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ABSTRACT
In a toroidal plasma with axial symmetry, the
three adiabatically invariant actions of a particle are
the magnetic moment, the canonmical angular momentum, and
the toroidal flux enclosed by the drift surface. Resonant

interactions between particles and the normel modes of

collective oscillation produce mode growth or decay and

random changes in the actiogs. This random walk is
represented by a diffusion'eqpation in action space.'
Both the diffusionbtensor and the.growth rate depend upon
a coupling coefficient which represents the work done by
a normal-mode field eigenfunction-on the current density
of an unperturbed particle orbit. The diffusion of.the_
plasma causes adiabatic changes in the electric and
magnetie self-consistent fields. Accordingly, energy

is not conserved, but is exchanged with external currents.

2=

I. INTRODUCTION

Among the processes which contribute to the diffusion of

plasma in a confined configuration is the resonant interaction of

particles with collective modes of oscillation. .Since the confine-

ment may be interpreted as being due to the existence of adiabatic

invariants for each parficle, the loss of confinement is attributed

to the breaking of one or more inveriants by the perﬁurbing fields

of the oscillations. Thﬁs the magnetic moment is broken by

perturbing fields varying at the gyrofrequency or at harmonics

thereof, while the'other invariants are broken by resonances

between the perturbation frequencies and the guiding-center drift

frequencies.

In this paper, we formuwlate the quasilinear diffusion

theory for an axisymmetric system, with special regard to a

2

toroidal system, or tokomek. The unperturbed magnetic field may

have both tdroidal and poloidal compbnents, generating magnetic

surfaces. . However, the special case of a purely poloidal field,

either closed (multipole) or open (mirrer machine), is included

in the theory with slight modifications.

- The present work may be considered as an extension of two

previous studies of gquasilinear diffusion in axisymmetric tori.

Hbrtonl

investigated diffusion due to electrostatic low-frequency'

normal modes in a toroidal plasma with only poloidal field. Liu,.

Baxter, and Thompson2 studied diffusion in tokomak geometry, again

1

for electrostatic low-frequency modes, in the local approximation.

Here we generalize by using the normal modes of the full Maxwell
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e&mtions, and by 1nclud1ng high frequency modes, SO tbat gyro-
resonance may occur.’ The u.nperturbed motion is treated in the
guiding-center approximation, while the perturbing fields‘modify_
both the guiding center drift and the gy’ration. Recent studies
.' of the linear problem along these lines are those of Horton, Callen,
and Rosenbluth,3 who treated the mirror machine geometry, .and
' Callen,h who treated the tokomak. Here we extend those Studies =
(which 1nclude solutions of the linear integral equations) to the
qm.silinear regime

As in the papers cited aboye, we remain within ‘the Vlasov
-approxination, thus excluding.coll'isional Phenomena . _Further, we

include no‘str_ictly nonlinear eff‘ects,5

as these would considera.‘bl,r .
complicate the treatment. Our work is thus: the analog, for a
finite: _systenl, of the claséical.quasilinear )theory_of an infinite
plasma.. The chief 'd.ii?ferences are three: (1) the conductivi_ty o
-' tenso'r (28) is an.int’egral_ operator; (2) the normal modes have a

discrete spectrum; (3) the unperturbed electric and magnetic fields

are themselves time-dependent, since the diffusing plasma contributes

cha.rge- and current-'densities as sources- for these self-consistent
fiel(is. | '

Because thesé quasistatic fields are adiabatically changing
(sloirrly compared to the characteristic particle frequencies), the
particle unperturbed energies have an explicit timefglependence'.
The bartic‘le action-variables, ‘on the other hand, are adiabatic
invariants, and vary only from resonances with the perturbing

52

fields. Hence, in contra.st to previous studies,l_ we use the
* three actions, a.nd not the energy, &s the independent variables for

" the diffusing zero-order distribution function.

