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GENERALIZED PONDEROMOTIVE FORCES AND THREE-WAVE INTERACTION 

Shayne Johnston and Allan N. Kaufman 

Department of Physics and Lawrence Berkeley Laboratory 

University of California, Berkeley, Ca~ifornia 94720 

The subject of this article is a unified Hamiltonian approach 

to the theory of nonlinear interactions among waves and particles. 

The unifying feature of the approach is a generalization of the 

concept of "ponderomotive force". The formulation can be said to 

retain the conceptual simplicity of the familiar ponderomotive

potential method [l-3], but to remove the approximations [4]. 
The essence of the approach is to replace the usual method of 

time-averaging by the performance of a canonical transformation. 

The transformation is designed to eliminate the terms in the 

Hamiltonian of a particle which are linear in the wave potentials, 

replacing them with bilinear terms at combination frequencies. 

The new entity (the "oscillation center") thus has no first order 

jittering motion. The transformation formalism leads to explicit 

expressions for the required nonlinear currents, which can be 

decomposed into the current of oscillation centers and the "po

larization" corrections [4]. The oscillation-center representa

tion is thus quite analogous to the more familiar guiding-center 

representation in strong magnetic fields. 

Such an approach has previously been applied to the theory 

of induced scattering of waves by resonant particles [5]. The 
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useful extension of this point of view to ot~er nonlinear processes 

is advocated here. We shall demonstrate the oscillation-center 

approach by deriving a compact general formula for the three-wave 

coupling coefficient in collisionless plasma. We wish here to 

emphasize idea~ rather than the details of the formalism [6]. 
Accordingly, our subsequent discussion will be fairly schematic. 

We consider a collisionless, nonuniform and possibly relativ

istic plasma, confined by spatially inhomogeneous electric and 

magnetic fields. We treat the linear normal modes of the config

uration as fully electromagnetic, assuming that their eigenfre

qu~ncies are nearly real. We interpret the confinement as due 

to the adiabatic invariants of each particle, and shall implicitly 

assume the existence of the action-angle variables (!, ~) asso-

ciated with the unperturbed Hamiltonian H (I). 
0-

Accordingly, we 

separate all the plasma particles into two categories: the vast 

majority which comprise the nonresonant particles, and the small 

subset of "resonant" particles which satisfy [7,8] 

ill = .e ·dH /di : .e ·d.@j'dt . a -a o- -a (1) 

In Eq. (1), ill a 
denotes the real part of the eigenfrequency for 

normal mode a , and the vector .e represents a set of three -a 
integers. We wish to concentrate on the nonresonant particles in 

this article, and so we decompose (in some mathematically smooth 

way) the unperturbed phase-space distribution function in the 

form 

~ ...res 
f (r,p) = f (r,p) + r (r,p) , o-- o-- o -- (?) 

where f 
0 

represents the nonresonant distribution. 

We choose to work with conjugate variables (.:_,;e), where 

denotes the Cartesian position vector in physical space. The 

unperturbed Hamiltonian for a plasma particle can be written 

{ 2 24}~ H0 (~,£) = e¢0 (~) + [£c- e~(~)J + m c . (3) 

r 
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Adopting the radiation gauge cl>' = 0 , we consider a set of 

three perturbing normal modes, 

3. -im t 
! ' (~, t) = L ~ (~)e a + c. c. , ( 4) 

a=l 
whose (positive) frequencies satisfY the resonant matching 

condition (.1)
3 

= ~ + ~ • A small frequency mismatch w << (.l)a 

can be taken into account in the usual way [9]. Representative 

components of the perturbed Hamiltonian are 
-i(.l) t 

H~ = - e/c ~(~)·£ H0 (~,£) e a , 

-i(.l) t 
H3 = e2jc2 ~1(~) A2(E):£ £ Ho(~,E) e 3 ' 

H~'=- e3jc3 ~1 (!:_) ~(~) ~;(!:): £££H~(~,E), 

(5) 

(6) 

(7) 

where the primes refer to the order in the perturbation, the 

subscripts identifY the time dependence, and ~ = d/~ . Let 

us devise a canonical transformation to eliminate H', i.e., all 

first-order terms in the perturbed Hamiltonian:· 

(~,E,H) -7 (~,R,K) , (8) 

K = H + K" + ••· (9) 
0 

Such a transformation corresponds to simple Hamilton-Jacobi 

perturbation theory. If the particle were in resonance with 

any of the three primary modes, then a two-time-scale refinement 

of the transformation [5,10] would be required. The forces 

derivable from the oscillation-center Hamiltonian K" may be 

viewed as generalized ponderomotive forces. Note, however, that 

we have not ordered frequencies and averaged over time. We have 

simply performed a canonical transformation. 

