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ABSTRACT 

The deviations from Kooprnans' one-electron model of photoionization 

which lead to satellite structure in the photoelectron spectrum arc 

examined wi thin the fonnalism of configuration interaction (Cl). TI1C 

mechanisms which contribute to satellite intensity may be classified 

as continUlnn state configuration interaction, final ionic state 

configuration interaction, and initial state configuration interaction. 

The discussion centers around the last two mechanisms, these being 

the prime contributors to the satellite intensity well above threshold. 

Specific examples of theoretical "spectra" are presented for the 

F(ls) region of HF and the Is region of neon. The agreement between 

theory and experiment is found to be excellent. In these two instances, 

initial state configuration interaction contributions -increase the 

satellite intensity and are of nearly equal importance to the final 

ionic state mixing . 

i 
I 
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I. INI1{ODUC'fION 

Photoelectron spectroscopy (pnS) provides a very powerful means 

of studying the internal structure of atoms, mOlecules,ano solids. In 

a very general sense PIS is no different from, for example, optkal 

absorption spectroscopy: the resonant absorption of light takes the 

system from soneinitial state"cliaracterizeo by the wavefunction 'l'i' 

toa final state specified by the wavefunction 'I' f" An important 

difference, hOHever, between PES and many of the other absorption 

spectroscopies arises because the final states observed in PES lie 

in the continuum with respect to ionization'. Absorption of a photon 

thus results in the ejection of at least one electron from the system, 

and it is the kinetic energy and mnnber of these "photo-electrons" 

(rather than the attenuation of the photon bewn) Hhich is experimental] y 

detennined.1hetedmique in this respect is therefor~ akin to an 

emission spectroscopy. 

In the photoionization process the familiar energy conservation 

equation 

hv = Ef - Ei (1) 

must, of course, be satisfied. It is helpful to define a general final 

state reached by absorption of the photon as a superliosi tion of many 

degenerat~ states ~., 
J 

'l'f = ~ cf·~· J -J J 

In this general description we should recognize that there may be a 

"quasi-bound"state cmbc"Jded in the continlllnn at this energy, but 

(2) 

• 
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most of thc available states partition thc total energy, E f , into two 

components: 

Ef , = E. + T. 
J 'J 

(3) 

where E. is the energy ,of an ionic state and T. is the kinetic encrgy of 
J J 

the ionized electron. The measurement of the kiJ~etic cnc'rgy of the 

electron focuses' our attention on a particular state ~)., and wc have: 
J 

hv= (Eo + T.) - E. :: EB
j

+ T. 
, J J 1 J (4) 

where the quantity 14 is defined as the binding energy of the photoclectron. , 

TIle most commonly used experimental procedure is therefore to fix 

the photon frequency and'scan the photoelectron kinetic energy'spectrwn 

for peaks in intensity. Observation of,a peak at an energy T: implies 
J 

the existence of an excited ionic state separated from the initial state 
, ., j , 

by an energy EB"TIlis yields information about the ionic states, of 

the,sample, and, ,to some degree, about the properties of the initial' 

state. TIle probability of observing an electron of energy Tj' given 

by I cfjl2, is related to the cross-section for photoionization. 111is 

provides further i~fonnation about both states involved in the transition. 

It is important to note that if one simply obse~ved the attenua60n of 

the photon flux, the information obtained would pertain to a combination 

of absorption processes involving all the ionic states that arc 

energetically accessible to the radiation. 'DIe average of PES is that 

it allows the 'study of specific ionic states. 

Although an experimental technique which permits one to "catalog" 

the energies of, the ionic states of chcmical species would certainly 
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be of some interc:st to some people some of the time, this feature 

alone could obviously not generate the act.ivity that has characterized 

this field in the past 10 years. TIle interest steins from' the fact 

that the binclingel1C~rgies measured are related, via Koopmans~ "llleorem, 1 
,; 

; 

to the IIartree-Fock .orbita1 energies in the initial state. 111Cse 

one-electron energies playa central role in our understanding of. the 

properties of atoms, molecules, and solids. 111US, ina firstapproxi-

, mation, PES allows one to study "atomic orbitals", "molecular orhitals", 

and the "onec.e1ectron density of states". 2 . As the field matures, 

however, more and more examples of strictly many-electron effects arc 

being discovered. Perhaps the most dramatic example is the observation 

of satellite stnlcture associated with each "one-electron" (primary) 

peak. 1bese satellites are strictly. forbidden within Koopmans' . one-

electron model, but are sometimes' as intense as the primary peak. 

This thesis will·dea1 primarily with the. theoretical description 

of these satellite states in free atoms and molecules; i.e., their 

energies, the transition probabilities for reaching them via photon 

a.bsorption, and the additional information they provide about the 

electronic structure of the system w1der study. Many of the results 

which emerge are also applicable to other eXl)erimental tedmiques 

which deal with ionic states--e1ectron inlpact ionization (e,2e), and 

X-ray emission, for exmnple. In Olarter II the basic theoretical 
; 

fOTIllalislll for the interaction of the radiation. field with an N-e]ectron 

system will be reviewed. 111e nature of the wavefunctions used to 

describe C'lectronic states is presented in Chapter III, along with a 

discllssion of -Koopmans' 'l11CoreIll and "hole state" Hartrec- fock calculat ions. 
;~') 

. , , 
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In Chapter IV, .thephysical concepts whic1~ emerge ·from a study of these 

wavcfunctions will be used to characterize theiohic states -observed in .. 

PES, as well as to provide-qualitative guidelines asto·themeC:hanisms 

through which they acquire intensity. Chapter V analyzes'many-electron 

effects in the photoionization cross-section in terms 6f the logical 

hierarchy of· approximations corrunonly· employed in electronic struC:tur.e 

calculations. Sum rules which re,late intensities and energies are 

also discussed. Specific cases of satellite structure in'HF and neon 

are presented in the final two chapters, VI and VIII. 

., 
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2. To be more specific, the binding energies of the primary peaks are 

approximately given by the one-electron eigenvalues of the 

canonical Hartree-Pock equations for closed shell (and some classes 

of open shell) systems. 111e canonical eigenvalues are but one 

of an infinite number of equally acceptable solutions to the 

Hartree-Fock equations. In practice, with the exception of atoll1ic 

species, one usually furthennore expamls the solutions in a 

finite basis set. To slD11J1larize: the binding energies are 

approximately given by the approximate eigenvalues of an approxjmately 

correct Hamiltonian. The most casual reader should now have no 

problem in understanding many of the advantages of PES vs other 

spectroscopic techniques. 
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II. INTERACTION wrIll 'n IE RJ\DIATION FIEU) Ai-1D PIIOTOIONIZ/\TION 

We begin by briefly reviewing the semiclassical treatment of the 

interaction of radiation with matter. 1\..<; Schiffl points out, the tenll 

"semiclassical" refers to ~he assumption that the radiation field 

may be treated classically (within the framework of ~laxwell 's equations), 

whereas the system of particles is treated quantLUn-mechanically. 111i5 

approximation has the advantage of simplicity and, for the absorption 

of radiation, gives the same results as quantlllTI field theory. 

A. TIle Dependeilt Perturbations and Fenni' sGolden Rule 

Consider a system of particles in a stationary state of a time-

independent electrostatic HamiltonIan JCO. At some time t l , a 

time dependent term is introduced which represents the electromagnetic, 

field. The field is assumed to be weak enough to be considered a 

small perturbation, but this disturbance may induce transitions to 

other stationary states of the particle Hamiltonian. 111e methods 

of time-dependent perturbation theory can be used to learn the 

probability that the system will be found in one of these states at 

some later time t 2. 

1he statJ;onary states; ~/n' of JCO satisfy the Sdlrodinger equation 

JC ~I o n 
= E '!' 

nn 
(5) 

aJld have a simple oscillatory evolution In time 

- (i/Il) E t 
'!' (t) = e n '!' (6) n n 

~ 

.... 
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A general solution of the equations of motion 

(7) 

for some arbitrary state 'l'(t) can be written 

'l'(t) = 
- (i/h) E t 'n 

L c e 'l' 
n n n 

(8) 

2 The square modulus of the coefficient, Icnl , IS independent of time. 

It gives the probability of observing the superposition state, 'l'(t), 

in some .eigenstate 'l'n. 

If a time dependence IS present in the Hamiltonian; i. e., if 

J( = J(O + Vet) (9) 

then Eq. (8) is no longer a general solution of the wave equation. 

In fact there are no longer actually any stationary states. However, 

the fonn of the Hamiltonian \1e have chosen (Eq. (9)) implies that it 

still maybe useful to e)..-pand the general solution in terms of the 

complete set of stationary states associated with J(O. 11ms the 

solution is still given by Eq. (8), but we must now consider the 

expansion coefficients to be time-dependent. 
I 

Substitution of Eq. (8) into the Schrodinger equation 

itl dlftt) = JC'¥(t) 
dt 

. l] . t' f' '} . ff·· 2 Yle <. s equa Ions 0 . motIon govenllng t 1e expanSl.on coe. lClents. 

dck(t) i~ t 
-<.tl (It = L c (t) V

k 
e n 

n n 11 

(10) 

(11) 

, \ 
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where Vkn is the. matrix clement of the perturb~tion between the 

unperturbed states, 

(12) 

and 

(13) 

From this point we proceed as usual in perturbation theory. TIle 

coefficients for which we wish to solve are expressed as a power series 

ln the perturbation, usually taken only to first order. Integration 

of this equation yields a probability amplitude for observing the 

arbitrary state ':I'k. 

In anticipation of the nature of the specific perturbation to be 

considered later, we note that if the system is originally in some 

eigenstate, ':I'i' of JeO' and if the perturbation depends harmonically on 

. the time, 

, (14) 

then the probability of finding the system ln an eigenstate ':I'k 

which lies in the continuum, i.e., /ck(t)/2, is directly proportional 

to the time that the perturbation has been active. It is also k.Jlown 

that because the Hamiltonian is time-dependent, there is a finite 

probability that transitions will take place to final states ':I'k for 

which the energy conscrvlltion equation w = r~- Ili is not satisfied. 

As t increases, however, the transjtion probability sharply "peaks" 

about that,state or group of states for which the energy conservation 

equaUon is satisfieu. For the photoionization problcms we arc 

L' 
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interested in we may safely assume the latter concli tion, which finally 

leads us to a transition probability per unit time: ; 

(15) 

TI1is expression IS known as f.enni's"Golden Rule No.2". Here Pk . 
+1 

is the transition probability per unit time for the process lJ'i -+- IJ'k 

(with Ek == Ei +JJW). TIle teI1n perl) is the density of final states 

with energy Ek . 

B. The Classical Radiation Field and the 
Photoelectron Cross Section 

In order to use Eq. (IS) to calculate the transition probabilities 

induced by the electromagnetic field, we must decide upon the fonn of 

the perturbation v. It is possible to show by correspondence argwTIents 

that the Hamiltonian describing a system of spinlessparticles of 

charge -e and mass m in an electromagnetic field is given by 

( 

• Of 2 2) -.ihe ..{. Ie e 
JC = JC + -- 1/. A - - A· 1/ + -- I A I - e¢ o '2mc - - mc - - 2 2 mc 

(16) 

Although we are not specifically interested in spinless particles, 

the interaction between the spin of the electron and the incident light 

wave is negligible. TIle opera tor 'JC
O 

represents the I~arni1tonj C:1Il: describing 

the particles in the absence of the field, and the vector --i.hV is a 

sun of momentwll operators for the individual particles 

\l = E (1/ . ) 
- i- 1 

(17) 

111e radiation field itself is described by the vector potential ~ and 

a scalar potential tP. 111ese are related to the electric amI magnetic 

• 
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field strengths, ~ and ~, by 

E = - ! ~ A· - V<p 
- c at -

(18) 
H = Vx/\ 

There is SOllle flexibility 1n choosing the potentials which define the 

field, and, for fields such as those associated with a light wave, 

it is conunon to work l!l the Coulomb gauge. In this case we have 

V-A = 0 

<P == 0 

Since we have asslllned that the field is weak, we furthennore neglect 

the tenn in IAI2, and fiJ1ally obtain: 

or 

JC == Je
O 

- .-the A- V 
mc - -

Vet) -.-til e A-V 
mc 

Now the vector potential for radiation propagating 111 the fonn 

of a plane wave of ,vave vector g and frequency w can be written 

I -.-tg -:: .-twt .-t~r:: -.-twt) 
A == uI\ \e e + e e . 
- - 0 

(19) 

(20) 

(21) 

(22) 

where u is a W1it vector specifying the direction of the electric field 

vec:tor (the polarization), and AO is the amplitude of the potential. 

111e intensity assodated with this plane wave is related to the· square 

of the amplitude: 

2 . 
I = ~_ /\2 

211C 0 
(23) 
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Since the perturbation is hannonic anti we are considering a final state 

'¥k which lies in the coritinuum, we can suhstitute [qs. (21)-C23) into 

Eq. (15) and find that 

P
k 

. 
+1 

. (24) 

This is an expression for the transition probability per unit tjmefrom . 

state '¥ i to state '¥k with F1c > Ei .. Only the second component of the 

vector potential (Eq. (22)) has contributed to this result. 

This probability is generally expressed in a somewhat different 

fonn. The cross section, 0, is defined as, the t9tal tran~ition 

probability per w1it time divided by the incident photon flux. l11is 

flux is sjmply the intensity of the electromagnetic field divided by 

the photon energy. A more convenient quantity, however, is the 

differential cross section for ejection of an electron in a small solid 

angle, drt, with respect to some axis, e.g., that of the electric field 

vector. This is given by 

(25) 

where p(ric) is the density of final states corresponding to the given 

solid angle. 

TI1is completes the development of the cross section for photoionization 

in a purely fonnal way. TIle JlIaj or assLUllpt ion which has been made thus 

far is t]1at the interaction between the electrons and the electromagrietic 

field is small enough that it can be treated in first order. l11C final 

asslnnption about the field \vhich we have not discussed thus far, but 

• 
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is generally made, involves the exponential factor in the matrix 

element (Eq. (25)). It can be eXpanded in the series 

-<..qor 
e + • • • 

If only the first tem in this swn is retained, the resulting 

(26) 

simplification is kilo\\I'Il as the "dipole approximation". Since the 

momentWTl of the photon is directly proportional to q, it is sometilncs 

referred to as the neglect of photon momentum; this omission will 

obviously become less acceptable as the photon energy increases. For 

the purposes of PES, the dipole approximation should be rather good 

as long as q «k, where k is the wave vector of the photoelectron. 3 

• 
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III. TIlE WJ\VEFlJNllIONS 

Let us now cons ider the eigenstates of the electrostatic 1-13mil toni~n 

in the absence of perturbation. In systems Containing two or more 

electrons, exact solutions of the Schrodinger equation do hot exist, 

and we are forced to seek appropriate approximations. A.s the structure 

of the final ionic states and the mechanisms from which they derive 

oscillator strength are usually interpreted in the language of these 

approximations, it is helpful to examine in some detail what they imply 

about the electronic structure of the system and the nature of the 

ionization process. 

The wavefunctions which we seek are eigenstates of the non-relativistic 

electrostatic Hamiltonian for an N-electron system in the field 9f a 

nucleus of charge Z, 

N 

JeO = L [-1/2 vi 
i=l 

N N 

;.] +LL 
1 i j>i 

1 
r .. 

1J 

The firsttenn in brackets represents the kinetic energy and nuclear 

attraction operators for the ith electron and the last tenn is the 

Coulomhic interaction bet\Veen electrons i and j.l 

(27) 

Nearly all work on this problem involves the use of -the Variation 

Principle. 111i5 approach employs an approximate fonH for the N-electron 

wavefunction that contains adjustable parameters which are then varied 

to minimize the e)q)ectation value of the lIamiltonian. As long as 

2 certain conditions arc met, the energy found in this way must be an 

upper hount! to the actual energy, and the optimized parameters define 

the' he'st approxlmation to the true w:lVefunction available within the 

confine's of that particular model. If several models arc compared, 
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and the calculations are ali inHio in the sense that no empirical or 

semi-empirical "fiddling around" is done in the variation, then the. 

model which yields the lowest energy must, therefore, yield a more 

accurate wavefunc:tion. However, it is not necessarily the" case that 

the expectation values of operatorsotfier than the Hamiltonian converge 

to their exact values ih the same manner that the energy docs. 

Chapter VII contains an example of a situation where a relatively 

large improvement in the energy has a negligible effect on satellite 

.intensities computed from the wavefunction, whereas an additional 

small decrease in the energy leads to a great improvement in the 

intensities. 

A. One-Electron Models 

The one-electron approximation lies at the heart of our qualitative 

understanding of electronic structure and is nearly always the starting 

point for further refinements in the theory. TIle basic assumption is 

that the N-electronwavefunction can be expressed in a fonn which 

involves N one-electron functions. The simplest wavefunction of this 

type is the Hartree product, in which the motion of anyone electron 

is asslUlled to be completely independent of the others; i. e. , 

(28) 

TIle spin orbital <Pl(l) is a function of the coordinates of electron 1, 

and is the product of a spatial function, xl (r1,81'<Pl ), and a one..:. 

electron spin fWlCtion, 0.(1) or SCI). 

If we assume the 1Il0tion of each electron is governed by a central 

field, the one-electron funcbons will be hydrogen-like. 111e {X} arc 



-16-

thus products of a radial function and a spherical hannonic, 

·(29) 

The quantum numbers n, t and rn are the saJJle as those in the hydrogen 

problem und so we speak of the orbitals as being s, p, or d-like, etc. 

TIle radial function JR nt (r) is regarded as adjustable amI application 

of the variational technique (subject to the constraint that the 

radial function should remain nonnalized to unity) leads to a set 

of N integro-differential equations whidl detennine the optimum sct 

of orbitals {</>}. Each such orbital must satisfy a pseudo-SchroJingcr 

equation for an effcctive Hamiltonian in which the potential is 

provided by the nuclear attraction and the spherically-averaged 

Coulombic interaction with all the other electrons. 11icse equations 

are solved iteratively, since the potential in which a specific 

electron moves depends on the other, as yet uncletennined, orbitals. 

When (or if) convergence is achieved, the final potential is knmvn 

as the self-consistent field. 

·1ne Hartree product (Eq. (28)) suffers from the serious drawback 

that it does not satisfy the requirement of antisynmletrythe exact 

wavefunction must obc)'; interchange of the coordinates of two electrons 

does not result in a change in the sign of the wavefunctions. TIle 

simplest waveftmction for a closed shell atom which preserves the 

product fonn of Hartree but satsifies the antisynnnetry requirement 

is givcn by Eq. (30): 

(30) 
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A(N) is called the N-e1ectron antisynUTIetrizer and pennutes the 

coordinates of the electrons in the direct product. Its effect is 

niore explicitly seen in the equivalent fonn of the Slater determin:mt:: 

'i'O(N) 
1 = ----,; .......... 