" moment; (2) P » the canonical angular momentum; and () J
particle, with a banana-shaped poloidal ‘orbit,

angle-variable f -denotes its azimuth, which drifts at the

* integro-differential equation, with an unhermitianﬁk.ervnel. Treating.

.

The three actions for an axisymmetric system, when the
guiding-center approximation is valid, are (1) 4, ‘the magnetic -
P’
the toroidal flux enclosed by the drift‘-v surface. For a trapped
Py. characterizes. - .

the magnetic surface,.of the banana-center, and its con,jugate,

. . . .
constant. frequency - wq) Ef ; 'the banans encloses the toroidal

flux Jp , vhose conjugate angle 85 increases at the bounce-
frequency ®p = éP' (For a purely poloidal field, JP is instead

the bounce-action.) For circulating particles, ’ represents'

. , Py
(mainly) v , while now J characterizes the magnetic surface,

N
which a:.pproximtes the drift surface. The cancnical formalism‘, of
these ua_riables' is cl'evel’oped in Section II. , E
In terms of the action- ahd angle-variables, the solution
of the linearized Vlasov equation is "easily f'ound, and from it the
conductiv:lty kernel is obtained, in Section III. "II‘he normal mode
problem is then fomula.ted in Section‘-IV, as the solution of an '
the antihermitian ;Jart as a perturbation, we obtain an expression
(37) for the growth rate y, of a normal mode, in terms of (i) a . ‘/

coupling coefficient (38), representing the work done by the .

. normalized electric-field eigenfunction, of a zero-order‘ normal

mode, on the current density of an unperturbe'd orbit; (1i) the
derivatives of the unperturbed distribution function; and (iii) a

resonance condition a o B
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@ = Lg a% + &$ ab + &P @p (1)

between the zero-order (real) normal-mode eigenfrequency «_ and

a

the action-dependent unperturbed angle-frequencies. The latter

are ug, the poloidal-average gyrofrequency; &nd . (uﬁf ’a?),

"defined above; while (Lg, %@; LP) are integers, possibly

negativé or zero. (The azimuthal mode number is {Q.)'

The casg £g =0 ;epresents a low-frequency resonance,
whefein the perturbing field, with the Doppler-shifted frequency
; lé @, (as seen by the drifting guiding center), resonates
with & multiple (lP) of the poloidal (bounce) freguency wPYL
This case thus includes the trappéd-;article instabiliﬁies.

The sub-case_(€g =0, aa = 0) characterizes qrbits whose
unperturbed.drift curves are closed,.and thus do not generate
surfaces, since akfab is rational. (In othef words, the

rotational transform of the guiding center is a rational multiple

-of 2n.) The guiding-center diffusion resulting from an axially-
E ,unsymmetric (Lcp # 0) quasistatic perturbation is completely

' analogous to the corresponding diffusion of field lines, i.e., the

destruction of mégnetic surfaces in the neighborhood of rational

" rotational transforms. The latter problem has been studied by

Rosenbluth, Sagdeev, Taylor, and Zaslavski.6

The case Lg % 0 represents gyroresonance (1et Lg =1,
say); here the local (Doppler-shifted) resonance condition
y - = . - L - ¢ = ® which
® k“ v" s is replaced by @ ¢9¢ - Loop Y
takes account of the poloidal variation of the loecal gyrofrequency

Q e and of gyrophase-shifts from one bounce to the next. This

_6-

linear resonance condition is replaced by a nonlinear one in the
work of Lichtenberg and Jaeger.7

The quasilinear diffusion in the three-dimensional action-
space is derived in Section V. The diffusion tensor depends on

(1) the normal-mode wave energies, (ii) the coupling coefficients

"described above, and (iii) the resonmance condition (1). Since

the latter condition determines a set of surfaces in action-space,
on which the diffusion tensor is nonvanishing, one must appeal to

a slight nonlinearity to argue a continuous tensor field for the

diffusivity. With this proviso, an entropy theorem is obtained,

indicating a_continuing diffusion in the three actions, or

equivelently, in minor radius (of magnetic surface), kinetic

_energy, and pitch-angle.

