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ABSTRACT

A momentum space methodology is presented for calculating second
order D.W.B.A. matrix elements without the use of the zero-range ap-
proximation. This methodology is applied to the sequential transfer
208Pb(p,t)206Pb
which show that; 1) finite-range effects can be large 2) the shape of

term in (p,t) reactions. Examples are presented for

the calculated differential cross section can be strongly dependent on
the contribution from a sequential transfer mechanism and 3) the post-
prior interchange usually used is probably the best realistic approxi-

mation.






I.. INTRODUCTION _

Recently a great deal of work has been done to investigate the
contflbutlonvof a sequent1a1 transfer mechanism in (p,t) react1on$ 1-5
This is usually done by adding a simultaneous term, calculated using
D,W.B.A,,and,a sequential term using "second order' D.W.B.A. Both terms
~are almost always evaluated using the zero-range approximation. It is
the purpose of this paper to present a methodology, using momentum space
techniques; for calculating the sequential transfer term without using
the zero range approximation. Examples will be presented which were cal-
culated by using a'fuli finite range formalism for both the simultaneous
and sequential terms.
~ II. FORMAL THEORY
- Two potential theory6’7 allows the two-nucleon transfer T-matrix

eiement to}be,Written as -
RN G T TN O P O \ SN
Tep {x VAR AR A > o 2.1)

. X . v . R . ) : \.
“where the notation is apropriate for a (p,t) reaction,

(+) (+) o
> (kp’rp) |®p> - . ‘ . (2.2)
Vp.— K'Y UP o o 23
and’ ' | |
RGN | (2.9

In the above x(k r) is the usual distorted wave (second order inelastic
effects are neglected), ¢ the appropriate bound state, U the opt1cal
_potential used to generate x(k r) 'V the exact potential acting between
the two fragments, and G an outgoing wave Greens. Function. The symbol
'x without an argument shall mean both the distorted wave and the ap-
propriate bound state The Hamiltonian H can be written

CH= Hp+Vp=H Ve = Hy+Vy | (2.3

with d representlng a channel which contains fragments which dlffer by



- one nucleon from those in channels P and t. The Greens function of

Eq. (2. 4) can be written
™) - 6 G(:l)‘A’dG,m | | - ) (2.6)

g withv _ _ ,
| (L 1 | |

Keeping only the first term in Eq. (2.6) allows Eq. (2.1) to become

T, = TSjm + Tseq 2.8

© tp tp tp | - | ( '_)
where ' ' . . ‘
sim_ /(<)) ¢ (+) : e

Tl ,(x v, | ) o | (2.9)

is the usual D W.B.A. term, and

e <X(),V 6 4 ¢ M) - @i

transfers the'nucleons one at a time. This procedure gives the T-matrix

element to s"ecvond order in the {Us. However, the channel d could have

been chosen to be any channel that conSerVed the number of nucleons.

The particular choice made 1is just.ified by the reaction mechanism to

be studied. (1 e., sequential transfer) The two terms in Eq. (2 8) '

came from a con51derat10n of the formal scattermg theory involved and

© thus represent two separate mechanisms for transferrlng the same pair of

nucleons. That is, the second term results from allowing a third channel

“(in a‘ddition‘ to the initial and final fragmentations) and does not depend ex-

plicitly on the single particle or cluster properties of the tworucleons involved.
The 'evaluation of Eq. (2.10) requires the insertion of a complete '

set of states between the two transfer potentials. This, in principle,

means a sum (integral) over all bound (continuum) internal states for

" the two fragments and an integral over the relative momentum between

thein. In practice, only a few internal states arekept. Using <I>c11 to

denote each pair of internal states allows Eq. (2.10) to become

LZzraprndoaog



seq _ Z<X( )IV | q)d Md)<@d | V X(;)> v - (.2.11)

where

'?(?: (E;.-Hg)'l. | - (2.12)

ng is the optical model Hamiltonian and E;Iis the relative energy
betweencthe two fragments with the plus still requiring an outgoing wave

Greens function. ‘
II1. EVALUATION OF THE GREENS FUNCTION WITH MOMENTUM SPACE TECHNIQUES

. The Greens function of Eq. (2.12) can be evaluated in several ways.
In Ref. 8 a closed form is used wh1ch in coordinate space and for each

part1a1 wave, 1is

“(rr)=-(mk/h)u”(r)u“‘)(r) NERY

where the r, (r, ) denotes the larger (smaller) of T and r'. Calculationally
" this form, in effect, couples the two one step terms since the value of

