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' MANY-PARTICLE DISPERSION RELATIONS*
Henry P. Stapp

Lawrence Berkeley Laboratory
University of California
Berkeley, California 94720

This lecture describes work done in' collaboration with Alan White on the
analytic foundations of Regge theory. The work ties together the analyticity
results described in the previous lectures with White's results on Regge theory.
The study is very recent and not yet complete. But the beautiful way everything
hangs together to give exactly what is needed for a systematic derivation of
Regge theory encourages us to describe here what we have done and what we

expect to be able to do. First I shall describe the parts that are closely tied
to the results on direct channel unitarity described in my earlier lectures.

Then White will carry on.

1. Toller‘Variables

The first main idea is to disperse in the Toller boost variables keeping the

Toller momentum transfer and helicity variables fixed. The Toller variables

are described in Ref.(l). I shall give here only a brief resume.

For any n-particle scattering function there are many possible sets of Toller
variables. We shall use each of these sets. Each set of Toller variables is

associated with a planar Toller diagram, which.is a planar tree diagram with

n external lines (one for each of the n particles) and n-3 internal lines.
Precisely three lines meet at each vertex. Some examples of Toller diagrams
for the case n = 6 are shown in Fig. 1. (I discuss only the case where all

external particles are spinless.)_

T | To Ts

Fig. 1. Some Toller diagrams for n = 6.

Each internal and external line i is assigned a conventional direction, and
" the momentum—energy flowing along the line in that direction is defined to be
p,. For each of the n-3  internal lines i this vector is also called Qi’ and

i
the n-3 invariants

* ' .
This work was supported by the U.$. Energy Research and Development
Administration.
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£, = Qiz - L (1.1)

i

" are called the momentum transfer variables associated with the Toller diagram.

The direct channel (oi s channel) is the region where energy flows upward in

the Toller diagrém. Initially we consider a part of the direct channel where

all ti are negative.

The remaining variables associated with the Toller diagram are defined by
~associating witheach ordered pair (i,v), consisting of a line i of the diagram
and a vertex v .touched by i, a standard frame X:iv' In this frame the

vector pi has a standard form Pio? which is either (ml,0,0,0) or

(0,0,0,/~¢,).

The various frames can be represented by dots on the Toller diaéram, as in Fig. 2

Fig. 2. rhe standard frame 'E:iv is represented by a dot on line 1 near

vertex V..

The Lorentz transformation that takes components from their values in Eziv to

their values in §:jv is called ;ji' The Lorentz transformation that takes

components from their values in E: to their values in E:iw (where line i

. iv
points from v ‘to w)  1is called" g Thus the components of Py in frame

E:jv are given by
RN ¢ S0 T

P, %in®a’ " CmeBeb Bk’

2Bk "kiPio - (1-.2)
pfovided a path'in T from i to j runs along the sequence of lines
k,%,m,+..,n, moving in the positive direction along each of these lines. If

the direction of some intermediate line is reversed then the corresponding g

is replaced by g_l.

The standard frames are chosen so that 8 is specified by a single boost angle
By Let k  be the third‘lipe that meets i and j. If either i- or j is
external then’ L1 is completely determined by the @asses (m's and t's) of
the three lines i, j, and k. If both i and. j are internal then Cij.
depends on .an helicity angle wij' If i, j, and k ;re all internal then the

constraint

+ o, + =
) wij “jk ka 0
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holds. Thus for each Toller diagram there are (n-3) momentum transfer variables
ti, (n-3) boost angles Si, and (n-4) independent helicity angles mij’ for a
total of 3n-10. A scattering function f written as a function of the Toller
varlableS'ti,vi = exp Bi' and uij = exp 1 wij corre;pondlng to Toller diagram

T will be called the Toller function £..