Since energy conservation serves as & helpful check on the
theory, especially with the unperturbed fields being time-dependent,

this question is discussed in Section VI. It is found that thé

_resonant modefparticle interaction conserves the sum of ﬁnperturbed

particle energy and wave energy, as expected; while the adiabatic
field variation corresponds to an energy transfer between the plasma

and the external currents.

II. TINVARTIANTS OF AN AXISYMMETRIC TOROID
We consider an axisymmetric field configuration, with slowly
varying magnetic and electric fields. If the particle gyroradius

is small compared to the spatial scale of these fields, we may use

the guiding-center (g.c.) Lagrangian for the g.c. motion:
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L&Y w5 Apfo) =5 Vg - u Bo(Rs %) - egzﬂo(g; t)
+e¥ - AR t) . o (2)

'Here (R V) are the g.c. position and velocity, (¢O, Ay B ) -are

the quasistatic scalar potential, vector potentla.l, -and magnetic

field magnitude evaluated at. R ;- 1 is the magnetic moment;

A V-8 ; and units are used with m = ¢ = 1.

The magnetic field has toroidal and poioidal compenents:,.
S A P, ' ’ g
By = ByR2)9 + B (RZ), L o 03)
using standard cylindrical éoé;c_iinates ®,9,2). The poloidal
field is. the curl of the azm: Eal v.ec‘tor potential: ‘

o=V x (Aq> $), which .in turn is expressed in terms of the

~

~ poloidal flux function ¥ :

A = RYy@R,2Z), . ‘B, = -R”T OY/®R, B, =R v/
o . (la.)
‘The curves ¥(R,2) = constant - are the poloida.l field lines and ‘

the progec’cions of the total field lines:

@;‘d_Z._'R__w_gz' , :
- 5, - 5)

BB
. (The magnetic axis is the point (RO, ZO) at which ¥ =0.) The
parallel velocity is thus
. . . B i ’ . : . . B .
v o= 8 = -§ b - 9B &2), (6a)

P

where

" poloklal coordinates, we see that the last term of (7) is

-8-

Kes) = 5@, (&)

The lagrangian (2) now reads

» .‘, .\» 2, ‘ . |
_}L(R,Z’C‘P:,\,VP)‘ = %@‘ CPE - IJ:BO - e¢0 - ey + e,YP'QOP .- (7)

The"poleidel veé.t",or po'ﬁentbial‘ can be ej:ipressed in 'ﬁerms _
of Eulerf@tentialsﬂ éo? =a Vg, with a(R,z) a. function
only of V, 'e.nd “B(R,2) increasing clockwise ar_ounci the magnetic
surface Vv - censte.nt, ';with périod 2x. For a given V, the
toroidal flux enclosed is .. |

y

dedZB(Rz) =S£ds-AOP 954:&3 - 2m;

thus * a(V) is the toro:.dal flux function. We note that the

rotational transform is v/ex = . a¥jaa . Using (o,p ) as the
10

eayP-VB = ea(ﬁ-%%\),

vihere 3B/t = (3/3t) B(R,.Z,- t) 1is to be expressed in terms of

(@, B, t). The lagrangian (7) is now
. . .

