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Abstract

In Chapter I we present the results on a study of cross polarization

dynamics, between protons and carbon-13 in adamantane, by the direct

observation of the dilute, carbon-13, spins. These dynamics are an

important consideration in the efficiency of proton enhancement double-

resonance techniques and they also provide good experimental models for

statistical theories of cross relaxation. In order to test these theories

we present a comparison of the experimental and theoretical proton dipolar

fluctuation correlation time T , which is experimentally 110 !. 15 ~sec
c

and theoretically 122 flsec for adamantane. These double re80nance

considerations provide the background for extensions to deuteriullI and

double quantum effects discussed in Chapter II.

In Chapter II an approach to high resolution nmr of deuterium in

solids is described. The m = 1 ~ -1 transition is excited by a double

quantum process and the decay of coherence QCr) is monitored. l<'ourier

transformation yields a deuterium spectrum devoid of quadrupole splittings

and broadening. If the deuterium nuclei are dilute and the protons are

spin decoupled, the double-quantum spectrum is a high resolution one ;Jnd

yields information on the deuterium chemical shifts 6.w. Till' relationship

Q(T) '\, cos 26wT is checked and the technique is applied to a single crystal

of oxalic acid dihydrate enriched to '\, 10% in deuterium. The carboxyl and

the water deuterium shifts are indeed resolved and the anisotropy of the



32 ± 3 ppm. Acarboxyl shielding tensor is estimated to be 60

complete theoretical analysis is presented.

The extension of cross relaxation techniques, both direct and

indirect, to proton-deuterium double resonance is also described. The

m = 1 + -1 double quantum transition and the m = ± 1 + 0 single quantum

transitions may all be polarized and we present the derivation of the

Hartmann-Hahn cross polarization conditions for each case. In addition

the dynamics of the double quantum process, for monodeutero benzene are

discussed, giving proton dipolar fluctuation correlation times, and spin

heat capacities for the double quantum transition.
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Chapter I

I. Introduction

New double-resonance techniques have been developed for high

sensitivity and high resolution NMR of dilute spins in solids, and

these techniques have become quite common laboratory tools.
l

-
S

The

spectroscopic utility of these techniques comes about because the

normally very large linewidths in solids are narrowed to the point

that chemical shift information may be obtained. This narrowing is

brought about by an isotopic dilution, which decreases the homonuclear

interactions, combined with spin decoupling which decreases the hetero-

nuclear interactions, giving rise to high resolution. However this

dilution necessarily decreases the sensitivity so that double resonance

techniques must be used. The basis of one set of these experiments is

the transfer of nuclear magnetic polarization from one nuclear species

(I), normally protons, to a dilute species (5), such as 13C, under study,

and the application of high power spin decoupling.
6

- 10 A prime candidate

for application of the techniques is the determination of full 13C

h " 1 h" ld" """ 1 1 11 A .c emlca s le lng tensors ln organlc slng e crysta s. n lmportant

consideration in the design and efficiency of such experiments is that

of the dynamics of the polarization transfer from I to the 5 system, since

this ultimately determines the sensitivity enhancement, the time scale

accessible, and thus the range of possible systems that can be studied.

In this chapter we present a study of cross-polarization dynamics by

direct observation of the dilute nuclear spins, and an approach to

"total cross-polarization." The direct detection method is termed



Proton Enhanced Nuclear Induction Spectroscopy·

To make the problem more concrete, Figure I shows a schematic of

the general approach. Two extreme cases may be considered: "multiple

cross-polarization" and "total cross-polarization." In the first, a

small amount of I polarization is transferred to the S spins and the

cycle is repeated many times as indicated, with the S signal being

accumulated. In the second, all or a substantial amount of the I

polarization is transferred "in one shot,,4 and the experiment and

observation of the S spins are performed once per I repolarization. It

2

is not clear that the second approach is advantageous, since the dynamics

of the cross-polarization may render the process slow and technically

difficult. However, for experiments that require long observation times

of the S spins, such as long-lived spin echoes or very high resolution

spectroscopy, the multiple cross-polarization is clearly not possible,

since it requires the expenditure of rf power and the maintenance of I

spin order for unrealistically long times. Thus it is clear that a

quantitative understanding of the process is a mandatory prerequisite

for the development of these experiments.

The present experiments were performed on a small sample of solid

polycrystalline adamantane. Cross-polarization occurs from a proton

. 12 13
system demagnetized in the rotatlng frame.' This approach is

selected since the analysis is simple and the technical requirements for

total cross-polarization are not too stringent. The mechanism for the

cross-polarization derives from fluctuations in the I-S magnetic dipolar

coupling due to mutual spin flips among the I
. 14,15

splns. That is,

the proton-proton magnetic dipole interaction causes a modulation of the

magnetic field at a particular l3C nucleus. This fluctuating field



Figure 1. General schematic of cross polarization experiment: a) shows

the abundant I and dilute S nuclear species coupled to each other ilnd to

the lattice with characteristic times TIS (cross polarization times) and

TIl' TIS (spin-lattice relaxation times); b) shows the general approach

where repeating the cross polarization step characterizes the multiple

contact procedure.
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induces transitions between the 13C Zeeman levels causing the energy

5

transfer, and can be characterized by a correlation time T
c

This can

be thought of as the average time during which the magnetic field at a

13
C nucleus stays constant. The correlation time can be rigorously

calculated knowing the structure of the solid of interest. These calcu-

lations are of great interest since (a) they are useful structural

tools, (b) they will permit the design of optimal high sensitivity

techniques for detection of rare isotopes, (c) they provide good models

for statistical mechanical theories of spin behavior. We have carried

out this calculation for an FCC lattice, and have found the correlation

time, T , for adamantane. The experimental T and theoretical are in
c c

quite good agreement.

In the second chapter we present an entirely new approach to proton

magnetic resonance in solids. It is analogous to the carbon-13 proton

experiments above except now we choose to observe dilute deuterium

nuclear spins (2H). We show the development of two new spectroscopic

techniques which allow the first high resolution determination or

deuterium chemical shifts. We also show the application of double

resonance cross-polarization techniques to the deuterium proton system.



II. Cross Polarization: Background

The cross polarization process takes place in three distinct steps.

First we cool the I spins, we then effect a transfer of spin energy

between the I and S spins and lastly we observe. We use two different

ways of cooling the I spins reservoir, spin locking (SL) and adiabatic

demagnetization in the rotating frame (ADRF). See Figure 8 for the

pulse sequences used. Spin locking serves to rotate the quantization

axis into the X-Y plane giving a net cooling of Ho/Hn where lilT is the

intensity of the I spin radio frequency (r£J irradiation. ADRF produces

a low temperature in the dipolar state. This temperature concept

applied to the dipolar state is illustrated in Figure 2, where eac!l of

the Zeeman levels is broadened severely by the dipole-dipole interaction

(numbers shown are for protons in adamantane). The populations of this

quasi-continuous level scheme are given by two spin temperatures, T
Z

the normal Zeeman spin temperature and T
D

the dipolar temperature. In

the dipolar state Tz = 00 while TID is finite. The energy of such a

system is given purely in terms of the dipole-dipole Hamiltonian for

like spins:

2

L ylh 1
(3

2
1) {3- -3- - cos e.. - I I I, I }

2 1.J iZ jZ -1.-jr, ,
i<j 1.J

(1)

/

or thermodynamically in terms of the local field ~,

E

where C
I

is the normal Curie constant,

(2)



Figure 2. Level scheme for a spin !.:2 nuclei interacting with each other

through the homonuclear dipole-dipole interaction. The reprvsvnt;ltivv

frequencies given are for protons in adamantane in an extern~l field of

25 Kgauss. The populations of the Zeeman levels are described by the

Zeeman spin temperature T
Z

or the inverse temperature Sz = 11k l
Z

. The

populations of the dipolar sublevels are given by the dipolar spin

temperature TD or its inverse SD.