The expressions for the invariants in terms of the Toller variables are generally
quite complicated. However, the square of the momentum—energy flowing across

(t ‘ansverse to) any internal line i  is given by a simple formula

s; = fi + 84 cosh Bi E fi + 824 .(1.3)

where fi and g; depend only on the t's (and masses m). Moreover, if two
lines a and b are linked by a sequence of internal lines ijk..-.n then, for

large Bi, one may use the formula

+r

Pa'Py = My 24 wij zjijk...wmn Zo ub ab (1.4a)
where the remainder b _has at least one less factor z,. For any internal
line 1 ]

' z, = cosh B, = 3 (v, +v,h) . (1.4b)
i i 2 i i . :
‘For any pair of touching internal lines i . and j

wij = (cos wij + cosh gij) , _ . . i (1.4c)
where

. _ 2 2 2 ok

sinh £, = (p,Thpy 7, ) /e )R (1.4d)

For any pair of touching lines a and i, where i 1is internal,

n, = Go e Drmee)? - C (L.te)

whére v
A(a,b,c) = a’ + b2 +c? - 2ab - 2be - 2ac . (1.4£)

"The line .k is the third line at vertex (ijk) or (iak). The formula holds

in the portion of the direct-channel region where all_the' ti are negative and

all the A's are positive, provided lines a. and ‘b are both external and

directed upward. It also holds if b is external and directed upward and a

is internal and.directed upwar&-—in thé frame where liﬁe i is horizontal.

(The internal lines are regarded as almost horizontal but making an angle of

90%+¢ with any extérnal 1ine they touch, and an angle of 180°-2¢ or 4e with

any internal line they touch. Here € 1is very small but poéitive.)

2. ‘Bergman—Weil Representation
The dispersion relation we use, like the Mandelstam representation, is a special

" case of the Bergman-Weil representation. (Fronsdal (2), Fuks (3), Stapp (4).)
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Let 2z = (zl,}-;,zN) be any set of N compléx variables. Let F(z) be a
function that is holomorphic in the region. o ] - -

R = {z: Im Zc(z) >0 all c e C}, o (2.1)

where C is some finite index set, and the functions Zc(z) are entire

functions. Let T denote a subset of N of the variables c € C, and let

A A

A .
{Zl ’ZZ :"'SZ,N

A

A

z } R (2.2)

be the N variables Z for ¢ e I',. "Let Jx(z) be the Jacobian

c A
A
] Zi (z)
JA(Z) = _—3.2— > 0 . (2.3)
J
Define the region
I, = {zeR: Im ZiA =0 for 1 =1,---,N, and JA(Z) # 0} . (2.4)

: A
Consider the mapping Xx(z) from IA into . Z space: 1i.e., for any point

zel let

A
)z @@,k @) . (2.5)
"be the set'df N real numbers
3 @ = rezt@ . ; - @e

may map onto the same point XA. Let

Several different points =z ¢ IA

.-zaA(XA) €1, (2.7

. v N
for a =1,--+, be the various points z in IA that map to the point X .

The Bergman-Weil formula implies that for each pair (A,a) there is a kernel
function KaA(Z%,z) (which is holomorphic in ZA and z for Zx in Zk(ix)
and z in ¢N] such that the function F(z) defined by

. ' 1 N AAL
F(z) = Z ————f o jdx ceedx M R MM, 2)
ol ee)MIXa) ) N o

1 ; 1

« F(e )t + g0, 0t +i0) A 22— | " (6.8a)
X" -7 (2) -2y @
satisfies
F(z) = F(2) “for z 1inside R
~(2.8b)
Fiz) = 0 - for z outside R ,

where. R 1is the closure of R.
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L : : AN .
The kernel function KOl (X",z) has the important property

(2.9)

Aph A AN L
K, Xz (X D = 8,

' ) AL A
That is, KGX(XX,Z) is unity if 2z ='zaA(XA), but is zero if z =z, (X")  for

_ 8

any B # a. This property of KQA effects a separation of the contributions
' : . A,

from the different points z, that correspond to a single point X in the

,1ntegratibnvdoﬁain XX(IA). )

Consider a function F(z) that is holomorphic in a region R except for cuts
confined to the surfaces Im Zc(z) =0 for c e C. These cuts separate R

into a set of regions Rl,Rz,---. (See Fig. 3.)