L8, 08) = 2 R2@EIP - uBy(0,8) - o, (@B) - ch(a) + e b,

(8)
where ;é' = {6 +a (B/3t). (The tlme—dependence, e.g.
v 6{2(&,6, t), is here suppressed. ) . .
" The canonlcal'angular momenfum . ‘
p, = a4/ = K%, -e Wa) o (9)

¢
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. : ' : ‘We now transform to action-angle variables (JP, e_) for
is invariant, since L 'is independent of ¢ . The momentum ) ] P
’ 0 the pdoidal motion (12) with the frozen Hamiltonian (11). That
conjugate to- B 1is, as usual, . : v
' ' _ is, we solve (11) implicitly for «(B; Ho;pm,u; t), and define the
b, = AP = eqa. (20) » | "
B : _ poloidal action
. The g.c. Hamiltonian is thus [H, = p é + P -1 - o s .
o A - L o : A 2r Jp(ByPyhs €)= a8 alBs Hyppks t). (13)

HylaBs pys b3 B) = 2 @ P@e; ¢ ), + e¥(@)1® This is thus the toroidal flux enclosed by the poloidal orbit or
i by the drift surface. For a circulating particle with negligible
+wBy(aB; t) + e folayBs £) . (1) - ‘
drift, it is just «a . The angle variable ®P satisfies

, The magnetic moment u 1s the action of the gyration » ' éP = @, , the poloidal frequency (whick}_ is the bounce frequency
(with the factor e); its conjugate angle-variable eg is the for a trapped particle). This frequency is given by

gyrophase, whose frequency e BHO/ dp  is the local gyrofrequency

. : -1 . ap
e Bo(a,B; t)/(me). Thus for two degrees of freedom (gyration and - 2n ay = (f . ’ (1%)
) , : B(B; Hoy Py 13 t)
azimuthal), the coordinates are ignorable. ~For the poloidal , ' _
v : . vwhere B 1is given by (12). [Note that in (12), ¢ 1is to be
variables, the equations of motion are . :
: ' eliminated in favor of Py, by (9), and «a in favor of Hy by

e
[

1 . 1.0 o .
€ BHO/Ba. = (t/em)p - e 9 @ Bﬁ/aa ' (11).] The angle variable is thus defined by

4 u_e'lBBo/?’a +'5¢5/5d; B

(12) - | S teP(B; Ho;quW 8 = _‘DP(HO,p(p,u; t)J ™
T . | i

B(B's Hy Doy Hs 6)

6= et/ - ot PR - pet mym - 3w |
» : . This canohical transformation is accomplished by the

The first term of é represenfs the projection onto the poloidal 11
) ) generating function

rlane. of the. V"Y-motion 3 if the other terms are negligible, ) 3
a3/dp = 4/2n, so that in one azimuthal period (A:p = 2x), v G(Gg,qJ,B; p"’p(;)’JP; £) = eg 0t s p(}) + &' alB'; “"pc'p’JP‘; t).
28 =, i.e.; the g.c. follows the field line. The other terms 0 (15)

. o X The time-dependence of G, caused by the quasistatic changes in
represent the g.c. drifts, due to curvature, magnetic gradient, -
: . the potentials, makes the transformed Hamiltonian slightly different
and electric field, respectively.

: from the Hamiltonian Hy(k,pp,Jdp; t) obtained from (13) by solving
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(mpllcltly) for ‘{O Hdv}ever, this difference vanishes upon o . III. -‘CONDUCTIVITY KERKWEL
oarsevgraining in time in the q_uasistatic limit, and will hence- o - Since the th.ree actions . J .are invarlants of the tu.SII.-
forth be neglected. : o I o | static Hamiltonian Hj the general quasistatic solution for the.

' The new actions (u , Pcp) are the same as the old (e g | ‘ rhase-space density is ° fo(g). ' However, the q_uasj.;]_inear difﬁlsjv_oll

= BG/ P = p , SO We drop the primes. The new angle variables . . caused by the perturbing fields induces a quasisfatic time-

(eg = _B_G/ap.-', » j = BG/ap ) are however dlfferent from the - - dependence iy (J, t)s to be studied in Sec. _V The quasistatic
oid, because of‘_ the final. term of (15) Their meaning is easny o o o variatlon will be suppressed in this sectlon, which deals with the
seen fron their equetions of 'mction: o ) ) repid variations of the perturbations..