7
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B is the appropriate inverse spin temperature B 1
kT and the local

9

by
12,29

field is given

t (H (0) 2)
r II

where M
Z

is the magnetization operator M
Z

= Y hLI. z .
I i L

(3)

H
L

is effectively

rise

the net field a spin would experience due to its neighbors. ADRF gives

to a net cooling of H /H 12,13,31
o 1"

To effect an efficient transfer of polarization we must arrange that

mutual 1- and S-spin flips become energy conserving. This will be true

in the rotating frame if the Hartmann-Hahn condition is satisfied,16

(4)

where we apply r.f. irradiation at the I and S Larmor frequencies of

strength H
lr

and HIS respectively.

The observation may be carried out either by directly observing

the S-spin or indirectly by observing the destruction of the I-spin

order. The direct observation has the advantage that high resolution

spectra may be obtained with the simultaneous application of spin

decoupling and this is the method used in this chapter. In Chapter 2

the indirect methods are also described for deuterium indicating tlw

greater sensitivity available. For reference purposes for the second

chapter we present the complete equations for both ADRF and SL cases.

These will be expanded but are presented now to introduce the notation.



10

Th h f h " " " 11 bI" h d 3,13,14,16,17e t eory or t ese exper1ments 1S qU1te we esta lS e

and will only be briefly sketched here to define the notation and

provide easy reference.



III. Theory

A. Hamiltonians

We consider the following system in a large external magnetic

field, H
O

: an abundant I spin system with a resonance frequency

W
OI

is dipolar coupled to a rare 8-spin system with resonance frequency

J j

H (5)

I
Z

= r I
iZ

,8
Z

= r 8
iZ

and Y
I

and Y
8

are the magnetogyric ratios of

the I and 8 spin reservoirs. We have neglected the dipole-dipole term

between 8-spins, since we assume them to be sufficiently dilute that

they are isolated from each other. The I-I dipolar coupling is taken

in its high field truncated form as

2

H(o) L
ylh 1

(3
2 {J 1. I.}- --

2 cos 8 .. -1) IiZI j Z -II 3 ~J ~~-J

i<j r ..
~J

(6)

where e.. is the angle between the internuclear vector and the external
~J

field. The 1-8 dipolar coupling is also taken in its high field

truncated form:

L-
i

2y Y IiI 8
3

r.
l

(7)

where only a single 8 spin is considered. For convenience we define

the following coupling constants:



a ..
1J

b.
1

2
Ylh 1 2

- --3- 2 (3 cos 8ij -l)
r ..

1J

(8)

12

These dipolar couplings are illustrated for 2 I-spins and one S in

We remember that since

(9)

[ H H(o)]
IZ' II

a (10)

we nrust consider both terms as separate constants of the motion, during

a time t < T
l

where T
l

is the spin lattice relaxation time. We now

transform (5) into the double rotating frame using the transformation

operator:

T exp{ - it (wOII Z + WOSSz)}

yielding the transformed Hamiltonian

* H * H(o) H(o)H + +Z II IS

where

H ,~ * ,',H
1Z + H

SZ - wlIIX - wlSSXZ

(ll)

(12)



Figure 3. Lattice variables for interacting spins.
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B. Thermodynamics

We now discuss the thermodynamic properties of the cross polarization,

followed by a discussion on the dynamics of the energy exchange. We may

use thermodynamics, following Redfield,since the Hamiltonian in the rotating

frame is effectively time independent. The two terms H
IZ

and H
SZ

may

then be considered as reservoirs of Zeeman energy, and because of the

commutation relation, equation (10), we must also consider the term H
II

as a reservoir of dipolar energy. The equilibrium density matrix in

the rotating frame is

·l~ *
exp(- BH )/tr exp(- BH )

We now invoke the high temperature approximation giving:

for which we use the shorthand notation

0*
eq

(3)

(14)

(15)

since the constant value, 1, will not enter into the expectation value

of any observable. This is the reduced density matrix for the system.

The density matrix for a system with a Hamiltonian given in equation (12)

is for the quasi-equilibrium state for which the I and S spin system are

not allowed to interact:

0'1:
eq

(10 )

Here we will treat H(o) as a perturbation, whose effect will be to
IS



equalize 6
1

and 6
S

' but whose energy will be negligible in the thermo­

dynamic sense, thus it's neglect in (16). The expectation value of any

observable is given as

16

<Q> tr {PQ} (17)

giving for the energy of the spin system in equation (12)

E (18)

where C
I

and Cs are the Curie constants given by C
r

= yih2NrI(I + 1)/3

and similarly for CS' and H
L

is the local field (equation 3). In the

spin locked state (SL) for the protons H
lI

» H
L

so that the I spin

energy is given as

and for the adiabatically demagnetized state H
lI

The heat capacities will be, for the I and S spins

o giving

(19)

(20)

(21)

and the I and S spin magnetizations, the actual observable quantities

in these experiments,

(22)



17

and similarly for S and for the ADRF experiment M
I

= O.

The initial magnetization for a normal free induction decay (FID)

for both of these systems at equilibrium is given as

and (23)

where SL is the inverse lattice temperature. We may produce a lower

spin temperature by spin locking, where the magnetization for the I-spins,

equation (23), is locked along the x axis in the rotating frame giving

where So (24)

If on the other hand we adiabatically demagnetize the I-spin system we

obtain no magnetization but an enhanced internal dipolar order with

energy:

where So (25)

Since H
II

« H
O

and H
L

« H
O

both experiments correspond to a cooling

of the I spin reservoir.

In the absence of any coupling between the I and S spins, each

reservoir can be in equilibrium at a different spin temperature as

indicated in equation (18). If the perturbation HIS exists, however

there will be a coupling between the reservoirs, and they will approilelJ

equilibrium. As pointed out before this rate will be slow unless the



Hartmann-Hahn conditions is close to being matched

and

18

(26)

Under such conditions the system will evolve from the initial

conditions characterized by the temperature So and B
S

to the final

equilibrium state given by the conservation of energy as

or

(27)

Solving for the equilibrium spin temperature assuming Ss ~ 0 we obtain:

2 -1So (1 - sn ) (28)

2
where sn is the ratio of the S-spin and I-spin heat capacities and:

NSS(S + 1)
E: =

NII(I + 1)

with

YSH1S
for ADRF11

yIHL

and

YSH1S for SL. (29)
yIHlI



The magnetization following this thermal mixing is:

IY

(30)

We now inquire by how much has the signal been enhanced from tlw normal

FID, equation (23). This is for the S spin system,

2 -1
(1 + Ul ) (31)

If the Hartmann-Hahn condition is exactly matched n 1 and

I
I + E

(32)

for both SL and ADRF. Then E is usually small by virtue of experimental

design, i.e., N
S

« N
I

thus the maximum enhancement obeying n = 1 is

YI/Y
S

which is ~ 4 for carbons and protons.

There are two ways of obtaining more of the polarization which is

stored in the proton reservoir; one by performing mu1.tiple contacts and

the other is to cross polarize such that n »1. This second case is

what we term total cross polarization.

For the multiple contact case (n

n contacts is, assuming E is small,

1) the signal enhancement after

(3])

where we take the sum of all the n magnetizations for the final signal



20

obtained. This is a very time consuming process and in practice is

restricted to 3-10 contacts for many systems. We wish instead to

optimize the single contact cross polarization. These conditions are

found by maximizing equation (29), obtaining

n (34)

Experimentally this means we must increase HIS' until the heat capacities

of the 1- and S-spins are equal. The maximum enhancement is then

1

~
(35)

which is then one-half of the enhancement which would be obtained by a

purely adiabatic transfer. However, we are no longer matched to the

Hartmann-Hahn condition, which will severely slow the cross polarization

process. If there are spin lattice relaxation mechanisms present whose

characteristic relaxation times are of the same order as the cross

polarization time we will not gain from this process. We must therefore

consider the dynamics of the process before we can come to any conclusion

about the relative merits of the SL and ADRF experiments.

c. Dynamics

The equations describing the dynamics of the cross relaxation are well

14 16
known, and were first derived by Hahn and co-workers, , and later in

17
more general form by Demeo ~ al. We will use the latter author's

treatment of the Hamiltonian and sketch the former treatment of the

dynamics. Beginning again with equation (5) we apply the r.f. irradiations



at frequencies wI and Ws now no longer necessarily at resonance, and

for the ADRF case we will take w
lI

= a. We now transform into the

double rotating frame and tilt each frame so that the Z axis til'S along

the direction of quantization in each frame, wllich is defined by the

effective field. The rotating frame transformation is defined by

(36a)

and the tilt by

giving

I ( 8) H(o) + H(ns)
- weI Z - WeS Sz + P2 cos I II II + ~

(36b)