(N!) 1/2 

4>1 (1) 4>2 (1) 

4>1(2) 4>2(2) 

When the detenninantal function above is subjected to variation 

(31) 

(constraining the {4>} to remain nonnalized and orthogonal), the familiar 

Hartree-Fock equations result: 

N/2 
F4>. (1) = "'" E •. cP . (1) 

1 L..J 1J J 
(32a) 

j 

The E.· are Lagrangian multipliers which preserve orthogonality amongst 
1J 

the orbitals; the swn runs over all N/2 spatial orbitals cp.. The 
J 

Fock operator is given by 

F = h + L 2J. - K. 
j J J 

with the one-electron and Coulomb operators defined by 

h = -1/2 vi - zlrl 

J. (1) = f¢\l) --1_ cp.(l) dTI 
J J r 12 J 

(32b) 

(32c) 

(32d) 
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The exchange term is represented by an integral operator; i.e., 

K.o (1) <P 0 (1) = ! s <P ~ (2) 1 <PI" (2) th21 <P
J
o(1)·· 

J . 1 J r 12 ~ 
(32e) 

Thc reason we have written out the Fock cquations explicitly 

1S to point. out the presence of the Lagrangian multipliers, cij " It 

can be shmm that if the one-electron spin orbitals arc subjected to a 

unitary transformation, the total wavefw1Ction is unchanged, and the 

fonn of the Hartree-Fock equations is also invariant. l11Crefore, the 

spin-orbitals are not uniquely detenninecl, the caution should be 

employed in placing too great an importance on the "physical nature" 

of these one-electron functions . TIle fact that many of the final ionic 

states important in PES can be described in terms of the ionization 

of an electron from a specific orbital rests on the success of Koopmans' 

l11eorem4 as a fairly accurate first approximation to the ionic statc. 

KOOpnk111S, however, realized that there is an optimum set of spin 

orbitals for describing ionization; the canonical set. which result 

from that particular tillitary transfonnation which diagona1izes the 

Lagrangian multiplier matrix It is fortunate that Koopmans' 

111eorem works as well as it docs; however, situations <ll'j se for which 

one-electron descriptions are no longer adequate (as is true for the 

case of satellite structure in PES, to be discussed later). Rigorously, 

we can only say that photoionization takes a system described by one 

many-electron wavefllnction to a final state characterized by another 

many-electron waveftillction. 111e canonical H,utree-Fock orbitals are 

"special" for describing this process because they happen to lump IIIOSt 
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of the "many-e] cctron" effects into one orbi,tal. 111is is di scussed 

further in Section C. 

Although we have been discussing the Fock equations for an atomic 

system, upon the aSSUlTII)tion of, the Bonl-Oppenheimer approximationS 

all principles carryover into the molecular case. lhe onJy modification 

is. that numerical integration of the Fock equations becomes very 

impractical and we are generally forced to resort to still another 

expansion, 

cpo = r C.kllk 1 k 1 

The functions {ll} make up what is known as the basis set. It is general] y 

regarded as fixed, and the variation is perfOImecl on the expansion 

coefficients {C}. This leads to the Hartree-Fock-Roothaan equations. 6 

In the limit of a complete basis set, the orbitals found by this 

method approach the Hartrec-Fock orbitals. In actual practice, however, 

the basis set llIUSt be of a very linlited size and thus' selection 

of a basis which is flexible enough to describe all the {¢} accurately 

is a very important step in the calculation. 7 

B. Correlation and Configuration Interaction 

We now turn to the final refinement 'in the fonn of the wavefunction 

'which allO\vs one, in principle, to approach the exact wavefunction to 

any degree of accuracy desired. 8 11lC particular method we shall 

describe is not the only one available for correcting the shortcomings 

of the Hartree-Fock function, but it is the one in most COllUllon use by 

quantum chemists. 11Iis model is teTIlIed configuration interaction (CI), 
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so-called because in the early days of quantlDTI mechanics it was felt that 

the IIClrtree- Fock wavefunction was not exact because of its interactioil 

with lOW-lying excited states. It has since been recognized that this 
, " . 

is not the case. ' TIlC a~surnption of the central field and the sphcrica lly-

averaged potential, while accounting for the, long range portion of the 

Coulombicinteraction, does not allow for the description of the short 

range instant'::meous' repulsion between, el,ectrbris'. TIie 'CI concepts 

introduced below will be used in the' di~cussion of the cross, section " 

in Chapter IV.: , After the fOllTlal~smis qevelop~d, the types of con

figuration~ 'iJi1l;ortant for correlating~arious systems, will be discussed . 
... :,.'':. 

1nefC';Clre,an infInite number' ofsb1:l1flons'·to, the Ilartree- Fock 

Eqs. (32) in addition to those \vhich are occupied in the Hartree- Fock 

detellllinant. ,TIlese l~occupied soluti;ons aretenned the virtual 

orbitals. Obviously, an infinite number of Slater detenninants can 

be fonned by "exciting" electrons from one or more of the Iiartree-Pock 

orbitals into virtual orbitals, and the exact wavefunction can, therefore, 

be e:>qmnded in this complete set of Slater detenninants. 1nus the exact 
I 

wavefunction can be written 

(33) 

where the Sc arc the eA"pansion coefficients (again generally determined 

variationally) and ¢k represents a specific Slater detenninant. 'This 

aclded flexibility usually results in a decrease in the energy of the 

w<lvefunction of less than 1%, but even this is often large compared 

to electron affinities, reaction energetics, and other properties of 

interest to the chemist. Furthennorc, although the Hartree- rock 
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electron density for a closed shell species can' be shown to be 

unaltered by C1 in the first order of perturbation theory,9,10 

changes in the charge density brought about by higher orders arc 

often very important in.the compu;tation of dipole moments, the 

electrostatic field at the nucleus, etc. 7 

111e exact form and convergence properties of the CI wavefunction 

are dependent of the orbital basis employed. For closed-shell systems 

such as the neon atom, the Hartree-Fock detenninant dominates all 

others. TIle remaining corrections have been termed "dynamical 

correlations" by Sinanoglull and can be shown to primarily reflect 

short-range correlations in the motion of two electrons. 1110 

inclusion of such effects thus keeps the electrons farther apart 

the reduces the energy. In the IS ground state of the neon atom, 

e.g., this correlat.ion energy has been estimated12 to be 10.37 eV 

compared to the Hartree-Fock energy of 3497.73 eV; a difference of 

approximately 0.3%. 

In open-shell atoms and molecules, fundamentally different types 

of CI oc~ur. In many cases, it is not even possible (within the usual 

assumptions of douhly":occupied spatial orbitals) to write a single 

detenninrult which possess the correct symmetry for the state in question. 

EVen at this level, the concept of the one electron in a particular 

orbital'must often be abandoned.· 111e asymmetry of the Coulomb 

field means that it is no longer accurate to speak of individual 

electrons possessing specific angular momenta as was the case for the 

closed-shell central field. In addition, relatively large CI effects 

appear which are characterized by excitations from the IIartree-Pock 

orhitals into virtual orbitals that are "nearly degenerate" with them. 
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II. 1 tIle 2s2 -+ 2p2 exc1· tat]·.on 1· s . t t fIt" ft.'; an examp e, _ very ] mpor an or corre a "1ng . 

the ground state of Be. Qualitatively, this type of configuration 

interaction is in essence simply rel,lxing certain restrictions which 

arc placed 0Ii. the one-electron functions in the traditional lIartree

Pock method;e. g., forcing the spa ti al orbital -to accOTmnoda te both 

an a and B spin electron, requiring the orbitals to have a specific 

angular momentuJIl, etc. It is not surprising, then,that many extensions of 

Hartree-Fock theory which rela'( these restrictions and yet ,retain a 

"one-electron" like approach are fairly abundant. 7 

A particularly useful categorization of correlation contributions 

to the wavefunction has been given by McKoy and Sinanoglu. 13 11lese 

authors begin by partitioning the one-electron orbital space into two 

distinct regions. The first is tenned the "I1artree-Fock sea". It 

consists of the orbitals which are occupied in the Hartree-Fock con-

figuration and those which are nearly degenerate with the Hartree-:-Fock 

set. For example, in Be the sea (also sometimes calleel the internal 

set) consists of the Is, 2s, and 2p orbitals. In a molecule the internal 

set is usually defined as all those molecular orbitals which origiryate 

from "internal" atomic orbitals. That is, the internal set in'a first 

row diatomic \\'ould consist of the six sigma and two pi orbitals which 

are fonned from the Is, 25, and 2p fWlCtions on the constituent atoms. 

The secoml region (the external set) contains all those orbitals 

not included in the Hartree-Focksea which arc necessary to fonn a 

complete space of one-electron functions. Correlation is then divided 

into three categories: 

\ 
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(a) . Internal correlation--a rearrangement within the Hartree-Fock sea. 

Two electrons make a "transition" from orbitals occupied in the 

Hartree-Fockconfiguration to virtual orbitals within the sea. 

l11is type of 'correlation is usually the most important cr effect 

2 2 l.n the sense of large mixing coefficients. The 2s -+ 2p excitation 

in beryllium is an example. 

(b) Semi-internal--one electron is excited within the sea while another 

goes into the external space. Certain distributions of this type 

are responsible for the orbital polarization necessary in open 

shell systems to correct for the assumptions of a central field. 

In terms of mixing coefficients, this effect is generally smaller 

than internal correlation. 

(c) External- -two electrons arc excited into the external space. 11lOse 

excitations can have important consequences on the energy, but 

usually lead to small mixing coefficients. The ground state of 

the neon atom is a case ", .. here this' is the only correlation mechanism 

possible. 

In introducing these topics, we have defined the categories in terms 

of two-electron excitations relative to the Hartree-Fock configuration. 

In the most general form, 'one speaks only of distribution of elections. 

If the system contains N electrons, the internal contribution corresponds 

to distributing N electrons in the internal space in all possible ways 

(consistent with the Pauli principle, the synunetry of the state, etc). 

The semi -intenml configurations come from all distributions of the 

type' (N - 1). tel) t' and external correlation effects arc embodied 
In ex 

in the distributions (N - 2). t(2) t. , , 'In ex 
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The importance of this classification is that the first two 

contributions (a and b) are the structure dependent correlation terms; 

they are a flUlction of the orbital structure of the state in question, 

its symmetry, etc. The external contribution,however, is more 

nearly a description of the "instantaneous" repulsion of a pair of 

electrons. McKoy and Sinanoglu term it a dynamical effect. It is 

the portion of the correlation energy which can be described in terms 

of 1/2(N)(N - 1) "pair" correlation energies which are roughly 

transferable among states of differing N and symmetry. 

c. Koopmans' Theorem 

The result which Tjallings Koopmans obtained for the ionization 

potential of an electron is certainly well known. It would seem to 

this writer that he is probably the most reference~ economist in the 

chemistry and physics literature. 14 It is less widely understood 

exactly what it is that Koopmans was trying to show. This subject is 

treated briefly in this section. 

Earlier; we mentioned that because the Hartree-Fock determinant 

is invariant under a unitary transformation of its orbitals, it is 

not immediately obvious which set of orbitals is the most ''physically'' 

meaningful. Let us assume that one set of orbitals, -denoted by {~}, 

has been fOlUld, and then address ourselves to the problem of ionization 

by construction all the primary ionic configurations which can be fonned 

from the set {~}. If we have N electrons in the initial state, we will 

have N/2 spatial orbitals (~l • • • ~N/2) and N/2 primary ionic 

configurations: 

.. 



... 

0 0 ~} 
,f",,; 

t;;~~ S () 6 "'~~ ., 9 u .. ..;; • 

- 25-

in each of which we have "ionized" an electron from the spin-orbital q) .• 
1 

'I11e bar above the orbital denotes a beta spin function. 

The binding energies will be given by 

where EGS(N) is the total Hartr.ee-Fock energy of the ground state. lhese 

ionization potentials will depend on our original choice of orbitals 

through the last term, and the best wavefunction for the lowest ionic 

state of a given symmetry can be found by minimizing the last term .. 

When we restrict the space available for the variation to just the set 

of occupied ground state orbitals, we can write the optimal orhitals 

{</>'} in terms of the ground state orbitals: 

</>' = U¢ (36) - --
Kooprnans showed that the transformation U which minimized the ionic 

state energy was the one which diagonalizes the Lagrangianmultiplicr 

matrix 1I1 Eq. (32) and results in the canonical orbitals. TIle familiar 

result is that ~he binding energy for orbital i ·is given in this 

representation as -E: ..• NewtonlShas emphasized that· this variational 
11 

approach provides an upper bound to the energy of the lowest ionic 

state of a given symmetry only. 

There is another feature of the canonical orbi talswhich makes 

them particularly. useful. for descrihing ionizubon. If \ve form the 

Hamiltonian nntrix of the primary ionic configurations in terms of an 

arbitrary orhital set, it will in general not be diagonal 
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1nis follows from the Slater-'Condon rules for detenninantal wave functions 

which differ by a sillgle orbital replacement. Note that the term on 

the right is simply an off-diagonal clement of the N electron Fock 

* matrix. 'Inus we find (multiply Eq. (32a) on the left by cpo and integrate 
J 

over all space) 

F .. == <cp.IFlcp.) = E •. = - <~I-iIJCI,¥-j) 
J 1 J 1 1.J 

. TIlis important relationship means that by choosing the orbital set 

which diagonalizes the Lagrangian multiplier matrix, we have also 

effectively diagona1ized the CI matrix of all the primary ionic 

(38) 

f
. .. 16 

con Iguratlons. Thus, canonical Hartree-Fock orbitals are "special" 

for describing ionization because they anticipate a "zeroth-oruer,i 

orbital relaxation in the final state. 

To illustrate this point, consider the transition from the. growld 

state of the mulecule carbon monoxide (1L:+) to its first ionic state 

2 + possessing L: character. TIlis transition can be descrihed fairly 

accurately in terms of the ionization of an electron from the canonical 

orbital 50. This "molecular orbital" closely resembles a "long pair" 

on the carbon atom, but it has an appreciable amplitude on both atomic 

centers. 'nIe delocali zed molecular orbitals of CO can be transfoI1llcd 

into a completely equivalent set \vhich arc largely localized and 

d · } I . 1 ' f ]. '. 17 correspon to tle c aSSlca concepts o· e .cctron paIrs. A description 

of the same transition in tenns of these localized orbitals could he 

obtained by diagonalizing the primary ionic configuration matrix. 1ne 

-. 



o 0 ~) o t', 
U .h ":or ..... .., 

-27-

o 

2 + . 
energy of the lowest Estate would be the same as that predicted by 

the Sa cannonicalorbital energy; the eigenvector corresponding to 

the state would be a superposition of primary ionic states, and we 

would be forced to talk about ionization of "part of an electron" from 

the carbon "lone pair", another fraction of an electron from a carbon-

oxygen "bonding" orbital, etc. In this representation the transition 

must be referred to as a many-electron process whereas it is adequately 

described as a one-electron process in the canonical representation. 

The same arglUnents apply to Bloch vs Wannier functions when discussing 

a solid. This point has largely been unappreciated by photoelectron 

spectroscopists, and the question of what constitutes "many-boqy" 

effects in ionization is meaningful only within the context of a 

specific representation. 

D. McDonald's Theorem and "l\SCF" Calculations 

111efirst step in moving beyond Koopmans' descriptjon of a primary 

ionic state is usually what is termed a "LlSCf" calculation. Phil<?sophically, 

it is identical to Koopmans' approach of minimizing the energy of the 

.'. ionic state. The new twist is that, as opposed to limited variation' 

(just in the space of the occupied ground state orbitals), one uses the 

entire orbital space (occupied + virtual); in other words, a separate 

Hartree-Fock cCi.lculation is done for the ion and the binding energy is 

obtained as the difference in the total energlcs of the two states 

involved. 

In a purely fOl11lal vein, this increased variationalflexibili ty 

must result in a decrease in the binding energy (a rehlxation energy) 

compared to Koopmans' result; More importantly, the relaXation energy 

has a very physical interpretation. It reflects an additional 
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rearrangement of the electrons in the system to shield the positive 

hole left by the ionization event. This response is a function of 

the molecular envirormlent, and relaxation can have important con-

sequences in phenomena such as the chemical shift and multiplet 

I " " 18-20 As "II " 1 1 "" 1 "I sp Ittlng. we Wl see In a ater c lapter, It ]5 a so responsl )le 

for one of the mechanisms which populate the satellite states observed 

in PES. Furthermore, the relaxation associated with core orbital 

ionization can be shown to be very similar t'o the orbital rea rrange1l1ent 

which occurs in one of the most fundamental acid-base reactions: 

proton attachment. This relationship, when combined with the effects 

of changes in the initial state environment, means that shifts ]n core-

level binding energies In a series of molecules can be related to the 

shifts in their proton affinities; a cormection which provides insight 

into both core-level shifts and chemical reactivity.2l-23 'I1ms orbital 

rclaxation plays an important role in PES as well as in other situations. 

In carrying out the 6SCF calculations propos cd above, a problein 

arises which has its origins in McDonald's Theorem. 2 It can be 

slUmnarized as follows: the N roots of the secular equation which 

results from applying the variation principle to a model flUlction of N 

parameters necessarily yicldupper bOWlds to only the" N lowest exact' 

solutions. 

McDonalJ 's 111eorem is oftcn used to argue that SCF and C1 

calculations on highly excited holc states of atoms and molecule.s arc 

not necessarily upper hOWlds. For instancc, the Is hole st'atc in 

" "2 neon l1es well above all the exCl ted states of S synmlctry based on 

the 2s hole state (inCluding the continuum of "shakeoff" states). In 

. ... 
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order to guarantee a rigorous upper bound to the energy of this state 

we would have to include at least as many configurations as there are 

lower states (an obvious technical difficulty since this munber is 

infinite), or, alternatively, constrain the Is hole state wavefunction 

to be orthogonal to the exact wavefunctions of all the lower states 

(another non-trivial problem). In spite of thesedif£iculties, it'is 

possible to do Hartree-Fock and configuration interaction calculations 

on these states that converge to a reasonable energy, and which 
, " 24 25 

(when compared to experiment) appear to provide upper bOWlds. ' 

Bagus24 has pointed out that this implies we have 'extremely closely 

satisfied the criterion of orthogonality to all lower states, a 

result which adds even more support to the shell model of electronic' 

structure. 

This author has never experienced any convergence or "variational 

collapse" problems in calculations on hole states in atoms. 111is 

is also the case for core levels in molecules,but not so for the 

, valence molecular orbitals. The valence hole states of carbon monoxide 

serve as an explicit example of these problems. CO has 'the ground 

state SCF occupancy 

Although there are no problems in obtaining an SCF solution for the 50 

hole state (the lowest ionic state of 2L;+ sylrunetry), the 40 hole state 

,gradually collapses into the 50 hole state during the course of the 

SCF iterations, as shown in Fig. 1. 

111ese SCF results were obtai.ned by an "rumihilation of singles" , 

procedurc26 utilizing a root-shifting technique suggested by Grein amI 
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27 Chang. While this root-shifting trick slows down the collapse, it 

does not prevent it. It is interesbng to note that the 40 hole 

state initially drops very quickly from the Koopm;lns' l11CorclIl value, 

appears to level off a bit, and then collapses into the 50 hole state. 

