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ABSTRACT 

In a toroidal plasma with axial symmetry, the 

three adiabatically invariant actions of a particle are 

the magnetic mcment, the c'anonical angular momentum, and 

the toroidal flux enclosed by the drift surface. Resonant 

interactions be~een particles and the normal modes of 

collective oscillation produce mode growth or decay and 

random changes in the actions. This random walk is 

represented by a diffUsion equation in action space. 

Both the diffUsion tensor and the growth rate depend upon 

a coupling coefficient which represents the work done by 

a normal-mode field eigenftinctionon the current density 

of an unperturbed particle orbit. The diffUsion of the 

plasma causes adiabatic changes in the electric and 

magnetic self-consistent fields. Accordingly, energy 

is not conserved, but is exchanged with external currents. 
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I. INTRODUCTION 

Among the processes which contribute to the diffUsion of 

plasma in a confined configuration is the resonant interaction of 

particles with collective modes of oscillation. ,Since the confine­

ment may be interpreted as being due to the existence of adia"bEttic 

invariants for each particle, the loss of confinement is'attributed 

to the breaking of one or more invariants by the perturbing fields 

of the oscillations. Thus the magnetic moment is broken by 

perturbing fields varying at the gyrofrequency or at harmonics 

thereof, while the other invariants are broken by resonances 

between the perturbation frequencies and the guiding-center drift 

frequencies. 

In this paper, we formulate the quasilinear diffUsion 

theory for an axisymmetric system, with special regard to a 

toroidal system, or tokomak. The unperturbed magnetic field may 

have both toroidal and poloidal components, generating magnetic 

surfaces. However, the special case of a purely poloidal field, 

either closed (multipole) or open (mirror machine), is included 

in the theory with slight modifications. 

The present work may be considered as an extension of two 

previous studies of quasilinear diffUsion in axisymmetric tori. 

Horton
l 

investigated diffUsion due to electrostatic low-frequency 

normal modes in a toroidal plasma with only peloidal field. Liu, 

Baxter, and Thompson
2 

studied diffUsion in tokomak geometry, again 
\ 

for electrostatic low-frequency modes, in the local approximation. 

Here we generalize by using the normal modes of the fUll Maxwell 
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ec;.uations, and by including high frequency modes, so that gyro­

resonance may occur. The unperturbed motion is treated in the, 

guiding-ce~ter approximation, while the perturbing fields mcxlify 

both the guiding-center drift and the gyration. Recent studies 

,of the li~ear problem along these,lines are those of Herton, Callen, 

and Rosenbluth, 3 who trea.t~ the mirror machine geanetry,and 

Callen, 4 who treated the tokamak. Here we extend those studies 

(which include solutions of the linear integral 'equations) to the 
" 

qUasilinear regime. 

As in the papers cited above, we remain within the Vlasov 

approximation, thus exclUding collisional phenomena. Further, we 

include no strictly rionlinear effects,5 as these ;would considerably 

complicate the treatment. Our work is thus the analog, for a 

finite system, of the classical quasilinear theory of an infinite 

plasma. The chief differences are three: (1) the! conductivity ~.~ 

"tensor (28) is an int'egral operator; (2) the normal mcxles have a 

discrete spectrUm; (3), the unperturbed electric and magnetic fields 

are themselves time-dependent, since the diffusing plasma contributes 

charge- and current..'densities as sourcesofor these self-consistent 

fields. 

Because these quasistatic fields are adiabatically changing 

(slowly compared to the characteristic particle frequencies), the 

particle unperturbed energies have an explicit t1lne-dependence. 

