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MANY-PARTICLE DISPERSION RELATIONS* 

Henry P. Stapp 

Lawrence Berkeley Laboratory 
University of California 

Berkeley, California 94720 

This lecture describes work done in' collaboration with Alan White on the 

analytic foundations of Regge theory .. The. work ties together the analyticity 

results described in the previous lectures with White's results on Regge theory. 

The study is very recent and not yet complete. But the beautiful way everything 

hangs together to give exactly what is needed for a systematic derivation of 

Regge theory encourages us to describe here what we have done and what we 

expect to be able to do. First I shall describe the parts that are closely tied 

to the results on direct channel unitarity described in my earlier lectures. 

Then White will carry on. 

1. Toller Variables 

The first main idea is to disperse in the Toller boost variables keeping the 

Toller momentum transfer and helicity variables fixed. The Toller variables 

are described in Ref.(l). I shall give here only a brief resume. 

For any n-particle scattering function there are many possible sets of Toller 

variables. We shall use each of these sets. Each set of Toller variables is 

associated with a planar Toller diagram, which is a planar tree diagram with 

n external lines (one for each of the n particles) and n-3 internal lines. 

Precisely three lines meet at each vertex. Some examples of Toller diagrams 

for the ·Case ·n = 6 are shown in Fig. 1. (I discuss only the case where all 

external particles are spinless.) 

Fig. 1. Some Toller diagrams for n = 6. 

Each internal and external line i is assigned a conventional direction, and 

the momentum-energy flowing along the line in that direction is defined to be 

pi. For each of the n-3 internal lines i this vector is also called Qi' and 

the n-3 invariants 

* This work was sup.ported by thee U.S. Energy Research and Development 
Administr.1tion. 
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t. 
1 

Q 2 
i 

(1.1) 

are called the momentum transfer variables associated with the Toller diagram. 

The direct channel (or s channel) is the region where energy flows upward in 

the Toller diagram. Initially we consider a part of the direct channel where 

all ti are negative. 

The remaining variables associated with the Toller diagram are defined by 

associating with each ordered pair (i,v), consisting of a line i of the diagram 

i, a standard frame 2:. . In this frame the and a vertex v touched by 
1V 

vector pi has a standard form p. , which is either 
10 . 

(m1 ,o,O,O) or 

(O,O,o,fti). 

The various frames can be represented by dots on the Toller diagram, as in Fig. 2 

Fig. 2. The standard frame Liv is represented by a dot on line i near 

vertex v. 

The Lorentz transformation that takes components from theirvalues in Liv to 

their values in L. is called r;;j.. The Lorentz transformation that takes 
JV 1 

components from their values in 2: . to their values in ~ (where line i 

points from v to w) 

E jv are given by 

p (j 'v) 
i 

1v L-iw 
is called· gi. Thus the components of pi in frame 

provided a path in T from i to j runs along the sequence of lines 

k,R.,m,···•n, moving in the positive direction along each of these lines. If 

the direction of some intermediate line is reversed then the corresponding g 

is replaced by g-l 

The standard frames are chosen so that gi is specified by a single boost angle 

Bi· Let k be the third line that meets i and j. If either i or 

external then r;;ij 
the three lines i, 

is completely determined by the masses (m's and 

j, and k. If both i and j are internal then 

depends on an helicity angle w ij. If i, j, and k are all inte~nal 

constraint 

wij + (<)jk + wki 0 

j is 

t's) of 

r;;ij 
then the 
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holds. Thus fo= each Toller diagram there are (n-3) momentum transfer variables 

boost angles (n-4) independent helicity angles w •• , for a 
1] 

ti' (n-3) 

total of 3n-10. A scattering function f written as a function of the Toller 

variables t.,v. = exp 8., and u .. = exp i w .. corresponding to Toller diagram 
1 1 1 1] 1] 

Twill be called the Toller function fT. 