(37)

2 2 1/2
frequencies are weI = [W

II
+ '""WI] and UJ

eS
where the effective

2 2 1/2
[w lS + 6w

S
] with 6w

I
= w

aI
- wI and 6w

S
= was - ws .

h "1 ff"" f H(o). d" 1 "I"T e geometrlca cae lClent or II 11l lcates anot ler truncation t liS

time with respect to the effective field where Hi~) has the same form

as before, equation (1), but in the new axis system. H(ns) denotes the
II

2
cosO -1)

I

remaining nonsecular terms for the SL case. For the ADRF case w
l1

= a

and the effective field is the Zeeman field, so that P2(cosG
I

) = t(3

= 1. Th f h SL d H (ns) h"l " "k f ADRFus or t e case we rap II w 1 e 1t 1S ept. or . The

Hamiltonian Hp is the I-S dipolar coupling in the tilted axis system:

(38)
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To simplify matters we will choose to irradiate the protons on resonance

(this will hold for Chapter 2 also) giving for SL

and for ADRF (where w
II

0):

(39a)

H
P cose S L b i IiZSX - sineS L b i IiZSX

..l

(39h)

These equations point out the first real difference between the

SL and ADRF case. For the ADRF case the I-spin Hamiltonian is the

full rotating frame Hamiltonian, but for SL we truncate all of the

interactions one step further, with respect to the effective field.

We must now solve the equation for the time evolution of the density

matrix in the rotating frame

ap*
at [ H* ;<]-i , P . (40)

which we want to cast into the form of a differential equation for the

macroscopic observables. (For a general discussion see Schumacher,

The differential equation for the

ref. 30). These equations must also include the appropriate relaxation

mechanisms which are indicated in Figure 1. For the I-spin system, in

the SL state the process is spin lattice relaxation in the rotating

frame characterized by T
IPI

and for ADRF the relaxation process occurs

in the dipolar state with the time TID' The S-spin relaxation is also

in the spin locked state with TIPS

time evolution of the inverse spin temperatures is then, for the ADRF

state,



where sn2
is the ratio of the heat capacities, equation (29), B is

L

the laboratory inverse temperature, and TIS is the characteristic

(41)

:n

time for cross polarization. TIS may be calculated with the assumption

of short correlation times from the master equation for the time r,lte

f h f I d · . 18o c ange 0 tle enslty matrlX. This gives

(42)

. 28 M
Sln S 2IS

or with a small rearrangement,

We evaluate the trace, tr (where tr - tr tr ) in (43) giving:
SIS

1dT COS(WeST)C(T)

(43)

C(T)



where M
2IS

is the Van Vleck second moment of the 5 magnetic resonance

1
. 19
~ne:

24

and p = X for 5L and p = Z for ADRF.

truncated dipole-dipole Hamiltonian.

(45)

H(o) is the normal high field
II

For ADRF W
lr

= 0 and then 8
1

= 0 0
,

giving the effective I-I dipole interaction as

as we expect. But for the SL case w
lr

~ 0 and 81 = 90 0 if we apply

the r. f. irradiation at resonance. We must then truncate the dipole-

dipole Hamiltonian one more time, in this case with respect to the

rotating frame defined by the effective field then:
H

IX
= - W I + Heff

11 X II

C(T) is the auto correlation function of the perturbation, the hetero-

nuclear dipole-dipole interaction. Taking the integral in (44) gives

the corresponding spectral density with the final result for ADRF

. 28 M J ( )
s~n S 2IS Z we5

and for 5L (see Appendix 2.3 and reference 17 for details)

(46)

(47)

where 6w
e (W

eS
- WeI)· The spectral densities are given as



I dT COsulT Cz(T)
o

and the correlation functions are

(48)

. 1 (0)
expel (- "2 H

II
T» L b

i
1

. 1 (0)
I

iX
exp(-l(- ~ H

II
T»)

tr (~Ui liZ exp(iH~~)T) ~ hi liZ eXP(-iH~~)T»
1 1

2
tr (L b. liZ)

. 1
1

(49)

This, then, shows that the spin fluctuations due to the I-I dipolar

coupling is communicated to the S-spins via the I-S dipolar interaction,

these fluctuations induce flip-flop transitions between the I and S spins

equalizing the energies of the two reservoirs. The rate of the process wi! 1 !w

proportional to the intensity (spectral density) of the fluCluat iOlls ;It tile

difference of the precession frequenc ie's of the Sand 1 sp I ns in till: ix (' f feet iVl'

fields. If the precession frequencies are equal a fl ip-f !.op trailS it iOIl !wlwel'l1 ;10

and S spin will conserve energy and this then will be a very rapid process.

We now wish to combine the thermodynamics and the dynamics to describe

the growth of the S-spin magnetization during the cross polarization

process. The thermodynamics provide the limiting state for the S magnet-

ization equation (31), and we wish to solve equation (41) for the

evolution towards this limiting value. For the case at hand we may

neglect the T
l

term simplifying matters considerably. The solution
pS
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of equation (41) with boundary conditions Bs(o) = o and Br(o) 8
r

and

assuming B
L

'" a gives

BS(t)
Br ( -a t -a+t) (50)

Trs(a+ - a ) e - - e

with

2 [(1~n2 2 1/2

1:- e+£n + f) 1 + _I_ ) - TI:Tln Ja± ±
2 T

rs TIn 2 TIS TIn

The maximum inverse temperature will be for t

gives:

00 and TIn 00 This

(51)

where the superscript 0 indicates the ideal case where TIn = 00.

We have also introduced the constant ~ to account for the fact that the

demagnetization is not perfect, some order is lost. Then ~ is the

efficiency of the demagnetization process in the rotating frame. Using

equation (22) we derive

where for t

M (t)
_~ = __--'-~_n_'____
M~o) Trs(a+ - a )

00 and TIn

-a t
(e -

00

-a t
+ )- e (52)

M (0)(00)
s =

M(o)
s

(53)

Note that T
rs

is a function of n also.

Then, while the magnetization is increasing due to cross polarization

it is being destroyed by spin lattice relaxation. The technique which



n

will be most successful for a particular n, will be the one whicll gives

the shortest TIS From general considerations we expect the spectra]

This

density to be broader for the ADRF case, making it the likely choice if

we wish to approach total cross polarization.

The complete solution of the dynamics is obtained by the maximiza-

tion of equation (52) with respect to t and n, given the relaxation

times, TID and TIP and the functional dependence of TIS on n·

functional dependence is discussed in the next section for the ADRF casco

The results for the 5L case are also given for reference in the second

chapter.

D. Correlation Time

We now wish to characterize the correlation functions in equation

(49). The exact solution would, of course, involve solving the complete

manybody problem. We must choose either an empirical form, or a form

determined directly from experiment. In the experimental section that

follows we show that the spectral density for the ADRF experiment is

exponential over much of its range, giving upon Fourier transformation

a Lorentzian correlation function. This agrees with the results of

14 17
Me Arthur ~ al. for CaF

2
, and the theoretical study by Demeo ~ al.

using a memory function approach. This latter study also shows the spin

locked state will give rise to an approximately Gaussian correlation

function and spectral density. This is an important distinction since

for the same value of the correlation time an exponential spectral density

will give more intensity at high fluctuation frequencies then a Gaussian

function.

Using the Lorentzian function for the ADRF correlation function
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giving

(54a)

Mc Arthur et al. calculate

(55)

and expanding equations (49) and (54) in a power series and equating

the coefficients of T
2

gives

-2
T

c
(56)

The correlation time, for the rigid lattice, is seen to be a function

purely of the lattice parameters through the coefficients a
ij

and hi"

For the SL case we choose a Gaussian correlation function

2 2
-T IT.

