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ABSTRACT 

* 

A momentum space methodology is presented for calculating second 

order D.W.B.A. matrix elements without the use of the zero-range ap­

proximation. This methodology is applied to the sequential transfer 

term in (p,t) reactions. Examples are presented for 208Pb(p,t) 206Pb 

which show that; 1) finite-range effects can be large 2) the shape of 

the calculated differential cross section can be strongly dependent on 

the contribution from a sequential transfer mechanism and 3) the post­

prior interchange usually used is probably the best realistic approxi­

mation. 
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I. INI'RODUCTION 

Recently a great deal of work has been done to investigate the 

contribution of a sequential transfer mechanism in (p,t) reactions. 1-5 

This is usually done by adding a simultaneous tenn, calculated using 

D~W.B.A,, and a sequential tenn using ''second order" D.W.B.A. Both terms 

are almost always evaluated using the zero-range approximation. It is 

the purpose of this paper to present a methodology, using momentum space 

techniques, for calculating the sequential transfer term without using 

the zero range approximation. Examples will be presented which were cal­

culated by using a full finite range formalism for both the simultaneous 

and sequential terms. 

II • FORMAL 'IHIDRY 

Two potential theory6' 7 allows the two-nucleon transfer r...:matrix 

element to be written as -

··where the notation is apropriate for a (p, t) reaction, 

lx(;)) = /+)C~p':p)l~p)' 

v = v -u p ' p p' 

(2.1) 

(2. 2) 

(2.3) 

(2 .4) 

In the above x(k,r) is the usual distorted wave (second order inelastic 

effects are neglected), ~the appropriate bound state, U the optical 

potential used to generate x(k,r), V the exact potential acting between 
the two fragments, and G+ an ~utgoing wave Greens Function. The symbol 

x without an argument shall .mean both the distorted wave and the ap­

propriate bound state. The Hamiltonian H can be written 

'· 

H=H +V =H +V =H +V 
' p p t t d. d (2.5) 

with d representing a channel which contains fragments which differ by · 

' \ 
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one nucleon from those in channels p and t. The Greens function of 

Eq. (2.4) can be written 

(2.6) 

with 
(2.7) 

Keeping only the first term in Eq. (2.6) allows Eq. (2.1) to become 

T = Tsim + Tseq 
tp tp tp (2.8) 

where 
Ts im= ( (-) I V I X (p+ )) 
tp · X t t (2.9) 

is the usual D.W.B.A. term, and 

(2 .10) 

transfers the nucleons one at a time. This procedure grves the T-matrix 
A 

element to second order in the V's. However, the channel d could have 

been chosen.to be any channel that conserved the number of nucleons. 

The particular choice made is justified by the reaction mechanism to 

be studied (i.e., sequential transfer) .. The two terms in Eq. (2. 8) 

came from a consideration of the formal scattering theory involved and 

thus represent two separate mechanisms for transferring the same pair of 

nucleons. That is, the second term results from allowing a third channel 
(in addition to the initial and final fragmentations) and does not depend ex­
plicitly.on the single particle or duster properties of the tWoriucleons involved. 

The evaluation of Eq. (2.10) requires the insertion of a complete 

set of states between the two transfer potentials. This, in principle, 

means a sum (integral) over all bound (continuum) internal states for 

the two fragments and an integral over the relative momentum between 

them. In practice, only a few internal states are kept. Using <I>~ to 

denote each pair of internal states allows Eq. (2.10) to become 

0 0 
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(2 .11) 

where 

(2 .12) 

H~ is the optical model Hamiltonian and E:.is the relative energy 

between the two fragments with the plus still requiring an outgoing wave 

Greens function. 

I II • EVALUATION OF mE GREENS FUNCTION Willi· M)MENTIJM SPACE TECHNIQUES 

The Greens ftmction of Eq. (2.12) can be evaluated in several ways. 