For a particle at phase-point (J, 8), the contribution to .~

@
It

oH Ins 't = o (1 PyIps t) . L ' : A
© -HO(u’PV P )/Bp g Py U : . the current density at position 'x is

5

.-

aHo(“’Pq:’JP;i)/a% ©qis Py Ip3 £ K T Az 128 -= e xlg ekly - @ oL @n

' Where (r,y) are the particle (not g.c) position-and velocity
These frequencies va.ry only quas:LstatJ.cal_Ly, the ;3 ~dependence of

. 4 ' corresponding to (J @) Summing over all partlcles (w:.th species
e = eB0 and of CP [see (9)] is averaged over in (16). Thus o
g "

sumeation implicit ), we have the unperturbed current densn:y
is the mean gyrofrequency, and. - wcp the mean ammuthal frequency

(i.e., the drift frequency for a banana). To be precise, e.g., ) { 2) (x)' = f d_BJ[dse fo(g) 3(5 ] I 9,) (18a)
6 -8 - - g_é’ [eB.(afe) - €B.), - : and unperturbed charge dens:l.ty
g & g o o S .
with _ ) I i : ‘ {p) Pery £, p(x | & Q)- (18b)
5 = ( "ﬁ B,)( ‘1‘5 ) o e |
0o - . » o . ese are to be: used :Ln the Maxwell equations for the self-consistent,
In the follow:mg sectlons, we shall condense the notatlon ) unpertur'bed fields.
as follows: J = (wep,,J3p); & = (@, f’ & )_" - . For the perturbed fields of the normal modes (sec. IV), we
K ¥ P g P -
o = (a) s m’u’P) Thus from Hy(J; t), we have J = -3H,/38 = O, need the perturbed current density
indicating adiabatic 1nvariance, while 8 = BH‘-O/BQ = 93(,{[, t). o . . ) 3 . . _
. : B J ) (xt) = f 0 5£(Z,8; t) J(x | g,0), (1%)

or its Fourier transform
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8 3 )(po) = fd?deBe 82(Z,85 @) J(x | 3,8). (190)

~

Since the variables 8 are cyclie, any function of them can be

expanded. in a Fourier series:

g(@) = Z g, exp(1 L8 | o
~\ v - (20)
o R P
g F SL(EK)B g()exp(it'e)

Applying (20) to j amd Bf , we obtain for {19%b)

~

8 g'>(§,w) - (2n)3f &3 z ,ﬁ (xlg) 82, (35 ®). (21)

The linearized Vlasov equation for bof is, in tne (J,8)

variables,

\
of
\/%w-%) o2(3,85 8) = -6f - 52 (22)

" To find 5§ 5 we need the perturbed' Ha.milton_ian. As the exact

particle (not g.c.) Bamiltonian is

Hprs t) = 2lp - ea(nt)® + efmt),  (23)
its perturbation is

6H(i>,£; t) = -ey - 8A(r,t) +ed Br,t

I

- [djx 5x | pr) - 8A(xt)

+ fdjx plx | pr) od(x,t).

gauge - Sﬁ

-1k

Transforming to (g,g), this is

l{djx (~ l

dex o(x| 2,8) 8b(x,8). (24a)

oH(3, 85 t) = 8) * tA(xt)

For time~dependent perturbations, we may choose the radiation

0, whence SE(xv,cb) = 1w 8A(x,w), and

SH(E,E; w) = [d X J :,@) ) EE(:)\()(D)‘ (2)-I»b)_

[For quasistetic perturbations, both terms of (24a) should be used.]

' Now we can find

8 = - %EPE - - Z 1L oH, (I ) exp(i £°8),
' i (25)
with :
sH, (g5 @) = 1o f ¥ 3, 1D Ee). (2ke)

In terms of Fourier components, the Vlasov eguation (22) is

o1, (35 0) - [tow(@) - o)™ o, (I w)l * 3t,/d] . (26)

3

Substituting this and (24c) into (21), we obtain the conductivity

relation

8 § Mpo) = [dBX'g(gc;zé‘; w) -+ 8E(x',w), (27)

- with



L - cg(g)'-»a)]"l £:3£,/37 .