The partiCle action-variables, on the other hand, are adiabatic 

invariants, and vary only from resonances with the perturbing 

1 2 
fields. Hence, in contrast to previous studies,' we use the 

three actions, and not the energy, as the independent variables for 

the diffusing zero-order distribution function. 
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The three actions for an axisymmetric system, when the 

guiding-center approximation is valid, are (1) ~,the magnetic 

moment; (2) P<p' the canonical angular momentum; and (3) J p ' 

the toroidal flux enclosed by the drift surface. For a trapped 

p;lXticle, with a banana-sha~ poloidal orbit, pCp, ,characterizes, 

the magnetic surface ,of the banana-center~ and its conjugate 

angle-variable J denotes its az1lnuth, which drifts, at the , 
constant, frequency (j)Cp:; 'I ; the banana encloses the toroidal 

flux J p ' whose conjugate angle 8p increases at the bounce­

frequency ~ = sp' (For a purely polo,idal. field, J p is instead 

the bounce-action.) For circulating particles, pCp'represents 

(mainly) while now J p characterizes the magnetic surface, 

which ~pproximates the drift surfa.ce. The canonical formalism of 

these variables is developed in Section II. 

In terms' of the action- ahd angle-variables, the solution 

of the linearized Vlasov equation is easily found, and from it the 

conductivity kernel is obtained, in Section, III. The normal mode 

problem is then formulated in Section'IV, as the solution of an 

integro-differential equation, with an unhermitian.kernel. Treating 

the antihermitian p;lXt as a perturbation, we obtain ari expression 

(37) for the growth rate\Y
a 

of a normal mode" in terms' of (i) a 

coupling coefficient (38), representing the ,work done by the . , 

normalized electric-field eigenfunction, of a zero-order, normal 

mode, on the current density of an unperturbed orbit; (ii) the 
, / 

deri vati ves of the unperturbed distribution function; and (iii) a 

resonance condition 

. . 
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between the zero-order (real) normal-mode eigenfrequency wa and 

the action-dependent unperturbed angle-frequencies. The latter 

are w, the poloidal-average gyrofrequency; and (w"" ~), 
g. 'Y 

defined above; while (t g' t Cp' t p ) are integers, possibly 

negative or zero. (The azimuthal mode number is tqJ') 

The case t 
g 

o represents a low-frequency resonance, 

wherein the perturbing field, with the Doppler-shifted frequency 

ill - t w (!:!os seen by the drifting guiding center), resonates a qJ qJ 

with a multiple (tp ) of thepoloidal (bounce) frequency ~ 

This case thus includes the trapped-p:Lrticle instabilities. 

The sub-case (t = 0, w = 0) characterizes orbits whose g a 

;.mperturbed drift curves are closed, and thus do not generate 

surfaces, since WP/WqJ is rational. (In other words, the 

rotational transform of the guiding center is a rational multiple 

of 211.) The guiding-center diffusion resulting from an axially­

unsymmetric (tqJ =1= 0) quasistatic perturbation is completely 

analogous to the corresponding diffusion of field lines, i.e., the 

destruction of magnetic surfaces in the neighborhood of rational 

rotational transforms. The latter problem has been studied by 

6 Rosenbluth, Sagdeev, Taylor, and Zaslavski. 

The case t i 0 represents gyroresonance (let t 1, 
g g 

say); here the local (Doppler-shifted) resonance condition 

ru-kv =.\2 
a 1/" g 

which 

takes account of the .poloidal variation of the local gyTofrequency 

aft and of gyrophase-shiftsfrom one bounce to the next. This 
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linear resonance condition is replaced by a nonlinear one in the 

work of Lichtenberg and Jaeger. 7 

The quasilinear diffusion in the three-dimensional action-

sp3.ce is derived in Section V. The diffusion tensor depends on 

(i) the normal:-mode wave energies, (ii) the coupling coefficients 

described above, and (iii) the resonance condition (1). Since 

the latter condition determines a set of surfaces in action-sp3.ce, 

on which the diffusion tensor is nonvanishing, one must appeal to 

a slight nonlinearity to argue a continuous tensor field for the 

diffusivity. With this proviso, an entropy theorem is obtained, 

indicating a continuing diffusion in the three actions, or 

equivalently, in minor radius (of magnetic surface), kinetic 

energy, and pitch~angle. 