In Ref. 8 a closed form is used which, in coordinate space and for each 

partial wave, is 

g(
1
+_) (r,r') = - (2mk/h 2) u(+) (r ) u(R) (r ) 

L > L < 
(3 .1) 

where the r> (r<) denotes the larger (smaller) of r and r'. Calculationally 

this form, in effect, couples the two one step terms since the value of 

both coordinates must be fixed in order to use the prope~ form. That is, . 

if r and r' appeared instead of r> and r< the two one step terms would 
be separable. 

Another way of evaluating Eq. (2.12) is that of Ref. 7 where a 

set of biorthogonal distorted wave states are introduced. Since this 

method would require the numerical evaluation of distorted waves at 

many energies it isn·' t calculationally useful and, in fact, is used 

only formally in the above reference. 

A third method will be used here and was suggeste9., in a different 

context, in Ref. 9. It allows the Greens function to be written in a 

separable form and, for this reason, could be more efficient than Eq.(3.1) 
. ~-

even in standard coordinate space calculations, It is first desired to 

consider a unit operator over a region of space r = 0 to r = R which 

is given by 

t'. 
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R o c:-: 1
) = (3. 2) 

where 

(3 .3) 

and 

(3. 4) 

The matrix N orthononnalizes the states I Ln> and would become a dia­

gonal matrix if the kn 1 s were chosen to give orthogonal states. Calcula­

tionally, it is given by 

(3. 5) 

where 

(OL) = (n1 L 1 n2 L) -
- nln2 

(3.6) 

and OL is a matrix. 

The superscript R implies that oR acts over a sphere of radius R. The 

following properties can be rather easily shown: 

1) lim oR(r rl) = oC: rl)' 
~ 

(3. 7) 

R-)o<JO-

2) !c: :;") fc:" E') = oRe: rl) (3. 8) 

and 

3) 
R -f r ' 2 dr 1 oR ( r - r 1 ) f ( r 1 

) = f ( r) . 
0 ~ 

(3.9) 

The symbol on the right-hand-side of Eq.(3.7) is a Dirac Delta function and 
Eq.(3.9) is true if the function f can be represented over 0 toR by theN 

Bessel functions of Eq. (3.2). Thus oR is a unit operator over 0 toR 

in the same sense that a Dirac Delta function is over 0 to oo, and the 

. -

• 
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two are il} fact identical in the lim . Placing cSR on either side of 
N,R-+oo 

the Greens function, Eq. (2.12), gives 

- L(L+l)~ - Ud(rd) J-lJ Lni) 

N~, n; /Lnil <LMI 
1' 2 \ . 

(3.10) 

It is now necessary to evaluate the matrix elements of the inverse op­

erator. A general method for evaluating such an operator is as follows. 

By definition an operator P satisfies 

(3 .11) 

Inserting the radial part of the unit operator (Eq. (3.2)) and taking a 

matrix element gives 

Or in matrix form 

where FLcontains the matrix elements of P-1. Solving gives 
-1 L-1 L-1 L-1 
P = N P N 

(3 .12) 

(3.13) 

(3.14) 
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The Greens function of Eq. (3.10) thus may be written as 

(3 .15) 
. -1 

wh h . L ere t e matr1x g has elements 

(3.16) 

(3.17) 

To this point, nothing has been said calculationally about the 

outgoing wave boundry condition.on the Greens function. This is probably 

best included in the above by use of a Bloch operator formalism. 9 ' 10 

An appropriate boundary condition can be imposed by replacing E: with 
l 

+ hz 
E. + E. - -2 - o (rd -

l l l-Id 
(3.18) 

where 

and B is the functional form of the Greens function in the external 

(rd > R) region. Specifically for an outgoing wave 

(3.18a) 

where n is the SOmmerfeld parameter, kd is the on-shell (energy conserving) 

wave number and FL(GL) is a regular (irregular) Coulomb function. 

.. 
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Using Eq. (3.15) and 

(3.19) 

gives the form for the Greens function to be used in the next section. 