The perturbative generating function for the transformation, 

s(~,R,t) , is determined by the equations [5J 

DtSa(~,E,t) = 

Dt = djdt + [ 

- H'(r,p,t), a--

,H J • 
0 

(10) 

(11) 
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The resultant Hamiltonian K"(E_,;e_, t) is then a sum of H" and 

a known bilinear functional [5] of first-order quantities. The 

nonresonant phase-space distribution function can now be de

composed in the form 

F = f
0 

+ F" + · • · , 6 = 6' + 6" + · · • , 

(12) 

(13) 

where F denotes the solution of the Vlasov equation for oscilla

tion centers, and 6 represents the difference between F and 

:f at the same phase point (~_,;e_) • Again., we have explicit 
~ 

formulas for 6' and 6" in terms of S, H and f [5]. 
0 

Let us apply these ideas to calculate the slow evolution of 

the amplitudes of the interacting normal modes. Our concern is 

therefore with coupled equations of the form 

D(ro + ioldt)·E (x) ...... a ~-
= ( 4n:liro )j" (x) a -=-e. -

(14) 

where ~(m) denotes the linear dispersion operator (assumed 

nearly Hermitian), and j" represents the nonlinear current 
=-a 

source at frequency ill due to the beating of the other two 
a 

modes. Retaining only the nonresonant terms in Eq.(l4), we write 

D I (ill + i 0 I ot) . E = ( 4rr I iill ) j" 
~ a --tl. a -=-e. 

where D' denotes the Hermitian part of ~ . 

linear eigenfrequency, we have 

D' (ro + ioi<Jt)·E ~ ioD' (ill )ld:n ·dE ldt 
'""a -a "'a a-e. 

(15) 

Since ill is a a 

(16) 

Now, the total energy of wave a can be written 

w = (ill l4n:) Jd3x E*·oD'(ill )ld:n ·E (17) a a . -e....., a a-a 

Combining relations (15) to (17), we thus obtain the action 

evolution equation 

Jd3x 
-1 ~ 1 * ~ 

dW ldt -2 Im - A ., (18) ill = c . J 
a a -e. -=-a 

"-

where the symbol d denotes the evolution due to nonresonant 

currents. 
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We shall proceed to evaluate the right-hand side of Eq.(l8) 

using the oscillation-center transformation. 1b.e physical cur-
""' rent density ~(!,t) of nonresonant particles can be written 

i<!,t) = e J d3r Jd3p 5(! - !_) f(E_,£,t) ~H(E_,£,t) . (19) 

Invoking the decomposition (12) of f , we can break up the 

second-order contributions to Eq.(l9) in the form 

""' 
j II = J" + tJ II 
-3 -3 -3 , 

where 

and 

x (r oH" + A. oH' + ~oR' o- 3 -~- 2 -c- l + ~oR ) . :r o 

(20) 

(21) 

(22) 

We rewrite the currents (21) and (22) using our generating

fUnction formulas, and substitute the results into Eq.(l8). A 

crucial sequence in the subsequent manipulations is the following: 

-1 * c A ·J" 
-3 -3 = 

= 

= 

= (23) 

Judicious manipulation and partial integration lead finally to 

the following compact and general formula: 
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* + [S H"] 
3 ' 3 

,Hi J] 

(24) 

This expression is to be inserted into Eq.(i8). 

Formula (24) is manifestly symmetric under interchange of 

* the subscripts (1, 2, 3 ). This symmetry implies conservation 

of action in the three-wave process (the Manley-Rowe relations 

[11]). We have presented here the essence of a purely classical 

and quite general proof of that conservation law. It is a con

sequence of the static nature of the equilibrium, and of sep

arating out the dissipation to resonant particles. For purely 

electrostatic modes, a formula essentially equivalent to Eq. (24) 

has been derived by Laval and Pellat [9]. Only the triple Poisson 

bracket terms involving H' survive in the electrostatic limit. 
a 

In the limiting case of a uniform, nonrelativistic, mag-

netized plasma, the expression (24) can be shown to reduce to 

the following: 

1 * ~ c- A ·j"(k ) 
-3- -3'~ 

-2 J 3 ~ = m d v f 
0 

( v.l. , v z) 

x { ( i~1 · ~s1 ) (Dt~s2 ) · (Dt~s3 *) 

* + ( i~2·~S2) (Dt~S3 )·(Dt~Sl ) 

* + (-i~3·~s3 ) (Dt~l )·(nt~s2 ) 

+ n:J_s
3 
*. [ik1z (Dt~s2 ) x ~s1 + (1 ~ 2) J} , 

(25) 
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where, in this equation onl¥, we have defined ~ !! o/~ . The 

generating function Sa can now be written explicitly ~s. an in

fjnite sum over Bessel functions [5). Formula (25) was recentzy 

derived by Larsson [12] using different notation and a different 

method. 

This work was supported by the United States Energy Research 

and Development Administration under Contract W-7405-ENG-48. 
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