At first sight, one might expect a plateau to be a rather good 

approximation to the relaxed ionic state, and \'lith a larger shift one 

can dmnp the collapse even more. It \'Iould be hazardous to concluue, 

however, that this plateau represents an upper how1d and one would 

have to treat the solution with skepticism. In fact, a comparison 

of the binding energy predicted by the plateau (16.5 eV) vs the 

experiJnental result (19.8 eV) is not encouraging, since most ~SCF 

calculations employing a basis set of similar quality reproduce valence 

level binding energies to within ±l. 5 eV. 
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FIQJRE CAPTION 

Fig. 1. An example of variational collapse is provided by plotting the 
. , -1 

energy of the carbon monoxide 4a SCF wavefunction vs the number 

f 1 b " '1 " " 28 o natura or Ita IteratIons. The energy quickly' drops from 

the Kooprnans' Theorem result (iteration 0), appears to be 

converging, and then collapses into the solution for the Sa 

hole state (the lowest ionic state). 111e plateau does not appear 

to provide a reasonable approximation to the 4a hole state 

(see text). 
I' -.., 
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IV. TI-lE PINAL STATE IN PIIOTOIONIZATION 

In Qlapter II we emphasized the fact that photoionizationis a 

transition between two states characterized by N-c1ectron waVeftulctions. 

In order to obtain some physical insight ,into the processes leading to 

the final states observed in PES, we must at ,least begin by discussip.g 

the transition in terms of a one-electron orbital model. TIle particular 

failures of the one-electron picture will become apparent later. 

A. The Primary State 

The most intense peaks observed in photoelectron spectroscopy 

involve, to first approximation, the ionization of an electron from a 

specific canonical spin-orbital in the atom or molecule. These priII1:1.ry 

states,are the ones roughly describable by Koopmans' assumption, in the 

sense that the electron density in the ionic state rescmblesthe 

original system with a "hole" in the region of space which characterized 

the orbital. The continuum fWlction for the outgoing photoelectron 

must be chosen such that the N-electron final state satisfies· the 

dipole selection rules. Thus ionization of the Is electron in neon 

is described by a final ionic state of 2S symmetry, coupled to a 
1 . 

continUlUll function ofp symmetry, which gives P symmetry for, the entire 

system. TIle most important channels 1n the ionization of the 2p electron 

involve s or d waves coupled to a 2p ionic core, again yielding a 1p 

total final state. In a situation such as this, a completely general 

treatment should allow the sand d chalmels to mix. TIlis could be 

tenned a continuum state configuration interaction (CSCI) between the 
1. ' 

two P flnal states. With an appropriate choice of continuum functions, 

however, this intra-channel coupling can be eliminated;1 as a general 
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rule of thwnb the ~ -~ ~ + 1 channel dominates the photoionization cross 

section well above threshold (2100 eV). " 

B. Satellite States 

Toward higher binding energy fromeach'of these prin1'lry peClks 

there are generally satellites which reflect the presence of "shake-up" 

states. There are, in general, an infinite mnnber of such states 

associated with each primary state, but only a few of them have 

observable intensities. 111ey can, in favorable circum.stances, he 

20-80°0 as intense as the primary peak. The first satellites observed, 

and assigned in X-ray photoelectron spectroscopy could be described 

as one-electron excitations accompanying ionization. These excitations 

followed "one-electron" monopole selection rules, e.g., ionization of 

the neon 15 electron accompanied by the excitation of a 2p electron 

into a 3p orbital. This monopole mechanism results in an ionic state 
, 2 

of the same angular momentlun ( S) as the primary hole state and a 

, 1 
continuwn function of p character, yielding the overall P synunetry 

required by the dipole selection rules. 

Al though the orbital picture described above is corlU110n1y used, 

compared to the primary states these "shakeup" states arc much less 

favorably described in tenns of one-electron transitions. First of 

all, there are usually two or more final ionic states of the proper 

synulletry which can be derived from a given one-electron transition. 

This fo11o\\'s beG1USe each one-electron excitation Illay result in two 

(or more) unpaired valence.electrons which can couple to the unpaired 

corc clectron to give two (or more) final states having the same 

SY1lTIllctry as thc-primary statc. Each onc-elcctron exdtation thus 
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splits, a result analogous to the multiplet splitting phenomenon in 

the primary states of paramagnetic species. Furthennore, the assumptions 

of one":electroIl, one orbital often have to be discarded. ' 1his is due 

to the possibility of configuration mixing in the final state, which 

can lead to lIlany one-electron processes being involved 'in reacl}ing 

a given final state. As an example, the calculations described in 

·Chapter VI have shown that the most intense satellites in the F Is 

spectrum of hydrogen fluoride involve strong mixing of both 30 -+ So 

(roughly F 2p -+ F3s) .and 1Tr -+ 27T (F 2p -+ F 3p ) excitations. Any 
a p n . , 

attempt to describe this state as being reached by a single one-electron 

excitation would require, at the least, removal of the restrictions of 

specific angular momenta for every orbital. We would be forced to 

speak of the excitation as involving orbitals which have both a amI n 

. character. 

MOre recently, however, it has become increasingly apparent that 

the criterion for observation of this type of satellite is not that 

it follows one electron monopole selection rules, but rather that its 

dominant configuration has the possibility to mix with, and· thereby 

gainint.ensity from, the primary hole state. For example, in the XPS 

spectnun of the argon atom there is a broad feature -10 eV from the 

3s primary hole state. This peak has an intensity of -20% that of the 

3s peak. Spears et aL2 have suggested that most of the intensity in 

this region is due to the final ionic state (3s23p43d;2S). Although 

this configuration diffeTs by two orbitals from the primary ionic 

1 6 2 state (3s 3p ; S), it mixes strongly and "steals intensity" from the 

. I 
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latter. Spears et al. tenned this a "CI" satellite, but noted that 

in a more general sense the conventional "monopole" satellites also 

fell into this classification. 

The third type of state observed arises from what is called the 
I 

"conjugate shakeup" mechanism. TIle transition moments to these states 

are generally much smaller than the previous two types mentioned. As 

an example, a conjugate shakeup process accompanying Is ionization 

in neon might lead to the 2p final ionic state of Ne+ (ls12s2ZpS3s). 

111i5 path is termed "conjugate shapeup" since it appears that the one-

electron excitation is 2p -+ 3s, which does not foll ow the monopole 

rules proposed for the normal shakeup process. The distinction in this 

case is complicated again when the many-electron nat~re of the wave

fWlction is considered. The same ionic state could be imagined to 

be reached through ionization of the 2p electron accompanied by the 

monopole excitation Is -+ 3s. The important factor is that the final 
2 . 

ionic state has P symmetry and cannot mix with the primary ionic 

state. A peak corresponding to this state has been observed by 

Gelius3 and has an intensity of 0.·06% relative to the Is hole state. 

111e mOTe connnon conjugate shakeup situation occurs when ioni zation 

and excitation occur in the same shell. For example; the final state 

224 Is 2s 2p 3s(cp), reached· 111 the one-electron model through the transitions 

2p -~ cp, 2p -+ 35, cannot be reached via the usual monopole selection 

rules. The ionic state also has the wrong parity to mix with 2p hole 

state. Wuillemier and Krause 4 have estink'1ted that an upper limit 

for the intensity of this process relative to the nonnal case (final 

electron configuration ls2ZsZ2p43p) is of the order of Z5~. States 

I 
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of this type havG also bcenidcn'tified in the He(l)' and Be(II) spectra 

f ,1_ • d 'd 5 o ' gaseous cauJllltnll, mercury, an' lea . l11e ground state of Hg, e. g. , 

is described by the Hartree-Fock detenninant 

2 1 [core] 6s (S) 
, , 

The 6s level primary ionic state 

1 2 [core] 6s (S) 

is observed as well as the conjugate state 

[core] 6pl (2p) 

The latter is roughly 1% as intense as the primary peak (at the lIeer) 

photon energy). In a one~electron model, the conjugate excitation 

6s -+ 6p is invoked to explain the presence of this 'final state. 

Berkowitz et a1.,5 however, have shown that a great deal of the 

transition moment to this state is caused by admixture of the "nearly 

~egeneratc" configuration 

into the ground state wavefunction. Thus the inclusion of correlation 

into the ground state of Hg is a very important mechanism of contributing 

to the observed satellite structure. 

To stnmnarize this qualitative overview of satell.ites we again 

point out that the ionic states observed fall into two classes: 'those 

which have the proper symmetry to mix with a nearby primary ionic 

state and those \vhich do not. It will be shown in the next section 

that, in the absence of many-electroll effects, there would be no 

satellites at all observed in photoelectron spectroscopy. For this 

reason the satel1ites arc also referred to as "correlation peaks". 
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V.MANY -ELEemON EFFECTS ON 11 IE CROSS SECTION 

In this sccdonwe examine the specific mathematical fonn of 

many-body effccts on the photoionization transition moment. 11le tenns 

which arise in a single-cietcnninantal description of both initial· 

and final statc will be dealt with first, followed by the effects· 

of configuration interaction. 

and 

A. Relaxation in the Primary State 

Let us begin with the single Slater detenllinants 

1f. (N) 
1 

1 ' 
= (N!)l/Z IXCI) ¢Z(Z) 

. , 

The orbitals of the final state have been prjJlled to emphasize that 

(39) 

(40) 

they are not necessarily identical to the initial state functions. We 

have also associated the continuum function, XCI), with thc orbital <PI; 
, , 

i.e.,. if the set {¢Z' ¢3" .. } closelyresemblcs {¢Z' ¢3' ... } except 

for the effects of relaxation,' then'1ff corresponds to the primary 

state associated with the orbital ¢l' 

When these waveflillctionsare substituted into the transition 

moment, the result is given byl 
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N 

Tf-<-i = ('I'f(N) L ~k ~Ii (N) = (XI~114)1)('I'f(N - I,X,I) l'I'i (N - 1,$1.,1) 

k=l 

N 

+ L(-I)I+J <xI V1 1¢j ) ('I'f(N 

j=2 

N 

+ L (_l)l+j <xl$j ) ('I'f(N -

j=l 

- I,X,I) 1'1'· (N -1,</l.,1) 
. 1 J 

N 

1,X,l) L ~k 'I'i (N -

k=2 

1,$.,1) 
J 

( 41) 

. The notation 'I'f(N - I,X,I) refers to an N - .i electron Slater detenllin;1I1t 

which is fonned from the N-electron detenninant by deleting the cohmm 

containing the ·orbital X and the row denoting electron 1; i.e., 

, , , 
$2 (2)¢3 (2) ¢N(2) 

, , : , 

1 
¢2(3)¢3(3) ¢N(3) 

'I' f (N - 1, X , 1) = 
[(N_l)!]1/2 

, , , 
¢2 (N)¢3 (N) ¢N(N) 

The same notation applies to the wavefunction'l'. (N -·l,¢. ,1) . It is 
1 J 

formed by striking the colwnn containing¢. and the TOW containing 
J 

electron 1 from'!' i (N). 111e swns over the index j are over all spin 

orbitals. Since X has either a or S spin (depending on the nature 

of ¢l)' certain tenns in the swns over j in Eq. (41) vanish by spin 

orthogom.lity. For the present, however, we will retain the full 

(42) 

expression, but simplify its appearance with the following definitions: 

: . 
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I,X,I) '.(N - l,¢.,l)} 
1 J 

N 

I)',X,l) L ~k ~/i (N - 1,<I>j ,I)} 

k==2 

Equation (4l) is then given by 

N 

Tf+i == <xI VI I<l>I} Sl1 +L (_l)l+j <xIVll<l>j) slj 

j==2 
N 

+ L (-1) 1 + j <X I <I> j} pI j 

j==l 

(43) 

TIle first' term of Eq. (43) is related to the usual one-electron 

interpretation. An electron in orbital <1>1 makes a dipole transition to 

the continuLDTI. If the orbital angular momentum of <1>1 is given by A, 

then <xIVI!<I>I} can be non-zero only if X has A + 1 or A - 1 synnnetry. 

'l1lC factor Sl1 multiplying this one-electron moment is the overlap 

of the "passive orbitals", i.e., those riot directly involved in the 

ionization. 'This overlap factor is generally between 0.9 and 1. 0 for 

primary states, but much smaller for satellite states. Its effect is 

to introduce the many-body aspects of rela.'(ation into the cross-section. 

In fact, .it is easy to show that if we had made Koopmans' asslUnption--

i.e. ,<1>2 == <1>;, <1>2 == <I>~, etc--all the sums in Eq. (43) would vanish, Sl1 

would be unity, and we would be left with the active electron approxin.Jation. 

In addition, if we consider an excited state "based" on tllC primary 

peak (<1>1), the overlap in'tegral Sn vanishes and the satellites are 

therefore forbidden. Relaxation thus introduces a multiplicative 

. (44) 
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factor which reduces the contribution of the one-electron moment in 

the primary peak and distributes it among the various excited states. 

TIle first sum over j in Eq.(43) stems from the antisymmetry 

requirements on the initial state wavefwIction, and brings components 

into the total transition moment which arise from dipole transitions 

involving the other orbitals of the initial state. It will be shown 

in a later example to be interpretable as.an ionization accompanied 

by monopole excitation. 

TIle second line in Eq. (43) arises from the action of the rem::dning 

momentum operators, '112 through Vw Here an electron appears to 

make a monopole transition. (¢j -+ X) and the passive orbitals have 

rearranged themselves through a dipole excitation. TIle form of this 

term is very similar to that of the conjugateshakeup mechanism propo·sed 

by Berkowitz et al. 2 

Each of these three types of processes contribute to the 

transition moment even in a primary state. For example, consider 

the neon (Is) primary hole state reached by absorption of soft X-ray 

radiation. The ionic state·has 2S character and the continuum function 

is p-like. ' The first term in Eq. (43) 

<x 1'111 Is} Sl,ls 
P 

will dominate. 'DIe nonnal shakeup mechanism is involved in the 

nonvanishing tenn 

<x IVI2s) SI,2s 
p 

An electron appears to be ionized from the 2s orbital accompanied by 

the monopole transition Is -+- 25. Finally, a nonvanishing contribution 

-. 

.' 
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involves ionization of the 2p electron, accompanied (roughly speaking) 

by the excitation Is -~ 2p. All three mechanisms reach the same final .,1 

state and reflect the many-body nature of photoionization. 

In the particular example used here, the secondtenn should be 

negligible with respect to the first. This can be seen from 

examination of the ratio 

<X I V 12s) Sl, 2s 
R2 = ----"p---~-.---

<xpIVlls) Sl,ls 

If R2 is substantial compared to unity, retention of the second tenn 

is warranted. Now 

" f h" f 1" b dB' 1 3" In act a roug estImate -or t us tenn ase on agus resu ts ]5 

10 -
3 . Furthennore <X I V 125 ) / <X I V lIs) is of the order of Ill3gni tude p p 

-1 . 
of 10 for X -rays of approximately 1 ](cV energy. l11Us the second 

-4 
tenn makes a contribution approximately 10 that of the first. As 

a general rule, the ratio of the overlap factors will always be 

small for any primary state, thereby decreasing the importance of 

this tenn. Certain situations might arise, hO\vever, when this sJllall 

factor would be cowlterbalanced by. a large ratio in the one-electron 

moments and this mechanism could then conceivably make a sizable 

contribution to the total cross section. 

( 45) 



-46-

It is much more difficult to estim..1.tc the importance of the third 

term. Its effect is goveriled by the ratio 

<XI2p) pl ,2p 

R3 = -(~~~-V 1-1-5 -) -S"1"-l,-:;l-S (46) 

To ,estimate the factor <Xp I2p)/<xp IVllS) we note that if we choose 

ik·r a plane wave for Xp' 1. e., Xp a: e - -, then <xplV 12p) = ik <Xp I2p), and 

(47) 

Qualitatively, one would thus expect this term to be very dependent 

2 on the photon energy due to the presence of both the l/k factor and 

the ratio of the transition moments. The pl,2p/Sl,ls ratio, ,however, 

is energy independent. pl,2p is the complex conjugate of the X-;ray 

emission transition moment--in the approximation in which relaxed orbitals 

are used for the initial (Is hole) state and the neutron atom ground 

state functions are used to describe the final (2p hole) state. 

Pl,2p , 'f "h d f '10- 1 b h -1 I 'I Sl, Is . 1 1.n neon 1.S 0 - t e. or er 0 0 r , w 11 e' 1.S near y 

unity. In the general case, the emission transiUon moment will be 

dependent on the specifics of the atomic or molecular structure. A 

ratio of this type has been examined for the F(ls) hole state of 

lIF and been fOWlcl to be negligible at XPS energies. Recently Williams 4 

has analyzed the various tenns for the specific case of Ne Is ionization. 

In this work, a Hartree- Fock continuum fW1Ction was generated in the 

field of a fully relaxed core. It is found that the ratio RZ was less 

th<Ul 10°0 from threshold to 2000 eV photon energy. R3, however, was as 
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large as 0.65 a few eV above threshold. It quickly become!,! small at higher 

photon energies and 100 eV above threshold is only "';10%. An interesting 

resul t of this work is that although the third term is large in the 

region about threshold, the firstiterm is smaller than the analogous 

result using Koopmans' 11lCorem; the net effect is that the relaxed 

core and frozen orbital results are very. similar near threshold and 

begin to deviate from one another only when the third term has become 

small. 

To sUlill11arize, the major many-body effect brought about by 

relaxation is a redu<:tion of the active electron transition moment 
11 ' 

by the multiplicative factor S . Neglect of relaxation would,'therefore, 

result in a predicted cross section which is higher than the exPerimental 
. 11 2 

result bya factor of (S )'. In fact, this tendency toward over-

estimation has been noted by Wuilemier and Krause5 in a recent 

comparison of experimental data for neon with theoretical predictions 

which disregard relaxation. They have fOlmd that the discrepancy is 

greatest in those cases where relaxation effects should be more important; 

e.g., for nearly all incident photon energies the calculated 25 orbital 

cross section is -20% greater than experiment, whereas the 2p orbital 

cross section is in much better agreement. More theoretical work is 

needed to determine if this discrepancy is due to the relaxation effect, 

or 'is primarily a result of the need for a more sophisticated wave

function which explicitly includes confif"ruration interaction. ~ 
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B. Configuration Interaction 

Thus far we have used a single detenninantal description for 

both the initial and final states, but accounted forrelaxat.lon within 

a l'ISCr: model. from the discussion In Glapter III, it should be apparent 

that orbital relaxation could also be treated by using the ground state 

canonical orbitals in a CI expansion which includes configurations 

other than the primary ionic states. The configurations which would 

be necessary for describing the orbital polarization are the single 

excitations with respect to each primary state. 7 Including double 

replacements will give even b.etter descriptions of the iOllic states; 

the exact eigenstates ultimately being given by a full CI within the 

complete' one-electron basis. The effect of these interactions will 

be to distribute the original primary ionic configurations over a 

munher of roots of the Hamiltonian matrix, thereby providing one mechanism 

for populating satellites (final ionic state configuration interaction; 

FISCI). TIlUS, in the absence of initial state correlation, the 

satellite intensities are given by the projection of the Koopmans' 

Theorem hole state onto the exact ionic state wavefunctions. 