Since energy conservation serves as a helpful check on the 

theory, especially with the unperturbed fields being time-dependent, 

this question is discussed in Section VI. It is found that the 

resonant mode-p3.rticle interaction' conserves the sum of unperturbed 

p3.rticle energy and wave energy, as expected; while the adiabatic 

field variation corresponds to an energy transfer between the plasma 

and the external currents. 

II. INVARIANTS OF AN AXISYMMEI'RIC TOROID 

We consider an axisymmetric field configuration, with slowly 

varying magnetic and electric fields. If the p3.rticle gyroradius 

is small coinp3.red to the sp3.tial scale of these fields, we may use 

8 
the guiding-center (g.c.) Lagrangian for the g.c. motion: 
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~ V,2 - ~ BO(~; t) - e ¢o(B; t) 
, \ 

+ e y . ~o(~; t) . 

Here (~,y) are the g.c. position and velocity; (¢O' ~O' Bo)are 

the quasistatic scalar potential,' vector potent1al,and magnetic 

field magnitude evaluated at B; ~ is the magnetic moment; 

~, - y. B; and units are used with m = c = 1. 

The magnetic field has toroidal and poloidal components: 

using standard cylindrical coordinates (R, cp, Z). The poloidal 

field is the cllrl of the azimuthal vector potential: 

p "-
B = 'il x (A cp), which in ,turn is expressed in terms of the ... cp 

poloidal flUx function1jr 

.-/ 
, -1 

Acp = -R 1jr(R,Z), ~ = R-l o1jr/(yz.· 

(4) 

The curves 1jr(R, z) = constant, are the poloidal field lines and 

the projections of the total field lines: 

dR dZ 
'~ Bz 

(The magnetic axis is the point (RO' Zo) at which 1jr = 0:)' The 

parallel velocity is thus 

cP~(R,Z), (00) 

where 
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(6b) 

The ~ang1an (2) now reads 

The" poloidal vector potent1ai can be expressed iIi terms 

of Euler potent1als: 9 '~oP = a 'ilt3, with a(R,Z) a fUnction 

only of 1jr ,and t3 (R, Z) increasing clockwise around the magnetic 

surface 1jr = constant, with period 2n:. For a given 1jr ,the 

toroidal flux enclosed is 
f 

'~d,e • ~l = t ex dt3' = ,2:ntX; 

thus' a(1jr) is the toroidal flux function. We note that the 

rotational transform is ('/2n: =, d 1jr/d!Y.. Using (a, t3) as the 

~al coordinates, we see that the last term of (7) islO 

where ~/Ot a (o/Ot) t3 (R,Z; t) is to be expressed in terms of 

(a, t3, t). The lagrangian (7) is now 

~ 6\2(a,t3)qf - ~Bo(a,t3) - e¢o' (a,t3~ - eq,.(a) + eo: 13 , 
(8) 

where ¢~ : ¢o + a (~/Ot). (The time-dependence, e.g. 

6(2 (a,t3;' t), is here suppressed.) 

, The canonical'angular momentum 

.. .... 
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is invariant, since L is independent of ~ The momentum 

conjugate to 13 10 
is, as usual, 

The g.c. Ifamiltonian is thus [HO = PI' ~ + Pcp ci> - L]-

~ (j<,-2(a,!3; t)[p<p + e1Jr(a)]2 

+ Il Bo(a,!3; t) +. e ¢;(a,f3; t) • 

(10) 

(11) 