.-R by

Fig. 3. The fegion R in =z space is separated into regions Rl,- 9

the surfaces Im Zc(z) = 0.

By simply adding the formulas (2.8) corresponding to the different regions Ri

one obtains a formula for F(z) wvalid in the union of the Ri.

In this composite formula there will generally be several different contributions
»from each region. IA' These are the contributions from the boundary values from
the different combinations of sides of the cuts that pass through I . These
contributions can be luhped together. Supposé no two regions iA “coincide
unless they are defined by the same set of N equations Im Zix = 0. That is,
suppose the different regions Ri that give contributions f:om a fixed
integration region are just the 2N regions corresponding to the different
possible combinations of sides of the N cuts Im ZiA = 0 that define IK.
Then the full contribution from IA is obtained by replacing the function
F(%GA(XlA + io,---,XNA + io)) in (2.8) by the_N—fold multiple discontinuity

aG o) - Z DY PG s 10Xt 5o, x M e 10) L (210
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Here the ﬁio indicate the appropriate boundary value, the sum is over the

A
2N possible boundary values, and n is the number of arguments (Xi -'io).

If the regions I defined by several different sets of N . surfaces coincide

A
over an N dimensional region then one must consider a tiny displacement of

some of these surfaces away from the degenerate-case location.

Equations‘(2.8) and (2.10) yield a suitable generalization of the Mandelstam
representation; However, we will disperse only in the  #*3 boost variables
vy (or 'zi)f not in a full set of 3n-10 variables. Thus we are dealing with
a multi-variable generalization of the fixed-t dispersion relations of earlier

works on - 2 - 2 scattering amplitudes.

3. chessible'Boundaries

Let the leler»functions fT be regarded as functions of the (n-3) complex
variables vi (or zi) with the ti and wij held fiﬁgd and real. 1In this
space of n-3 wvariables (which we shall call the zi's) we shall apply the
Bergman-Weil formulas (2.8) and (2.10) of the preceding section. The contribu-
tions from the intersections ik of N =n-3 of the normal threshold cuts

Im s(c) = Im Zé(z) = 0 are considered first.

Note first that each of these regions I, contains the whole physical region,
which is a certain portion of the n-3 dimensional spéée X = Re z space.
Thus to use (2.8) and (2.10) we must slightly displace some of the cuts

Im s(c)-=.0, in order to shift the varioﬁs regiohs I, away from each other.

Thisvis illustiated in Fig. 4, for the case N = 2..

| Im s, =0

"
o

Ims

3 ‘ tImsz=0 Ims,=0

Ims3=0

»I'm $3=€

‘°," | - (b)

Fig. 4. All three cuts Im si = 0 intersect on one N =2 dimenéional region,
represented by the dot in (a). A slight shift of one cut separates .

this interséction region into three separate regions’ I each -involving

A
only N =2 cuts. Now (2.8) and (2.10) can be applied.
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The first important point ié that ﬁhe Shaded regién is iﬂtroduced artifiéallyv‘vn
ard disappears in the limit € * 0. Because we are baéicaily concerned here
only with the function in the various outer unshaded regions we can define the
func;ion.in'the shaded region in any convenient manner. For example, we could
define:it to be zero. Or we could define it differently in'different regions

separated by a sequence of cuts Re ¢j(z) = 0, as indicated in Fig. 5.

Re ¢45=0
Re qbz = C). o [
Re ¢, =0

—> Res,

Fig. 5. The_fuhction in the tiny shaded region of Fig. 4b can be defined to be
different analytic functions in the regions separated by surfaces
Re ¢.(z) = 0. /

Of course ﬁhere will be contributions to the Bergman—Weil.formula associated
with the surfaces Re ¢j(z) = 0 where the definition of the function changes.
But the integration is only over the tiny intersection of the boundary of the
shaded regioﬁ with the surface Re ¢j(z) = 0.‘ Thusvits>effeég outside the

shaded region drops away as € > 0. The introduction of functions corresponding
to the shaded regions defined by combinations of more than N cuts is clearly
just an artifice that allows the N—fold‘multiple discontinuity functions to

be used.