C x(T)
1=e

from which,

2 2

=k -w T 14
JX(w)

c
2

Tc e

and

(54b)

(54c)

2

2 2"-w T /4
e c

T exp
c

(55b)
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since there is much confusion in the literature. Even though the

Hamiltonian in equations (1), (6), and (7) are the standard forms, in

20
order to be consistent with the work of Canters and Johnson and Demco

17
et al. we introduce new constants as they are defined in Van Vleck's

work. Here:

2

H(o) L
Y/l 1 2

{\ZIjZ -
1

-3
3 2

(3 cos e.. -1) :3 I.I.}
II ~J ~~~J

r ..i<j 1J

and

-3
2
1 (3 cos2e.. -1)

~J

(57)

with

2:-2

i

YIYSh

3
r.
~

B.
~

(58)

The correlation time is given by the second moment of the correlation

function as (see equation (56))

l
C

(21M )1/2
2

(59)

carrying out the commutators and traces in equation (56) gives for the

second moment of the correlation function:



1(1+1)
27

i

(60)
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ISH
where M

4
is the standard fourth moment of the absorption line shape

of an S spin due to surrounding abundant I-spins and M
21S

is the normal

second moment of the S-spins due to the surrounding I-spins. This

18
notation is that of Abragam.

We may rewrite (60) in terms of the lattice sums normally used in

moment calculations as

with

M ISH
4 2I (I+l)

27
(61)

\ = 2:B~
1

S4 =~~ .B.Bji 1J 1
(62)

-2
or finally T

c
1(1+1)

27
(63)

We note parenthetically that using the definitions (8)

M ISH
4

where



JI

Q
l £b~

1

Q2 ==2=a~j
1

Q4 =~ a:. b.b
j. <. 1J 1

1 J

21
To evaluate the traces we used

where

t 1(1+1) (21+l)N

for N spins. (64)

For the 5L case the second moment of the fluctuation correlation

f · 1 b b . d· t 17 . hunct"lon maya so e 0 ta1ne 1n t le same manner Wl.t:

Note that if the proton irradiation is applied at resonance

(61b)

(61c)

The correlation time is still given by equation (59). We can now calculate

the ratio between the 8L and ADRF correlation times,

- 2 8
4

8
+ 5" 54
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If 54 « 5
1

5
2

as we might be led to expect from calculations of the latticL'

sums (see Table 1) we find that:

2
T

c 5L 4
2 ~ 5 giving

Tc ADRF

T
c 5L

Tc ADRF
0.894

that is T for 5L is shorter than ADRF. Note that if the correlation
c

functions for the two cases were the same this would imply that the SL

case would have larger spectral density at higher frequency. But because

the 5L correlation function is Gaussian this is not true.

We wish to find the correlation time for a polycrystalline sample of

27
adamantane which has an FCC structure. Adamantane rotates rapidly in

the solid at room temperature, so that initially we assume that each

adamantane molecule can be approximated as 16 protons at each lattice

point. We choose the origin as a single carbon-13 occupying one of the

lattice sites, which will not interact with the protons in the same

molecule because of the rapid orientational averaging.

20
The lattice sums have been computed by Canters and Johnson, Me Arthur

et al.
14

and by Demeo et al.
17

for a simple cubic lattice. We extend

this to an FCC lattice and carry out the orientational averaging necessary

for a powdered sample. The lattice sums for the CaF
2

structure (cubic

for the F atoms with the Ca surrounded by a tetrahedron of F atoms) and

for adamantane (FCC) are listed in Table 1 along with the results of

Demco et al. for two orientations, a) for H along the 100 direction and
--- 0

b) along the 110 direction.
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Table 1. Lattice sums for simple cubic and FCC lattices

Structure Direction of IT " , S2 " , T (!Jsec)n ;:)1 J
40 c

CaF2
100 1.564 30.03 9.179 42.76

110 20.24 11. 36 21. 50 60.19

FCC 100 1.073 2.414 0.2514 149.4

110 1.534 3.451 0.1994 116.6

CaF
(17)

100 1. 554 30.01 9.985 44.16
2

110 20.34 11. 36 22.32 60.42

Here we list the sums as unit less quantities with

y Y h 2
( IS) S'

3 1
a

2
Y h 2

(_1_) ,
3 S2

a
and

(y2rh ) 2 (y::~h) 2
I S

---1=--2=-·
a

s'
4

(6') )

SIS' - 2 S'
and MZ

f( 1 2 4) (66)
S'

1

4h Z

with f
1 Yr

N-
18 6 site

a

where a is the lattice spacing and Nsite is the number of spins at each

lattice site.
o 22

For adamantane the unit cell size is 9.43 A, N site

7 -2
16 giving f = 4.61 x 10 sec . See appendix 1.3 for the details of

the computer program used to calculate the lattice sums. For CaF
2

the unit

o 7 -2
cell size is 5.46 A, N site = 1, and f = 5.98 x 10 sec

Our lattice sums compare favorably with reference l7 even

though we took only 1331 F atoms to calculate Sl and Sz and 125 for S4'

The FCC calculations used 343 molecules for 8
1

and 82 and 64 for S4'



The sums did not change significantly upon increasing the number of

molecules to 512 for Sl or S2 (~0.02% change) or upon decreasing the

number to 27 for S4 (2.5% change).

The lattice sums for 8 = 0-90 0 and ¢ = 0-45 0 where 8 and ¢ are

the normal polar angles are compiled in appendix 1.1. The orientation

dependence of T is shown in Figures 4 and 5 for rotations of the
c

lattice about the 100 (8 = 90 0
, ¢ = 0 0

) and the 110 (8 = 90 0
, ¢ = 45 0

)

axis. The integration to find the powder average was carried out as

34

T
c

Tr/'f 1I d¢ I d cos8 T (8,¢)
c

(67)

where ¢ and cos8 were generated in equal steps to give intervals of

equal area on the sphere and where we have taken advantage of the

symmetry of the crystal by integrating only over 8 = 0-90 0 and ¢

Both integrations were done numerically by Simpson's integration over

121 different orientations, giving the final result

T
c

122 jJsec (68)

and the powder averaged 2nd moments

~ 1(1+1) Sl
7 2 -2

1.90 x 10 rad sec (69)

We now inquire about the assumption that the spins sit exactly on

the lattice points. We should actually find the averaged interaction,



Figure 4. Orientation dependence of 1 [or adarnantane as the crystal
c

]5

is rotated about the 100 axis.
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Figure 5. Orientation dependence of T for adamantane as the crystal
c

37

is rotated about the 110 axis.
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J<)

where dS
l

dS
2

denote integration variables over two spheres with distance H

32-37
is actually rigorous, as has been indicated by several authors.
---------------~---------_._~-----~._-_._-..._-_ .._.-~-------,--- ----------- -'--~-'- --.- - -. - --

That is, we can exactly calculate T in the presence of isotropic Illutlon
c

over two non-overlapping spheres by placing the spins at the center of

each of the spheres. This is discussed in more detail in appendix 1.2,

along with a discussion of the polycrysta1line averaging.
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IV. Experimental

A. Sample

Adamantane was chosen for the cross polarization study for three

reasons

1) Adamantane is essentially a rigid lattice solid. However the

rapid rotation of the entire molecule shortens the relaxation times into

a convenient range (~ 1 sec.). T
I

is short enough to allow a fast repetition

rate and TID is long enough compared to the cross polarization times

2) The molecular rotation narrows the lines, and averages the dipole-

dipole interaction between directly bonded carbon proton pairs. The

effect of these very strong dipolar interactions is the appearance of

25
coherence oscillations in the cross polarization curves.

3) There is a high density of carbons giving rise to very large

signals, which are observed with a 30 to 1 signal to noise ratio for the

optimum cross polarization conditions.

Adamantane (Aldrich 99+%) was used without further purification.

Recrystallization followed by sublimation did not change any of the

relaxation properties. The crystal structure is FCC with a lattice spacing

o 22
of 9.43 A.

B. Spectrometer

The spectrometer was homebuilt, operating at 'V 25 K gauss with a

Westinghouse superconducting magnet. The proton resonance frequency was

106.3 Mhz and the carbon 26.7 Mhz. The schematic for the spectrometer and

the probe are shown in Figure 6.
26

Detdils are to be published separately.

The proton transmitter is a modified Millen radio amateurs transmitter



Figure 6. Schematic of the 106.34 MHz spectrometer and probe.