The magnetic moment Il is the action of the gyration 

(with the factor e); its conjUgate angle-variable 9g is the 

gyrophase, whose frequency e OHo/01l is the local gyrofrequency 

e BO (a, 13; t)/ (mc). Thus for two degrees of freedom (gyration and 

azimuthal), the coordinates are ignorable. -For the poloidal 

variables, the equations of motion are 

(l.j2:rr)~ e -1 ci>
2 62 ° &/Cb 

+ Ile -1 dBo/Cb + O¢dCb , 

~ne first term of ~ represents the projection onto the poloidal 

plane of the. ~,-motion; if the other terms are negligible, 

d3/dCP ~/2:rr, so that in one azimuthal period (L'!p = 2:rr), 

68 = L , i.e., the g.c. follows the field line. The other terms 

represent the g.c. drifts, due to curvature, magnetic gradient, 

a~ electric field, respectively. 
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We now transform to action-angle variables (Jp' Sp) for 

the pa1o:ldal motion (l2) with the frozen Ifamiltonian (11). That 

is, we solve (11) implicitly for a(f3; HO'PW Il; t), and define the 

poloidal action 

(13 ) 

This is thus the toroidal flux enclosed by the poloidal orbit or 

by the drift surface. For a circulating p3.rticle with negligible 

drift, it is just a., The angle variable Sp satisfies 

Sp = UJ>, the poloidal frequency (which is the bounce frequency 

for a trapped p3.rticle). This frequency is given by 

2:rr UJ>-l (14) 

where ~ is given by (l2). [Note that in (12), cp is to be 

eliminated in favor of Per by (9), and a in favor of HO by 

(11).] The angle variable is thus defined by 

This canonical transformation is accomplished by the 

generating functionll 

G(6g,CP,f3; 1l"P~Jp; t) - 6g Il' + cP P~ + Jf3 d13' a(f3'; 1l"P~Jp'; t). 

o (15) 
The time-dependence of G, caused by the quasistatic changes in 

the potentials, makes the transformed Ifamiltonian slightly different 
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,(implicitly) for HO' However, this difference vanishes upon 

coarse-graining in time in the quasistatic' limit, and will hence-

forth be neglected. 

The new actions (~', p~) are the same as the old (e.g., 

p = dl/CJci; = p')j so we drop the primes. The new angle variables 
cp cp, 

(8
g 

== dl/O~', J;;; dl/Cp~) are however different from the 

old, because of the final term of ,(15). Their meaning is easily 

seen from their equations of motion: 

(16) 
. 
I 

These frequencies vary oniy quasistaticaliYj the i3-dependence of 

e = eBo' and of ~, [see (9») is averaged over in (16). Thus m g , g 

is the mean gyrofrequency, and mcp the mean azimuthal frequency 

(Le., the drift frequency for a banana). To be pre'cise; e.g., 

with 

13 

ag = 9g - 1-' 
o ' 

BO _ (J, dI3 B )(1-, dI3 )-1 
't'~o 'f~, 

In the following sections, we shall conden~e the notation 

indicating adiabatic invariance, while 
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III. ,CONDUCTIVITY KERli8L 

Since the three actions ~ are invariants of the quasi­

static Hamiltonian H
O

' the general quasi static solution for the 

phase-space density is fO(~)" However, the quasilinear diffusion 

caused by the perturbing fields induces a quasistatic time-

'dependence fO(~j t), to be studied. in Sec. V. The quasistatic 

variation will be ,suppressed. in this section, which deals with ,the 

rapid variations of the perturbations. 

For a particle at phase-point (~ ~), the contribution to 

the current density at position,~ is 

where (t,~) are the particle (not g.c) positio~and velocity 

corresponding to (~~). Summing over all particles (with species 

sUllllllation implicit), we have the unperturbed current density 

and unperturbed. charge density 

These are to be, used in the Maxwell eQlJB.tions for the self-consistent 

unperturbed. fields. 

For the perturbed fields of the normal modes (Sec. IV), we 

need. the perturbed. current density 

o{ j ) (x, t) 
'" "" , 

or its Fourier transform 

• --

.' -
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Since the variables ~ are cyclic, any function of them can be 

expanded in a Fourier series: 

~ J gteXp(i!' ~), 
~' ..... 