.. both coOrdinatequstbe'fixed in order to use the proper form. That is,

if r and r"appeared instead of r, 'and r_ the two one step terms would
be separable. o

Another way of evaluatlng Eq. (2. 12) is that of Ref. 7 where a
'set of biorthogonal distorted wave states are introduced. Since this
vmethod would require the numerical evaluation of distorted waves at
“many energles it isn't calculationally useful and in fact, is used
only formally in the above reference.

A third method will be used here and was suggested, in a'different
context, in Ref 9, It allows the Greens function to be written in a
separable fonm and, for thlS reason, could be more eff1c1ent ‘than Eq. (3. 1)
even in standard coordinate space calculatlons It is first de51red to
con51der a unit Operator over a region of space T ' =0 to r =R which

s given by



| N | : |
S - L
§(rer') = L%/l n,nz )  LM) |Ln; ) Nn1n2<L112| (M| (3.2)
where ‘ _
)= S (3.5)
and _ . 3 _ |
|.Ln> =i (k7). o (3.4)

The matrix N orthonormalizes the states |Ln) and would become a dia-
+ gonal matrlx if the ky 's were chosen to give orthogonal states. Calcula-

tionally, it is given by

L L~ S .
NS = (0" ) . ., (3.5)
| nlnz_ ~ nlnz . _. .
where
. Lk i S N | , .
@, = Ling L) N

and 'OL is a matrix.

The superscrlpt R 1mp11es that 6R acts over a sphere of radlus R The

following properties can be rather easily shown:

1) lim R -r) = 8(r-1"), G
- Mo T T .
s : _
n Sa-m fe - Koo (3.8)
and | ‘ | T
-3 fdr f rtfdr 8 - 1Y) £(x") = £(x) . (3.9)
J 0 S

The symbol on the right-hand-side of Eq.(3.7) is a Dirac Delta function and
Eq.(3.9) is true if the function f can be represented over O to R by the N
Bessel functions of Eq. (3.2). Thus GR is a unit operator over O to R

in the same sense that a Dirac Delta function is over O to «, and the

R A I N



two' are in_fact identical in the 1im . Placing 6R on either side of
N,R+o : '

the Greens functlon, Eq. (2.12), gives

R, 01 R,
Sty EHY T Sy

: N
= L I z : |LM> an n
: IM n,,n,= =1 nl, 2 : 1 2
.<1n | |EY + ;i_ 3
T2 i Zu ar T4 3Ty
s d d
- L(Lfl)} - Ud(rd)J-lané/\ _
N, Ln! | <LM| o (3.10)
nl,né 1t 0\ e T

It is now necessary to evaluate the matrix elements of the inverse op-
erator. A generalzmethod for evaluating such an operator is as follows.
By definition an operator P satisfies

ppl-i, ' (3.11)

Inserting the rad1a1 part of the unit operator (Eq (3 2)) and taklng a

. matrix element glves

. (Lni | P|Ln5> Nﬁ"zné <Ln2|P"1|Ln1>' = <L'n'i|Ln1> - (3.12)
2" | o

=
N~ M2
=

Or in matrix form
pL \U pL

where ﬁLcontains the matrix elements of P_l. Solving gives
T .t -1 -1 -1 -
o VR L o (3.14)

B ~ ~ ~

- o S (3.13)

'2*U2



The Greens function of Eq. (3.10) thus may be written as

Fryry G oy S CYECIE

(3.15)

z
n

H) Z
~d7d IM n,n'=1

= -1
where the matrix gL has elements -

(@W@&ﬁ%@ﬁw¢mW>
, d A : . ' :

(3.16)

<L |[ - __n_ - U (rd)Jl Ln> ) - (3.17)

- To this point, noth_mg has been said calculatioh_ally about the
outgoing wave boundry condition.on the Greens function. This is probébly
best included in the above by use of a Bloch operétor formalism. 10
An appropriate boundary condition can be imposed by replacing ,E; with

+ h 3 _b-1

'b: iqéé_ |
: .B }ard

‘and B is the functional form of the Greens function in the external -

= R . : X

(r a> R) region. Specifically for an outgoing wave

B = G (n k rd) + 1 F (n d) | (3.18a)

where n is the Sommerfeld parameter, k d is the on-shell (energy conserving)
wave number and FL(GL) is a regular (irregular) Coulomb function.



