0 ) ~ ~· ~ ('( ·) f;)J-\r 
0 

Jf:;E(£-f') JS" 9lo 50 (43) 
0 de. \n • 

0 

The time dependent equation (28) for scattering with energy loss corresp-

onds to the simplified averaged coupled-channels problem (25). If we go back 

to the more complete coupled-channels integral equation (20), we see that 

eq. (28) must be amended in two ways: (i) the energy dependence of tT0 (:;E) 

in eq. (20) introduces a time retardation in the conservative potential 

tf
0 

in eq. (28), t 

f cL t I u (-r • t- t I) 
0 - ) 

-co 
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9 

(cf.,e.g. ref. 9)). Furthermore, (ii) since the kernel in eq. (20) does 

not in general depend only on the difference (E' - E), but separately on 

(E
0 

- E) and (E0 - E
1
), the energy losing potential ~( t) in eq. ( 28) 

should be replaced by an operator which is "nonlocal" in the time and 

depends on the initial conditions, viz.· E0 • 

When the time dependent wave packet f (r;t) is decomposed into energy -
components according to eq. (27), a definite phase relation between the 

various "channel wave functions" t {;_~E) is implied. This corresponds to 

the smooth phaaing of the channel density wave functions discussed in sect. 2. 
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4. Application to heavy-ion scattering; phenomenology and parametrization 

Nuclear scattering with excitation of a dense dist:dbution of channels, 

corresponding to a continuous loss of energy from the incident wave, occurs 

typically in heavy-ion reactions at high energies. However, there exist com-

peting channels involving a more or less violent rearrangement of the frag-

ments, fusion-fission events, etc. Transfer channels in which only a few 

nucleons are exchanged may still approximately be regarded as quasi-elastic 

or -inelastic channels. All other channels in which the fragments change 

their composition drastically, will for simplicity be called "fusion 

channels". Their presence may be taken into account phenomenologically 

by· an additional absorptive part in the energy conserving potential ur0(E), 

corresponding to a sink which removes probability current from the elastic 

and inelastic channels described by the channel density wave function 

4'k (r). In that event over-all current conservation no longer holds, and 
-o ..... 

the equality sign in eq. (36) must be changed to a "smaller than" sign. 

Fbr an application of eq. (20) to fitting heavy-ion scattering data 

one must of course parametrize the energy conserving cvro) and the energy 

losing (.;.) potentials. As to the former, it should essentially be repres-

ented by a phenomenological optical potential for elastic scattering plus 

the electrostatic interaction. Currently used forms for such potentials 

are not precisely determined and not even unique, but at least one is some-

what familiar with them. An energy dependence in the conserving potential 

~ = tT0 (E) is very likely to be required; this would also allow for 

taking account of differences between the interactions in the ingoing 

and outgoing channels. 
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The energy losing potential yL is a much less familiar quantity. Recall

ing eq. (21) and the subsequent. discussion, we expect yL(r; t, £
1

) to have 

I 
the following behavior as a function of £ and G- : the matrix element 

I 

v(;,: E., £) in eq. (21) is the average over the matrix elements Vf~(~) between 

internal states £ f, y- with c f e:CJ £ , and £y ~ £ 
1 

<:: e. • The matrix 

I 
ele~ent V f'!. will decrease as £ is decreased doWnward from some given 

e. , since the states .):;.. and ~Y will differ more and more in com-'rf- ';t' 

plexi ty, so that there will be ever less overlap between them. We assume 

here that the complexity of an internal state j?f increases steadily with 

its excitation energy; this ignores possible doorway states, which are 

expected to be completely dissolved into the background of complicated states 

at the high excitation energies we are concerned with. The level density 

factor -/ ~ ( £ 1
) 

1 

in eq. (21) works in the same direction, in that it de

creases rapidly as £ 1 
goes down. However, this may be offset considerably 

by the reduction of the magnitude of the matrix element through averaging, 

mentioned after eq. (21) (An analogous consideration holds for the effect 

of the factor .,; g ( e )
1 

). One may thus be led, in a first attempt, to 

assume that the energy losing potential simply depends on the difference 

I 

lJ = £. - £ = E' - E (as we have done already in eq. (25) ). It is zero, 

for W S o, while for GJ > 0 its magnitude is rapidly decreasing as 

w increases from zero. So we choose· 

L 
0 for L<JLO 

V ( r,u;) 
) 