..... (20) 

Applying (20 ) to j and of, we obtain for (19b) -
(~ J,r ) Oft (,r; ill). (21) -

The linearized Vlasov equation for bf is, in tne (,r,~) 

variables, 

\ 

~) (22 ) 

! 

To find ~, we need the perturbed Hamiltonian. As the exact 

'-' pu-ticle (not g.c.) Hamiltonian is 

(23 ) 

its perturbation is 

- e ;{ . oA(r,t) + e 0 ¢(r,t) 
..... '" '" 

f d3
x 1(~ ! ~,!:) o~(?$>t) 

+ J d3
x p(;e E'!:) 0¢(:5' t). 
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Transforming to (~~), this is 

5H(:b~; t) = - J d3x ~(;e J &~) . 5~(?$>t) 

+ J d3x p(?S I ,r, ~) 5,O(:s, t). (24a) 

For time-dependent perturbations, we may choose the radiation 

gauge 5.0 == 0, whence 5!!(?$>ill) = 1m O~(:l&,ill), and 

(24b) 

[For quasi static perturbations, both te;r:'llls of (24a) should be used.] 

Now we can find 

i ~ OHt(~; ill) ~xp(i ~.~), -
with 

(24c) 

In terms of Fourier components, the Vlasov equation (22) is 

Oft(,r; ill) = [~.~(~)-- ill]-15Ht (,r; ill)~' Ofc/O,r. (26) - -
Substituting this and (24c) into (21), we obtain the conductivity 

relation 

with 
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a(x x', W) 
~ ftl_' . 

(28 ) 

[To reduce this to .the conductivity of a uniform field-free plasma, 

for· purposes of ccm];8rison, let 1 ->~, :! -> £,. ~"'~. and 

~t (~ I :!) -> e ~ exp( -i~'~)' Then cr depends on ~ - ~', and 
~ ~ 

(27) is a convolution integral.] 

Formula (28) is meant to apply only for Im W > 0, of 

'course. In the limit Im w ... 0+ , the hermitian pu-t ·of Z' 
which represents field dissip:l.tion, is 

a' (x x" w) 
~ ~-' 

x (-!:. . OfJ?J:f) 1{ 5(w - !:..~). 

(29) 

Dissip:l.tion meanS energy transfer from fields to p:l.rticles; from 

(29), we see that this requires the resonance condition 

W _t . w(J) ;: t. W (J) + tcpwcp(J) +'tpwp(J), (30) 
...... "" g g "" "'" "" 

where (tg' tcp' t p ) are three integers. (This is the generalization 

of w = ~ .. ~ in the uniform plasma.) Note that this condition 

for energy transfer involves the mean frequencies (e g' j), not 

the local ones (~, cP) • That 'this is appropriate can be seen by 
g 

. considering the total change in, say, the gyrophase e g over 

several poloidal periods. 
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IV. NORMAL MODES 

The linearized Maxwell equati?ns are 

\l x 5~(~w) +' iw 5;§(~,w) = 0,' 

They may be written conciselY.as 

where the integro-differential operator K(w) is defined by 
~ . 

(31) , 

We assume that K(w). is nearly a hermitian 0Ferator,. So 
~ 

that the eigenfrequencies of (31) are nearly reai. In Sec. III of 

Ref. 12,we have shown: (1) that the real p:l.rtswa of the _ 

eigenfrequencies, and the zero-order eigenfunctions f(~), are 

the solutions of 

.. " 
where f (w) is the hermitian p:l.rt or . ~(w), for w real; (2) that'-

the growth rates 'Ya of the normal modes are given by 

'Y = a 

where Kit (w) is the antihermitian pu-t of K(w),and the eigeri-' 
~ ~, 

functions are ncrmalized to unit magnitude of wave energy: 