Namely, 
A 

G(+)(r,r') = (4n)- 2 l: 
LM 

~ (}d. k lf1(k ) , 1 -n -n n,n = . 

ik ·r 
-n -e 

A 

e -n·--ik ,·r'J (3.20) 

The above expression is a sum of terms separable. in rand r'. Thus, each 

of the two steps ((p,d) and (d,t)) of Eq. (2.10) can be calculated in­

dependently as a function of n(or n') and L. The results of these two 

calculations can then be combined with the g1 of Eq. (3.20). It should 

also be noted that rand!' appear only in the plane wave exponentials. 

Thus, if it is necessary in calculating one· of the steps to use coordin-. 

ate;:1 and :_-2 related to :by 

(3. 21) 

the Greens function is further separable in :_-1 and :_- 2. 
Two additional points need to be considered. First, how does one 

choose the kn and second, how many are needed (i~e. what is N in 

Eq. (3.20))? For the results presented later, it was required that one 

of the k 's _be the on-shell wc:ve number. Others were added above and n 
below, in steps of n/R, until convergence was achieved. The on-shell 

wave number is chosen since the~' tend to be. larger when nor n' 
denote the physical wave number and tend to be largest when both do. 

The interval n/R is suggested by the zeros of j 0 (kr), but in practice 

represents a convenient (not a necessary) choice. The convergence, for 

a calculated sequential cross section, is shown in Fig. 1. As may be 

seen, the use of about twenty momentum states gives the cross section 

to high accuracy. 
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It is concluded from the discussion of this section that the 

plane wave methodology is a viable and highly convenient way to handle 

an optical potential Green's function. 

IV. EVALUATION OF 1HE SEQUENTIAL TRANSFER TERM 

The techniques used in evaluating the simultaneous transfer term 

(Eq. (2 ~ 9)) were discussed in detail in Ref. 11 and will not be presented 

here. The methodology used for each of the two steps of the sequential 

transfer term is essentially identical to that of Refs. 12 and 13. Thus, 

the discusssioh of this section will be limited to relating the Greens 

function of Eq. (3.20) to the momentum space techniques of these ref­

erences except where additional discussion is needed. The sequential 

term can be written, using Eqs. (2.11) and (3.20) as 

where 

ik . rd 
·-nd -

x e 

(4.1) 

( 4. 2) 

To this point no approximations have been made on the transfer po-
A A A 

tentials (V t and V ) . The usual approximation may be made on V . Namely, 
. p p 

"" A 
vP = E v . - u 

i=l pl p ( 4 .3) 

= vpl +p v. - uP J i=2 pl 
(4.4) 

:::: vpl ( 4. 5) 

h 'W ..,., 
~,... ( .. (: t7 f1 11 ~? f! n 0 (,_ -~ .. ) 

, -

•' 
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where the nucleus iii channel p has A nucleons, v . is the nucleon-. pl 
nucleon potential, U is the optical potential between p and A, and p . 
Vpl is the potential which binds the neutron and proton to form the 

intermediate deuteron. The above is not exact since it assumes that the 

second and third terms on the right hand side of Eq. (4.4) cancel. They 

can not since 1) the optical potential has an imaginary part and the 

nucleon-nucleon potential does not and 2) the second term contains the 

interaction between the proton and A-1 nucleons while the third term rep­

resents the interaction between the proton and A nucleons. This approxi­

mation, however, has proven extremely useful for (p,d) reactions an~ thus 

its use is partially justified here. The other transfer potential (Vt) 

is more worrisome. In Refs. 2,4 and 5 a "post-prior" interchange is made 

which replaces vt with vd. This is done primarily so that one can follo~ 
"' the same procedure as for Vp and use the zero range approximation. How-

ever, the "post-prior" interchange is valid only on-shell. 14 In there-
"' "' suits presented later~approximate forms for both vt and vd will be used. 