In the discussion which follows a completely general orbital 

basis will be used. This is done because it isusualiy a necessity in 

actual practice. Although the equations which determine the satellite 

intensities become rather cumbersome in the general case, they arc still 

essentially saying that the satellite intensity is governed lly the 

projection of the frozen:-orbital state (or a multi-cletenninantal 

variant of it) onto the exact wavefunctions. For detailed discussjons . . 

of thL' theory of satellite intensities the reatlcr is referred to the 
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o 8 9 10 11 papers of Aberg,Martin and Shirley, Manson, and Basch. 

Suppose that the initial state is described by a multiconfiguration 

wavefunction ~O(N) 

~O(N) = E DOm¢ (N) 
TIl TIl 

(48) 

where DOm is the coefficient of the configuration ¢ in the wavefunction 
m 

~ O. The configurations may be single Slater detenninants expanded in 

the occupied and virtual orbital set {<j>} or, if necessary, SlDns of 

detenninants chosen to possess the synunetry properties of the ground 

state. As discussed previously, the coefficient of the Hartree-Fock 

Configuration, DOO ' will be the leading tenn in the expansion. For 

closed-shell atoms or molecules it wi~l usually have a value between 

0.9 and 1.0, the rest of the coefficients being 0.2 or less. 

Each final state is expanded similarly, 

I 

~f,(N) = E Dfl ¢ (N) 
n n n 

where the primes on the configurations denote that they have been 

fonned from a set of orbitals appropriate for the final state. Note 

(49) 

that the configurations are functions of all N electrons and we should, 

therefore, in principle allow for the possibilityo(mixingamong 

the various channels in the continUlDn (CSCI) , 10 a phenomenon which 

can have marked effects on absolute cross sections. In addition, 
I , 

,{¢ (N)} should also include any "bound states" which may be imbedded 

in the ContinUlull. Mixing of this sort leads to autoionization and 

greatly enhances the photoionization cross section. Autoionization 

also has a very dramatic effect on the satellite intensities in Ea 
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" d b II I d" " 12 excIte ye" ra Iation. In the case of XPS satellites, however, 

these effects have thus far not been crucial to air understrmding of 

the stnlcture of the spcctn.un and we, therefore, specialize to the 

case where each configuration contains the same one elcctron function 

Xf" and perfonn thc CIon the ion alone. Thus 

I 

'Pf, (N) = Xf' (1) L Cf,n<Pn(N - 1) 
n 

(SO) 

Again, the primary hole state, f' = 0, is characterized by a large COO 
I 

where <PO(N - 1) is the hole state IIartree-Fock configuration. For 

the satellite states f', there may be several configuratiorls which mix 

strongly. 111is will be dependent to some extent upon the virtual 

orbitals used to define the excited configurations, but in 1II0St cases 

there will be a small Illnnber (-1 to 3) of configurations with 

coefficients greater than 0.5. " 

Insertion of Eqs. (48) and (SO) into the expression for the 

transition moment (Eq. (41)) yields 

TE'O = LC;'nDOIn<Xf,!V!¢l) S~ + 

m,n 

We have again assumed that the final state predominantly involves 

ionization from orbital ¢l. S is the (N - 1) electron overlap nm 

integral between configurations nand m and thc dots rcpresent the 

other tenns obtained. Thcse additional tenns have becn examincd 

(51)" 

for the F Is satellites in IIr and been found to be negligible (sec 

Chapter VI). In view of the previous discussion thcy should be small 

for core-level ionization in general (well above threshold) and will 

be neglected. 

'. 
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1he ratio of the transition moments to the primary state and a 

satelli te is thus given by: 

L C*.D Sll 
On am run m,n, 

L C* D Sll 
fIn am run 

(52) 

m,n 

If the final states are close in energy, then the one-electron matrix 

elements should be very nearly the same. 'TIle density of final states 

which enters into the cross section (Eq. (25)) should also be similar 

for the two states. These two assumptions lead to the relative 

intensities of the two states in the "overlap approximatioIl", 

"'"'C* D slll'2 .L..J On am run . 
lTl,n 

I ~C* D slll2 L....J fIn am run 
m,n . 

TIlis e:Al)reSSlOn, which arises from astraightfonvard application of 

first-order time dependent perturbation theory, is identical in fonn 

(53) 

o 
to a multi -detel1ninantal extension of Aberg's application of the sudden 

approximation to satellite intensities. 8 

To illustrate these CI effects, we have drawn a state diagram 

for neon jn Fig. 1. On the left is the IIartTee-Fock level for the 

ground state and one of its excited configurations; above these arc 

the primary ionic state and a first approxima.tion to the "shakeup" 

state .. For simplicity, we havesuppressecl the exchange interaction 

in the ionic states; i.e., there arc actually two Zs states which result 

2 5 from the configuration 1$2s 2p 3p. In the middle of the diagram we 
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have allowcd thc ionic configurotions to intcract, fonning thc 

obscrVable states of the IOn. The ground state function has also 

bcen allO\~cd to mix with its excited configurations. On the far right 

we have assigned cocfficients to the configurations in each eigenstatc. 

These have magnitudcs 

, 
a1 ' a1 ,bi - 0.1 

, 111e effective intensity of the primary hole state is givcn 1n our 

example by the four cont.ributions to the overlap integral denoted 

by A, B, C, and D. The total overlap integral for the primary hole 

state is dominated by the contribution froll1, A because it is a product . 

of two large coefficients and a large detenninantal overlap. Contributions 

Band C are smaller because they involve a small product of coefficients 

together with a small overlap·integral. 1nis integral is not zero, 

since the orbitals of the hole state have relaxed somewhat. Finally, 

the contribution from D is small because, although the determinantal 

overlap is large, the product of the coefficients is very small. 

In the case of the satellites, however, the total overlap is a 

fraction of that for the primary state and configuration interaction 

contributions arc much more ilTiportant. A main contributor may be the 

analog to path A, since the coefficients are both large. Within this 

overlap picture, the small intensity of the satellites is due to the 

smaIl detenninantal overlap between the· shakeup configurations and the 

ground state. Path B might also contribute an alllount of the some 

order of magnitude since, although the product of coefficients is 
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small, the deterniinantal overlap is large. Path 13 is the predominant 

contribution to the argon satellite (3s23p43cl) mentioned earlier.· 

Table 1 shO\vs the results of calFulations perfonned on the argon ion. 

As is evident from a study ofthQ table, the'3s hole state has (I 

very large admixture of 3s 23p 43d , a "nearly degenerate" configln'ation. 13 

By simple orthogonality arguments, this leads to a large contribution 

of the primary ionic configuration in the satellite, and hence a large 

relative intensity via path B. The simple rule which folJows from 

these arguments is that the dominant configurations of the most intense 
\ 

satellites observed in a P[S spectrum should be those which mix 

strongly with the primary hole state, i.e., those configurations which 

originate from an internal correlation mechanism. It is also important 

to realize that the ionization event produces a hole in the IIartree-Fock 

sea; distributions which were not allowed in the ground state nk1y now 

become possible. 

The two contributions mentioned thus far arlse from FISCI. For 

similar reasons, the analog of path C is also important for the 

satellites and it arises through an initial state CI mechanism. 'Ow 

contribution from path D is obviously smaller than the others. An 

example of the importance of initial-state configuration interaction 

(ISCI) is fot.md in the case of the Ne Is satellites. In Table II 

I have compared the satellite intensities comp!lted using a conunon final 

state wavefwlction with the lIartree-Fock and a correlated initial state. 

TIlis will be discussed further in 01apter VII, but it can be seen that 

the introduction of path D nearly doubles the predicted satellite 

intensities and brings them into very good agreement with experiment. 
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ISC1 also provides a means of populating states which cannot mix 

with the primary ionic state. For instance, beryllilDTl is described 

by the Hartree-Fock configuration ls22s2. The satellite ls22p (2p) 

22 cannot mix with the primary hole state Is 2s ( S). 111ere is, however, 
2 2 an admixture of Is 2p in the growld state of Be, i.e., 

2 2 ·22 
~Be = Clils 2s I + C21ls 2p I + ••• 

The latter determinant can give rise to a transition moment of the 

- form 

-£sl I CZ< 2p' I 2p } < £d r 2p} 

The relative intensity of the satellite is then 

I L'.2n = C2
2 2 1 T ££dS~-2P 12 _ 

~ = <2p'12p} 
12s - Ci <2s'12s}2 IT£p+2sI2 

The two overlap integrals are preslllnably very nearly equal. If the 

same can be said for the one electron moments T, the experimental 
( 

results could be used to determine the relative amplitudes of the 

(54) 

(55) 

mixing coefficients, a very exciting possibility. t-lore work is needed 

to determine if this will actually be the case. 14 

To summarize this section, many-body effects on the cross section 

arise from two somewhat artificially separate phenomena. The cross 

section to a primary hole state is affected predominantly by relaxation 

in the passive orbitals. This results in an apparent reduction ln 

1 . f 1 d· - - I . 15 t Ie cross sectlon -rom t lat compute asswlllng 110 re axatloll. -

Additional relaxation effects and the inclusion of C1 is expected 

to be of lesser importance for most primary states, although there 

may arise situations where it becomes significant (strong internal' 
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. correlation possibili tics, nrultiplet spllttil1g, closely spaced primary 

states, etc). The intensities of satellite peaks, on the other hand, 

depend entirely upon rclaxation and configurabon :interaction con-

tributions. In a strictly fonnal vein, of course, therc cxist only 

eigenstatcs of the electrostatic Hamiltonian. 111e concepts of 

relaxation and CI arise only when we attempt to fonn bettcr approximations 

to those cigcnstatcs than are available within the confincs of an 

independent electron model. 

C. Sum Rules on Energy and Intensity 

At the beginning ofthc last section, FISer was qualitatively 

introduced by expanding the actual eigenstates of the ion in tenns 

of the Koopmans' prjJnary ionic states and additional excitations 

derived from them. 1\'10 interesting sum rules arise when we invert 

this idea and expand the frozen orbital ionic state in tcnns 6f the 

actualeigenstates. 1ne first relates the difference in energy 

between the Koopmans' state and the exact primary hole statc to 

the intensity and encrgy of the satellites, and the second is 

concerned with the relationship between photoionization cross sections 

computed with frozen orbitals and exact eigenstates. 

Both stun rules begin with the observation that the eigellstatcs 

of the ionic Hamiltonian fonn a complete set, and we can obviously 

"'rite the expansion 

00 00 

-1 
=2: 

-i 
1 If' .> E C .. 1 ~J. > If'Kf (~/j 1 If'KI' > -J 1J J 

(56) 

j=O j=O 
~ 
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The sum over j includes all ionic states; it converts to an integral 

over any continua. 

If we take the expectation of the Hamiltonian for this state, 

we find 

(57) 

or 
00 

EKT = '"'" c~ .E. L.J 1J J 
(58) 

j=O 

TI1e coefficient ciO denotes the projection of the Koopm.1ns' state onto 

the exact primary hole state and c?/c?o is thus the relative intensity 
lJl 

of the satellite j (Ij/IO--asswning Constant transition moment, etc 

from Section B). 111is can be arranged into the normalized fonn 
00 

(recalling that L Cfj = 1) 
j=O 

(59) 

We see that the Koopmans' Theorem ionic state energy. is the intensity 

weighted centroid of the PES spectn.un. Another interesting fonn is· . 

obtained by subtracting EO from both sides, 
00 

'"'" (1./1 )(E. - EO) L.J J 0 J 
j= 1 

EKT - EO·~ ---::. :..-00--------

'"'" {I. /1 ) L...J J 0 
j=O 

(60) 
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o(f 

L (Ij/IO) ~j 
~ = _.L..j =,...:::-1-=00--'----

L (I./I O) 
j=O J, 

(61) 

'The quantity IR is the energy difference between Koopmans I approximaUon 

and the actual final state energy. It should be very nearly equal to 

the ~SCF relaxation energy, even though it contains some additional 

correlation energy. 

This relationship was first pointed out by Lundqvist]6 and Manne 

o . 17 ) and Aberg. Since all the quantities on the right hand side of Eq. (61 

are experimentally detenninable, in principle this provides a means 

for experimentally finding the relaxation energy. In practice this 

is usually not possible because the intensity distribution over the 

double ionization ("shakeoff") continuum is not easi~y extracted 

from the spectrum. 

From Eq. (61) we see that there exists a "lever arm" relationship 

between the satellite intensities .and the relaxation energy. If ER 

were zero, no satellites would be observed. In the case that ER is 

large, the relaxation manifests itself either as an intense set of 

satellites "ncar the main peak", or weak satellites "far from the main 

peak", or of course, something in between. The stun rule provides 

a great deal of qua] itative infonna.tion about the relaxation process. 

For example, it is a common misconception that there are no satellites 

in the core level photoelectron spectrum of metals. It is known,-

however, that there is a large rdaxation energy involved in core 
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ionization in these species, so there must be a fairly large probability 

for multiple excitation processes. In metals the shakeup (as well as 

the multiple ionization or shakeoff) spectrum is esse{ltially continuous 

because the excitations arc into the conduction banel. 1bus while no 

discrete peaks are observed, the relaxation energy is manifesteJ as a 

broad background on the high-binding-eriergy side of the main peak. 

111ere is another sum rule which follows directJy from the expansion 

of Eq. (56) and the discussion in the earlier part of this chapter. 

In our notation, this can be written 

(62) 

This says that the cross section for ionization to the frozen orbital 

state (1JIri"') is actually the SlllIlOf the cross sections to the actual 

hole state and the satellites based on it.· TIlis was initially pointeJ 

18 out and discussed by Padley. He stressed that because of this, 

orbital ionization cross sections computed using frozen orbitals arc 

not directly comparable to experimental·cross sections observed 1n 

PES, but are more appropriate for experimental situations where no 

discrimination on the basis ·of ionic state energy is made. 

D. Good TIlings to Know and Tell 

It is unfortwlately the case that the accurate determination of 

these ionic state wavefunctions is an extremely difficult task. Only 

recently have reliable calculations of satellite spectra begun to 

appear in the literature, and much of this work is still in preprint 

19 fonn.· Difficulties encowltcred in ionic state calculations \",hich 

do not generally arise in more standard calculations on the ground 

states of atoms and molecules arc that (a) the ionic states actll:llly 
I I 
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lie in a continuum and appropriate precautions should be taken (see 

footnote 13); (b) one desires to treat several states (the specifi"c 

ones being generally unknown l)cforehand) at an equally good (or poor) 

lcvel of sophistication; and (c) the satellites usually contain several 

open shells and arc not always dominated by a single reference configuration. 

Because. of these problems, there are no really "standard" models 

which have evolved to treat the problem, and the experimentalist 

attempting to evaluate the quality of a calculation must be rather 

well versed in the various approximations and teclmiques of ab initio 

calculations. In fact, most of my time on these problems was spent 

learning exactly "what you can get away with". It seems appropriate, 

therefore, to enumerate a few of the computational details which 

should be present (or at least examined) in a good calculation to 

ensure semi-quantitative results. 

(1) The basis set should be at least of double zeta plus polarization 

quality. For instance, we found that the order of the first two ionic 

-1 -1 states of NZ (So' ,In ) rever.ses when one simply adds a single d 

(polarization) function to each atomic center. If one is attempting 

to describe satellites \vhich are Rydberg-like, additional diffuse functions 

are obviously necessary. It is also important to realize that the 

"valence" excited states of some 1)eutral molecules are also partially 

Rydberg-like in character. 20 111is will presumably also be the case 

for valence-like satellites as well. 

(2) It is desirable to treat both the primary state and the 

satellites at the same level of accuracy in the CI.calculation. The 

lmion of all single excitafions with respect to all reference states 



-60-

can remedy the problem encountered in choosing an occupied orbital 

basis which will describe both the primary state and the satellites. 

The neglect of this is a criticism which can be leveled at the first 

work on this problem that I did, the HF calculations reported in the 

next chapter. If possible, the internal correlation effects in each 

reference state should also be included in the configuration list, 

since they can have important consequences on the mixing coefficients. 

This, unfortunately, can lead to a very large Hamiltonian nmtrix. 

A somewhat more restrictive model, but one which should be reasonably 

good and within reach, is similar to Schaefer's "first order" configuration 

list. 

In this approach, one first generates all single and double 

replacements in the internal space. These configurations should be 

the ones which mix most strongly with the primary ionic state and are 

therefore the prime a priori candidates for the most intense satellites. 

Considerations of near degeneracy and simple perturbation theory should 

allow one to choose a subsetot these as reference states. In. the ' 

same mrumer that these were selected by referring to the primary state, 

the internal excitations expected to be most important for each 

satellite are then included. The union of all single replacements 

into the full space with respect to all reference states then completes 

the list and accounts for the orbital polarization needed. The net 

effect of this is to include the major inten1al correla.tion and orbital 

polarization contributions for both the primary state and the 
\ 

satellites. In defining the virtual orbitals which cOTnpose part of the 

internal space, natural orbital analyses and/or IIIulti-configuration 
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scr calculations may he helpful. 

(3) 111ere is always the possibility of an interaction with the 

continuwn. 21 This problem can he treated in cert::lin approaches, but 

it is difficult to do so in standard bound state CI approaches. 

(4) The importance of initial state correlation has alre::tdy been 

pointed out. In terms of the model for the final ionic state wave-

function presented in (2), the ground state wavefunction should include 

at least the internal correlation contributions. 

(5) In valence shell ionization, primary ionic states' of the seune 

symmetry are close in energy, and there may be substantial mixing among 

them, as well as with the satellite configurations. In these 

situations, the overlap model for treating intensity may be inadequate. 

The intensity should be given by the projection onto each prink'1ry 

Koopmans' state weighted by the appropriate one-electron transition 

moment. 

'These considerations should be taken into accourit in any calculation 

which aspires to semi-quantitative results. For more qualitative 

purposes, such as simply assigning the satellites to a specific 

22 configuration(s), less sophisticated approaches may be adequate . 
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Configuration interaction waveftmctions for AT + (2S) • 
." 

Table I. 
~ 

Configurations 

** i· Itt 3s13p6 34· 
3s23p43d ·24 2 4 Root ECALC EEXP I CALC EXP 3s 3p 4s 3s 3p 4d 3s 3p 55 

1 -525.8845 a.u. (0.0) 0.0 eV 100% (0.63) 100% 0:794 0.028 0.464 -0.186 -0.008 

2 8.S eV 7.3 eV 2.5% 4±2 0.126 0.864 -0.350 -0.095 -0.019 

3 10.4 eV( 9.3 eV 14.4% 17:2 0.301 -0.385 -0.699 -0.395 -0.029 

4 13.0 eV 12.0 eV 15.1% 6±3 0.309 -0.078 -0.265 +0.830 -·0.117 

5 14.8 eV 0.6% "0.061 0.004 0.058 -0.087 -0.94.0 

* R. L. ~lartin, unpublish<:,d \\ork. 
** .. . 