28) b

[To reduce this to the conductlvity of a. uniform field- free. plasma, .
for: purposes of comparison, let i~ k, d - D@ >V a.nd
Q_t(5-{ J) »> e v exp(-1k'x). ."I_‘h_en g depends on 5 - x', and
(27) 1s a convolution integral..]‘ | _

 Formula (28) is meant to apply only for Im w > O, of
~¢9&s‘e. In the limit Im® = O+, the hermitian part of g,

which represents field dissipation, is

_g'(;c,g; w) = (2xr)3 w-lfd5JZ g’{(g | g)g%(ﬁ'l J)

I3

x (-

e

. Bfo/ag) T 8w - L),
(29).
Dissipation means energy transfer from fields to particles; from

(29), we see that this requires the resonance condition

4]

@) = t o (J)+t

w o= Lo i
C ~ g 87 P

wpld) +tp 0p(g),  (30)

wﬁere " (Lg"" L(P’ P) are three 1ntegers. (Thi‘s islthe generaliz‘ati;on
vof w=k * v in the uniform plasma,) Note that this condltion
for énergy transfer i'nvolves'the mean frequencies ' ﬁ), not
the"local' ones (6 5 Cb). ‘That this is appropriate ‘can be ‘seen by
" considering the total change in, say, the gyrophase eg over

~ several poloidal periods.

V X tBlg0) - o 8E(po) = b f Px’

K@) - E(x).

-16- -
IV. NORMAL MODES
The linearized Ma.xwé]_.l equations are

v ox 5@(;5;60) +‘iﬂ> 55(%:(’3) =0, .

‘ vThey‘m'a.y be wri‘f:ten conc;lselyva‘é‘

K@) - B(pe) - - 8EGua), ~ o (i)

where the integro-differential operator ' E(w) 1s defined by

\

-'w-2 (vx F)+hrm> [31: o(xx,w) F(X)

(32)

W

We a.ésume that g(w) -is nearly a hermitian operaiocr, so

that the eigenfrequencies of (31)are nearly real. In Sec. III of .

Ref. 12, we have shown: (1) that the real parts @, of the

eigenfrequencies; and the zero-order eigenfunctions ‘\E}a(g), are -

the solutions of

£e,) P = -, e

the growth rates Ye, of the normal modes are given by

v, = -(zm)'l 5, @, f PxF () - K'6,) - B) 6B

£
where K" (a)) is the antihermitian pert of K(w), ‘and the elgen-'

functions asre namalized to unit ms.gnltude of wave energy:

. . . ‘ to . . . N - ) - >
where X'(w) 1is the hermitian part oi? g(w), for @ vresl; (2) that
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()-m)-l (.Da Idax 'I‘*J‘a*(g) . ag'(w)/awL . ga(z) = 0 = +1,

a

(35)

The method of Landau and ’Lifshitle may be used to show

that for a normal mode E(x,t) = aa(t)ga()i)eicp(-mat) + c.c.,

vith the normalization (35), the wave energy is W (t) = o, Iaa(t) 2,

and evolves at -t_he rate

o " 2% (36)

To evaluate 7, by (34), we express :Ic(" in terms of g' vy (32):

Ta = -02; [f Px ! ~Ea*(§) ) :g'(xvﬁ'; wa.) 'Ea(é)’

and use (29) for g'. We then find

' . 3
78 = (2It )5 08. (,l)a-l[ d.3J Z b1 S[wa - ﬁ-(‘e(g)] ’{:. SJ—O ata(g)’
| | (37)
.where » ,
@, (g) = [ jd?x Fx) - 3,12 (38)

represents the. overlap between the eigenfunction of mode a and

the Lth Fourier smplitude of the particle current density for

action J . For each positive frequency @, s there is a negative
one -, Vith the same growth rate [for o, > =, let L -1
in (37)); thése are physically the same mode, so We may restrict
our attentlon to positive Wy . We note, but do not indicaté eJ;:plic-
itly, that af(g_)_is nonvenishing only for those & having ¢

P
equal to the azimuthal mode number of ‘Ef'(g ).