41
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operatingat an output power of ~ 200 watts. The Carbon-13 transmitter

is an ENI 350 L operating at 50 watts. Repetitive spectra are averageu

and Fourier transformed with an on-line PDP-8 computer. Only O/1e CIJ;IllI11' I

of the phase detector can be observed at a time, this causes the complex

Fourier transform spectrum to "fold over". That is, positivl' and negat ivc

frequencies with respect to the irradiation frequency cannot he

distinguished.

One unique feature of the spectrometer is the adiabatic switch which

is used to adiabatically demagnetize the protons in the following cross

polarization experiments. A digital ramp is generated using a f)-/\

converter (Zeltex ZD432) which is converted into a power law function

(Zm) with desired exponent positive or negative by a hybrid multifunction

generator (Analog Devices 433).

Temperature control is achieved using a flow of nitrogen gas Illialed

with a small tungsten wire coil. The gas is flowed in and out of the

probe through an evacuated transfer line. The temperature is monitored

with a copper-constantan thermocouple, which is tied into the feedback

loop controlling the heater.

C. Adamantane dynamics

The cross polarization time can be easily extracted by monitoring

the intensity after a cross polarization time T. If one knows the

relevant relaxation times the experimental curves can be fit hy equation

(52). The spectral density can be found by varying the carhon effective

field and extracting the cross polarization time. /\ plot of TIS versus

w then yields exactly the spectral density. This in turn may be Fouriere

transformed if desired to obtain the correlation function, whose second
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moment will yield the correlation time T. We have chosen the ADRF
c

experiment from which to extract the dynamics for these reasons:

1) the analysis is simpler

2) the stability requirements for the r.f. power is much less

stringent since there is only one r.f. field applied during cross

polarization and

3) we expect the proton dipolar state to have a broader spectral

density than the spin locked state allowing a greater mismatch in the

Hartmann-Hahn condition and therefore a closer approach to total cross

polarization.

The experiments were all carried out with simultaneous proton

decoupling during the observation of the carbon signals. The decoupling

field strength was VII ~ 26 khz = 6.1 gauss. The adiabatic demagnetization

times were varied from 1-10 msec, while the maximum signals occured at

2 msec, which is the value used for the following experiments. The carbon

field strengths were calibrated using simple 180° pulse width measurements.

The temperature in the probe was 10-13° C. The experiment repetition rate

was 8 sec.

1. Relaxation times

The proton relaxation time TID was determined by the standard technique

of an ADRF followed at time T with a 45° pulse which probes the dipolar

order. The results are shown in Figure 7. The deviations at short times

are as yet unexplained, but are quite reproducible. The relaxation time

extracted is

0.30 ± .01 sec. (73)



Figure 7. Proton dipolar relaxation time in adamantane, T
1])'

Till'

45

temperature was IJ ± Joe and the pulse sequence used was the' standard

ADRF (for 2 msec) followed at time T by a 45° pulse. The solid] ine

is the exponential least square fit, omitting times shorter than 50 mset:.

The amplitude of the normal pulse FID is also shown, and was obtained

from a solid echo experiment. The zero time intercept of the T curve
11)

can then be used to calculate the efficiency of the ADRF, ~.
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The TIP for the carbons was measured for "IS

(see Figure 9) and found to be

3.39 sec

6.6 ~Iz - 6.18 gauss

(74 )

47

The experiment consisted of a SL type cross polarization, after which

the proton field was turned off allowing the carbon spin locked state

evolve for a time T, after which the signal was detected witll simultaneous

proton decoupling. The pulse sequence is shown in Figure 8. The rel<lxatiol1

times were found using exponential least mean squares. The details of

all the fitting programs are to be found in appendix 1.3. Since T is
Ip

approximately one or two orders of magnitude greater than the eXIH'c ted

cross polarization times we can use equation (52) safely to fit the cross

polarization curves.

We must also find the efficiency of the demagnetization. This was

easily calculated knowing that the height of the derivative F [I) after

the 45° pulse for t = 0 in the TID experiment should be 0.525 of thl'

12
norillal FIn, assuilling a purely Gaussian proton lineshape. The inil ial

height for the TID experiment was obtained by extrapolating the I ine in

Figure 8 to T = O. The height of the normal FID was obtained by extra~

polating the height of a solid echo (90-T-90) to T = O. 'I'll(' rat in of

the two divided by 0.525 gives

0.87 ± .03 (75)

The extrapolation to T = a was accomplished by a linear least squares

fit to a Gaussian function



Figure 8. Pulse sequences for direct detection of cross polarizatinn.

The pulse sequences used for an initial dipolar state (ADRF) and an

initial spin locked state (SL) are shown in (a) and (b) respectively.

TIP of the S spins is measured by polarization of the S spins for a

time T after which the I spin irradiation is turned off. The S-spins

spin locked state is then allowed to evolve for time T after which the

polarization is monitored with simultaneous spin decoupling.
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Figure 9. Carbon rotating frame relaxation time, TIP for adamantane.

The temperature was 13 ± 3°C and the carbon field strength was vIS =

6.6 kHz (HIS = 6.18 gauss). The solid line is the exponential least

squares fit to the data.
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2. Cross polarization

A typical cross polarization curve is shown in Figure 10. The maximum

enhancement over the normal FID we obtained was x 15. This was obtained

after eliminating the Overhauser effect from the normal FID by turning the

proton transmitter off during the time between experiments. Knowing the

relaxation parameters and the efficiency we can now carry out a least

squares fitting procedure, the results are given in Table 2, and in Figure

11. The fitting was carried out by varying the two parameters TIS and 1\.

The average H
L

found from these

expected from Resing's work was

data was H
L

= 0.37 gauss whereas the valli(>

23
0.544 gauss.

The spectral density function, Figure 11, see equation (46), is seen

to be exponential over most of the range we studied. The flattening for small

w appears to be real and this feature had been reproduced by the memory

17
function theory of Demco et a1. This occurs because of the breakdown of

the short correlation time assumption that was used to extend the range

of integration in equation (42) to infinity. The long tail for large w

on the other hand is an artifact caused by the neglect of the carbon

TIP The cross polarization times are of the same order of magnitude as

the TIP for these data points.

The cross polarization times were fitted to an exponential function.

The experimental points obtained while on resonance, Figure 12, are the

most accurate for this purpose since they provide better signal to noise

over a larger range of w. We choose to omit the points 1 and 2 (large
e

(D) for the above reason. The correlation time is then found to be

T
C

108 ± 5 lJsec (76)



Figure 10. Typical cross polarization curve for adamantane, from the

dipolar state (ADRF). Demagnetization time was 2 msec, the temperature

l)V
was 13 ± 3°e, the frequency offset for the carbons was 21T == +5.24 kHz,

the effective field was II = 10.6 gauss. The cross polarization time
e

was 1. 07 sec.

'»)
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Figure 11. Dependence of the cross polarization time TIS on rotating

13C H field and frequency offset, in adamantane. Tile frequellcy offsets
1

8v OV
are ~, OW = 0; ~, 2n ;: +2.74 kHz; en, 2n = +5.24 kHz.
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Figure 12. Dependence of the cross polarization ti.me on the carbon

13
r.f. field strength for the C field applied at resonance'. Only

those points used in the curve fi.tting (exponential lC'nst mC'i11l squilres)

are shown. The TIS found is 110 ± 15 ~sec.
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Table 2. Cross polarization times

Freq. offset HIe gauss W (kHz) e T msec
e IS '

1 0 14.7 15.7 1374

2 0 12.5 13 .4 947.6

3 10.3 11. 0 678.9

4 8.99 9.63 192.8

5 7.54 8.08 69.22

6 6.18 6.62 29.27

7 5.02 5.38 12.35

8 4.34 4.65 5.501

9 3.62 3.88 3.303

10 2.60 2.78 3.098

11 + 2.74 kHz 14.94 16.0 11.3 1508

12 12.8 13.7 13.2 1108

13 10.7 1l.5 15.9 1139

14 9.46 10.1 18.0 361.6

15 8.09 8.66 21. 2 150.1

16 6.84 7.33 25.4 71. 97

17 5.81 6.22 30.3 33.73

18 5.24 5.61 34.0 15.90

19 4.66 4.99 39.0 12.47

20 3.92 4.20 48.4 13.26

21 3.49 3.74 57.4 16.72

22 + 5.24 kHz 11. 72 12.5 28.6 1705

23 10.6 11.4 32.0 1071

24 9.40 10.1 36.6 491. 3

25 8.35 8.94 42.2 267.5

26 7.53 8.06 48.2 162.8

27 7.09 7.59 52.3 138.1

28 6.68 7.15 57.2 150.0

29 6.18 6.62 66.1 232.0

59
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For small w we have noted the flattening of the spectral density. We
e

should also omit this point (point #10) since its inclusion would not

be consistent with the exponential form for the spectral density which

is obtained from the short correlation time assumption. This omission

is quite justified on this basis because we wish to compare our theoretical

results with a theory which is only valid in a specific region, large w.