C. E. ;'j:)ore, Atomic Energy 1e':e1s, 1\'at'l. Bur. Std. (U.S.) Circ. 467 (1949, 1952 and 1958) • ... 
'These values all pertain to the P.artree-Fockinitia1·state. The square of the overlap in the 3s hole state is 
given parenthetically, all others are percentages relative to it. 
ttD• P. Spears, H. J. Fischbeck, and T. A. Carlson, Phys. Rev. A 9, 1603 (1974). These values are an average 
of the AIK and ~:gK results. _. 
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Table II. Neon Is correlation-state energies and intensities. a 

State llli(theo)b lllic (exp) d 
IHF(theo) I~SCI(theo) rf(exp) 

(Is hole~state) 0.0(-96.694 a.u.) 0.0 100 (0.824) 100(0.774) 100 

2p-+3p 36.4 37.35(2) 1. 26 2.47 3.15(10) 

2p .... 3p 39.9 40.76(3) 1. 68 2.60 3.13(10) 

2p->4p 41.9 42.34(2) 0.85 1.48 2.02(10) 

2p-+5p 43.0 44.08(5) 0.24 0.43 0.42(06) 

2p-+6p 45.2 45.10(7) 0.05 0.09 -0.15· 

2p-+4p 46.0 46.44(5) 0.46 0.70 0.96(11) 

2p'+Sp 47.4 48.47(7) 0.07 0.11 0.17(05) 

2p....6p 49.5 0.04 0.06 

aFrom R. 1. ~~rtin and D. A. Shirley, Phys. Rev. A, 13, 1475 (1976). 
bAbsolute energy of the Is hole state in Hartree atomic units given parenthetically; 
all others in eV relative to it. 

~elative energies (from Ref. 3, O1apter IV), in eV. 
<\l;:rtree--Fock initial statewavefunction; the parenthetical number is the square of 
the actual overlap in the Is-hole state. T.,erelative peak intensities are given as 
percentages of this value. . . 

eCorrelated initial state \'Cl\'efunction; this included double excitations into the 
Rydberg orbitals for the groWld state; i.e .• configurations of the form ls22s22po4np2, etc. 

f Fro;,) Ref. 3, O1apter IV. We have estimated a value for the (2p-+6p) state from Gelius' 
£-... lgure. 
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FIGURE CAPTIONS 

Fi~. 1. Simple model to illustrate the effect of initial-state con-

figuration interaction on correlation-peak intensities in Ne Is 

photoemission (not to scale). With Is exchange suppressed, 

the Ne+ (Is hole) configuration manifold would closely resemble 

the ground state manifold (left). Introducing configuration 

interaction, this 1:1 correspondence would also obtain for the 
, , 

eigenstates (right), and aO - aO' al - aO' etc. The main peak 

arises primarily from path A. Paths Band C arise because the 

two configurations "look for themselves" in the correlation 

state. 1hey are of roughly equal strength, but the dashec1path 

(D) is \vcak. 
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VI. HYDROGEN FLUORIDE SATILLITE STRUCWRE 

A. Introduction 

Photo~mission spectra of atomic core levels in atoms and molecules 

yield for each core level j a main peak at an electron kinetic energy 

. K = flU) - EeO) 
B 

(63) 

Here flU) is the photon energy and ~O) is the binding energy of core level 

j. This main peak corresponds to a special atomic or molecular ion 

final state. In a single-determinant description, this state would 

be formed from the ground state by removing an electron from orbital 

j and allowing the wavefunctions of the passive electrons to relax" 

adiabatically (i.e., without changing their quantum numbers). 

If flw is substantially larger than ~O), additional weak satellite 

~'. peaks may also be observed at higher binding energies ~ Qualitatively; 

one usually describes these states as arising from at lease a two

electron excitation from the ground state (ionization accompanied by 

"shakeup"). A quantitative theoretical treatment of the transition 

cross section to such states, however, shows that one-electron 

" descriptions may be misleading. The cross section for such a transItion 

owes much of its strength to many-body effects. In particular, con-

figuration interaction (eI) in both the initial and final state is 

required; hence, the latter are more accurately described as "correlation 

states", and the satellite peaks as "correlation peaks". 

The theoretical formalism for calculating correlation-state spectra 

was described in the preceding paperl (hereafter called I). We report 

in the present paper a complete study of the fluorine Is correlation-state 
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spectra lJl gaseous HF. To our knowledge this is the first case in which 

several of the theoretical nuances developed in I have been applied. 

It is also the first case showing quantitative agreement between 

experiment ond theory. 

Experimental procedures and results are gIven in Section B. 

'Section C describes both the means of obtaining the necessary wave-

fW1ctions and the method used to compute intensities. ,Conclusions are 

drawn in Section D. 

B. Experimental 

1hegaseous sample was obtained by a evaporation of 99.9% + pure 

liquid HF, purchased from Matheson Gas Products, Inc. At 26°C the 

2 association constants of HF are: 

2 HF¢ (HF)2 log 62 = -3.80 

6 HF ¢(IIF)6 log 66 = ,-13.94 

with pressures expressed in torr. TIlUS oligomerization IS unimportant 

at the pressures of <1 torr used in this work. 

The photoelectron spectra were obtained using AlKCil 2 X..: rays , 
3 (1486.6 eV) on the 50 cm radius Berkeley iron-free magnetic spectrometer. 

Spectral data points were taken at -0.4 eV energy increments, at pressures 

of -50 and -350 microns (Fig. 1). The analyzer chamber was maintained 
-5 ' 

at a pressure of approximately 10 torr. The high pressure spectrum 

was used to determine which of the satellites of the F Is main line 

were caused by inelastic electron collisions since the relative 

intensities of these peaks should increase with pressure. If the low 

pressure spectnun (Fig. lb) is subtracted from the high pressure 
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spectnun (Fig. la), with appropriate weighting ,to equalize the main F 

Is peaks, the result is an inelastic electron loss spectnnn. 

The low pressure spectrum was fitted (Fig. 2) using a non-linear 

least squares program which automatically took into accowlt the (weak) 

AlKa3 and Ka4 components as well as the slight change of the energy 

window caused by the magnetic spectrometer (which produces spectra 

linear in momentmn). TIle main peak, corresponciing to the F Is hole 

state, was fitted best by a sum of three Lorentzian functions and 

these were used as the fundamental form for the "correlation" peaks. 

No attempt was made to locate satellites with intensity 0.1% 

or less of the main peak. It was necessary to fix the area ratios 

and separations of states 7 and 10 relative to their large neighbors 

(5 and.9 respectively). Theoretical area ratios and separations, 

described below, were used for these two cases. 

Because of the large number of unknowns, the energy pos i tions and 
,. 

full widths at half-maximum (B\HM) of a few peaks were initially fixed, 

and the fitting program was constrained to vary only the parameters 

for those remaining. TIlese newly fowld optiml.D1l parameters were then 

frozen and the rest of the set (those originally fixed) varied. 

111 js successive approximation technique was continued until a self-

consistent set of parameters was found. The quality of the fit was 

judged from the statistical x2 and visual examination of the plot 

(Pig. 2). 

TI1C results In Table I indicate that the theoretical intensities 

arc in excellent agreement with experiment. 11lCoretical energies, 

relative to the main line, are 2.1 to 3.5 eV higher than expcriment. 4 
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For the weaker satellites which arc relatiVely Ilear the c.1ouhle 

ionization ("shakeoff") limit, this excellent agreement is obtained 

only with a c1cconvolutec.1. peak which has a very largeFWIIM. We regarc.1 

\ such close agrccment wi th experiment in this region as .1arge1y fortui tous. 

As the shakeof f limit is approachec.1, one would. eAl)ect to begi II to 

observed Rydberg series. Our spectrometer cannot resolve these and 

our calculations should become progressively less reliable as the limit 

is approachec.1. 'I11US both the experimental and theoretical intensities 

in this region may have rather large error bars. These problems in 

no way affect the major conclusions of our work. 

C. Theoretical 

The correlation-peak spectnnn was calculated using the theoretical 

formalism described in 1. 5 Two major levels of sophistication were , 

used for the wavefunctions necessary in this work. First, configuration 

interaction among the ionic final states was considered, with the 

ground state represented by a single Slater determinant. Tn the 

next step, CI iIi. the ground state was also included. For each of 

these cases the relative intensities of the correlation peaks were 

computed in the overlap approximation. 

It was shown in I that, except for terms to be discussed in 

Appendix I (which are small for core-level satellites), the dipole and 

sudden approximations give identical results in the overlap approximation. 

Results are displayed in Table I for final state CI (Method A) and 

for initial state CI (Method B). In addition an estimate of the 

variation in the energy-dependent tel111 was obtained assuming the 

photoelectron continuum function to be represented by a plane wave. 

111i5 cuuses the relative intensities calculated from the c.1ipolc 
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I " " approximation and the energy dependent fonn of the sudden approxImatIon 

(i. e., befote the k-+<x> limit is taken) to be very slightly different .. 

1he variation in the energy-dependent factor ,Q(E), is shmvn in 

Table II. The product of this factor and the overlap tenn gives 

the final set of relative intensities shmvn in Table II. 

1hemeans of calculating the various wavefunctions are discussed 

in Section C-1 followed by a description of the one-electron basis 

set in Section C-2. Section C-3 deals with the overlap and energy-

dependent portions of the cross section. 

1. 11lC Wavefunctions 

A set of SCF orbitals was found for the ground state occupancy 

by using an iterative natural orbital "almihilation of singles" 

technique. 6 ,7 The energy obtained with this technique is identical 

to that \\~lich would follow from a standard I-Iartree-Fock-Roothaan 

calculation. TIle orbitals, however, are natural orbitals instead 

of the standard canonical set which diagonalize the fock matrix. 

They were transformed into the canonical set by the appropriate 

unitary transfol111ation. 

Using the canonical orbitals found in this way as trial vectors, 

a further "annihilation of singles" calculation was carried out on 

the iOIl I-IF+ at the internuclear separation of the neutral molecule. 

Th " "ld d f - f h "1 f" . 1 12 23 2' 4(2 +) IS YIC e a \vave _wlCtlon :01' t e SIng e con- Iguratlon (J a a In E , 

which will be tenncd the "reference state". It corresponds to the f Is 

hole state, and represents the wavefunction which would be found by 

applying the Hartree-Fock-Roothaan equations to this open shell single 

detenni n:mt . 

... .: 
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To obtain appropriate wavefuhctions for the excited states in 

the vicinity of the reference state, a configuration expansion was 

cmployed. All singlc excitations with respect to the reference state 

2 + which possessed L: symmetry were included. For our basis set of 140 

" and 6n molecular orbitals, this' results in 66 configurabolls. lhesc 

can be represented. 

2023imol1r4 

lo120302mOl7T4 

lo12023amol714 

1012023iln3nn 

(10 -+ mo) 

(20 -+ rna) 

(30 -+mo) 

(17T -+ nn) 

For the last three types there are three electrons outside closed 

shells; thus two 2L:+ configurations exist for each single excitation. 

. 8 
Both of these configur3tions were included in the.expanslOn. 

With the one-electron basis set defined by the orbitals for the 

F Is reference state, the Hamiltonian matrix within this configuration 

space was formed and diagonalized. We asstune that the resulting 

roots and eigenvectors are reasonably good approx:imations to those 

excited 2L:+ states of Hr+ that lie in the energy region near the 

reference state. 9 

Initially we hoped that by limiting the expansion to single 

excitations, each excited state could be 'rather straightforwardly 

intcrpreted in terms of a one-electron transition from the reference 

state. We found, however, that wheIl the virtual canonicalorhitals 

of the rcference state were used in the one-elecfron basis, several 

excitations JIlixed strongly in the e:igenvectors of interest. In other 

words, the unoccupied ci i~ellvectors fromt'he hole-state calculation 
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are not very good approximations to the excited-state orbitals. For 

. this reason, the virtual canonical orbitals were transfonned jnto 

a set appropriate for describing the motion of an electron in the 

field of an N-2 electron core. The orbitals found in this way reflect 

more closely the potential experienced by the "excited" electron. 

TId.s transformation has been used in similar problems previously, 10 

and we will not discuss it here. This new starting set gave, in 

most cases, excited states which could be well described in terms of 

one-electron excitations from the reference state determinant. 

The description of the ionic states was concluded by performing 

a final SCF calculation on the ion HF2+ in the configuration 

The energy of this state relative to the reference state IS interpreted 

as the threshold of "shakeoff', phenomena. 

A brief discussion of the rationale involved in the computation 

of the initial stateCI wavefwlCtion seems in order. After the work 

on ionic HF, we knew the general nature of the correlation states which 

could be. described by our basis set; in particular, we knew the 

predrnninant virtual molecular orbital involved in descrlbing a given 

correlation state. This dictated the choice of the configuration 

expansion for ,the ground. state. The virtual <!rbitals important In 

describing the correlation states correspond reasonably well to the 

first four virtual a orbitals and first three virtual IT orbitals in the 

ground state calculation (see Table III).. The excited configurations 

in the initial state involving these orbitals should then be the·ones 

possessing a large overlap integral with the correlation states. Our 
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approach was, therefore, to reduce the ground state virtual space to 

include only these orbitals. All single and double excitations from 

the valence orbitals (3a,ln) into this reduced set (generating a total 

of 105 configurations) were included. ll This reduction was necessary 

due to the size limitations of our computer programs and the expense 

involved in computing the transition moments involving non-orthogonal 

orbitals. 

2. The Basis Set for Hydrogen Fluoride 

The basis set finally chosen consisted of normalized Slater-type 

orbitals (STO' s) . It is set out in Table I II. TIle requirements that 

the basis set must satisfy are twofold. First, it was found that a 

double-zeta description of the valence orbitals is necessary to accOlmt 

correctly for the effects of electronic relaxation in the F Is hole 

state. Furthermore, the proper Rydberg-type orbitals must be included 

in the basis set in order to obtain a reliable description of· the 

excited states. We approached this problem by augmenting the double 

zeta basis set of Huzinaga and Arnau12 for the fluorine atom with a 

3d polarization function (~ = 2. SOD) and two II Is functions (exponents. 

1. 000 and 1. 500) . To this set we systematically added Rydherg-type 

orbitals on the fluorine atom. A total of eight calculations were 

performed in this way. The final set consisted of fourteen sigma-

and six pi-type functions. 

In the first few caiculations, Rydberg orbitals on fluorine· 

were chosen on the basis of Slater's rules, .One might expect; in the 

linited-atoin limit, that the orbitals of the lIe + ion (n ;;:. 3) would 

be appropriate for the Rydherg·states based on the F ls hole state. We 
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found, however, that the exponents estimated in this. way were, too 

diffuse. 13 11lC final set contains orbitals with exponents slightly 

larger than those suggested by Slater's rules. 

Not all of the excited states that can be calculated for a given 

basis set will have physical significance. Our final basis gave stable . ~. '. 

energies and transition moments, with respect to addit:ion of furth~r 

orbitals and slight modifications of the exponent,s of existing orbitals, 

for those excited states which we felt were physically reasonable. 

It does not represent an optimized set of orbitals; rather it is bne 

which is sufficiently flexible to meet our particular needs. 111e 

\ philosophy of our approach was to employ a large enough bas:is set In 

theHP+ CI calculation to reproduce the lowest 10 "shakeup" states 

reliably both in energy and in orbital composition (hence in peak,

intensity) . TIlese are the states that appear clearly in the e:A-perimental 

spectrwn before the "shakeoff" ionization limit. 

An indication of the completness of the basis set 'for at least 

two of the states of interest here is afforded by comparison with 

previous work. TIle final set chosen gives an SCF energy of -lOQ.0553a.u. 14 

for the lr + grolUld state of HF. TIle near Hartree -Fock result of Cade 

and Huo15 is -100.0703 a.u-. The same basis yields an energy of 

-74.5670 a.u. for the F Is hole state, to be compared with Schwartz's 

result of -74.5365 a.u.16 TIle calculated F Is binding energy is 

693.5 eV, which is slightly higher than the value of 693.3 eV reported 

by Schwartz . Our 3rr shakeoff limit falls at -73.2872 a. u., or 34,8 eV 

above the primary hole state. 
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1he compositions of the molecular orbitals which are most 

important for describing "shakeup" phenomena in lIP are given for the· 

ground state and the ionic states in Table IlIA and Table TIIB 

respectively. 

3. Intensity Calculations 

The intensity of each final-state peak relative to that of the 

main peak '-Jas first calculated in the overlapappro:icimation (Eq. (23b) 

or Eq. (26b) from Section III -A). If only 'fiilal-state CI was considered 

(Method A)"the relation 

I (n') 
I (0) 

L: C Sl1 I * 12 
n'n n n 

- -I * 1112 
L: COnS n n 

(64) 

is appropriate. The extension of the theory to include configurCltion 

interaction in the initial-state (J'vlethod B) leads to 

Il~ C* C slll2 
I(n') n 'n Om nm 

= , 
I (0), 

In~ C* D sl112 On On nm 

(6S) 

Here C I and D", are the coefficients of the configurations (n and m) n n \.)111 

in the eigenvectors of the final and initial states, respectively. 

For HF these would have the form 

/,¥~n') = C
n

'O/102023i1n4(2L;+) 

2 4 '2 + 
+ Cn'1/l020 3040ln (A L: ) 

2 4 2 + 
+ Cn ' 2/ 1020 30401 n (B ~: ) + • • • 
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where, for the final s ta te I If ~n ' ) >, the two 1 inear 1 y independent 

doublet spin functions which can be constructed from the orbital 

occupancy are denoted by A and B. 

The overlap functions s~ were discussed in Section III-A. Here 

tileY actually refer to a sum of determinantal·overlap integrals, 

the nature of the SlDll being determined by the expansion coefficients 

of the Slater determinants in the configuration. For HF the super-

scripts "11" refer to the deletion of the row containing electron 1 

and the collDlln containing the basis function loS from the ground state 

detcnninant(s) . 

Analysis of the energy dependent factor in the cross section, 

Q(E), requires specification of the photoelectron continulDll fWlction 

Ix>. For the purposes· of estimation, we chose the plane wave 

approximation 

. ik-r 
( .... )-3/2 --X = t7T e 

For a given photon energy, this term in the dipole cross section is 

where k is the wavevector of the photoelectron, peE) is the density 

of final continmml states (proportional to k), and ('1>10 I X > is· the 

overlap of the 10 orbital (a linear combination of STO's) with the 

plane wave I X > • 

(66) 
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The sudden approximation gives 

(67) 

Both of these expressions are slowly varying for the slight c1wnges 

in k across the manifold of the HF correlation states. TIley are 

displayed in Table II. 

D.Conclusions 

The conclusions drawn below refer specifically to the F Is 

correlation-state peaks in the high-energy XPS spectnnn of HF. We 

believe that most of them are more generally true for comparable spectra, 

but the exact extent to which they apply can be ascertained better 

following theoretical analysis of additional cases. 