-18-
V. QUASILINEAR DIFFUSION
The continuity equation for £(J,6; t) 1is

of d

X .2 e &G -o.

&

Upon averaging over .8 .(denoted here by ( ) ), this yields

" S 5 ' _
<§__l§ @5 8) = - 5 - (8] &), o (39)
where ©®f 1is, to lowest order, the linear solution of Sec. III.

It is here more convenient to write the solution of (22) as
B '

or(J,8; t) = -[ ar 8J(L,8 - @ T v - 1)+ 3E/T (40)
0

with the usual dropping of the initial value term., Substituting

this into (39), we obtain the diffusion-like equation:

Aedge) 5y [ .'afo} |
—— 5 [g g5 ) a—sl— s _ (k1)
where
_ (") 7 ,
‘2'(£; t) 3 [ ) dT(B;:T,(Q:;Q; t) &i(‘l:@. "(215. t - T)))
o . S

(42)
and the usual Msrkov assumption has been made to justify the

evaluation of f, at t and the extension of the upper limit

0

to .

To evaluate (42), we use (25) and (2la) for each factor &J:
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3w - .>~. il jdi"jdix' 3y ) 3,06 1)
_ AR 9 B
f Car 8A(x,t) BA(x', t-v)exp(-1 Loar)i.
S )

We assume the perturbatioh to;bé a superposition,of normal modes:

~ A
’ (44)
“In ewluatiﬁg () atv (t _-"'r),v'we take the slowly varying
amplitude at 't, .and, call its contribution to (43) g(g;t)’
(without the prim;). The’corrégiion can be shown;h_to contribute
a revérsible-éhange fo { f‘), of second order in the amplitudes;
it may be interpreted as the particle éontribution to the normal
modes and is already included.in tge wave energy through'(35).j .

The éerOrorder part of (f ) is f, which thus evolves as

~

df (I3 &) N S - TN -
0\% 0 -

— T - = D3 t) =21, ()
ot L t*.“‘ 3 ‘

with D evaluated from (h3), (54), and (38), (énd using

dog = )
D(g; t) = Z Iw, (+) | w Z’: Lon slo, - o))
s t
(46)

aipt) = Y - () () Ple) emletmg)  ce:
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The diffusion tensor (U6) is a singular tensor field in
the three-dimensional J-space, beihg nonzero only_bn the set. of R
resonant surfaces (% - w(g) = ag}. Suppose .that. the ﬁumber of
theée surfaces is 1afge, so that the cells in action-space enclosed

by them are smaii. Then small nonlinear effects’

“out the delta-fﬁnctions in D, so as to make 2 a,continuous

. tensor field._ e o .

A detailed study of the spreading and overlap of resonances

has been made by Rosenbluth, Sagdeev, Taylor, and Zas]avski? for

.the problem of field line diffusion due, to static magnetic

perturbations. -The entirely analogous problem of g.c. diffusion

~ due to static electric or magnetic perturbatioﬁs,may-be,treated

by using (24a) for SH , with no time-dependence, in evaluating
(k2), and setting. &g = 0 (so that magnetic moment is conserved).
The resonance condition (1) then reduces to

. . L on: L h ' =

determining a set of curves in the two-dimensional Py~ J

1

P

'space. As pafticle energy is conserved by a static perturbation,

the g.c. fandom walk in this space must remaih ih_the neighborhood
of the curve Hb(Pq? JP) = const. Only at the points of inter-

section of the resonance curves with the energy curve can.-

diffusion occur.. Hence & necessary condition for net;diffusion

is that the re%onance-widths*overlap. Incidentally, we note that
the case ® =0, lé £ 0 represents Arnol'd aiffusion.>”