We do not expect to reproduce the behavior at small w. The correlation

time with this omission is found to be

T
c

115 ~sec (77)

If the data for the other two irradiation frequencies are included

the correlation time is (omitting points 1, 2, 11, 10, 21)

T
C

129 ~sec (78)

Taking into account all of the above fittings we then conclude that our

uncertainty is rather large giving,

T
C

110 ± 15 ~sec (79)
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v. Discussion

The correspondence of the experimental and theoretical v~Lues for

the correlation time is quite satisfying.

T (theory)
c

122 I1sec T (experimental)
c

110 + 15 psec

In the work of Mc Arthur et a1. on Calcium Fluoride, theory and experiment

were also in close agreement, indicating that for rigid lattices, of which

both CaF
2

and adamantane are examples, the cross polarization dynamics

are indeed very well characterized.

The effects of relaxation are shown to be of considerable importance

for adamantane. The effect of relaxation is shown in Figure 13. The

solid circles are the experimental data from Figure 10. Superimposed

on this is the polarization expected, curve b, if there were no proton

relaxation. The inclusion of proton relaxation, which is shown as curVl'

a, combines to give curve c. As can be seen the proton relaxLltion

strongly limits the final polarization.

On the otherhand, the effects of relaxation for a multiple contact

SL experiment is clearly seen from Figure 14. Experimentally for ')

contacts we obtain an enhancement 2.4 times larger than for a single

shot, for 10 contacts 3.75 times, and for 20 contacts 6 times. Using

equation (33) the theory predicts enhancements of 4.89, 9.63 and

18.61 times the single shot enhancement. So then for a factor of 15

enhancement single contact ADRF must cross polarize for 0.125 sec at

the optimum 1]. For a 15 fold l'nhanceml'nt multipll' contact SL must

accumulate ::: 20 contacts each with a cross polarization time of 5 msec

for a total time of 0.4 sec.
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F · 13 G h f 13C .. f l' 119ure . rowt 0 magnetlzatlon a ter coup lng to H spins. The

circles are the experimental data from Figure 10. Curve (a) shows the

loss of proton spin order due to spin-lattice relaxation of the dipolar

reservoir. Curve (b) shows the predicted growth of the l3C magnetizatiun

with no lH spin-lattice relaxation and curve (c) is the combined predicted

behavior (also shown in Figure 10).
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Figure 14. Multiple contact 51. cross polarization, for n contacts.

The oscilloscope traces show the actual signals obtained which are

coadded to give the corresponding accumulated FID's. The total

elapsed time is also given. The mixing time was 5 msec and the

temperature was 13 ± 3°e.
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The conclusion is that when the proton relaxation time is long ADRF

is a superior method to SL multiple contact experiments. We note that

if TID is very long multple contact ADRF experiments provide even more

enhancement. However if the relaxation times are short TID < TIS we must

choose ~ = 1 and then the SL experiment becomes preferable because it

allows a shorter TIS. The TIS for n = 1 for SL is shorter because it

samples the dipolar spectral density at wlS-w
lI

maximum rather than at w
lS

as for the ADRF case.

a where it is a

T is also generally
c

shorter for SL, compare equations (61) and (6lc) for small S4.

The use of these enhancement schemes have grown rapidly since their

inception. They allow the high sensitivity determination of chemical

shifts as mentioned before, but also of relaxation parameters, for example

the TIP experiment mentioned in this chapter and T2 experiments which

24
have also been carried out in our laboratory. Quite recently we have

also extended these methods to deuterium proton double resonance (see

Chapter 2) which should expand the applications even more.
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Appendix 1.1 Lattice Sums for an FCC Lattice and the CaF2 Lattice

The details of the calculation are given in Section III 0, and

the computer program is given in Al.3. For the following tables the

lattice sums and the second and forth moments are given in dimensionless

form with

S'
4 (AI.I-I)

for the angles as depicted in Figure 3 with r in units of the lattice

cell size. For CaF
2

the lattice cell size (a) is the crystallographic

unit cell dimension. For adamantane the lattice cell size is one half

the crystallographic unit cell size, since the FCC lattice is constructed

by omitting every other lattice point on a lattice cell grid. The unitless

moments are

2S' S' - 4S'
124

S'
1

(Al.1-2)

The units are defined by:

2

= (YIYSh) S'
Sl 3 1

a



and

S'
4

68

(Al.l-3)

222
YrYsh

6
a

2
(S(S+l)) 1: MrSII ,

394

(1\\.1- fl)

and giving

ISII

T = (M4 ) -1/2
c 2 MIS

2

(AI. 1-5)

The angles e and ¢ are given as the polar angles of H , the externala

field, with respect to the crystal axis a, b, c, and for cubic lattices

a, b, c are equivalent. The powder averages are discussed in appendix

1.2. The computer program used to calculate the table is given in

appendix 1.3. Table 3 gives the results for the CaF
2

lattice and Table

4 for the FCC lattice with the T 's given for adamantane. The polycrystal1ine
c

averaging is duscussed in appendix 1.2.
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Table 3. CaF lattice sums, fourth moments (M
ISII

) and correlation times2 4

(1 ). The values for the lattice sums are given in dimensionless
c

units according to equation (65) . The numerical va lue of r, eq ua t i 01!

66, is 5.6776 10
7 -2

lattice size for [0 r II cubc'd,x sec . The Sl atums

for S2 it was 11 cubed and for S4 it was 5 atoms cubed. The

number of theta angles was 11 for 0 = 0-90 0 and for phi ngain

11 with ¢ = 0-45 0
•

e Si(M2IS ) s' S' MISII , 1 (jJsec)
2 4 4 c

- 0.00 0.00 1.558 30.01 6.606 67.11 39.41

- 0.00 4.50 1.558 30.01 6.606 67.11 39.41

- 0.00 9.00 1.558 30.01 6.606 67.11 39.41

- 0.00 13.50 1.558 30.01 6.606 67.11 39.41

- 0.00 18.00 1.558 30.01 6.606 67.11 39.41

- 0.00 22.50 1.558 30.01 6.606 67.11 39.41

- 0.00 27.00 1.558 30.01 6.606 67.11 39.41

- 0.00 31.50 1.558 30.01 6.606 67.11 39.41

- 0.00 36.00 1.558 30.01 6.606 67.11 39.41

- 0.00 40.50 1.558 30.01 6.606 67.11 39.41

- 0.00 45.00 1.558 30.01 6.606 67.11 39.41

25.84 0.00 13.05 18.53 -3.973 499.8 41.81

25.84 4.50 13.07 18.51 -4.250 501.1 41.78

25.84 9.00 13.12 18.46 -5.052 504.8 41.70

25.84 13.50 13.19 18.39 -6.300 510.6 41.58

25.84 18.00 13.29 18.29 -7.869 517.8 41. 44

25.84 22.50 13.39 18.19 -9.603 525.8 41. 28

25.84 27.00 13.49 18.08 -11.33 533.7 41.13



Table 3 continued

e Si(M2IS ) Sf Sf MISII
I T (pseL)

2 4 4 c

25.84 31.50 13.59 17.99 -12.88 540.8 41.01

25.84 36.00 13.66 17.92 -14.11 546.3 40.91

25.84 40.50 13.71 17 .87 -14.90 549.9 40.85

25.84 45.00 13.73 17.85 -15.18 551.1 40.83

36.87 0.00 18.77 12.82 14.30 424.2 54.4]