The restriction to the space of just n-3 complex variables, with the ci and

wij kept real, induces relations between the imaginary parts of the variables
s(c) = Zc(z). For example,. if the variables of Fig. 4a increase in the direc-

tions indicated by the arrows then the boundary from the region Im s; > 0,

1

Im s, >0, Im S, < 0 1is not accessible. In general the inaccessible boundaries

are boundaries accessible only if some of the cuts are infinitesimally displaced

to expose an infinitesimal region analogous to the shaded -egion of Fig. 4b.
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“Asymptoticélly, for the six~particle case, the accessible boundaries are all
goéd functions -MG, in the terminology of the previous lectures. That is, the
bad boundaries, thch correspond to functions that are not single analytic
functions are always inaccessible, asymptotically. Hence we are free; at least
asymptotically, to define the inaccessible boundary values to be just the

R . G
corresponding functions M .

Taking the inaccessible boundary values to be the functiﬁns MG leads to many
in)ortan; simp1ifications: ‘ .
v (D The formula becomes independent of the sign of ¢ Voccurring in
Fig. 4b.  This awkward dependence Aisappears because the generalized Steinmann
_relations entail that the (n-3) fold discontinuities do not depend on upon
which sideé of the remaining cuts they are evaluated.

(2) All of the n~3 fold multiple discontinuities are given by simple
known bubbie diagram functions. Thus one has a well-defined basis for the study
of the question of whether any complex singularities extrude iﬁto the complex
plane. - v o v

(3) The generalized Steinmann relations reduce'the ﬁumber of spectral
termé:‘ The.multiple—discpntinuity AaA vanishes if the set AFA of n-3
cuts contains any pair corresponding to overlapping channels, v

(4) ‘The generalized Steinmann relations allow a uniqqe‘corréspondence
to be establiéhéd between hexagraphs and specified sets of Bergman-Weil com-
ponents. '(Seé'below ) It is this hexagraphlcal decomp051t1on of the Toller
functions into well-defined hexagraphical components with specifled analytic

propert1es that is the basis of White's ana1y51s

4, Hexagraghs

A dec151ve new step is a decomposition of each Toller function fT into sum of
* components. "There is one component for each way that the Toller diagram T

_can be drawn as a hexagraph.

A hexagraph -is a planar tree diagram such that each vertex is drawn.as a meeting
" of one horizqhtal line and two sloped lines, with the angle bétween each pair
emerging rays approximately 120°. The external lines must be sloped and in the
" direct chénnel»energy flows upward along these external lines. Each internal
line of the Toller dlagram is mapped into a horizontal segment of the corres-

ponding hexagraph, as is shown in F1g. 6.
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Fig. 6. The hexagraphs for Toller diagrams Tl’ T2’ and T3._

5. Flow Graphs

Flow graphs afe graphs that represent the floy of energy in the direct channel,

as will be explainad later. Each hexagraph maps into a unique flow graph. This

graph 1is constructed by replacing each vertex of the hexagraph by a set of flow

lines according to the rules of Fig. 7.
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b
b

a

>
e

AN

=
| a> ' Oji

Fig. 7. The rules for converting a hexagraph to a flow graph. Lines i, j, and

k are internal lines. Lines a and b are external lines.