Returning to the three-dimensional diffusion with time-

dependent perturbation, we derive the entropy theorem. - Defining

;sérve to spréad B

®



a
ey

5(t)
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's('t)_ - j O3 £oWs &) tn 1y,

~we find

@5 2 e 00 ¢ p@)

deJ fo;l lea lw;e Z (i'afo/bg‘)QEnS(wa- ﬁ'g)a;(,l).
a - )

Since S is non-negative, the plasma continues to diffuse

indefinitely, so long as the resonant sur_feces in the action-space

are popﬁlated. In the unlikely event that only the nonresonant

cells bounded by the resonant surfaces are occupied, one can appeal
to a number of effects (finite resomance widths, nonresonant

instabilities, collisions) to repopulate the surfaces. Of'course,

if the plasma 1s stable, so that the wave energies Vani_sh, there

would be mo quasilinear diffusion.

VI. ENERGY CONSERVATION
The diffusion equation (45), with the t.ii.ff“asion .ten._sor‘ (46),

implies a conservation law which will be derived in this section.

Let us consider the quantity

H(t)

dee jde By (Js t) £,(d5 t), (b7)

which represents the sum of the unperturbed particle kinetic

energies, twice the Coulomb interaction energy, and the Coulomb

_energy of interaction with the external Coulomb potential (if any).

(As vefore, species summation is implicit.) The quasistatic

=22

Hamiltonian Ho changes adiabatically, as fo diffuses due to
particle-wave interaction.
The rate of change of # due directly to the diffusion.

off is

M, = (ex)? f s VHQ %@

[o 74
(o]

2)

; (2n)3jd3J A .

.agl

We substitute (46) for D , and Pind

@, = - Z 2 7, W, s

a

" where formulae (37) has been used for 7, - Tms, by (36),

(ﬁ)f=-§€z W, . S (88)

&
To evaluate the change of H  due to the time-varying
quasistatic Hamiltonian, it ie more convenient ‘teexpress (87)

temporarily as
He) = [dBr [dBP By (r,p; t) £,(x,p; t),

where H,y 1s given by (23), with Ay 150. Then
" 0H

¥ - 3 3 0

(H)H = fdrjdp a_t fo

[d% [dBJ £5(2 ©) { - dex 5l e) - = (z,t)

+ dex p(xlg,8) 5;9 (xt)),
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by the a.na.l_og of (eha). Thus, by (28),

i, f3x<j> (5t) S50

o5, - j
f3x< ) (x,t) s r . 09)

Assumlng that the plasma is qpasi-neutral, the second term -

of (h9) may be neglected. (12 not, the succeeding formulas are

easily modified.) The first term then yields

¥, fa3x'< 30 * Eglet)

nptingthat the field EO is produced by externgl_currents jex
and blasma'currentS' { Q )0 . Since radiation by gquasistatic
~ fields is negligible, the first term of (50) can be written as

= [d%go cvx g = -3 [ dxip (;c,t)] e (51)

.C'omb‘iniﬁg (48), (50), and (51), we ha&e ;

[ B P
Ll ) w, - [ o %:?— [3 -
(52) "
This equation eipfesses the rete at‘Which the "system
energy" changes due to interaction with quasistatic external_
currents.--The‘energy_consists of three terms: (1) the
'unperturﬁed«partiele kinetic energies 3 (note thet the_Coulomb-

energies effectively cancel out by quasi-neutrality); (2) the wave

[3xE.'.V’<B j5 Ob, , (505»'

2l

energies Wé, which include the‘perturbed‘field energies and the
perturbed particle kinetic'energies; (3) the unperturbed quasi-
statie magnefic field energy (the electric fieldtenergy;being_'

negligible).
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