The expressions for the invariants in terms of the.Toller variables are generally 

quite complicated. However, the square of the cowentum-energy flowing across 

(t ansverse to) any internal line i is given by a simple formula 

s. fi + gi cosh Bi - f. + g.z. 
1 1 1 1 

where fi and gi depend only on the t's (and masses m). 

lines a and b are linked by a sequence of internal 

large Bi' one may use the formula 

where the remainder 

line i 

has at least one less factor 

cosh Bi 
1 

(vi 
·-1 

z. 2 + v. ) 
1 1 

For any pair of touching internal lines i and j 

w .. (cos w .. + cosh .;ij) 1] 1] 

where 

( 2 2 2 ~ sinh E;. . A (pi , p j , pk ) I 4 tit j ) 
1] 

lines 

(1. 3) 

Moreover, if two 

ijk· .. n then, for 

(1. 4a) 

For any internal 

(1.4b) 

(1. 4c) 

(1.4d) 

For any pair of touching lines a and i, where i is internal, 

( 2 2 2 )~ A(p ,p. ,pk )/-4t. 
a 1 1 

(1.4e) 

where 

A(a,b,c) a 2 + b
2 + c2 - 2ab - 2bc - 2ac (1. 4f) 

·The line k is the third line at vertex (ijk) or (iak). The formula holds 

in the portion of the direct-channel region where all the t. are negative and 
1 

all the A1 s are positive, provided lines a ~nd b are both external and 

directed upward. It also holds if b is external an-:! directed upward and a 

is internal and directed upward--in the frame where l:..ne i is horizontal. 

(The internal lines are regarded as almost horizontal but making an angle of 

9QO+E with any external line they touch, and an angle of 180°-2£ or 4£ with 

any internal line they touch. Here £ is very small but positive.) 

2. Bergman-Wei! Representation 

The dispersion reLit ion we use, like the Mandelstam representation, is a special 

case of the Bergman-Weil representation. (Fronsdal (2)., Fuks (3), Stapp (4).) 
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Let z = (z
1

, ... ,zN) be any set of N complex variables. Let F(z) be a 

function that is holomorphic in the region. 

R {z: Im Z (z) > 0 
c 

all c e: C}, 

where C is some finite index set, and the functions Z (z) 
c 

are entire 

functions. Let denote a subset of N of the var~ables. c e: C, and let 

(2.1) 

>. >. >. 
- {Z1 ,z

2 
, • • • ;ZN } (2.2) 

be the N variables z for c e: r>.. ·Let JA(z) be the Jacobian 
c 

>. a z
1 

(z) 

JA(z) - a 3- 0 (2. 3) z. 
J 

Define the region 

= 0 for i = 1, · · • ,N, and JA(z) 1 O} • (2.4) 

Consider the mapping 

z e: IA let 

from TA space~ i.e., for any point 

(x/<z), · · · ·~ \z>) 
be the set of N real numbers 

>. 
X. (z) 

1 

(2.5) 

(2.6) 

Several different points z e: IA may map onto the same point ~. Let 

.za>.(X>.)e:IA (2.7) 

for a= 1,··•, be the various points z in IA that map to the point XA. 

The Bergman-Wei! formula implies that for each pair (>.,a) 

function K. A (ZA z) (which is holomorphic in ZA and z a . ' 
and z in ~N) such that the function F(z) defined by 

F(z) L [ 1 J x · · Jdx >. ••• dx >. 
>.,a (2ni)N X (IA) l -~ 

F(za>.<x/ + :i,o,···,~ A+ io)) 
1 

X 

X A >. 
1 

- z
1 

(z) 

satisfies 

F(z) F(z) for z inside 

F\::) 0 for z outside 

where R is the closure o.f R. 

KA(XA,z) 
(l 

... 
~>.-

R 

R 

there is a kernel 

for ZA in z\r>.) 

\:(,)] (6.8a) 

(2.8b) 



0 0 0 4 0 2 ·9 

-5-

MANY-PARTICLE DISPERSION RELATIONS 

The kernel function 
A A 

K (X ,z) has the important property 
(l . 

0
aB 

(2.9) 

That is, K A(XA,z) is unity if z 
(l 

z A(XA), but is zero if 
(l 

A A 
z = ZB (X ) for 

any B I a. This property of KaA 

from the diffetent points za 

integration domain XA(IA). 

that 

effects a separation of the contributions 

correspond to a single point XX in the 

Consider a function F(z) that is holomorphic in a region R except for cuts 

confined to the surfaces Im Z (z) = 0 for c £ C. These cuts separate R 
c 

into a set of regions R1 ,R
2
,···· (See Fig. 3.) 