Using Eq. (3.15) and |

~

. | N YM £ ilfn
Ik r) vy LB = (1 b/amy LK) e (3.19)

"gives the form for the Greens function to be used in the next section.

Namely,
. ~ A 11/;
G()(rr)—(élﬂ) L3 fik Ybf(k)e~n~
IM n,n'= -
e . ikt o L (3.20)
".x[]d}fnv thl,l Q(nv)'e ~ - J . . .

The above expre551on is a sum of terms separable 1n r and r'. Thus, each
of the two steps ((p,d) and (d,t)) of Eq. (2.10) can be calculated in-
dependently as'a function of n(or n') and L. The results of these two
calculations can then be combined with the gL of Eq. (3.20). It should
- also be noted that r and r' appear only in the plane wave exponentials
Thus, if it is necessary in calculating one of the steps to use coordin-
- atesr1 and T related to r by
| r =ar, + brz, : : - (3.21)

the Greensfunct1on is further separable in T -and Ty

- Two additional points need to be con51dered First, how does -one
choose the kK, and second, how many are needed (i.e. what is N in
Eq. (3. 20))? For the results presented later, it was required that one
'of the k 's_be the on-shell weve number. Others were added above and
below, in steps of W/R until convergence was achieved. The on-shell
wave number is chosen since the gnn' tend to be larger when n or n'
denote the physlcal wave number and tend to be 1argest when both do.
The interval m/R is suggested by the zeros of»jbﬂcr), but in practice
represents a convenient (not a necessary) choice. The convergence, for
a calculated sequential CTOSS section; is shown in Fig. 1. As may be
seen, the use of about twenty momentum states g1ves the cross section

to high accuracy



Tt is concluded from the discussion of this section that the
plane wave methodology is a viable and highly convenient way to handle

an optical potent1a1 Green's. function.

" IV. EVALUATION OF THE SEQUENTIAL TRANSFER TERM
The techniques used in evaluating the simultaneous transfer term

(Eq. (2.9)) were discussed in detail in Ref. 11 and will not be presented
here. The methodology used for each of the two steps of the sequential
transfer term is essentially identical to that of Refs. 12 and 13. Thus,
the discusssion of this section will be limited to relating the Greens
~ function of Eq. (3.20) to the momentum space techniques of these ref-

erences except where additional discussion is needed. The sequential

term can be written, using Egs. (2.11) and (3.20) as

seq _ ( )1y
T Tz X. |V |q> L
75w, “d’“' _1< t M d>
(g d CIRETAR | (4.1)
gndn('i dd"d"d!'p X p )
where - )
' 1 [ M os ny %
Lty )= ™ fdky o dxe L @

To thlS p01nt no approximations have been made on the transfer po-
tentials (V and V ) The usual approximation may be made on Vb Namely,

Vo= % -U .
P ;o 'pi P | (4.3)
L2 'v. u | ' | |
= v + -
" pl izz p1 P ‘ (4.4)
=V (4.5)



where the nucleus in channel p. has A nucleons, Voi is the nucleon-
nucleon potential, Up'is the optical potentiallbetween p and A, ‘and
Vbl is the potential which binds the neutron and proton to form the
intermediate deuteron. The above is not exact .since it assumes that the
second and third terms on the right hand side of Eq.  (4.4) cancel. They
can not since 1) the optical potential has an imaginary part and the
nucleon-nucleon potential does not and 2) the second term contains the
.interaction between the proton and A-1 nucleons while the third term rep-
resents the interaction between the proton and A nucleons. This approxi-
- mation, however, has proven extremely useful for (p,d) reactions ang thus

its use is partially justified here. The other transfer potential (Vt)

is more worrisome. In Refs 2,4 and 5 a ''post-prior' interchange is made
- which replaces V with V,. This is done primarily so that one can follow

d
the same procedure as for Vb and use the zero range approximation. How-
ever, the "post-prior" interchange is Valld only on shell 14 In the re-

~ sults presented later, approx1mate forms for both V and Vd w111 be used.
The form ‘taken for V’ will be