First and perhaps of TI10St importance, the excellent agreement 

between eJl.-periment and Method B (Table I) provides strong evidence 

that the overlap approximation embodied in Eq. (3) is adequate to 

describe such a high-energy core-level correlation-state spectnnn. 

The corollary conclusion is that initial-state C1 must be 

included, since Method A (Table 1) gives poor intensi ty predictiOl~s. 

111is is entirely expected in view of the discussion in I, but it has 

not been recognized in previous work on core level satellite spectra. 

Examination of Table II and, of course, the results of the overlap 

approximation, imply that the energy-dependent factor in the cross 

section can safely be neglected at these energies. At lower photon 

energies, however, these terms might be expected to become more 

important. It is difficult to say at what point they would, no longer 

be negligible, and, perhaps more importantly, at what point the plane 



-82-

wave approximation itself becomes poor. Our results, in fact, clonot 

imply that the plane wave approxiJlk'ltion is good even at these energies. 

They simply suggest that the energy dependence--whatever its form-- is 

slowly varying. The usefulness of the plane wave approx irnat ion is an 

important question at the present time since several theoretical 

models for predicting the intensities of molecular orbital photoemission 

spectra use either it or a closely related type of continuum function. 

Further work on this point is iIi progress in our laboratory. 

The primary components of the dipole cross section--Q(E) and the 

overlap integral Sll_-have already been discussed. There are additional n . 

terms in the cross. section, however, and in the Appendix we report the 

results of calculations which evaluate the leading corrections for a 

few of the states of HF studied here. They are all found to be 

negligible at the photon energies used in our·experiment. 

It is interesting to interpret the correlation peak intensities 

in tennsof "shakeup" excitation into virtual orbitals. An examination 

of Table IV shows that the first two correlation states (1 and 2) can 

be described fairly well as arising from the 30 -+ 40 transition. TIlese 

two final states are describable as molecular valence states, the 

remainder of the·spectrurn corresponding primarily to Rydberg-like states. 

Only state 2 of this pair is predicted to have an observable intensity, 

and it is indeed the first state observed in the experimental spectrum. 

It seems reasonable to assert that the relatively low intensity of this 

transition is attributable to the charge transfer nature of the 

excitation. TIlC 30 orbital is the bonding combination of the F(2p) 

and (Is) orbitals and is largely localized on the fluorine atom, 
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while the 40 IS the antibonding combination and is primarily hydrogen

like. Since the orbitals have their large components in different 

regions of space, one would expect a small overlap. 111is interpretation 

seems plausible, but there are also more subt Ie effects that contribute 

substantially to the cross section. These are the small admixture 

of the l1T -r 27f excitation into state 2, the even smaller admixture 

of the reference state, and the effect of configuration interaction 

in the initial state. 111is last point is very important and can be 

seen quite clearly in Table I. The inclusion of initial state Cl 

(Method B) nearly doubles the predicted intensity of state, 2 relative 

h . h 1 17 to t e pnmary 0 estate. 

The most intense peak in the spectrwl1, state 5, corresponds to 

the l7f -r 27f, or F(2p } -+ F(3p ) excitation. Its counterpart, state 3, 
1T 7f 

is also relatively intense. TIle next most intense peak in the 

spectrwn is state 9, the F(2p ) -r F(4p ) excHation. ll1ese re~;u1ts, 
1T 7f 

of course, would be expected on the basis of a simple one-electron 

overlap model. 

Satellites with smaller intensities arc less predictable. State 7 

is primarily attributable to the 30 -+ 50 excitation. It would be tempt

ing to sa) that since the 50 orbital is F(3s)-like, there should be 

very little overlap with the 30 orbital in the ground state (which is 

mainly PC2Po)-like), and this causes the small intensity of state 7. 

TIlese argulllents, however, are probably oversimplified since there is 

a fairly large component of 30 -+ 60 (F2po -r F3po) in the wavefunction. 

Configuration mixing makes it nearly impossible to give rough a priori 

estimates of intensities. For exwnple, the 30 -+ 60 excitntion is 
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important in stllte 8, aneI it might therefore be expected to be rather 

intense. It 1S not. TIle f(2p ) -~ f(4s) excitation, state 10, on the 
o 

other hand, has a much larger intensity. The reasons for these 

differences in overlap are complex, and are tied into the specific 

nature of configuration mixing in these excitated,states. Sillce the 

configuratiolls enter into the wavefunction with a phase, they can 

either add intensity to the predominant configuration, or cancel what 

intensi ty the dominant configuration might supply. TIlcse problems 

are expected to be more severe in molecules than atoms since there 

is generally a much denser cxcited-state manifold in the molecular 

species .. 

Finally, we note that the HF molecule is isoelectronic with 

the neon atom. One might, therefore, expect to see some similarities 

in their satellite spectra. In Figs. 3a and 3b we have drawn a bar 

f J . II" '. N 18 d LfF spectrum o· t le most lntense sate 1 tcs 1.n e' an' 1 ~. Above each 

bar we have assigned an orbital which serves tq ·roughly identify the 

final state. 

The most intense satellites in the Ne Is spectrum are derived 

from 2p -+ np excitations. If one images the two Ruclei in HF being 

adiabatically compressed into a united atom, the 30 and In orbitals 

of thc molecule correlate with Ne 2p while 40 and 2'fr correlate with 

the Neon 3p orbital. Since the major intensity in neon comes from 

the 2p -~ 3p excitation, it is not surprising that the most intense 

peaks in HF arise from the 30 -+ 40 and In -+ 21f excitations. l1le 

(l1r -~ 4n) state in fIF is also relatively intense and correlates with 

the 2p -+4p excitation in the united atom. 
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9 

Another qualitatively intcresting comparison is to consider the 

"cquivalent cores" analog of the F Is hole state inHF, i.c., thc 

specics (NeH)+. TIle charge distribution in this system is presumably 

intennediate in character betwcen the two cxtrcmcs Ne - It and Nc + - J-I, 

wi th the lattcr being the more chcmically reasonable. TIl8 correlation 

statcs of HI~ should thus be similar to the excited states of Ne +, 

inasrrruch as the hydrogen nucleus is adequately shielded by its electron. 

11 f + d . d f 2 3 . . 19 h Ie statcs 0 Ne erlve Tom p -+ P excItatIons· arc s own 

diagramatical1y in Fig. 3c. 111ey have been given intensities based 

on the total degeneracy of each state. TIlis simple picture seems to 

work quite well, as can be seen by comparing Fig. 3c to Fig. 3b. 

Although no detailed correlation between specific states can be drawn, 

this model reproduces the observed shift in fIr: vs Ne toward smaller 

satellite separation from the primary state. 

In swmnary, the correlation-peak spectrum of HF can be calculated 

quite satisfactorily in the overlap approximation. TIle intensities 

of the correlation peaks are very dependent upon the effects of 

configuration interaction in both the initial and final states. At 

present, quantitative predictions of such spectra based on simple one-

electron models seem doomed to failure. EVen qualitative estimates 

and assignments are very difficult considering the importance of 

configuration interaction in the final state. 111e effect of CI In 

the initial state is to increase the intensitics of the shakellp states 

at the expense of the primary h?le state. For HP, the shakeup states 

are all rou~lly twice as intense once initial state CI is included. 
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E. Appendix 

In the preceding paper (I), a fonnalism for the photoemission 

cross section Has presented in which the usual asswnption of "frozen 

orbitals" was not made. TIlis introduced a number of additional 

tenns (Eq. (17)) not present in the usual expression for the cro?s 

section. In this appendix we report numerical results for some of 

these corrections for many of the states involved in HF. 'These values 

were calculated early in our work, simply to satisfy us that they 

were indeed negligible. The absolute numbers, therefore, come from' 

a basis set that differs slightly from the final one. However, a 

comparison of the relative importance of the corrections should be 

meaningful. 

The overlap contributions (L: C,' slj == t::.l~) are shown in Table V. n n n n ,n 
TIle tenn (j = loS) obviously dominates all other j. Furthermore, since 

<xlpjj> « <xlpllo} at X-ray energies, the entire second term ln 

Eq. (17) can safely be disregarded. The conjugate factors 

"(2: C , [II 41'n I L: Pkl'F.(N - i,41.,l)] == rl~) are larger and somewhat 
n n n Q, &n k=2 1 J n 

less predictable. We estimate their importance as follows. 

In the plane wave approximation for X, the term j = 10 will affect 

the cross section as 

. 11 11 2 a , a: I u . <kt::. , + r ,} I 
n - - n . -n 

(68) 

Since k and £ are vectors, the "conjugate" correction will'be angularly 

dependent. In the gas phase, one might average this expression over 

all possible orientations of the molecules with respect to u, and 

for unpolariz.cd X-rays, average over all polarizations. This leaves 
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an e:>"l)ression which is dependent on the angle between the photoelectron 

exit slit and the photon propagation direction. 111is angle in our 

instrument is Tf/2. 

After prefonning these averages, one finds that the cross section 

is proportional to 

( 11) 2 2 (11) 2 
an' cc L1n' + 3k2 rn' (69) 

11 11 . Although r , can sometimes be comparable to /":" I (see lable V), the 
n n 
2 factor l/keffectivelyquenches this contribution well above threshold. 

I" 
lhe other tenns (r ~ ,j f. 1a) are also negligible since they enter 

. n 

the expression multiplied by a smaller overlap integral <X/j). 

We conclude that well above threshold only the first tenns of 

Eq. (1.8) shoUld be necessary for the calculation of photoionization 

cross sections for core levels. As threshold is approached, the 

conjugate mechanism may become more important due to the presence of 

the 1/k2 multiplicative factor. 
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Table I. Correlation Peak Intensities in the Overlap Approximation 

I (theo) (b) I (theo) (b).' FWHM • ) (d) E(expt)(d) 
State(a) I(expt) (e) 

. E(tneo 
Method A Method B (eV) (eV) (eV) 

0 (1.000) (1.000) (1.000) ,1.4 , (693.5) 694.C(5) 

1 0.000 . 0.001 23.89 

2 0.012 0.020 0.019(3 ) Z.t(3) 25.90 22.4(2) . 
3 0.0 i 5 '0.030 0.030(4) 2.3(3) 29.57 26.50(9) 

4 0.000 0.000 30,89 

5 0.036 0.062 0.057(5) 3.7(3) 32;35 29.90(7) 

6 0.000 0.001 32.72 

7 0.007 0.0 12 0.010 4.7(3) 33.31 30.87 

8 0.000 0.000 33.74 

9 0.028 0.041 0.038(5) 7.1(9) 34.84 32.7(3) 

10 0.005 0.007 0.007 7.9(9) 35.43 33.3 

11 0.000 0.000 35.72 

a) In order of increasing energy. "Reference state" is numbered 0, as in Fig. 1 and text. 

b) All intensities normalized to peak O. Absolute ",a1ues of the overlal' integral in state 0 are 0.78115 

(Method A), 0.71970 (Method B). 

c) Error in last place given parenthetically. 

d) First entry is the rtbsoll;te binding energy of the reference state; the others are incremental 

. cnergi'es relative to this. 
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Table II. Energy Dc pende nce of Correlation Peak Cros s Sectionn 

State(a) 
Q(E}(b) Q(E)(b) I(theo)(c) I(the~) (e) 
(dipole) (sudden) (dipole) (sudden) 

0 1.0 1.0 1..0 1.0 

1 0.980 1.011 0.001 0.001 

2 0.979 1.012 0.020 0.07.0 

3 0.976 1.012 0.029 0.030 

4 0.975 1.014 0.000 0.000 

5 0.973 1.015 0.060 0.063 

6 0.973 LOiS 0.001 0.001 

7 0.973 1.015 0.012 0.012 

8 0.972 1.016 0.000 0.000 

9 0.972 1.016 0.040 0.041 

10 0.971 1.017 0.007 0.007 

11 0.971 1.017 0.000 0.000 

a) In order of increasing energy; state 0 is the "reference state". 

b) NorITIalized to state O. 

,c) COITIputed as the product of the energy dependent tenn, Q(E), and 

the overlap terITI for our best wavefunctions (Method B in Table I). 
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Tabl(! III. Houde Sr.t of Sl.,t.~r f'unrtions and St:lt:t"tcd One- F:t.:ctron Oi-hital .. uflC'd in thC' Cl Wavr(unrtlona 
===.-___ 0.···==== 
A. lIF Ground State 

t. 

Z. 

3. 

4. 

5. 

6. 

7. 

S. 

9. 

10. 

II. 
I Z. 

13. 

14. 

Sinh! r Fun<. tion a 

Type 

F(ls) 

F(lB'), 10.514 

F(Zs) 1.933 

F(2s') 3.t20 

F(2p) \;~47 

F(2p') 4.t75, 

F(3cl) 2.0;00 

FOo) \.000 

F(1p) \.000 

F(3d') O.HOO 

F(4B) 0.1,00 

F(4p) 0.1,00 

lI(ts) \.000 

H( ts') \.500 

la 3a 

.0.671.8 0.2H73 0.0665 

.0.3313 ·0.0154 ·0.003,1 

.O.OOH .0.4249 .O.UOI 

0.0021 ·O.l.22H ·0.1/.9'! 

0.0005 ·O.OxAS 0.6050 

.0.0012 ·0.0266 0.2852 

0.000'1 .0.OiI6 0.0453 

.0.0001 .0.0417 ·0.0024 

.O.OOO'! .0.0193 0.0238 

.0.0002 ·O.OOHO 0.0134 

.0.000 I O.OOSI 0.0036 

0.0002 .0.0016 0.0015 

0.0028 0.IH41 .0.0297 

.0.00IH .0.2311 0.1042 

B. liFt. F(18) Holt~ State 

I. 

Z. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

I\. 

12. 

13. 

Stater Funct.ion 

Type ~ 

F(Io) 7.716 

F(ls') 

F(Zs) 

F(2s' ) 

F(2p) 

F(2p') 

F(3d) 

F(3s) 

F(3p) 

F(3d') 

F(4s) 

F(4P) 

H(ls) 

10.514 

1.933 

3.120 

1.847 

4.175 

Z.500 

1.000 

1.000 

O.ROO 

0.600 

0.600 

1.000 

la 2a 3a 

.0.5892 0.3055 0.0909 

.0.4178 0.0035 ·0.0038 

.0.0305 -0.2178 .0.0022 

0.0071 ·0.8100 .0.2620 

.0.0005 .0.1271 0.5742 

0.0005 .0.0714 0.4383 

.0.0008 .0.0252 0,0474 

.0.0023 .0.0435 0.0635 

-0.0065 -0.0111 .0.0084 

-0.0022 .0.0073 0.0192 

-0.0007 

0.0011 

0.0238 

0.0062 ·0.0079 

-0.00·16 0.0145 

0.19?9 -0.2628 

14. H(ls') 1.500 -0.0134 -0.2196 0.3289 

Molecula r Oruitallll 

-0.0729 0.1185 

·0.0054 -0.0250 

0.4412 0.1233 

0.2847 ·0.2811 

0.4963 0'.2021 

0.3050 0.1327 

.0.0232 ·0.0300 

-0.2278 

0.0163 

0.0244 

-0.0292 

0.0245 

-1.7194 

0.3169 

1.1467 

.0.2136 

.0.1275 

-0.0576 

0.0023 

-0.5649 

0.0954 

4a Sa 

-0.0403 0.0588 

-0.0125 -0.0177 

0.5674 0.1979 

0.1700 -0.0562 

0.4799 0.2672 

0.1111 0.0615 

0.0057 - 0.0168 

0.0661 1.3143 

0.051.3 0.1808 

-0.0409 -0.1653 

-0.0189 

·0.0141. 

- I. 7866 

0.0819 

-0.0501 

- I .3668 

0.3656 0.3365 

0.0143 

o .008H 

-0.291>6 

-0.1380 

·0.0010 

0.0056 

0.0878 

-0.660 I 

• 1.14 <;4 

0.1289 

.0.1 t21 

.0.2400 

1.5<;(>1 

-0.38·19 

6a 

-0.0087 

.0.0119 

0.H54 

0.1087 

0.0312 

0.0153 

-0.03019 

0.4695 

1.070,1 

0.15tO 

0.1583 

0.450 I 

.1.7129 

7a 

-0.0384 

0.0039 

0.1057 

0.1416 

0.0957 

0.0509 

0.0201 

.0.0954 

_O.ORHO 

0.6961 

0.79'H, 

0.1 '04 

0.3402 

7(] 

0.0258 

.0.0024 

- 0 .0'122 

-0.0539 

.0.09H1 

-0.0147 

- 0 .0062 

0.1924 

0.3730 

-0.5887 

.0.'1247 

·0.1900 

0.1798 

0.4841 ·0.1'134 

a) }-"cre ~ Ct: r"-l e -l;,r, where n is the principal quantunl nurnber. 

In In 

-0.71-19 -0.29% 

·().lJ81, .0.2<;1,1 

-0.02/.3 O.OIH. 

-0.0(,00 1.0'!2H 

.0.0157 0.171'. 

0.008? .0.0814 

in Zll 

0.6168 0.2489 

0.4')70 0.0')<)6 

0.0282 -0.00(.7 

.0.0571 _o.9/.n 

0.0051 -0.2936 

0.0201 ·0.1271 

-0.0323 

.0.01-11 

-0.0552 

0.1275 

-0.'1<;72 

0.120M 

0.02H8 

0.0041, 

0.0 I 5'1 

.0.1002 

0.'!2H2 

.0.2'170 

4n 

0.140 I 

O.OIJ"iH 

-O.O()(l'\ 

-0.70SI • 

0.111-1 

1.2224 

0.2151 

O.()(':\8 

- 0 .00 3<; 

-O.9() 15 

o .lOlO 

I. tl)I-I(, 



Table IV. Important Configurations for Describing the Correlation States 

*. 
Configuration 

0 2 

1. ~ 2 2 4 
10 0 30 I" (a) 0.9957 0.0317 0.0170 

2. 1012C/3014011rr4 (b) -0.0075 0.6215 -0.7227 
(c) 0.0229 -0.7494 -0.5950 

3. 10120230150 1
j" 4 (b) -0.0055 -0.0095 0.1233 

(c) 0.0161 -0.0759 - 0.0342 

4. 
I 2 1 1 4 

10 2::J 30 00 I" (b) 0.0011 -0.0065 0.0188 
(c) -0.0029 -0.0209 - 0.0121 

5. 
1 2 I I 4 

10 20 30 70 I" (b) 0.0007 -0.0172 0.0319 
(c) -0.0021 0.0276 0.0307 

6. 1012023021·,T3 2,,1 (d) -0.0148 -0.0469 0.2702 
(e) 0.0242 -0.0478 0.0567 

7. 1 2 2 3 I 
10 20 30 1" 3T! (d) -0.0010 -0.0026 -0.0134 

(e) 0.0017 0.0099 -0.0010 

8. 
1 2 2 3 I 

10 20 30 IT! 4T! (d) -0.0092 -0.0165 0.0660 
(e) 0.0151 -0.0164 0.0203 

*The configurations have the following specific forms. 

a. 1.0 (10<> 20<> 20~ 30<> 3CT~ iT!ta- i"+~ iTT _ a-iTT _~) 

b. 0.7990 (10<> moa no~) - 0.5453 (loa-map noa) 
-0.2537 (IO"~ moa no a) 

State 

3 4 

0.0224 - 0.0269 0.0118 

0.1656 -0.0181 -0.1269 
0.1153 -0.0865 -0.0.707 

-0.2445 -0.7273 -0.2')01 
-0.0440 0.2883 0.2912 

0.0402 0.2482 0.1689 
0.0204 -0.0820 -0.0801 

0.0204 0.050S 0.0037 
- 0 .0042 -0.0092 -0.0150 

0.8815 0.000 1 -0.2825 
-0.3138 0.5126 -0.7284 

-0.0057 -0.1160 -0.2392 
-0.0092 0.0163 0.0098 

-0.0393 -0.0167 0.3076 
-0.0806 0.0851 -0.0030 

c. -0.1683 (loa mao no~) .- 0.6078 (loa mop noa) + 0.7761 (10~ moa noa) '-" 

d. 0.5773 (lOa IT! amTT ~) - 0.2845 (lao IT! ~mTT a) 
"'(\.5773 (loa 1,,:a mT!:~) - 0.2345 (10<> I<~ mT!» 
- 0 . 2 92 9 (1a ~ 1 T! a mT! a) - 0.2929 (1 a ~ IT!· a m" a) - - + + 

e. 0.00'; 
--0.00'; 
"'0.497 

llOalrr amT! ~) - 0.5024 (100 1" pm'lf a) 
(lOa \i' ... o mii ... ~) - O.~024 1100 li'.(3 m;; ... a) 
(1013 Irr am" 0) +0.';975 (lOI1:'If am" a) _ _ + J. 