Fig. 3. The region R in z space is separated into regions R1 ,···R9 by 

the surfaces Im Z (z) = 0. 
c 

By simply adding the formulas (2.8) corresponding to the different regions Ri 

one obtains a formula for F(z) valid in the union of the Ri. 

In this composite formula there will generally be several different contributions 

from each region IA. These are the contributions from the boundary values from 

the different combinations of· sides of the cuts that pass through I These 

contributions can be lumped together. Suppose no two regions IA coincide 
. A 

unless they are defined by the same set of N equations Im Zi 0. That is, 

suppose the diffe~ent regions Ri that give contributions from a fixed 

integration region are just the 2N regions corresponding to the different 
" A A 

possible combinations of sides of the N cuts Im Z. = 0 that define I 
1 

Then the full contribution from IA is obtained by replacing the function 

pt.: A(X i\ + . .. :>.. + io)) \za 1 10,···,~ in (2.8) by the N-fold multiple discontinuity 

(2.10) 
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Here the ±io indicate the appropriate boundary value, the sum is over the 

2N possible boundary values, and n is the number of arguments (X.A -·io). 
l. 

If the regions IA defined by several different sets of N surfaces coincide 

over an N dimensional region then one must consider a tiny displacement of 

some of these surfaces away from the degenerate-case location. 

~quations (2.8) and (2.10) yield a suitable generalization of the Mandelstam 

representation. However, we will disperse only in the n-3 boost variables 

vi (or zi), not in a full set of 3n-10 variables. Thus we are dealing with 

a multi-variable generalization of the fixed-t dispersion relations of earlier 

works on 2 + 2 scattering amplitudes. 

3. Accessible Boundaries 

Let the Toller functions fT be regarded as functions of the (n-3) complex 

variables 

space of 

(or zi) with the ti and wij 

variables (which we shall call the 

held fixed and real. In this 

z. 's) we shall apply the 
l. 

Bergman-Weil formulas (2.8) and (2.10) of the preceding section. The contribu­

tions from the intersections IA of N = n-3 of the normal threshold cuts 

Im s(c) = Im Z (z) = 0 are considered first. 
c 

Note first that each of these regions IA contains the whole physical region, 

which is a certain portion of the n-3 dimensional space x = Re z space. 

Thus to use (2.8) and (2.10) we must slightly displace some of the cuts 
I 

Im s(c) = 0, in order to shift the various regions IA away from each other. 

This is illustrated in Fig. 4, for the case N = 2. _ 

Im s 1 =0 
Im s 1= 0 

(a) (b) 

Fig. 4. All three cuts Im si = 0 intersect on one N = 2 dimensional region, 

represented by the dot in (a). A slight shift of one cut separates 

this intersection region into three separate regions IA each involving 

only N = 2 cuts. Now,(2.8) and (2.10) can he applied. 
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The first important point is that the shaded region is introduced artifically 

and disappears in the limit E ~ 0. Because we are basically concerned here 

only with the function in the various outer unihaded regions we can define the 

function in the shaded region in any convenient manner. For example, we could 

define it to be zero. Or we could define it differently in different regions 

separated by a sequence of cuts Re ~.(z) = 0, as indicated in Fig. 5. 
J 

Re ¢ 3 = 0 

Re ¢ 2 = 0 

Re ¢ 1 = 0 

Re s1 

Fig. 5. The function in the tiny shaded region of ·F,ig. 4b can be defined to be 

different analytic functions i~ the regions separated by surfaces 

Re ~. (z) = 0. J . 

Of course there will be contributions to .the Bergman-Wei! formula associated 

with.the surfaces Re ~.(z) = 0 where the definition of the function changes. 
J 

But the integration is only over the tiny intersection of the boundary of the 

shaded region with the surface 

shaded region drops away as 

Re ~.(z) = 0. Thus its effect outsid~ the 
J 

E + 0. The introduction of functions corresponding 

to the shaded regions defined by combinations of more than N cuts is clearly 

just an artifice that allows the N-fold multiple discontinuity functions to 

be used. 