The form taken for V t will be 

"' 3 B 
vt == L: L: v .. - u 

i==1 j ==1 lJ t (4 .6) 

B +l ~ B ut] == L: vlj L: 
j ==1 L_i==2 j ==1 

(4.7) 

:::: vlB (4.8) 

where v1B is the potential which binds.the second transfered neutron to 
the interniediate nucleus. The transfer potential Vd, will pe approxi­
mated as 

A 2 c 
vd == L: L: 

i==L j==l 
v .. 

lJ - u d 

. ~ '' 
.. , 

T 
., . ' 

(4.9) 
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i v il + [ ~ ~ v .. - ud] 
i=l i=l j=2 IJ . 

( 4 .10) 

( 4 .11) 

with Vnd the potential acting between the second transferred neutron and 

the deuteron. 

In the D.W.B.A. methodology of Ref. 12 the distorted waves are ex­

panded as 

(4.12) 

It may thus be seen, by referring to Eqs. (4.1) and (4.2) that the 

sequential transfer term may be evaluated by using the D.W.B.A. methods 

of the above reference twice but replacing the anL's in the final state 

of the (p,d) reaction and the initial state of (d,t) reaction by 
Ld · . 

g , of Eq. (4.1). Thus the sequential calculation is done by con-n n · · 
st~c~ing a D.W.B.A. matrix for the (p,d) step, another for the (d,t) 

step, a third for the propagator and multiplying them. 

V. RESULTS AND DISCUSSION 

Results will be shown in this section using the methodology dis­

cussed previously. The reaction 208Pb(p,t) 206Pb is considered. This 

particular reaction was. chosen,because the study ·of Ref.ll found that 

a D.W.B.A. formalism gave reasonable agreanent with experiment. Since 

using only a simultaneous transfer mechanism gave fair results, it might 

be expected that the remaining descrepancy (between theory and experiment) 

would be removed by considering a single additional mechanism. 

Results shown consider simultaneous trans~er, sequential transfer 

and a coherent addition of the two. Both terms were evaluated with full 

finite range calculations. The deuteron was described by a Hulthen 

form with parameters given in Ref.lS, and the triton wave function used 

('f 2 ~ b t7 ~., ~"· (. (1 ,.,, 
. 

~'" I} 

........ 
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was identical to that in Ref. 11. The relative motion between the deuteron 

and the second transferred neutron was described by taking an overlap 

of the above deuteron with the triton. This procedure is, of course, re­

quired for consistency between the simultaneous.and sequential terms. 

The transferred neutrons were bound to the appropriate nucleus by 

a Woods-Saxon potential with parameters as given in Ref. 11. The optical 

model parameters referred to below are shown in Table I . 

In Fig. 2 the cross section for 208Pb(p,t) 206Pb3+ is shown. (This 

result was also presented in a preliminary report of this work in Ref. 15.) 

The unnatural parity nature of the final state makes this transition 

D.W.B.A. (simultaneous) forbidden. The transfer would have a cross section 

that is zero in zero-range D.W.B.A. and very small in finite range D.W.B.A. 

Thus·the calculated curve represents a purely sequential process. The 
state was taken to be pure (3p112)-1 (2f5/ 2)-1 . This required that a 

coherent sum over transitions through the 207Pb ground state (1/2-) and 

0.57 MeV state (5/2-) be taken. Both a zero range and a finite range re­

sult are shoWn. As may be seen the differences are consistent with the 

20% one would usually like to see. Thus, finite range effects would be 

needed only for a detailed study. This would be expected, however, since 

finite range effects should be small when the D.W.B~A. term is sman. 16 

This result confirms the claim of Ref. 2 that this transition can be un­

derstood as a sequential process. 