~ 3 B
V.='5 5 v..-U (4.6
t o= =1 t )
B 3 B o o
= 3T v+ r I - UJ S (4.7)
j=1 ) L= 2 j=1 ,
xV (4.8).

where VlB'is the potential which binds.the seeond transfered neutron to
the 1ntenned1ate nucleus. The transfer potential Va, will be approxi-
mated as ‘

(4.9)
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5 T, C _ = -
=L v+l Tov.,.,-U | (4.10)
=1 11 [i=1 j=2 M 4d] .
Va4 _ ' ' | . ' (4.11).
with V. the potential acting between the second transferred neutron and

the deuteron. _
In the D.W.B.A. methodology of Ref. 12 the distorted waves are ex-

panded- as |

R, . kT | (4.12)
Gen = 5 W B /dke ).
Z A |

It may thus be seen; by referring to Eqs. (4.1) and (4.2) that_the
sequentiél transfer term may be evaluated by using the D.W.B.A. methods
~ of the above reference twice but replacing the anL's'in the final state
of the (p d) reaction and the initial state of (d,t) reaction by

8yt of Eq. (4.1). Thus the sequential. calculation is done by con-
st%uCQ1ng a D.W.B. A, matrlx for the (p,d) step, another for the (d,t)
step, a third for the propagator and mu1t1p1y1ng them

V. RESULTS AND DISCUSSION _
Results will be shown in this section u51ng the methodology dis-

cussed previously. The reaction 208Pb(p,t)206

Pb is considered. This
particular reaction.was‘chosen’because the study of Ref.11 found that

a D.W.B.A.-formalism gavevreasohable agreement with experimenf.'Since
using only a’Simultaneous'transfer mechanism gave fair results, it might
be éxpected that the remaining descrepahcy (between theory and experiment)
‘would be removed by considering a single additional mechanism.

Results shown consider simultaneous transfer, sequential transfer

 and a coherent addition of the two. Both terms were evaluated with full

finite range calculations. The deuteron was described by a Hulthen
form with parameters given in Ref.l5, and the triton wave function used
£ ¢ rn 208 IS IR B

. R &
i
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was identical‘to/that in Ref.1l. The relative motion between the deuteron
and the second transferred neutron was described by taking an overlap

-of the above deuteron with the triton. This procedure is, of coufse, Tre-
quired for consistency between the simultaneous.and sequential terms.

The transferred neutrons were bound to the appropriate nucleus by
a Woods-Saxon potential with parameters as given in Ref. 11. The optical
model parmnetersreferred.to below are shown in Table I.

In Fig. 2 the cross section for 208Pb(p t)206
result was ‘also presented in a préliminary report of this work in Ref. 15.)
The unhatural parity nature of the final state makes this transition
D.W.B.A. (simultanebué) forbidden. The transfer would have a cross section
that is zero:in zero-range D.W.B.A. and very small in finite rangé D.W.B.A.

3+ is shown. (This

~ Thus the calculated curve represents a purely sequential process. The
state was taken to be pure (Spl/z) -1 (2f5/2) . ‘This required that a

" coherent sum over transitions through the 207py, ground state (1/2) and
v0;57-MeV'stqte (5/27) be taken. Both a zero range and a finite range re-
sult are shown. As may be seen the differences are consistent with the
20% one»would usually like to see. Thus, finite range effects would be
needed only for a detailed study. This would be expected, however, since
finite range effects should be small when the D.W.B.A. term is ‘small. 16
This result confirms the claim of Ref. 2 that this transition can be uﬁ-‘
derstood as a sequential process.

In Fig. 3 a result for the ground state tran51t10n is shown. Op-
tical parameter set 2 was used. The use of only a simultaneous mechanism
gives an excellent fit to the shape of the cross section in the forward
direction but gives a progressively worse fit as the scattering angle
is increased. As shown in the figure, the calculated curve was multi-
plied by 5.2 before plotting. A large part of the additional strength
can‘be gained by using a more complete wave function. As reported in’
Ref. 11, the theory can be brought within about 40% of the data by in-
cludlng all but two components from the major shell below 208Pb-. Including
these components does not alter the shape. Adding the sequential temrm
increases the>strength by about 40%. It would thus be expected that the
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use of a more complete wave function in both terms would give about the
right strength. However, the shape of-the.cross section,'when both terms
are included, is not as well described. Since one must match the shape

of the cross section in order to convincingly claim additional strength,
it is felt that the simultaneous plus sequential result in Fig. 3 is prob-
:ably no morefthan a pafametrization which happens to give about the right
Anormalization to match the data. The D.W.B.A. result is also probably a
parametrization of the shape since adding an additional physical mechanism