The flow gfaphs corresponding to the Toller diagrams T

?2, and T3 are shown_

| r
in Figs. 8, 9, and 10, respectively.
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Fig. 8. The basic flow graphs corresponding to the Toller diagram Tl'
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-t). i q k f _ b d _f

" “Fig. 9. The basic flow graphs corresponding to the Toller diagram’ Tz.'
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Fig. 10. The basic flow graphs corresponding to the Toller diagram T

3
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The flow graphs shown in Figs. 8;“9, and 10 are the bésib, orvuﬁconff;égéd,.flow
graphs corresponding to the Toller diagram in question.. We shall also use the
graphs obtained from these by the contraction of one or mdre internal lines.

Flow graphs are reduced to skeleton graphs by removing extra lines.

Energy-momentum is considered to flow upward along each line of a flow graph. -
Then for each flow graph F there is a unique set CF of normal-threshold
cuts c: '

‘CF = {c: F contracts to Dc} . : ‘ (5.1)

Here Dc is the diagram corresponding to the normal-threshold cut "¢ (see

Fig. 11).

Fig. 11. The diagram DC corresponding to the normal-threshold cut ¢ = (abc)

or ¢ = (def).

A diagram corresponding to a normal threshold cut has exactly two vertices,
"one initial and one final, and energy flows from the ini;iai vertex to the final

vertex along every intermnal line.

The cut ¢ associated with the diagram D, shown in Fig. 11 is a cut that lies
along the positive real axis of the variable ' »
N Ly N2 2
s(¢) = (p, i P ?b) (P, = Py = pp)-
Let T be the set of basic flow graphs constructed from the plénar Toller
diagram T acéofding tc the rules described above. Then .

oy . v
coE c . (5.2)

]
™
=t
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is a set of normal threshold cuts associated with the planar Toller diagram T.

6. Theorems on Hexagraphs

The importance of hexagraphs rests on some properties summarized in theorems

described in this section. Some definitions will first be introduced.

A lower case c will represent one of the normal threshold cuts. An upper case
C will represent a set of cuts c¢. And a script €  will represent collectioms
of sets C. The symbol H will represent an equivalence class of hexagraphs

co mected to each other by twists about horizontal lines. For example

~
where = dénoteé equivalence. Similarly, T denotes an equivalence class of
planar Toller diagrams. '
Introduce now
. C(ﬁ) z {e:rce CF(H) for some H € ﬁ} (6.1)
@ = {c: ¢ cml s o (6.2)
C(i) z {c:cect for some T € T}
= {c: ¢ is not a momentum transfer variable ty of T}
. (6.3)
(i) : {c:c C(i) is a set of n-3 asymptotically distinct

cuts in»nonoverlapping channels} . : (6.4)

Asymptotically distinct cuts are cuts that do not have the same leading term -
‘'as all z; +'® ., A set of nonoverlapping channels is a set of channels no pair
. . of which overlap. (A pair of channels overlap if and only if each of the two
sets of indices tﬁat define one channel intersect each of the two sets that
. define the other.) A set of n-3 nonoverlapping channels can be represented

by a tree diagram T having only 3-line vertices. Introduce also

;S/(f) = {H: H has the topological structure 1,. . (6.5)

Theorem A For each linear T and each C & £(T) there is one and only

one H e ZJ(%) such that
ce CH) . - (6.6)

‘This unique H is denoted by H(C).
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This theorem says that each principal contribution to the (multivariable fixed-t)

dispersion relation for fT is associated with a uniqué_hexagraph H. A n-
principal contribution is a contribution associated with >n—3_ normal threshold

cuts that are asymptotically distinct. (Cuts that are not asymptotically

distinct will be treated, asymptotically, as single cuts.) Sets of cuts in

channels that are not nonoveflapping give no contribution to the dispersion

relatiors, because of the generalized Steinmann relations.

Tt 2 correspondence between a principal contribution, defined by a set C ¢ C(m),
ar.l the corresponding H(C) is this: H(C) is the only'hexagraph such that

each of the cpté ¢ of C is present in H, in the sense that some flow graph

F(H) with H € H has this cut c.

This theorem provides a classification of the principal qbntributions to the
dispersion relations into terms corresponding to different hexagraphs H.

