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ABSTRACT 

The boundary conditions for elastic atom scattering at a 

sinusoidal hardwall are considered. The wave function must 

vanish on and below the surface and be outward-going only. 

·specifically, solutions ·of the Rayleigh form such as Beeby 

has presented are not outward-going only and fail to treat 

the closed channel properly. 
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In a previous·paper (Masel et al.) .in order to model atom scattering 

from solid surfaces we presented a solution of the Schrodinger equation 

for scattering of an incident plane wave from a sinusoidal hardwall. 

The derivation began with theLippmann-Schwinger (1950) integral equation 

for the wavefunction 

l~J{x,z) = ~(x,z) + fix'jdz' + '' '' '' Go (x,z;x ,z ) V(x ,z ) "'(x ,z ) '. (1) 

where 

11J = the wavefunction 

~ = the incident plane wave 

V = the scattering potential 

G + = the free particle green's function with outgoing boundary 
0 

conditions. 

The wavefunction "' determined by Eq. (1) is also a solution to the 

Schrodinger equation 

( 
h2 2 ~ - -- V + V-E "' = 0 2ll . . ' 

but the integral equation is a more useful starting point since the 

(2) 

correct scattering boundary conditions (incident plane wave plus purely 

outgoing radial waves) are explicitly contained in it and need not be 

supplied at some later stage of the calculation. 

In our previous paper (Masel ~ al.) we show that for a hardwall 

potential defined by 

V(x,z) r
' z > D(x) 

~ +», z < D(x) 
' 

(3) 
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where x = distance along the surface which is structureless in the y 

direction and z = distance perpendicular to the surface, the quantity 

V$ is given by 

V(x~z) tlJ(x,z) = f(x) o[z~(x)] (4) 

where o ~-D(x)] is the Dirac delta function and f(x) is a function yet 

to be determined; Eq. (4) is easily deduced from Eq. (2). Substituting 

Eq. (4) into Eq. (1) (and performing the integration over z') gives 

wavefunction as 

. f' + I I I tP(x,z) = ~(x,z) + dx Go (x,z;x ,D(x ))f(x ) (5) 

The function f(x) is then determined by the requirement that tlJ(x,z) - 0 

below the surface. Applying this condition for the special case 

D(x) = ah sin(2~x/a) 

yields (Masel et al.) a solution that we will label $1 • $1 is given 

explicitly by 

00 

tP1 (x,z) = ~(x,z)- n~ 
iksin81 

C _e_:--_ 
.n casaR. 

X 

1/2 

! f dxl 

-1/2 

i[2~(n-R.)(x
1

/a) + k cos6R,Iz-D(x'>ll e 

where the constants C are determined by the linear equations 
n 

00 

n=...ao 

(6) 

(7) 

(8) 
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See our previous paper (Masel ~ al.) f()r the definitions of the various 

quantities in Eqs. (7)-(8), more details of the derivation, and explicit 

fozmulae for the scattering cross sections. 

Beeby (1971, 1972, 1973, 1974, and personal communication, 1974, 1975) 

has suggested an alternate procedure for calculating the wavefunction. In 

his formulation the position of the "emitter surface"--the function 

D(x
1

) in Eq. (5)--is deemed to be irrelevant (provided it is on or below 

the actual surface). The boundary conditions are ~(x,z) = 0 on the surface 

and specification of the incident wave at large distances from the surface._ 

The trouble with this approach is that the resu+ting wavefunction is not 

zero in all regions below the surface and thus is not a solution to the 

Schrodinger equation; this is easy to see from Eq. (2) because the term 

V$ will be infinite if ~ is not zero when V is infinite. In our previous 

paper (Masel et al.), for example, we showed that if the "emitter surface" 

were taken to be a plane below the surface, then a different wavefunction 

~2 is obtained: 

co 

n=-eo 

c b 
n 

cos a 
n 

x zl I z i(k x-k . z-y +k y) 
n n n 

e 

wh~re y < -ha and where the coefficients C b are determined by 
n 

co cb 

= L c:se J 11 (akh Cose' ) 
n-"" n 

n=-co n 

(9) 

(10) 

Since ~2 is not zero below the surface, Beeby (1971) has in effect 

suggested that a new wavefunction ~3 is the correct wavefunction: 
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.. 
where q[z-D(z)] is the step function, 

q(y) 
= ·11, 

I o, 

y > 0 
.I 

y < 0 

(11} 

Although one can readily verify that w3 does satisfy the Schrodinger 

equation above and below the surface, it does not satisfy the Lippmann-

Schwinger equation, Eq. (1), and therefore is not the particular solution 

of the Schrodinger which has the correct scattering boundary conditions. 