\ 
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{4,,-' roo J d'x t' (~) . d~' {ro)/<lm l . ~(~) 
a 

o - ± 1 • 
a 

The method of Landau and Lifshitz13 may be used to show 

that for a normal mode E(x,t) = a. (t)Ef'(x)exp(-iw t) + c.c., 
"" ....." a '" IW 8 

With the normalization 
2 

(35), the wave energy is W (t) = 0 la (t) I , a a a 

and evolves at the rate 

dW 
a 

dt 

To evaluate 'Ya by (34), we express ~ 

'Y = -0 Jfd3xd3x'~*(x) a a '" ~ 

and use (29) for g'. We then find 

where 

" in terms of a' by (32): 
~ 

a • (x x', ili ) • Ef' (x ) 
;t:; :;:;,I",' a ............ ' 

represents the overlap between the eigenfunction of mode a and 

the ~th Fourier amplitude of the particle current density for 

action :L. For each positive frequency ~ , there is a negative 
a . 

one -ilia with the same growth rate [for ilia ~ -ilia' let ~ ~ -~ 

in (37)]; these are physically the same mode, so we may restrict 
, 

our attention to positive ilia' We note, but do not indicate explic-

itly, that a:t<i) is nonvan1shing only for those !. having tcp 

equal to the az1mutha1 mode number· of t(?S). 

V. Q,UASILlNEAR DIFFUSION 

The continuity equation for f (&~; t) is 

df o· o· dt + de' (~ f) + dJ' (il f) o . 
... '" 

Upon averaging over ~ (denoted here by ( ) ), this yields 

d(ai ) (Jj t) = - ~(~ or) , 

where of is, to lowest order, the linear solution of Sec. III. 

It is here more convenient to write the solution of (22) as 

. t 

Of(&~j t) = - J d-r o.i(i£.,~ - ~ '1"; t - T) • dfJdil' (40) 

o 

with the usual dropping of the initial value term. Substituting 

this into (39), we obtain the diffusion-like equation: 

d( f )(ilj t) d [,dfO .. ] . - ~. D (J. t) . -
dt - oil ~ ... ' d,r' 

(41) 

where 

D'(J· t) 3 
~ ..... ' 

(42 ) 

and the usual Markov assumption has been made to justify the 

evaluation of fO at t 

to CD. 

and the extension of the upper limit 

To evaluate (42), we use (25) and (24a) for each factor ql: 
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{ dT ~(~t) ~(~', t-T)exp(-i i'~)i 

(43 ) 

We assume the perturbation to:be a superposition of normal modes: 

L' (:ito rl a (t)~(x) exp(-:ito t) 
a a ~ ~ a' 

a 

In evaluating (44) at (t,.. T)" we take the slowly varying 

amplitude at t, ,.and" call its c,ontribution to (43) Il(ll;t) ..., 

+ C.C. 

(44) 

(without the prime). The correction can be shown
14

to contribute 

a reversible change to < f }, of second order in the amplitudesj 

it may be interpreted as the particle contribution to the normal 

modes and is already included in the wave energy through (35) .. 
< 

lrne zero,-order part of (f) is f O' which thus evolves as 

,.. 
I 

'lD,(Jj t) 
~-

of oJ 
oJ ' -

with D' evaluated from (43), (44), and (38), (and using 
'" * Lf ~f ): 

(45 ) 

~(l!j t) I 
a 

B[illa - i'~(l!)]a,t(l!)' 

(46) 
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The diffusion tensor (46) is a singular tensor field in 

the three-dimensional l!-space, being nonzero only-on the set,of 
" 

resonant surfaces = ill). 
a Suppose,that the number of 

these surfaces is large, so that the cells in action-space enclosed 

by them are small. Then small nonlinear effects5 serve to spread 

, out the delta-functions in D, so as to make D a ,continuous 
~ ~ 

tensor field. 