6 7 8 

-0.0014 -0.0164 -0.0052 

0.0319 0.0395 0.0487 
0.0371 -0.0597 0.0264 

0.1297 0.2317 0.3651 
-0.1350 0.7881 0.0640 

-0.1184 -0.3500 0.8056 
0.0208 -0.1628 -0.3110 

-0.0280 -0.0394 0.0729 
0.0014 -0.0257 0.0516 

0.0561 0.1141 0.0410 
0.1145 -0.0098 - 0.0096 

-0.9600 -0.0082 -0.0430 
0.0308 0.071,7 0.0833 

-0.0726 -0.3383 -0.2199 
0.0056 0.0115 0.0180 

9· 10 11 

-0.0013 0.0027 0.0084 

-0.1340 0.0191 0.0123 
-0.0362 0.0182 -0.0162 

-0.2458 0.0770 0.0405 
- 0.1951 0.1067 0.OQ30 

0.0648 0.1219 0.0517 
0.1045 -0.0068 0.0300 

-0.3003 -0.9030 0.1157 
0.0688 0.2043 - 0 . .0 2 70 

-0.1243 0.0666 -0.0032 I 

-0.2211 0.1032 0.0081 1.0 
.j::. 

0.0159 0.0003 - 0.0418 
I 

-0.0283 -0.1048 -0.Q794 

-0.777Q 0.2492 -0.0520 
0.1319 -0.1118 -0.0341 



o 

n' 

0 
1 
2 
3' 
4 
5 
6 
7 
8 
9 

1 0 

a. 

h. 

c. 

.. 0'·· o .~ 

-95-

Table V. Comparison of Overlap and Conjugate 

Terms in Photoemission Cross Sections for HFa,h 

j laS j 20 S j 30 S j lIT C 
== c == '" 

11lj 
n' 

rlj 
n' 

lllj 
n' 

rlj 
n' 

il
lj 
n' 

rlj 
n' 

r1j 
n' 

0 •. 885 0.091 -0.006 -0.138 -0.001 -' -1.84 
-0.014 0.192 0.001 - -0.006 - -

0.104 -0.454 0.000 - 0,001 - -
-0.111 0.190 0.001 - -0.003 - -
-0~002 0.075 -0.000 - -0.002 - -
-0.178 0.082 0.000 0.085 0.001 -0.019 0.700 

0.007 0.335 -0.000 - 0.000 - -
'0.083 0.178 -0.000 - 0.000 - -
-0.051 0.273 0.000 - -0.002 - -
-0.018 -0.258 0.000 - -0.000 - -
-0.034 -0.034 0.000 - -0.003 - -

See Appendix I for definitions of fllj and rlj The units for r1j 
n' 

, . 
n' n 

reciprocal bohrs. 

The dashes represent calculations which were not performed. 

Note that fllj for j = In vanishes in all states by symmetry. n' 

are 
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FIGURE Ci\PTIONS 

Fie. 1. (a) High pressure and (b) low-pressure photoelectron spectra of 

the F Is region in HF using AIKal ,2 X-rays. The scale for the 

correlation and inelastic loss peaks is expanded 20 times that 

for the main peak. 

Fig. 2. Correlation peaks for HF F Is relative to the IT1.'lin line along 

with the computer fit (see Table I and text). The crosses 

represent actual data points; the cirC::lesrepresent data 

connected for the inelastic energy loss peak at about 20 eV. 

Fig. 3. (a) 111e most intense satellites of the Ne Is hole state. The 

correlation of these states with the HF satellites is shown by 

the dotted lines. (b) The most intense states of the HF satellite 

spectrum. The abscissa is the separation from the primary state 

and the ordinate is the intensity relative to the primary stat.c. 

Above each bar an orbital designation is provided which roughly 

identifies the final state (see text). (c) TIle excit.ed states 

derived from the configuration ls22s22p23p of the Ne+ ion. They 

have been given intensities based on the total degencracy of 

each state. 
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VI I. Ne (Is) SATELLIIT STRUClURE 

A. Introduction 

When monochromatic radiation excites photoelectrons front a given 

atomic species, a series of strong peaks usually appears 1n the 

kinetic energy spectIUITI of the outgoing electrons. Each of the peaks 

corresponds to a final ionic state in which a single electron has 

been ejected from the· Is, 2s, 2Pl/2 ' 2P3/2' etc, level. 11lC ini tial 

atomic state energy E, and the final ionic state energy Ef are related 1 

to the photoelectron's kinetic energy K by 

(70) 

Associated with each strong peak there are also usually several weaker 

satellite peaks. These arj.se through excitation of higher-energy 

final states of the ion. The satellite states usually have·the same 

syrrunetry as the "main" peak and, in common with it, they have an 

electron missing from the same subshell of the atomic core. 111e 

terms "shakeup states", "configuration-interaction states", and 

"correlation states" have been applied to these satellites. 

The neon Is orbital provides the most suitable test case for 

studying correlation satellites theoretically. Krause et al. l first 

found l~ correlation states in Ne+, at relatively low resolution. 

Carlson et al. 2 and Siegbahn et al. 3 subsequently reported better

resolved spectra. Recently, Gelius4 reported a·high-resolution spectrum 

in which a total or 13 Gorrelation peaks were identified. Nine of 

these peaks \Ilere assigned· to one-electron excitation to states of 2S 

symIJletry--thc saIlle symmetry as the main Is state. 111e energies and 

intensities were accurately detennined: the experimental situation is, 
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therefore, quite satisfactory. 

From a theoretical standpoint the Ne Is correlation-state energies 

are we1l understood, having heen calculated by Bagus and GeliusS 

using a multi-configuration Hartree-Fock (MOlf-) method. 1he energies 

are not necessarily related to the photoemission process, however, 

and interpretation of correlation-peak spectra in terms of energies 

alone neglects most of the wlique infoI1l1.1.tion that these spectra 

contain. To extract this infonnation and make a definitive inter-
. . 

pretation, we must construct a theory that accounts for the satellite 

intensities. The only theoretical intensities heretofore available 

were given by Krause et al. 6 1hey used an MOIF approach to estimate 

the intensities of the first two satellites. Good agreement \'vith 

experiment was obtained, but it was probably fortuitous, as we shall 

show below. The MCHF approach is not readily extended to spectra 

containing several satellites, and a better model is required. TIle 

object of this paper is to present such a model. 

In Section VII-B the theory of correlation-state spectra is 

briefly discussed. Basis sets and Hartree-Fock results arc dealt 

with in Section VII-C. In Section VII-D we describe attempts to 

predict correlation-state intensities with both the MOfF model and an 

orthogonalized modification. Configuration-interaction techniques are 

introduced and applied to the final-state manifold.in Section VII -E, 

and in Section VII-F this approach is extended to the initial state. 
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B. 1heory 

In the photoelectric effect a photon excites an N-electron 

system from its growld state IfO into an excited state which we may 

write symbolically as the product of a state vector:. If. (N - 1) 
J 

describing the residual N - 1 electron ionic system and a contj ntllll11 
-~ -+ 

function Xj(yNkN) for the outgoing electron, 

-+ -+ If.(N) - If.(N - 1) X·(y __ kN) 
1 J J ~-

111is is actually an oversimplified form. Several approximations were 

made for computational simplicity. We have neglected coupling of 

channels in the continuum, a point recently discussed in connection 

7 with satellite spectra by Manson. Far from threshold this effect 

should be small, 8 and it is not included in this work. - In view of 

the agreement with experiment obtained in the calculations discussed 

below, we conclude that coupling of continuum channels is not cTIlcial 

to an understanding of the satellite intensities in the Ne Is region 
, 

excited by AlK X-rays (photoelectron kinetic energy of -600 eV). a 

From a computational standpoint, this approximation allows one to deterndne 

an ionic state of any desired accuracy, and then to generate a single 

continUlnn function in this ionic-potential for an appropriately 

antisymmetrized N-electron L·S eigenstate. 

We also have neglected contributions to the dipole m .. 'ltrix 

element which arise explicitly from the antisynnnetric nature of the 

initial state and from any energy dependence over the satellite-states' 

energy range in the one-electron photoelectron cross section. 9 We 

studied the effect'S of these simplifications on a similar correlation

state calculation on hydrogen fluoride,lO and found them to be small. 
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With these approximations the calculation of relative intensities I.' 
J 

of the correlation states reduces to evaluation of an expression 

9. 11 identical to thc sudden-approximation result of }\l)crg" 

I. « I <~.(N'ls)I~.(N - 1)1
2 

J 1 J 

where ~i(N'ls) denotes the N - 1 electron function formed from the 

th neon ground-state wavefunction by removing the N electron and a Is 

(71) 

orbital (i.e., by striking the appropriate row and coltmm from each 

determinant describing the ground state). Thus our task is to find 

appropriate descriptions of ~.(N) and ~.(N - 1) for all j of interest. 
1 . J 

Before describing in detail the basis sets that were employed, 

. let us make some general observations about the correlation states. 

The ground state of neon is of course mainly ls22s22p6 (but see 

Section VI). 

262 ls2s 2p, S. 

The main peak in the Nels photo'emission spectnnn is 

As Krause et ale have shown,l other 2S states can he 

formed, for example, by promoting an electron to an np orbital and 

recoupling with the hole to IS or 3S, then recoupling to Is to form 

2S . , Vl.Z, 

4>1 (np) 
253 Is (2S) = 2s 2p np( S) 

4>2 (np) 
251 Is (2S) = 25 2p np( S) 

Md similarly for ns. These two single "configuration state functions" 

represent the simplest treatment of the final ionic state. If we were 

to compute intensities at this stage~ employing a single-detenninantal 

initial state and using Koopm<ms.' approximation for the final state 

orbitals, both st.ates would have an identically zero overlap with 

the initial state. If, on the other hanel, we performed separate 
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Hartrec-Fock calculations for both of these final states, the orbitals 

for the final states would no longer be orthogonal to those of the 

initial state and orbital relaxation would provide a mechanism for 

populating ¢Z(np). In this coupling scheme, however, even with 

relaxation ¢l{np) is still orthogonal to the initial state by virtue 

of the valence electron spin coupling. Because two satellites 

corresponding to the configuration isZsZZpS3p are experimentally 

observed, Krause et a1. pointedoutl that at the very least eigenstates 

nrust be formed from ¢l and ¢Z: 

~ (lower) = a¢l(np) + (1 -np 

'I' (upper) = b<Pl (np) + (1 -np . 

2 l/Z 
a)· ¢Z(np) 

(72)' 

bZ)1/2 ¢Z(np) 

Of course the true eigenstates cannot be written so simply; they are 

linear combinations of all the basis states. Nevertheless, the 

dominant terms in the ~xpansion of ~np (upper or lower) tend to'be 

¢l(np) and ¢Z(np); we shall, therefore retain the notation ~np (upper) 

and ~ (lower) for the eigenstates. np . 

A comment on the "shakeup" terminology is in order. It is 

convenient to enumerate configurations that admix with the main con

figuration, Ne+(lsl Zs22p6), by "promoting" one electron at a time and 

. 2S recoupllng to a tenn. 111is "promotion" is a computational convicnce 

that has meaning only in the context of a preselected basis set~ In 

particular, it has nothing to do with the ionization process. The 

early literature on the subjectl ,2 used terms such as "monopole 

excitation'" "monopole transition" and "two-electron excitation" in 

descrihing the occurrence of correlation states. More recently, 
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correlation-state peaks in transition-metal complexes have been 

attributed to "ligand-to-metal charge transfer". These tenns had 

heuristic value during the development of the subject, but they can 

be misleading if interpreted li~erally. We note that there is no 

monopole transition and no shakeup transition.. TIle correlation peaks 

.. I} d h . k 12 I 1 anse In exact y tle same way as 0 t e maIn pea s. t IS a so 

not rigorously correct to describe the correlation states as resulting 

from two-electron excitation. Because of the potentially mislcading 

nature of the terms "shakeup" and "monopole transition", we prefer the 

term "correlation states". 

C. Basis Sets and Hartree-fock Results 

TIle SCF calculations were all done with. RootJlaan' s analytj c 

expansion,13 using the Slater-type orbitals (S,[O's) 

TIle final basls set chosen for our SCF calculations is given in 

(73) 

Table r. It was formed by augmenting the set of five s-likc and four 

14 p-like STO's optimized by Bagus for the Ne ground state with a sct 

of seven Rydberg orbitals. The exponents In the Rydberg STO's were 

chosen by matching (r)n to the results found by Bagus a.nd Gelius 5 in 

a numerical t'-JGIF calculation on the Ne (15 hole) states, using 

and 

(r) = 
n 

2n + 1 
2t: n 
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Two values of E;, were obtained from each of these two relations, 
n 

corresponding to the upper and lower np states. 1he agreement among 

the four E;, va] ues for each n was excellent. 111e values quoted in n 

Table I are averages. 11le exponent E;,6 = 0.30 lies slightly above 

an estimate made by extrapolation of E;, vs n. Slater's nlleslS give 
n 

exponents of ].02, 0.54, 0.50, and 0.48 for n = 3, 4, 5, and 6, 

respectively. Because E;, is I-independent for STO's, we took E;, = E n ns 'np 

for all n. 

Table I I gives tile Hartree-Fock energy results obtained with this 

+ basis set for the Ne ground state, the Ne Is hole state, and the two 

2p shake-off limits; i. e., the lowest lp and 3p states of 

++ 2 5 . Ne (ls2s 2p ), Whlch mark the onset of new continuLUn manifolds. 

'flle total energy of the Ne Is hole state is quite close to the value 

of -96.62571 a.u. reported by Bagus, confinning that the augmented 

initial-state basis set is sufficiently flexible to describe both 

states. TIle results in Table II give 

r~(ls) = 868.6 eV 

3p Shakeoff Limit = 45.15 eV 

lp Shakeoff Limit = 49.46 eV 

In the Ne Is photoelectron spectnun the most intense satellites 

are members of the Rydberg series approaching these two double ioni-

zation limits. We, therefore, elected to focus our calculations on 

the states derived from 2p -+ np. 

TIlC adequacy of this minimal Rydberg basis was testeu by comparlllg 

the energies of the correlation states as calculated wjth this set 



o 5 o 6 o 

-107-

(by employing a configuration interaction (Cl) expansion to be 

described later) with energies obtained using a set in which the 

3s and' 3p orbitals were "split" into two STO basis ·functions. TIle 

correlation state energies were all identical within 0.1 eV. We, 

therefore, believe ~hat the minimum Rydberg basis is adequate for 

describing the correlation states. 

D. Multiconfiguration Hartree- Fock Results 

All previous thebretical treatments of the Ne Is correlati.on-state 

spectrum were based on the MO-IP model, which allows simultaneous 

optimization of both the orbitals and coefficients of a configuration 
\' . 

interaction expansion. In this section we report the Ne Is satellite 

intensities calculated with the MGIF waveftmctions of Bagus and Gelius. 

Specifically, each state was sepanitely optimized for the two. tenn 

expansion of Eq. (3). As Bagus and Gelius have shown,3,4 the energies 

of the Ne Is satellites can be computed quite satisfactorily by this 

method. TIle intensities, however, are another matter. TIle MCHF 

wave functions are orthogonal neither to each other nor to the main 

Is hole state. Thus the MOIF correlation-state intensities, which arc 

calculated from overlap integrals,cannot be taken very seriously. 

We have also recalculated the intensities after Schmidt-orthogonalizing 

the r.'1GIF wavefunctions. Mter having thus exhausted the immediate 

possibilities of this method, we tunl in Section VII -E to a configuration-

interaction model for treating the correlation states. 

TIle results arc presented in Table II r. A.c; pointed out previously, 3, 4 

the correlation-state energies agree well with experiment, essentially 

falling into place if a constant shift of 1. 7 eV IS appl ied relative 
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to the main Is state. A straightfonvard computation of the correlation-

state intensities (i.e., overlap with the ground state) yields the 

values given in Cohunn 4 of Table III. While the agreement with 

experiment (Cohrnm 6) of some of the peaks is fairly good, the 3p 

peak intensities are far too large. 'TIlis discrepency is eliminated 

by successive S:hmidt orthogonalization of each final state to those 

below it in energy (Table III, Colwnn 5). 111is procedure removes. the 

conceptual error or nonorthogonality but replaces it by another, 

because the order of Schmidt orthogonalization is both important and 

arbitrary. Carlson et al.,2,6 employing an identical procedure, 

5 5 computed intensities for the 2p 3p (lower) and 2p 3p (upper) states 

of 2.3% and 2.9 g6 respectively. These arc in marked disugreement w:ith 

the intensities we have found using either our first approach or the 

orthogonalized modification. We aSSlUne that the source of the 

disagreement lies in the fact that they did not compute the complete 

overlap integral with the growld state, but rather approximated it 

as the one-electron orbital overlap integral (2p(initial state) 1 

3p(final state)}. As it is not clear how the MO-IF method can be 

improved, we leave it at this point. 