The sum of terms corresponding to any given hexagraph will be called a hexa-
grabhical chponent. Each hexagraphical component will be treated differently

in White's development of Regge theory.

For any flow diagram or skeleton diagram F define

C(F) = {C: C is a set of cuts ¢ ¢ CF} . (6.7)

Theorem B Fdr any linear. T, and any flow diagram or skeleton diagram F,

every C e @(T)/) C(F) has the same H(C). (6.8)

This theorem ensures that in the decomposition of fT into 'hexagraphical
componenté all parts.that correspornd to any single flow graph‘or skeleton graph

stay together.

" Theorem C Asymptotically, for n = 6, the physical sheet near real points
p 1is bounded only by normal threshold cuts: all other siﬁgularities and cuts

move behind, or onto, the normal threshold. cuts as allb zi -+ o,
This theorem has not been proved, but is strongly indicated.

. Theorem D For n = 6 the boundary values corresponding to bad G's are
asymptotically inaccessible.
To see‘why.this is true consider the Toller diagram T. of Fig. 9.
» < T ,
The only bad boundaries that can be defined using th2 cuts in C 2 are those

associated with the cuts of Fig. 12.
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Fig. 12. A flow diagram F ¢ T,, with lines indicatiﬁg the four associated

2
normal threshold variables sc, with c € CF.

The bad boundary is defined by the conditions

sign Im s = -sign Im s, = -sign Im sy = sign Im S, - (6.1)
However, formula (1.4) gives,
1S, =~ ©S,84 (6.2)

. where ¢ is a positive real number. .Equations (6.1) and (6}2) are incompatible
(for}Tlim si| << Re s; > O); Thus the bad boundaries defined by the cuts
ceC are not accessible asymptotically.
Although (6.2) is an asymptotic felation the conclusion is true more generally.
]

The point is that the four s;'s are functions of three variables zj, and

hence there is a constraint between them:

. ¢(sl,sz,s3,sé) = 0 . o (6.3)
Equat{on (6.2) entails that the signs of the components of grad ¢ in the
asymptotic limit are these:

signs = *(+,-,-,4+) . : (6.4)

On the other hand, condition (6.1) says that the signs of the components of

§(Tm s) = &(Im sl,Im s Im s Im sa) (6.3)

2’ 3’

also ‘satisfy (6.4). Consequently the constraint

5(Im s)-grad ¢ = O (6.6)
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‘cannot be satisfied asymptotically. However, the direction of grad ¢
generally changes in a continuous fashion. Thus the bad boundary will be
inaccessible in some neighborhood of infinity: i.e., in the full region where

the signs of the components of grad ¢ conform to (6.4).

7. Conclusions _

The main conclusion is that in the asymptotic domain the aﬁalytic structufe
greatly simpiifies: one probably obtains a simple cut-plane-analytic structure
with no cuts exceps no;mal-thresﬁold cuts.” Moreover, in the Bergman-Weil
representationvof the asymptotic amplitude the generalized Steinmann relations
can be imposéd, since all of the bad boundaries are inaccessible, and hence can

be defined to be the corresponding MG.

Finally, the different terms in the Bergman-Weil representation can be grouped
together intovqomponents,each of which corresponds to a hexagraph H, and which
has ‘only thosé Singularities indicated by the.flow graphs that correspond to

this hexagraph.

Note that the function ﬁ(C) maps the tree diagram 71(C) corresponding to the
set of (n-3) uncrossed direct channel cuts C onto a hexagfaph. This hexa-
" graph, when read sideways, represents a specific set of n-3 uncrossed cuts
in a specific crossed channel. Thus the function ﬁ(c) maps a tree diagram
T(C) representing a particular set of n-3 direct channel cuts into tree
diagrams repreéenting a.particular set of n-3 cross channel cuts. This
connection between direct channel trees and cross channel'trees, taken in
conjunction with the_Bergman—Weil decomposition into hexagraphical components

is the basis of White's analysis.
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