36.87 4.50 18.83 12.76 13.70 425.9 54.39

36.87 9.00 19.00 12.59 11. 97 430.7 54.33

36.87 13.50 19.27 12.32 9.304 437.8 54.27

36.87 18.00 19.61 11.98 5.991 446.1 54.23

36.87 22.50 19.98 11.61 2.381 454.6 54.2"3

36.87 27.00 20.35 11.24 - 1.161 462.3 54.28

36.87 31.50 20.69 10.90 - 4.300 468.5 54.36

36.87 36.00 20.96 10.63 - 6.752 472.9 54.46

36.87 40.50 21.13 10.46 - 8.308 475.5 54.53

36.87 45.00 21.19 10.40 - 8.841 476.4 54.56

45.57 0.00 20.23 11.36 21.46 374.0 60.15

45.57 4.50 20.35 11. 24 20.75 374.8 60.27

45.57 9.00 20.69 10.90 18.73 376.3 60.65

45.57 13.50 21.23 10.36 15.69 377 .4 61. 35

45.57 18.00 21. 90 9.690 12.07 376.3 62.4]

45.57 22.50 22.66 8.941 8.309 371. 9 63.84

45.57 27.00 23.41 8.191 4.815 364.2 65.57

45.57 31.50 24.08 7.515 1.894 354.4 67.4 J
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Table 3 continued

e Si(M;IS) S' S' MISII , l (psec)2 4 4 c

45.57 36.00 24.62 6.978 -26.74 344.7 69.13

45.57 40.50 24.97 6.633 - 1. 582 337.6 70.34

45.57 45.00 25.08 6.515 - 2.022 335.0 70.79

53.13 0.00 18.77 12.82 14.30 424.2 54.41

53.13 4.50 18.96 12.63 13.61 424.6 54.65

53.13 9.00 19.50 12.09 11. 72 424.8 55.42

53.13 13.50 20.35 11.24 9.054 421.5 56.83

53.13 18.00 21.41 10.18 6.178 411.4 59.01

53.13 22.50 22.59 9.001 3.626 392.3 62.08

53.13 27.00 23.78 7.821 1. 742 365.0 66.02

53.13 31.50 24.84 6.756 .6173 333.2 70.63

53.13 36.00 25.69 5.911 .1115 303.3 75.28

53.13 40.50 26.23 5.368 - .3254 281.8 78.92

53.13 45.00 26.42 5.181 - .4946 274.0 80.32

60.00 0.00 15.56 16.02 2.129 490.4 46.09

60.00 4.50 15.82 15.76 1.447 493.2 46.33

60.00 9.00 16.57 15.02 .3514 499.2 47.12

60.00 13.50 17.73 13.86 - 2.623 502.1 48.61

60.00 18.00 19.19 12.39 - 4.565 494.3 50.97

60.00 22.50 20.82 10.77 - 5.519 470.8 54.39

60.00 27.00 22.44 9.155 - 5.212 431.8 58.97

60.00 31.50 23.91 7.693 - 3.852 383.2 64.60

60.00 36.00 25.07 6.532 - 2.043 335.7 70.69

60.00 40.50 25.81 5.787 .5412 300.9 75.76
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Table 3 continued

e ep Si(Mhs) s' S' M1SII , T (llsec)2 4 4 c

60.00 45.00 26.07 5.530 .3814 288.2 77 .80

66.42 0.00 11.60 19.98 - 6.132 488.2 39.87

66.42 4.50 11.92 19.66 - 6.927 496.6 40.08

66.42 9.00 12.85 18.72 - 8.953 517.5 40.77

66.42 13.50 14.31 17.27 - 11. 27 539.7 42.13

66.42 18.00 16.15 15.43 - 12.75 549.8 44.34

66.42 22.50 18.19 13.40 - 12.50 537.6 47.58

66.42 27.00 20.22 11.37 - 10.26 501.0 51. 97

66.42 31.50 22.06 9.535 - 6.549 447.0 57.47

66.42 36.00 23.52 8.079 - 2.449 389.9 63.53

66.42 40.50 24.45 7.145 .7191 346.6 68.71

66.42 45.00 24.78 6.823 1.908 330.5 70.83

72 .54 0.00 7.677 23.90 - 6.896 394.6 36.08

72.54 4.50 8.056 23.52 - 7.925 410.7 36.22

72 .54 9.00 9.155 22.42 - 10.52 452.7 36.78

72.54 13.50 10.86 20.71 - 13.42 503.9 37.98

72.54 18.00 13.02 18.56 - 15.08 543.9 40.02

72.54 22.50 15.41 16.17 - 14.33 556.0 43.06

72.54 27.00 17.80 13.79 - 10.84 534.4 47.21

72 .54 31.50 19.95 11.63 - 5.346 485.9 52.42

72.54 36.00 21.66 9.930 .59.72 427.9 58.20

72.54 40.50 22.76 8.833 5.151 381.6 63.18

72 .54 45.00 2'l 1 /. 8.455 6 Q<;:/. 364.0 65.23-' • ...L~ .u....J ....

78.46 0.00 4.427 27 .14 - 1. 953 248.2 34.54

78.46 4.50 4.848 26.72 - 3.264 272.2 34.52
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Table 3 continued

8 ct> Si(M2IS ) s' S' MISII , T (psec)
2 4 4 c

78.46 9.00 6.071 25.50 - 6.594 336.1 34.76

78.46 13.50 7.975 23.60 -10.35 417.9 35.73

78.46 18.00 10.37 21.20 -12.62 490.6 37.61

78.46 22.50 13.03 18.55 -11. 92 531.3 40.51

78.46 27.00 15.69 15.89 - 7.837 530.3 44.50

78.46 31.50 18.09 13.50 - 1. 245 493.5 49.53

78.46 36.00 19.99 11.59 5.946 440.1 55.14

78.46 40.50 21.22 10.37 11.47 394.5 59.99

78.46 45.00 21.64 9.957 13.55 376.8 61. 99

84.26 0.00 2.298 29.27 4.024 118.4 36.03

84.26 4.50 2.746 28.82 2.485 148.3 35.19

84.26 9.00 4.046 27.52 - 1.442 228.5 34.41

84.26 13.50 6.071 25.50 - 5.950 333.5 34.90
.~,~

84.26 18.00 8.623 22 .95 - 8.838 431.3 36.57

84.26 22.50 11.45 20.13 - 8.398 494.7 39.35

84.26 27.00 14.28 17.30 - 4.129 510.9 43.24

84.26 31.50 16.83 14.76 3.005 484.9 48.] 9

84.26 36.00 18.85 12.73 10.88 436.9 53.74

84.26 40.50 20.15 11.43 16.97 393.3 58.56

84.26 45.00 20.60 10.99 19.26 375.9 60.56

90.00 0.00 1.558 30.01 6.606 67.11 39.4]

90.00 4.50 2.015 29.55 4.981 99.22 36.86

90.00 9.00 3.342 28.23 .8231 185.4 34.72

90.00 13.50 5.408 26.16 - 3.977 298.9 34.79

90.00 18.00 8.012 23.56 - 7.118 406.1 36.33



Table 3 continued

0 Si(MiIS) s' S' M1SII , T (l-lsec)2 4 4 c

90.00 22.50 10.89 20.68 - 6.810 478.1 39.05

90.00 27.00 13.78 17.80 - 2.517 500.9 42.91

90.00 31.50 16.38 15.20 4.775 479.2 47.83

90.00 36.00 18.45 13.14 12.87 433.5 53.37

90.00 40.50 19.78 11.81 19.14 390.9 58.19

90.00 45.00 20.23 11.35 21.50 373.8 60.19

7!~
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Table 4. FCC Lattice Sums and correlation times (T - see equation (63)).
c

The values for the lattice sums are given in dimensionless

form according to equation (65). The numerical value of [ for

7 -2adamantane is 4.6083 x 10 sec The lattice size for S1 was

7 molecules cubed, for S2 it was 7 cubed and for S4 it was 4

cubed. The number of theta angles was 11 for e = 0-90° and

e

11 for ¢ = 0-45°.