The restriction to the space of just n-3 complex·~lriables, with the t
1 

and 

w kept real, induces relations between the imaginary p~rts of the variables 
ij 

s(c) = Z (z). For example, if the variables of Fig. 4a increase in the direc-
c 

tions indicated by the arrows then the boundar~ from th~ region Im s
1 

> 0, 

Im s
2 

> 0, Im s
3 

< 0 is not accessible. In general the inaccessible boundaries 

are boundaries accessible only if some· of the cuts are infinitesimally displaced 

to expose an infinitesimal region analogous to the shaded ·egion of Fig. 4b. 
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Asymptotically, for the six-particle case, the accessible boundaries are all 

good functions MG, in the terminology of the previous lectures. That is, the 

bad boundaries, which correspond to furictions that are not single analytic 

functions are always inaccessible, asymptotically. Hence we are free, at least 

asymptotically, to define the inaccessible boundary values to be just the 

corresponding functions MG. 

Taking the inaccessible boundary values to be the functions MG leads to many 

in .1ortant simplifications: 

(1) The formula becomes independent of the sign of E occurring in 

Fig. 4b. This awkward dependence disappears because the generalized Steinmann 

relations entail that the (n-3) fold discontinuities do not depend on upon 

which sides of the remaining cuts they are evaluated. 

(2) All of the n-3 fold multiple discontinuities are given by simple 

known bubble diagram functions. Thus one has a well-defined basis for the study 

of the question of whether any complex singularities extrude into the complex 

plane~ 

(3) The generalized Steinmann relations reduce the number of spectral 
. ;1. 

terms: The .multiple-discontinuity 6~ vanishes if the set r;l. of n-3 

cuts contains any pair corresponding to overlapping channels. 

(4) The generalized Steinmann relations allow a unique correspondence 

to be established between hexagraphs and specified sets of Bergman-Wei! com­

ponents. (See below.) It is this hexagraphical decomposition of the Toller 

functions into well-defined hexagraphical components with specified analytic 

properties that is the basis of White's analysis. 

4. Hexagraphs 

.A decisive new step is a decomposition of each Toller function fT into sum of 

.components. There is one component for each way that the 1'oller diagram T 

can be drawn as a hexagraph. 

A hexagraph is a planar tree diagram such that each vertex is drawn as a meeting 

of one horiz~ntal line and two sloped lines, with the angle between each pair 

emerging rays approximately 120°. The external lines must be sloped and in the 

direct channel energy flows upward along these external lines. Each internal 

line of the Toller diagram is mapped into a horizontdl segment of the corres­

ponding hexagraph, as is shown in Fig. 6. 
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a c 

-- b~e 
d k f 

a c e 

+b~f 
J d 

-- dn-Q. ~ 
. e 

b I k f 

a~k e 
+ i t 

b j d 

+ 

c d 

+ a~e . j 
b I k f 

+ a»r0k e . f 
• J 

b I . 

c 

+ ~: 

~~ ;e 

r-Jk\t b I 

~~c 
a/(T'd 
b I 

a>.<· b e 
c t 
d J 

Fig. 6. The h~xagraphs for Toller diagrams T1 , T
2

, and T
3

. 

5. Flow Graphs 

Flow graphs are graphs that represent the flo~ of energy in the direct channel, 

as will be explain~d later. Each hexagraph maps into a unique flow graph. This 

graph is constru•·t~d by replacing each vertex of the hexagraph by a set of flow 

lines according to the rules of Fig. 7. 
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. 

i~ 

Fig. 7. The rules for converting a hexagraph to a flow graph. Lines i, j, and 

k are internal lines. Lines a and b are external lines. 