“ destroys the reasonable agreement in the structure of the cross section.
These results also suggest that D.W.B.A. fits which closely match data

do not imply a complete understanding of the reaction. In view of the

prior adjuétments needed in ‘the strengths of the simultaneous and se-
quential terms and in their relative phase in a zero-range study,z it
should be hoted that both the strength and relative phase used here are
those given by the finite-range theory.

In Fig. 4 results for the ground state trénsition'are also shown,
‘but a different optical parameter set was used. The simultaneous transfer
: calcﬁlation gives a reasonable fit at back angles but the calculation
drops in the extreme forward direction while the data rises. Adding the
sequential tenn, however, gives a fit superior to the others shown. The
data clearly selects opticdl parameter set 1 and requ1res the addition
of the sequentlal term. As noted in the figure, the addition of the two
mechanisms<kxasnot increase the strength of the calculated Cross sectien.
It is thus concluded that the examples shown here suggest a strong shape
signature for the sequential transfer mechanism but do not indicate a
solution to the traditional problems with the normalization.

In all the examples shown prev1ously the approximate form for Vd
discussed in Sectlon IV has been used to transfer ‘the second neutron.
The effect of using V instead is shown in Fig. 5. As may be seen the
use of Vd gives a superlor flt. As discussed in Sectlon IY the formal
theory requires the use of Vt' The interchange of Vt'and Vd is, however,
perfectly correct on-shell. Thus, deviations fzom the theory occur only
off-shell. Also the approximate form used for V£ (see Eq. (4.8) assumed
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the potential between a deuteron and the finél nucleus was the same as
that betWeeﬁ’a triton and the final nucleus. Since a triton optical
potentiai“has‘a real strength of typically 150 MeV and a deuteron optical
vpotegtial has.a real strength of about 100 MeV,thevapproximate form used
for Vt ié‘prbbably not as good as that used fOr:Vd. Equation .(4.11), for
-Vd’ assumed that the potential between a deuteron and the intermediate
nucleus was the same as the potential between a deuteron and a nucleus
with one less nucleon. This assumption is quitebcdmmonly made in using
various optical parameter sets and thus would seem valid. The results of
Fig. 5 would thus suggest that the post-prior interchange introduces a
smaller error than the use of the obvious simple form for Gt‘

In Fig. 6, a comparison is shown between a finite-range and a zero-

" range sequential calculation. The curves have no physical significance

since the D.W.B.A. term has not been included. As may be seen, they give
very different shapes. The zero-range result is about a factor of three
smaller in the extreme forward direction. Thus, when the simultaneous term
iS small (Fig. 2), finite range effects are small but when the D.W.B.A.
term is large finite range effects are large as claimed in Ref. 16.

‘Three conclusions are drawn from the work in this paper. First, the
methodology presented for calculating second order D.W.B.A. matrix ele-
ments is both viable and efficient. Second, the examples presented show
that é sequential transfer mechanism can drasticaiiy effect the shape of
a differential cross section. This suggests that matching the shape of a
two-nucleon . transfer cross section with D.W.B.A. can be no more than a
pafametrization of the data. Reasonable agreement with the data for
208Pb(p,t)ZOGPbg g was found by using one set of optical parameters and
D.W.B;A. However; the addition of a different physical mechanism (se-
quential traﬁsfér) destroyed the agreement. The use of another parameter
set gave poor agreemeﬁt when only simultaneous transfer was allowed but -
when both mechanisms were allowed the theory was in excellent agreement
with the shape of the cross section. Thus, the data required optical
parameter set 1 and the coherent addition of the simultaneous and sequent-
ial terms. The third conclusion is also drawn from the examples. Namely,
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the use of a simple formfor the potential which transfers the second
neutron is a poorer approximation than using an incorrect form otf-

shell for‘the second transfer potential. That is, using the form for
Gt of Eq.'(4;8)'is not as’gogd an‘approximation as performing a post-

prior interchange and using V4 of Eq. (4.11).
The author would like to acknowledge useful conversations with -

N.»K.‘Glendenning, D. Robson, P. D. Kunz and F. Petrovich,



-15-

FOOTNOTES AND REFERENCES -

* ' ' L ' L .