A detailed study of the spreading and overlap of resonances 

~' , 6 
has been made by Rosenbluth, Sagdeev, Taylor, and Zaslavski, for 

the problem offield line diffusion due,to static magnetic 

perturbations. 'The entirely analogous problem of g.c. diffusion 

,due to static electric or magnetic perturbations maybe ,treated 

by using (24a) for BH, with no time-dependence, iIi evaluating 

(42), and setting (so tnat magnetic moment is conserved). 

The resonance condition, (1) then reduces to 

o , 

determining a set of curves in the two-dimensional Pcp - J P 

space. As particle energy is conserved by a static perturbation, 

the g. c. random walk in this space must remain in, the neighborhood 

const. Only at the points of inter-

section of the resonance curves with the energy curve can 

diffusion occur., Hence a neces~l condition for net diffusion 

is that the resonance widths overlap. Incidentally, we note that 

the case illa = 0, t, fo 0 represents Arnol'd diffusion .15 
g , 

Returning to the three-dimensional diffusion with time-

dependent perturbation, we derive the entropy theOrem. Defining 

-, 
,j 

J • 
( .'-;....--' 
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we find 

s(t) 

Since S is non-negative, the plasma continues to diffuse 

indefinitely, so long as the resonant surfaces in the action-sp:!.ce 

are populated. In the unlikely event that only the nonresonant 

cells bounded by the resonant surfaces are occupied, one can appeal 

to a.number of effects (finite resonance widths, nonresonant 

instabilities, collisions) to repopulate the surfaces. Of course, 

if the plasma is stable, so that the wave energies vanish, there 

would be no quasilinear diffusion. 

VI. ENERGY CONSERVATION 

The diffusion equation (45), with the diffusion.tensor (46), 

implies a conservation law which will be derived in this section. 

Let us consider the quantity 

which represents the sum of the unperturbed particle kinetic 

energies, twice the Coulomb interaction energy, and the Coulomb 

energy of interaction with the external Coulomb potential (if any). 

(.As before, species su.mma.tion is implicit.) The quasistatic 
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F~miltonian Ho changes adiabatically, as fO diffuses due to 

particle-wave interaction. 

The rate of change of $/ due directly to the diffusion 

3 J 3 ~ . t,D • :~O) (2n) d J HO o.J Vi: o.J 

'" '" 

We substitute (46) for D, and find 
'" 

($/) 
f 

where formula (37) has been used for "y • Thus, by (36), a 

(48 ) 

To evaluate the change of $/ due to the time-varying 

quasistatic Hamiltonian, it is more convenient to express (47) 

tempora:dly as 

where HO is given by (23), with ~o' ¢o· Then 

fd3r fd3p OHO f 
ot 0 

f d3
• f d 3

J fO(~; tl {- r d3x 1(~I~'2l 
+ f "xp(!I,z,~l ~O \btl}' 

o~o 
- (x,t) ot '" 
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by the analog of (24a). Thus, by (18), 

Assuming that the plasma is quasi-neutral, the second terin 

of (49) may be neglected. (If not, the succeeding formulas are 

easily modified.) The first term then yields 

noting 1:haI; the field llo is produced by external currents ~ex 

and plasma.' currents' ( 1 ) O. Since radiation by quasistatic 

fields is negligible, the first term of (5,0) can be written as 

Combining (48), (50), 

d r \'1 
-dt'I' }I(t) + \ W + La 

L a 

d f 3 2 ' - dt d x %(~t») /&!" (51) 

(52) r 

This equation expresses the rate at which the "system 

energy" changes due to interaction with quasistatic external 

currents. The energy consists of three terms: (i) the 

unperturbed particle kinetic energies }I (note that the Coulomb 

energies effectively cancel out by quasi-neutrality); (2) the wave 

-24-

energies W
a

, which include the perturbed field energies and the 

perturbed particle kinetic energies; (3) the unpertu.rbed quasi­

static magnetic field energy (the electric field,energy being 

negligible) • 
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