The flow graphs corresponding to the Toller diagrams T1 ; r
2

, and T
3 

are shown 

in Figs. 8, 9, and 10, respectively. 
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a c d e 

T, I I I k I j 
b f 

a 
a c 

e 

.>M<d e 
a . . k f 

. J .. 
D I 

b f 

c d a e 

~ef 
b. I 

Fig. 8. The basic flow graphs corresponding to the Toller diagram T
1

. 
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a 
e 

b e 
~ 

f 
b 

f 

e 

O~f ~ 
I J d f b I 

a 
e 

a c e 

b~f 
J d 

b 

a c 
a~e 

~ 
J 

b i d k f f 

Fig. 9. The basic flow graphs corresponding to the Toller diagram T2. 
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. r-r<' c a d 
b e 

. k f 

a c a e . 
a J c 

a~ b~~ __..., __..... 
. i 

k f b j. d 

b b d 

0

~c e~c f 

~ k d 

--... b . j d 
~a 

d 
b I 

d 

c 

c>.-<e d a0<e t I k f 

__.,_ 
a ~ J f 

~ b 
c 

Q 

b f 

Fig. 10. The basic flow graphs corresponding to the Toller diagram T
3

. 
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The flow graphs shown in Figs. 8, 9, and 10 are the basic, or uncontracted, flow 

graphs corresponding to the Toller diagram in question. We shall also use the 

graphs obtained from these by the contraction of one or m~re internal lines. 

Flow graphs are reduced to skeleton graphs by removing extra lines. 

Energy-momentum is considered to flow upward along each line of a flow graph. 

Then for each flow graph F there is a unique set CF of normal-threshold 

cuts c: 

{c: F contracts to D } 
c 

Here D is the diagram corresponding to the normal-threshold cut c (see 
c 

Fig. 11). 

a c 

b 
e 

d f 

(5.1) 

Fig· 11. The diagram D corresponding to the normal-threshold cut c = (abc) c 
or c = (def). 

A diagram corresponding to a normal threshold cut has exactly two vertices, 

·one initial and one final, and energy flows from the initial vertex to the final 

vertex along every internal line. 

The cut c associated with the diagram D shown in Fig. 11 is a cut that lies 
c 

along the positi.te real axis of the variable 

s(c) 

Let T be the set of basic flow graphs constructed from the planar Toller 

diagram T accorJing tc the rules described above. Then 

(5.2) 
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is a set of normal threshold cuts associated with the planar Toller diagram T. 

6. Theorems on Hexagraphs 

The importance of hexagraphs rests on some properties su1rnnarized in theorems 

described in this section. Some definitions will first be introduced. 

A lower case c will represent one of the normal threshold cuts. An upper case 

C will represent a set of cuts c. And a script ~ will represent collections 

of sets C. The symbol H will represent an equivalence class of hexagraphs 

co ~nected to each other by twists about horizontal lines. For example 

where denotes e.quivalence. Similarly, T denotes an equivalence class of 

planar Toller diagrams. 

Introduce now 

C(H) - {c: c e: CF(H) for some H e: a} (6.1) 

(ii) - {c: c c. c (ii)} (6.2) 

C(T) - {c: c e: CT for some T e: !J 

- {c: c is not a momentum transfer variable t. of !J 
'1 

(6.3) 

(T) - {c: c c: C(T) is a set of n-3 asymptotically distinct 

cuts in nonoverlapping channels} (6.4) 

Asymptotically distinct cuts are cuts that do not have the same leading term · 

as all zi + ~ A set of nonoverlapping channels is a set of channels no pair 

of which overlap. (A pair of channels overlap if and only if each of the two 

sets of indices that define one channel intersect each of the two sets that 

define the other.) A set of n-3 nonoverlapping channels can be represented 

by a tree diagram T having only 3-line vertices. Introduce also 

{i= H has the topological structure ~:. (6.5) 

Theorem A For each linear T and each C E: C.(T) there is one and only 

one H e: tJ(T) such that 

(6.6) 

This unique H is denoted by H(C). 
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This theorem says that each principal contribution to the (multivariable fixed-t) 

dispersion relation for fT is associated with a unique hexagraph H. A 

principal contribution is a contribution associated with n-3 normal threshold 

cuts that are asymptotically distinct. (Cuts that are not asymptotically 

distinct will be treated, asymptotically, as single cuts.) Sets of cuts in 

channels that are not nonoverlapping give no contribution to the dispersion 

relations, beca~se of the generalized Steinmann relations. 