To show this, we start with the Schrodinger equation 

(12) 

and apply it to w3 (setting h = 1 for simplicity) 

•. (13) 

, 
Direct evaluation gives, for w2 : 0 at z = D(x), 

(14) 

Defining ~ by 

, (15) 

this expression can be evaluated using the methods in our previous paper; 

the result is, for z ~ ha, . 

·r 



.. 

i,J•~S u 

-s-

r~ = ~I + ~:1 I J 1 [ (cosa1 + cos61)hka] + 

11h t_an ~ r{ J 1~ 1 [ (cosal / cose 1) hka] + 

J£+1 [(cose
1 

+ cose1)kha]]' + 

~c: {Jn_1 [(cosen- cosa1)hka] 

+ ~h tan e ~J n l[(cose - cosen)hka] + 
n t n-~- n ~ 

Jn-t+l[(cose~- cose1)hka~ · (16) 

. ~ . 
h :: 0 w3 and $3 are not the same. This means that in the general unless 

case 1fJ3 does not satisfy the Lippmann Schwinger Equation, i.e., the condition 

that the scattered wave is outward going only, and so it is not a valid 

wavefunction for the scattering problem. The possibility exists, however, 

that due to an unobvious cancellation of errors this formulation of the 

Beeby solution could yield the correct scattering distribution far above 

the surface. Eq. (10) is identical to Rayleigh's equation (1907) for an 

analogous problem in optics. There is a wealth of literature discussing 

its validity (for a review see Millar, 1973). Petit and Cadilhac (1966) 

have demonstrated that if one attempts to solve the equation by only 

considering the C 's that satisfy 
n 

lnl ~ N 

the results for h > .0714 do not converge with increasing N~ which supports 

our contention that Beeby's method is not correct. 
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Finally, an explicit demonstration that our boundary conditions and 

Beeby's give different scattering can be seen by constructing the matrix 

expressions for the S-matrices that result from the two approaches. 

Applying our boundary condition one finds the S-matrix to be 

' (17) 

where M and N are the matrices 
= = 

(18) 

' 
(19) 

while Beeby's ~oundary condition gives the S-matrix as 

S tr = M·N-1 
:2 = = ' (20) 

tr - transpose 

· tr -1 At first glance it appears from Eqs. (17) and (20) that ~2 = ~l , and 

-1 • + tr * * since by unitarity ~l = ~l = (~1 ) , it would follow that g2 = g1 , 

so that the two approaches would give the same diffraction probabilities. 

The trouble is that ~ and ~ are infinite matrices, whereas the S-matrix 

tr is finite, and the meaning of Eqs. (17) and (20) is that ~l and ~2 are 

-1 -1 
the finite, open-channel block of the infinite matrices ~-~ and ~-~ , 

respectively. It is well-known, however, that if ~l,l is a finite block of 

the infinite matrix !!--i.e., 

A ) 
:1,1 

= 1~ 
A • 
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--then 

i.e., the inverse of the finite matrix ~l,l is not equal to the 1-1 block of 
. .· . . -1 
the infinite matrix A • Eqs. (17) and (20) therefore do not imply that 

S -1 _ S tr 
:1 - :2 • 

Eqs. (17) and (20) do show, however, that if N and M are approximated = = 
by finite matrices that retain only the open channels (~ and ~ are then of 

the same dimension as g), then it does follow that ~2 = ~l This is 

consistent with our view that Beeby's formulation fails in the way it 

includes the closed channels, i.e., higher order multiple scattering. As 

. in any inelastic scattering problem, closed channel terms in the wavefunction 

die out exponentially when one is far from the interaction region (i.e., the 

surface), but they are present in the interaction region (i.e., near the 

surface) and they must be included correctly in order to describe the 

scattering correctly. 
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