In Fig. 3 a result for the ground state transition is shown. Op­

tical parameter set 2 was used. The use of only a simultaneous mechanism 
gives an excellent fit to the shape of the cross section in the forward 

direction but gives a progressively worse fit as the scattering angle 

is increased. As shown in the figure, the calculated curve was multi­

plied by 5. 2 before plotting. A large part of the additional strength 

can 'be gained by using a more complete wave function. As reported in 
Ref. 11, the theory can be brought within about 40% of the data by in­

cluding all but two components from the major shell below 208Pb. Including 

these components does not alter the shape. Adding the sequential term 

increases the strength by about 40%. It would thus be expected that the 

. f . , .. 
t '. 
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use of a more complete wave function in both terms would give about the 

right strength. However, the shape of the cross section, when both terms ~ ~ 

are included, is not as well described. Since one must match the shape 

of the cross section in order to convincingly claim additional strength, 

it is felt that the simultaneous plus sequential result in Fig. 3 is prob-
ably no more than a parametrization which happens to give about the right 

normalization to match the data. The D.W.B.A. result is also probably a 

parametrization of the shape since adding an additional physical mechanism 
~ 

· destroys the reasonable agreement in the structure of the cross section. 
These results also suggest that D.W.B.A. fits which closely match data 

do not imply a complete understanding of the reaction. In view of the 

prior adjustments needed in 'the strengths of the simultaneous and se­

quential terms and in their relative phase in a zero-range study, 2 it 

should be noted that both the strength and relative phase used here are 

those given by the finite-range theory. 

In Fig. 4 results for the ground state transition are also shown, 

but a different optical parameter set was used. The simultaneous transfer 

calculation gives a reasonable fit at back angles but the calculation 

drops in the extreme forward direction while the data rises. Adding the 

sequential term, however, gives a fit superior to the others shown. The 

data clearly selects optical parameter set 1 and requires the addition 

of the sequential term. As noted in the figure, the addition of the two 

mechanisms does not increase the strength of the calculated cross section. 

It is thus concluded. that the examples shown here suggest a strong shape 

signature for the sequential transfer mechanism but do not indicate a 
solution to the traditional problems with the normalization. .,, 

In all the examples shown previously the approximate form for Vd 

discussed in Section IV has been used to transfer the second neutron: 
" The eff~ct of using Vt instead is shown in Fig. 5. As may be seen the 

use of Vd gives a superior ~it. As discussed in Se~tion I~, the formal 

theory requires the use of Vt. The interchange of Vt and Vd is, however, 

perfectly correct on-shell. Thus, deviations f~om the theory occur only 

off-shell. Also the approximate form used for Vt (see Eq. (4.8) assumed 

"':;> t % • c~ !"Z'. r' r" ~'"~ (1 f.-·~ 

0 0 r.I f-4· ~ } 
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the potential between a deuteron and the final nucleus was the same as 

that between a triton and the final nucleus. Since a triton optical 

potential·has a real strength of typically 150 MeV and a deuteron optical 

potential has a r.eal strength of about 100 MeV, the approximate form used 
A ' A . 

~or Vt is probably not as good as that used for Vd. Equation _(4.11), for 

Vd, assumed that the potential between a deuteron and the intermediate 

nucleus was the same as the potential between a deuteron and a nucleus 

with one less nucleon. This assumption is quite connnonly made in using 

various optical parameter sets and thus would· seem valid. The results of 

Fig. 5 would thus suggest that the post-prior interchange introduces a 

smaller error than the use of the obvious simple form for Vt. 

In Fig. 6, a comparison is shown between a finite-range and a zero­

range sequential calculation. The curves have no physical significance 

since the D.W.B.A. term has not been included. As may be seen, they give 

very different shapes. The zero-range result is about a factor of three 

smaller in the extreme forward direction. Thus,when the simultaneous term 

is small (Fig. 2), finite range effects are small but when the D.W.B.A. 

term is large finite range effects are large as claimed in Ref. 16. 