Tl. ~ correspondence between a principal contribution, defined by a set C E C..(T), 

aLl the corresponding H(C) is this: H(C) is the only hexagraph such that 

each of the cuts c of C is present in H, in the sense that some flow graph 

F(H) with H E H has this cut c. 

This theorem provides a classification of the principal contributions to the 

dispersion relations into terms corresponding to different hexagraphs H. 

The sum of terms corresponding to any given hexagraph will be called a hexa­

graphical component. Each hexagraphical component will be treated differently 

in White's development of Regge theory. 

For any flow diagram or skeleton diagram F define 

<!(F) {C: C is a set of cuts c E CF} (6.7) 

Theorem B For any linear T, and any flow diagram or skeleton diagram F, 

every C E e(T) f} e(F) has the same H(C). (6.8) 

This theorem ensures that in the decomposition of fT into ·hexagraphical 

components all parts that correspond to any single flow graph or skeleton graph 

stay together. 

Theorem C Asymptotically, for n = 6, the physical sheet near real points 

p is bounded only by normal threshold cuts: all other singularities and cuts 

move behind, or onto, the normal threshold cuts as all z. ~ oo. 
~ 

This theorem has not been proved, but is strongly indicated. 

Theorem D For n = 6 the boundary values corresponding to bad G's are 

asymptotically inaccessible. 

To see why this is true consider the Toller diagram of Fig. 9. 

The only bad bopndaries that can be defined using th~ cuts in 

associated with the cuts of Fig. 12. 

T2 
c are those 
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c e 

Fig. 12. A flow diagram F £ !
2

, with lines indicating the four associated 

normal threshold variables s , with c £ CF. 
c 

The bad boundary is defined by the conditions 

·sign Im s
1 

-sign Im s
2 

-sign Im s
3 

sign Im s
4 

. 

However, formula (1.4) gives, 

(6.1) 

(6.2) 

where c is a positive real number .. Equations (6.1) and (6.2) are incompatible 

(for. !Im s.l « Re s. » 0) .' Thus the bad boundaries cl.efined by the cuts T2 1 1 

c £ C are not accessible asymptotically. 

Although (6.2) is an asymptotic relation the conclusion is true more generally. 

The point is that the four s. 's are functions of three variables z,, and 
1 J 

hence there is a constraint between them: 

0 

Equation (6.2) entails that the signs of the components of grad ~ in the 

asymptotic limit are these: 

signs ±(+,-,-,+) 

On the other hand, condition (6.1) says that the signs of the components of 

0(1:111 S) o(Im s
1

,Im s
2

, tm s
3

, Im s
4

) 

also satisfy (6.4). Consequently the constraint 

o(Im s)·grad ~ 0 

(6.3) 

(6.4) 

(6. 3) 

(6.6) 
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cannot be satisfied asymptotically. However, the direction of. grad ~ 

generally changes in a continuous fashion. Thus the bad boundary will be 

inaccessible in some neighborhood of infinity: i.e., in the full region where 

the signs of the components of grad ~ conform to (6.4). 

7. Conclusions 

The main conclusion is that in the asymptotic domain the analytic structure 

greatly simplifies: one probably obtains a simple cut-plane analytic structure 

with no cuts exc~ normal-threshold cuts. Moreover, in the Bergman-Wei! 

representation of the asymptotic amplitude the generalized Steinmann relations 

can be imposed, since all of the bad boundaries are inaccessible, and hence can 

be defined to be the corresponding MG. 

Finally, the different terms in the Bergman-Wei! representation can be grouped 

together into components,each of which corresponds to a hexagraph H, and which 

has only those singularities indicated by the flow graphs that correspond to 

this hexagraph. 

Note that the function H(C) maps the tree diagram T(C) corresponding to the 

set of (n-3) uncrossed direct channel cuts C onto a hexagraph. This hexa­

graph, when read sideways, represents a specific set of n-3 uncrossed cuts 

in a specific crossed channel. Thus the function H(C) maps a tree diagram 

T(C) representing a particular set of n-3 direct channel cuts into tree 

diagrams representing a particular set of n-3 cross channel cuts. This 

connection between direct channel trees and cross channel trees, taken in 

conjunction with the Bergman-Wei! decomposition into hexagraphical components 

is the basis of White's analysis. 
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