Work supported in part by the National Science Foundation under Grants
No. NSF-GU-2612, NSF-GJ-367, NSF-GP-41834X and by the U. S, Energy
Research and Development Adm1n15trat1on

+Present address: University of California, Berkeley, CA.

[ N ¥ o B N I S R

O & -

10

11.L.
. A. Charlton, Phys. Rev. C8, 146 (1973).
. A. Charlton, Phys. Rev. C9, 413 (1974).

12.
13.
14.
15.
.P.

16

17

. P.
N. B. deTakacsy, Nucl. Phys. A231, 243 (1974).
V. Managoli and D. Robson, Nucl. Phys.

. H.
N.
M.

D. Kunz and E. Rost, Bull, Am, Phys. Soc. 17,902 (1972}.

Segawra, K. I. Kubo, and A. Arima, Phys._ReV; Lett. 35,357 (1975).
Hashimoto and M. Kawrai, Phys. Lett. 59B, 223 (1975).
L. Goldberger and K M. Watson, Collision Theory (Wlley, New York

1967) .

D.

L.

Robson, Phys Rev. (7, 1 (1973)

. B. deTakacsy, Phys. Rev. Lett. 31 1007 (1973)
. M. Lane and.D. Robson, Phys. Rev. 185, 1403 (1969).

D.
N
A
.C.
L
L
L

Bloch, Nucl. Phys. 4, 503 (1957).
A. Charlton, Phys. Rev. C12, 351 (1975).

Robson, Comments on Nuclear and Particle‘Physics 6,3 (1973).

A. Charlton, Phys. Rev. Lett. 35, 1495 (1975).
D. Kunz and - L. A. Charlton, ”F1n1te -Range Effects in Multi- Step

(p-d, d-n) Reactlons" submitted to Phys. Lett.

.G.
18.

E.

R. Satchler, Phys. Rev. C4, 1485 (1971). .
R. Flymn, D. D. Armstrong, J G. Beery and. A, G. Blalr Phys

Rev. 182, 1113 (1969)
19.R. D. Becchett1 and G. W. Greenless Phys Rev 182 1190 (1969)



" Table I. Optical Parameters

Set Channel =~V 'S ) e v v W w  Ref.
1 p 47.9 0 10,0 1,25 1.25 - 0.65 1.25 - 0.76 17
d 97.8 0 14.0 1.25 1.25 0.68 1.25 ' 0.78 17
t  149.8 12,0 0 1.24 1.24 - 0.68 1.43  0.87 18
2 P 53.4 5.0 5.6 1.17 1,17 0.75 1.32  0.66 19
d 1039 1.2 6.1 1.17 . 1.17 0.75 . 1.32  0.66 2
t 167.0 . 10.0 0 1.16  1.16  0.75  1.50 0.82 18

-9";-



-17=

FIGURE CAPTIONS
Fig. 1, Dependence of the sequential cross section on the number of mo-
mentum states (Nd) used.
-Fig. 2, D1fferent1al Cross sectlon for the reaction Pb(p t) 3+.
The transfer potential Vd has~been used (see Eq. (4 11)). The normal-
ization of the calculated curves is as shown. '
Fig. 3. Differential cross section for 208Pb(p,t)206 g s The calculated
| eurves have been multiplied by the factor N. Optical parameter set 2

was used. Sim. denotes simultaneous and Seq. Sequentlal. See Fig. 2.
208 206

108

Fig. 4. Différential cross section for Pb(p,t) s hOptical
parameter'set 1 has been used. See Figs. 2 and 3.
F1g 5. leferentlal cross section for 208Pb( t)zo6 The use of

(see Eq. (4.11)) is compared to the use .of V (see Eq. (4. 8))
The calculated curves have been multiplied by the factor N.
Fig. 6. Finite-range and zero- range calculations for ZOSPb( »t) g s
- are shown. Only the sequential term was included. Although the absolute .

‘normalization is arbitrary the relative normalization between the

206p,

two curves is as -shown.
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