Three conclusions are drawn from the work in this paper. First, the 

methodology presented for calculating second order D.W.B.A. matrix ele­

ments is both viable and efficient. Second, the examples presented show 

that a sequential transfer mechanism can drastically effect the shape of 

a differential cross section. This suggests that matching the shape of a 

two-nucleon transfer cross section wi.th D.W.B.A. can be no more than a 

parametrization of the data. Reasonable agreement with the data for 
208Pb(p,t) 206Pb was found by using one set of optical parameters and g.s 
D.W.B.A. However, the addition of a different physical mechanism (se-

quential transfer) destroyed the agreement. The use of another parameter 

set gave poor agreement when only simultaneous transfer was allowed but 

when both mechanisms were allowed the theory was in excellent agreement 

with the shape of the cross section. Thus,the data required optical 

parameter set 1 and the coherent addition of the simultaneous and sequent­

ial terms. The third conclusion is also drawn from the examples. Namely, 

,~· 
; .; 

'' 
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the use of a simple fom for the potential which transfers the second 

neutron is a poorer approximation than using an incorrect fom off­

shell for the second transfer potential. That is, using the fom for 
A 

Vt of Eq. (4.8) is not as go~d an approximation as perfoming a post-

prior interchange and using Vd of Eq. (4.11). 
The author would like to acknowledge useful conversations with 

N. K. Glendenning, D. Robson, P. D. Kunz and F. PetroVich. 
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Table I. Optical Parameters 

Set Charmel v w WD r r a r a Ref. c v v w w 

0 
1 47.9 0 10.0 1,25 1.25 0.65 1.25 0.76 17 p 

'~ 
d 97.8 0 14.0 1.25 1.25 0.68 1.25 0.78 17 

t;"».! t 149.8 12.0 0 1.24 1.24 0.68 1.43 0.87 18 I 
~ 

.,, ..... 0' 
~:J I 

2 p 
0 

53.4 5.0 5.6 1.17 1.17 0.75 1.32 0.66 19 

d 103.9 1.2 16.1 1.17 1.17 0.75 1.32 0.66 2 
~ t 167.0 10.0 0 1.16 1.16 0.75 1.50 0.82 18 
·;-r 

;::l 

0-

0 

. . . 
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FIGURE CAPTIONS 

Fig. 1, Dependence of the sequential cross section on the miDlber of mo­

mentum states (Nd) used. 

Fig. 2. Differential cross section for the reaction 108Pb( · t) 206Pb ..... p, 3+. 

The transfer potential Vd hasJbeen used (see Eq. (4.11)). The normal-

ization of the calculated curves is as shown. 

Fig. 3. Differential cross section for 208Pb(p,t) 206Pb . The calculated g.s 
curves have been multiplied by the factor N. Optical parameter set 2 

was used. Sim. denotes simultaneous and Seq. sequential. See Fig. 2 . 

F. 4 D'ff . 1 . f 208Pb(. ) 206pb" 0p · 1g. . 1 . erent1a cross sect1on or p, t . t 1cal . g.s. 
parameter set 1 has been used. See Figs. 2 and 3. 

Fig. 5. Differential cross section for 208Pb(p,t) 206Pb . The use of 
A . A g,s, · 
Vd (see Eq. (4.11)) is compared to the lise of Vt (see Eq. (4.8)). 

The c.alculated curves have been multiplied by the factor N. 
Fig. 6. Finite-range and zero-range calculations for 208Pb (p, t) 206rb · · . g.s 

are shown. Only the sequential term was included. Although the absolute 

normalization is arbitrary the relative normalization between the 

two curves is as shown. 
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.---------LEGAL NOTICE------------. 

This report was prepared as an account of work sponsored by the 
United States Government. Neither the United States nor the United 
States Energy Research and Development Administration, nor any of 
their employees, nor any of their contractors, subcontractors, or 
their employees, makes any warranty, express or implied, or assumes 
any legal liability or responsibility for the accuracy, completeness 
or usefulness of any information, apparatus, product or process 
disclosed, or represents that its use would not infringe privately 
owned rights. 