E. Final-State Configuration Interact jon 

A configuration-interaction calculation was carried out on the 

Ne Is correlation states using the program described by Schaefer .16 

'TIle one-electron fWlCtions used in the CI were generated by ScJunidt-

orthogonalizing single Slater-type orbitals to the Hartree-Fock 

orbitals for an appropriate core (by "corc", we mean the 1s, 2s, and 

2p atomic orbitals). 'TI1C STO's used to define the fWlctions were the 
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Rydberg 'orbitals in the original basis, two 2s and two 2p orbitals from' 

the original basis (2s', 2s", 2p", 2p'''), a Is orbital with E, = 12.0, 

and a 3d STO with E, = 3.5. The reason for including the Rydberg 

orbitals iS'obvious, and the remainder of the functions are chosen 

so as to be able to describe orbital reorganization and electron~ 
, , 

electron correlation in the n = 2 shell. This scheme generates a 

basis set of 8s, 7p and ld function. 

The choice of an appropriate core presents a problem. TIle simplest 

configuration expansion one can imagine which will generate the 

correlation states as excited roots of the 11amiltonian is simply 
126 all single excitations with respect to Is 2s 2p. For the initially 

occ~ied orbitals, one might choose either the SCF orbitals in the 

main Ne+ Is hole state or those in the 3p (or lp) state of Ne2+(ls2s2Zp5). 

11le former would be expected to favor the main hole state energetically, 

while the latter would favor the satellites; i.e., the optirrn.nn Is, 

2 d 2 b" 1 " h f" "1 12 22 5 h ' ld b s, an p or 1ta s 1n t e con 19urat10Ii ssp np sou e nearer' 

to those of the 2p shakeoff limit than the main hole state. We note 

first that the 3p and lp occupied SCF orbitals are very similar and 

give nearly identical correlation state spacings and intensities when 

we use them in the C1 described above. To illustrate the difference 
+ 2+ 3 that is entailed by choosing the Ne Is hole state vs theNe P state 

orbitals, we found 

E[3p (upper) - E(main peak)] = 42.45 eV (Ne + orbitals) 

40.73 eV (Ne2+ 3p orbitals) 
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. . .' 

with intensities of 2.9% and 1.5% of the main peak, respectively. To 

eliminate this orbital dependence we considered several orbital 

distribution schemes for the Nels final-state waveftmctions. We 

adopted one that is designed to treat the main Is hole state and 

six np correlation states en = 3,4,5) equally. This distribution is 

the union of single excitations with respect to the reference 

configurations. 

and 

lS12s22p6 

125 Is 2s 2p 3p 
125 Is 2s 2p 4p 

125 Is 2s 2p 5p 

with the constraint that the Is occupation is always one. This should 

allow the 2s and 2p orbitals to readjust to whatever fonn is appropriate 

for the state in question. Our goal in this single excitation scheme, 

therefore, is to treat the satellites and the main state at least 

at the Hartree.- Fock level, independent of the orbital basis. 17 

The excitations that this approach involved fall schematically 

into certain categories, as illustrated below: 

orbital Is 2s,2p Virtuals 

occ. no. 1 8 0 

1 7 1 

.. 
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1 2 6 from Is 2s 2p , and 

orbital Is 2s,2p 3p Virtuals 

occ. no. I 7 1 0 

1 6 2 0 

1 6 1 1 

1 7 0 1 

I 2 6 from Is 2s 2p 3p, etc. Using this approach we calculated the final-

+ state energies and peak intensities using both the Ne Is hole state 

and the Ne2+(ls2s22pS) 3p state occupied orbitals. The results 

showed much better internal agreement. The worst discrepancy in 

energy relative to the main peak was 0.9 eV, and the largest discrepancy 

in intensity was 0.3% (again for 3p(upper)). MOst of the differences 

were much smaller. 

Energies and intensities are set out in Table IV, Columns 3-5. 

We shall refer to this result as Calculation 1. The energies of the 

correlation states relative to the main peak show an improvement relative 

to the MCHF results in Table II I: an average shift of 0.83 eV vs 

1. 72 for the six states in that table. 1ne absolute energies of all 

the states were lower than the energies of the corresponding MOIF 

states found by Bagus and Gelius; we, therefore, feel we have satisfied 

our goal of treating all the final states at least at the Hartree-Fock 

level. 

The intensities in Table IV, Column 5 are systematically lower 

than experiment by about a factor of two. We considered improving 

the correlation-state wave functions further, but· decided against 

doing so. The wave functjons described above already involve 226 
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configuration state functions. The next logical improvement would 

be to include the union of all double excitations, wllich would greatly 

increase the nwnber of configuration state functions. Rather than 

spending any further effort focusing on the final states, we decided 

to study the effect of electron-electron correlation in the initial 

state. 

F. Initial-State Configuration Interaction 

Early treatments of correlat~on satellites considered valence 

excitations in the final states but treated the initial state as a 

single configuration. This asyrrunetric approach was justified in the 

context of identifying peaks and calculating their energies. For 

predicting intensities, however, such a modei would not only be 

quantitatively unsatisfactory (as the above calculations have Shown), 

but it would actually be conceptually wrong, because it systematically 

excludes about half the effect, as we show below .. 

Recently initial-state configuration interaction (lSCI) has 

emerged as an important factor in photoelectron spectroscopy. 

b d f · Cd 18 . 19 d b20 h 11· Valence- an spectra 0 atomIC , Hg, an P s ow sate Ite 

peaks arising from configurations introduced into the ground state 

by lSC1. In molecular HF, the F(ls) correlation~state spectrum is 

strongly affected by ISCI. lO The "spontaneous interconfiguration 

fluctuation" of recent interest in mixed-valence rare-earth compowlds2l 

is of course simply another name for lSCI. With these developments 

in mind we were naturally led to consider ISCI in neon, even though 

it is nominally a closed-shell atom. 
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Let us first examine the type of correction ISCI would be 

expected to provide. If we could suppress· the exchange interaction 

between the Ne Is electron and the valence electrons in theNe+ 15 
2 5 2 ... 

hole states, the two ls2s 2p np S states would be replaced by 
5 1 . 3 

(2p np) S and S states. TIle fonner would be very similar to the 
2 2 5 1 3 Is 2s 2p np, S excited state in atomic neon (the· S state also has 

an analog in atomic neon, but it is not admixed into the ground state). 

Similar 1:1 correspondence would obtain between the other configurations 

in the Ne and Ne+ (Is hoie) manifolds with the Is exchange splitting 

removed. The energy spacings of the configurations would be slightly 

greater in the ion, but otherwise the two manifolds of configurations 

would be very s~lilar, as depicted in Fig. 1 (left side). 

Now let us introduce configuration interaction in both manifolds 

while continuing to suppress exchange involving the Is electron in 

the ionic manifold. Correlated eigenstates are generated as shown 

in Fig. 1 (right side). We describe these eigenstates by coefficients 

as shown, and note these have magnitudes 
, , 

aO ' aO ' bO . -1 
I 

a1 ' a1 ' bl . -0.1 

Now if we consider Is photoemission ill neon, there are four contributions 

to the intensity-determining overlap integrals. Path A (Fig. 1) is 

the largest tenn, of effective intensity 
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where, for the sake of this example, we take the overlap integrals 

to be 1 or O. It connects the main configuration in the grolmd state 

anclthe lowest hole state. Path B connects the groLmd state with the 

correlation states. If the ground state were not correlated (Le., an = 0 

for n > 0); then B would be the only mechanism for reaching correlation 

states, and the intensities of those peaks would be 

At this point it is instructive to see how the two major sources 

of satellite intensity cited previously in the literature are related 

to this
C 

model. In most calculations of satellite intensities, 

different one-electron fLmctions are used to describe the groUnd state 

and the ionic states. In this circumstance, the "relaxation" will 

cause the two orbital sets to be non-orthogonal and we would not be 

able to make the assumption that the overlap integrals· are either zero 

or unity. It is always possible, however (at least in principle), 

to perfonn a CI calculation on the ionic state s using the ground-

state orbitals. If this set were complete and we performed a full CI, 

we would obtain the exact wavefLmctions for the ionic states, and 

the effective intensity would be determined (in our example) by the 
, 

coefficient bl " The magnitude of this coefficient would be determined 

by both "orbital reorganization"--roughly speaking, thesjngle 

excitations relative to the predominant configuration of the satellite, 

and "correlation"--double and higher excitations. 111e former situation 

has led to what is tenllecl "shakeup" and the latter to "configuration 
I 

interaction" states; the two groups of excitaUons are closely coupled, 

. , 

.. 
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of course, andviewed in this broader picture the approximations we 

have made thus far are perfectly adequate to describe qualitatively 

both types of states. Initial-state configuration interaction provides 

a new (ivenue for populating final ,states; it introduces Path C. It 

is obvious that it could have the same magnitude as Path B, and 

since it is added to the other contributions before squar~ng the matrix 

element, its neglect can lead to intensity estimates which are either 

too high or too low. It also provides a mechanism for~populating 

satellites which do not have. the correct syrrnnetry to mix with the main 

hole state (although this is not obvious in our example), The satellites 

arising in this case have been termed "ISCl" states. I8 

In the neon ground-state CI calculations the one-electron functions 

were chosen in exactly the same way as in the previous calculations, 

except that the STO'5 were orthogonalized to the ground state HF 

orbi tals. TIlis virtual space was initially partitioned into a 

"Rydberg space" (RS) and a "correlating space" (CS). The RS (three 

s-type and four p.:.type orbitals) consisted of those orbitals formed 

from orthogonalizing the Rydberg STO's, while the remainder defines 

the CS (three s-type, two p-type, and one d-orbital). We made this 
, 

separation because it is well known that the optimum virtual orbitals 

for computing the correlation energy l1ave large arnplit~des in'the 

region of the valence electrons, and, therefore, Rydberg orbitals 

are not usually important in correlation energy ,computations. 

The configurations tn our next calculation included single 

excitations into both the CS and RS, plus double excitations into 

the CS. We refer to this as calculation 2, and it included the 
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following distributions 

(Is) (2s,2p) (Is' 2s' 2s" 2p' 2p" 3d) ' '. , , , CS (3s,4s,Ss,3p,4p,5p,6p)RS 

2 8 0 0 

2 ·7 1 0 

2 7 0 1 

2 6 2 0 

lbe resulting total energy was lowered by 0.21 a.u. from the Hartree-

Fock value, thus picking up 55% of the Ne(lS) L-shell c6r~elat.ion 
22 energy (0.33 a.u.) reported by Nesbet. The Ne Is correlation-peak 

intensities are not improved, however; in fact they are slightly 

poorer (Table IV, Column 6). We infer that improvement of the total 

energy is by itself no criterion for the value of the wavefunction 

in describing correlation-state phenomena. Consideration of the 

simple model given earlIer shows that correlation-state intensities 

will be greatly affected only if similar configurations are adnlixed 

into the ground state; i.e., Path C must be brought, into play. In 

calculation 3, therefore, we transferred the 3s and 3p orbitals from 

the RS to CS, thereby including double excitations of the fonn 

1 22 22 43 2 1 22 63 2 . dd·· 1 C 1 1 . 2 . s s. p p, s p s, etc, ln a ltlonto t lose ln a cu atl.on . 

The results were dramatic. As Table IV, ColunID 7 shows, the 

intensities of the 3p(upper) and 3p(10wer) peaks were more than doubled 

to ncar the experimental values. The 4p, etc, intensities were not 

significantly improved, however. Encouraged by the success of 

calclllation 3 for 3p intensities, we moved the 4s and 4p orbitals over 

into the correlating space in Calculation 4. This eventually doubled 

the 4p(1ower) anJ 4p (upper) intensities, bringing thcm up to\oJarJ thc 
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. experimental values, while reducing the 3p values only slightly. In 

the next step--Ca1cu1ation S--in which the 55, Sp, and 6p orbitals 

were brought over into the correlating space (Co1wnn 9, Table IV) the 

5p and 6p intensities were likewise increased to approach the 

experimental value (Table IV, Column 10). These results are illustrated 

in Fig. 2. It seems safe to conclude on the basis of these calculations 

that the correct theoretical intensities of a given correlation state 

can be calculated if that state is adequately represented in the 

configurations that describe the initial state (via Path C), but 

that only about 1/2 the experimental intensity is predicted otherwise 

(Path B). 

This result confirms the expectations of our simple model. 

Calculations 1-5 clearly show that total energy alone is no criterion 

of adequacy of the wavefunctions in predicting correlation-state 

phenomena. Calculation 2 included 55% of the total L-she11 correlation 

energy (82% of the corre1atioll energy which can be recovered by double 

excitations in our basis), but gave no improvement on intensities 

relative to Calculation 1. Calculation 5, which gave much better 

intensities, improved the computed L-she11 correlation energy to only 

67% of the total value. Figure 3 illustrates this point. 

In sLDnmary, this prototype calculation on neon has shown for 

the first time that quantitative correlation-state intensities are 

accessible within the framework of the sudden approximation. Agreement 

with experiment W3S achieved only by taking into account configuration 

interaction in the initial state. Clearly the correlation-state 

intensities arc very sensitive to the details of electron correlations 

.. 
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in the growld state. We conclude that core-level satellite spectra 

possess the potential of yielding Wlique infoTInation about ground'-state 

electron correlation. 
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neonSCF calculations 
a 

TABLE I. Basis set of STOs for thc 

n~ E; 
nR.. E; 

Is 15.439 2p 10.542 

Is' 8.806 2p' 4.956 

28 3.764 2p' , 2.793 

2s' 2.301 2 ", . P 1.623 
---------------------------------.--

3s' 10.995 3p 0.90 
-----------------------~-------

3s 0.90 4p 0.55 

4s 0.55 5p 0.39 

58 0.39 6p 0.30 

a) The functional foro is given in Eq. 2. Rydbc!:g crbitals appear 

below dashed lines. 



TABLE II. Hartree-Fock energy results from the basis set in Table 1. 

Orbital Energies (au) 
Species Sta-te Energy (au) Virial Coefficient -e:~ls) -e:(2s) -£(20) 

Ne ls22s2 2p6(lS) -128.54708 2.00000 32.77 1.93 . 0.85 I ..... 
N 

1s2s2
2p6(2S) 

N 

Ne+ - 96. 62402 2.00009 37.17 2.85 1.82 I 

Ne 2+ 1s2s2
2p5(3p) - 94.96461 1. 99980 38.30 3.69 2.76 

N~2+ 2 5 1 1s2s 2p ( P) - 94.80628 1. 99979 38.18 3.71 2.75 

,. 
r . ,. 
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+ TABLE III. The MCHF results for Ne ls correlation states. 
0 

Energy (eV above main peak) Intensity (relative to 100 for main peak) C' 
State Ref. 3.5 Expt(Ref.4) MCHF Orthogonalized XCHF Exp t. (Re f. 4 ) 

3p (lower:) 35.59 37.35 (2) 9.25 3.35 3.15 (8) 0 

3p (upp~r) 39.46 40.76 (3) 5.45 1.97 3.13. (10) ih. 
·t~~ 

4p (lower) 40.50 42.34 (2) 2.31 0.Z4 2.02 (10) tor. 

4p (upper) 44.62 46.44 (5) 0.89 0.36 0.90 (11) 
C) 

('I}L, .... 
5p (lower) 42.38 44.08 (5) 0.95 . 0.29 0.42 (6) 

I (." '.: .... " 

5p (upper) 46.60 48.47 (7) 0.31 0.13 0.17 (5) N 
~ 0" I 

00 



TABLE IV. Neon Is correlation-state. energies and intensities. from configuration-interaction calculations. 

Roota Excitation 

1 

2 

3 

4 

5 

6 

7 

8 

9 

(rs hole-state) 

. 2p .. 3p 

Zp .. 3p 

2p .. 4p 

2p .. 5p 

2p .. 6p 

Zp .. 4p 

2p .. 5p 

2p .. 6p 

-E(au) 

96.69406 

95.35753 

95.22639 

95.15613 

95.11399 

95.03181 

95.00479 

94.95227 

94.87348 

llE(eV) I b,c 
1 

(0.824) 

0.0 100 

36.4 1. 26 

39.9 1.68 

41.9 0.85 

43.0 0.24. 

45.2 0.05 

46.0 0.46 

47.4 0.07 

49.5 0.04 

12 13 14 15 
d 

I (expt) 

(0.809) (0.782) (0.777) (0.774) 

100 100 100 100 100 

0.79 2.58 2.51 2.47 3.15(10) 

1. 27 3.02 2.71 2.60 3;13(10) 

0.54 0.66 1.53 1.48 2.02(10) 

0.14 0.15 0.12 0.43 . 0.42(06) 

0.02 0.02 0.01 0.09 -0.15e 

0.32 0.24 0.57 0.70 0.96(11) 

0.05 0.05 0.02 0.11 0.17(5) 

0.03 C.02 0.02 0.06 

a) A characteristic of this type of CI calculation is that some roots are nonsensical: the calculation tries to 
simulate states that are not adequately spanned by our basis set. These begin to occur after the ninth root·and 
have been omitted. The excitation assign~ents were made by examining the eigenvectors. 

b) Subscript~ refer to calculations as numbered in text. The same final-state functions were used throughout. "1" 
refers to Hartree-Fock initial state; "2". included double excitation to the basic correlating space. In 3,4 
and 5 the (3s,3p),(4s,4p), and (5s,5p,6p) orbitals; respectively, were cumulatively transferred to the 
correlating space. 

c) Parenthetical number is actual overlap in the Is hole state. The relative peak intensities are given as 
percentages of this value 

d) Ref. 4 

e) Our estiClate, from Gelius' figure; Ref. 4 

.. 

I 

~ 
N 
.&;;.. 
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Fig. 1. Simple model to illustrate the effect of initial-state con-· 

figuration interaction on correlation-peak intensities .in Ne Is 

photoemission (not to scale). lVith Is exchange suppressed, 
+ . . . 

the Ne· (Is hole) configuration manifold would closely resemble 

the ground state manifold (left). Introducing configuration 

interaction, this 1:1 corres90ndence would also obtain for the 

eigenstates (right), and a
O 

- ab, al - ai, etc. TIle main peak 

arises primarily from path A. Paths B and C arise because the 

two configurations "look for themselves" in the correlation 

state. 111ey are of roughly equal strength, but the dashed path 

(D) is weak. 

Fig. 2. Bar diagram of the 2p + np peak intensHies for. eight correlation 

states of Ne+ (Is hOle). As in text, Calculationl is Hartrce., 

Fock in the initial state. Calculation 2 includes correlation, 

but \vith no double-electron excitation into the Rydberg orbitals. 

Calculations 3, 4 and S include double excitation into the 

(3s,3p), (3s,ep,4s,4p), and (3s,3p,4s,4p,Ss,Sp,6p) orbitals 

respectively. The calculated energies have been shifted upward 

by 0.8 eV to facilitate comparison with experiment. 

Fig. 3. Percentages of experimeI1tal correlation-state peak intensities 

based on sum of np(upper) + np(lower), and total L-shell 

correl<.Ition energies, obtained from various initial-state cal-

culations described in text. 111e basic CI calculation picks up 

much of the correlation energy, but the peak intensities arc 

brought into reasonable agreement with experiment only as each 

state is successively moved into the correlating space. 
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