(44) 
~ 

VL(r) 
- WjtJ, 

e for w > o. 
~ 

The energy range ~ , the interval of channel energies across which the 

inelastic channels couple significantly, is difficult to estimate, but from 
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the preceding discussion we do not expect it to be very large, perhaps of 

the order of several MeV. Coup1ing only such channels which are close in 

energy leads to a picture in which energy is "handed down" from one group 

of channels to the next lowest in a chain-like fashion, which has some 

intuitive appeal. Equation (44) is certainly an over-simplification, and 

VL will quite possibly also depend on the channel energy E itself. We take 

the function VL(r) in eq. (44) to be real and, lacking further information, -
assign a negative sign to it, in extrapolation from VL(r; cv~o), where it -
becomes the average nuclear interaction between the ions, which is negative 

(attractive). In order to gain some idea as to the magnitude of the 

energy losing potential, one may appeal to eq. (36), read as an inequality 

because of the extra absorption in lTa due to "fusion". Making very crude 

approximations in eq. (36), one obtains the estimate 

(MeV) 2 

where yL arid are the mean strengths of VL(r) and ~(r), respect-
..._ ..... 

ively, and R is the interaction radius. The spatial dependence of ~(r) .... 
should perhaps be modeled on that of the imaginary part of the optical 

potential. If it is chosen spherically symmetric, energy is lost while 

angular momentum is conserved ("radial friction"). 

In solving the integral equation (20) numerically, one would reduce 

it to a discrete system of coupled equations whose number depends on the 

stepwidth one chooses for the energy integration in the kernel. Since the 

coupling matrix is triangular, no matrix inversion is required, i.e. the 

separate "channels" are computed in turn, starting with the elastic one 

at the incident energy E0• This should provide a considerable numerical 

advantage, in particular, when the boundary condition of outgoing waves 

10) 
is to be implemented 

) 

! -
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5. Concluding remarks 

In this paper we have attempted to establish a single Schrodinger 

equation for the description of elastic and inelastic scattering, with a 

view to applications in heavy-ion reactions. The pararheters of this model 

equation are related to the parameters characterizing the matrix elements 

and the geometry of the corresponding coupled-channels problem, as well as 

the densities of the channels involved. By extending this set of parameters, 

one mey be able to generalize the formulation to one that also describes 

moderate mass and charge transfers, as long as recoil effects due to. 

rearrangement in the exit channels can be neglected. 

In the time dependent form the equation guarantees energy loss through 

the restriction to positive frequencies in the time dependent interaction 

;.(t). This may be contrasted with the Schrodinger-Langevin equation 2 , 4), 

Vfriction(t) which is constructed such that the time dependent potential 

fulfils 

d v frict~on ( t) 
~) < 0 

) 'dt 

which also implies energy loss. The equation discussed in the present paper 

is linear (and can, e.g., be decomposed into partial wave equations), 

while the Schrodinger-Langevin equation is nonlinear. 

It is intuitively clear that the physically important parts of the 

channel density wave function should be localized along classical paths 
ll) 

The "downward" energy transfer through the channels would correspond to 

friction along such paths. It is not evident at this point, however, whether 
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the friction force derived.in th~s way would be proportional to the velocity, 

as indicated by perturbation theory B,l2) and phenomenological fitting of 

data 13 ). In this connection, and also for possible numerical application, 

one should investigate if semi-classical methods may be applied to the case 

of complex and nonconservative interactions we have considered here. 

The author would like to thank Dr. Norman K. Glendenning and the theory 

group of the Nuclear Chemistry Division of the Lawrence Berkeley Laboratory 

for the hospitality extended to him and for stimulating discussions. 
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Figure Caption 

Fig. 1. Couplings and current flow in the energy losing Schr~dinger 

equation 
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