Sf
1

Sf
2

Sf
4

T (llsec)
c

- 0.00

- 0.00

- 0.00

- 0.00

- 0.00

- 0.00

- 0.00

- 0.00

- 0.00

- 0.00

- 0.00

25.84

25.84

25.84

25.84

25.84

25.84

25.84

0.00

4.50

9.00

13.50

18.00

22.50

27.00

31.50

36.00

40.50

45.00

0.00

4.50

9.00

13.50

18.00

22.50

27 .00

1.072

1.072

1.072

1.072

1.072

1.072

1.072

1.072

1.072

1.072

1.072

1. 356

1. 357

1. 358

1. 360

1. 362

1. 365

1. 367

2.413

2.413

2.413

2.413

2.413

2.413

2.413

2.413

2.413

2.413

2.413

3.052

3.053

3.056

3.060

3.065

3.071

3.077

.2514

.2514

.2514

.2514

.2514

.2514

.2514

.2514

.2514

.2514

.2514

.1286

.1290

.1301

.1318

.1340

.1364

.1388

14.93

14.93

14.93

14.93

14.93

14.93

14.93

14.93

14.93

14.93

14.93

12.31

12.31

12.30

12.30

12.29

12.29

12.28



Table 4 continued

8 S' S' S' T ()Jsec)
1 2 4 c

25.84 31.50 1. 369 3.082 .1410 12.28

25.84 36.00 1.371 3.086 .1428 12.27

25.84 40.50 1.372 3.089 .1440 12.27

25.84 45.00 1.373 3.090 .1444 12.27

36.87 0.00 1.497 3.370 .1757 11. 76

36.87 4.50 1.499 3.373 .1776 11. 76

36.87 9.00 1.503 3.383 .1829 11.75

36.87 13.50 1.510 3.397 .1914 11. 74

36.87 18.00 1.518 3.416 .2023 11. 73

36.87 22.50 1.527 3.437 .2146 11. 72

36.87 27.00 1.536 3.458 .2273 11.71

36.87 31.50 1.545 3.476 .2390 11. 70

36.87 36.00 1.551 3.491 .2484 11.69

36.87 40.50 1.556 3.501 .2546 11.69

36.87 45.00 1. 557 3.504 .2567 11.69

45.57 0.00 1.533 3.451 .1992 11.66

45.57 4.50 1.536 3.457 .2028 11.65

45.57 9.00 1.545 3.476 .2134 11.64

45.57 13.50 1.558 3.506 .2305 11.62

45.57 18.00 1.575 3.544 .2530 11.60

45.57 22.50 1. 593 3.586 .2790 11.58

45.57 27.00 1.612 3.627 .3063 11.55

45.57 31.50 1. 629 3.665 .3320 11.54

45.57 36.00 1.642 3.695 .3531 11. 52
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Table I. continued'+

8 <P s' s' S' T (lJsec)
1 2 4 c

45.57 40.50 1.650 3.714 .3670 11.52

45.57 45.00 1.653 3.720 .3718 11.51

53.13 0.00 1.497 3.370 .1757 11. 76

53.13 4.50 1.502 3.380 .1802 11. 75

53.13 9.00 1.515 3.410 .1936 11. 72

53.13 13.50 1.536 3.457 .2158 11.68

53.13 18.00 1. 563 3.517 .2460 1],.64

53.13 22.50 1.592 3.582 .2824 11.59

53.13 27.00 1.621 3.648 .3218 11. 55

35.13 31.50 1. 647 3.707 .3601 11.51

53.13 36.00 1.668 3.754 .3922 11.49

53.13 40.50 1.682 3.784 .4137 11. 48

53.13 45.00 1.686 3.795 .4212 11.47

60.00 0.00 1.418 3.192 .1405 12.03

60.00 4.50 1.425 3.206 .1441 12.01

60.00 9.00 1.443 3.247 .1555 11. 96

60.00 13.50 1.472 3.312 .1756 11.88

60.00 18.00 1.508 3.393 .2052 11. 79

60.00 22.50 1.548 3.483 .2435 11.70

60.00 27.00 1.588 3.574 .2876 11.62

60.00 31.50 1. 624 3.655 .3323 11. 56

60.00 36.00 1.653 3.720 .3712 11.51

60.00 40.50 1. 671 3.761 .3977 11.49

60.00 45.00 1. 678 3.775 .4071 11.48

66.42 0.00 1. 320 2.971 .1281 12.49



Table 4 continued

(3 s' s' s' T (]Jsec)
1 2 4 c

66.42 4.50 1. 328 2.989 .1291 12.46

66.42 9.00 1.351 3.041 .1334 12.35

66.42 13.50 1. 387 3.122 .1439 12.20

66.42 18.00 1.433 3.224 .1638 12.03

66.42 22.50 1.483 3.337 .1945 11.87

66.42 27.00 1. 533 3.450 .2343 11.74

66.42 31.50 1. 579 3.552 .2780 11.64

66.42 36.00 1.615 3.633 .3180 11.57

66.42 40.50 1.638 3.685 .3461 11.53

66.42 45.00 1. 646 3.703 .3562 11.51

72 .54 0.00 1.223 2.753 .1499 13.15

72.54 4.50 1. 233 2.774 .1472 13.08

72.54 9.00 1.260 2.835 .1369 12.89

72.54 13.50 1.302 2.930 .1369 12.63

72.54 18.00 1.355 3.050 .1408 12.35

72.54 22.50 1.414 3.183 .1571 12.10

72.54 27 .00 1.473 3.316 .1858 11.90

72.54 31. 50 1.527 3.435 .2226 11. 74

72.54 36.00 1.569 3.531 .2590 11.64

72.54 40.50 1.596 3.592 .2858 11.58

72.54 45.00 1.605 3.613 .2956 11.56

78.46 0.00 1.143 2.573 .1936 13.93

78.46 4.50 1.154 2.596 .1870 13.81
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Table 4 continued

e S; S2 s' T (jlsec)
1 4 c

78.46 9.00 1.184 2.664 .1703 13.51

78.46 13.50 1. 231 2.770 . L507 13.10

78.46 18.00 1.290 2.903 .1374 12.70

78.46 22.50 1.356 3.051 .1374 12.34

78.46 27.00 1.421 3.199 .1529 12.05

78.46 31.50 1.481 3.332 .1803 11.85

78.46 36.00 1. 528 3.438 .2110 11. 71

78.46 40.50 1.558 3.506 .2349 11.63

78.46 45.00 1.568 3.529 .2439 11.61

84.26 0.00 1.091 2.455 .2348 14.64

84.26 4.50 1.102 2.479 .2254 14.47

84.26 9.00 1.134 2.552 .2007 14.05

84.26 13.50 1.184 2.664 .1695 13.50

84.26 18.00 1.247 2.806 .1432 12.97

84.26 22.50 1.317 2.963 .1307 12.52

84.26 27.00 1. 386 3.120 .1357 12.18

84.26 31.50 1.449 3.262 .1554 11. 93

84.26 36.00 1.499 3.374 .1812 11. 76

84.26 40.50 1. 532 3.447 .2025 11.67

84.26 45.00 1.543 3.471 .2107 11.64

90.00 0.00 1.072 2.413 .2514 14.93

90.00 4.50 1.084 2.439 .2')10 14.75

90.00 9.00 1.116 2.513 .2133 14.27

90.00 13.50 1.167 2.627 .1779 13.66
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Table 4 continued

8 s' s' s' T (l-lsec)1 2 4 c

90.00 18.00 1.232 2.772 .1467 13.08

90.00 22.50 1.303 2.932 .1295 12.59

90.00 27.00 1. 374 3.093 .1306 12.22

90.00 31.50 1.438 3.237 .1473 11. 96

90.00 36.00 1.489 3.352 .1712 11. 78

90.00 40.50 1.522 3.426 .1915 11.69

90.00 45.00 1.534 3.451 .1993 11.66
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Appendix 1.2 Averages for the PolycrystilJ1ine Cross l'oLlri;'-:ill iUIl Time

In the calculation of TIS for adamantane there are two sL'[1ar<He

averages to be performed. We must first average the dipolar interaction

between spins on two molecules over the rapid isotropic motion thilt

occurs at room temperature. From this averaged interaction the second

moment of the autocorrelation function is calculated, for a specific

orientation of the lattice in the external field. The desired po]y-

crystalline moment is then calculated by averaging the individual second

moments over many orientations. We present in this appendix a discussion

of how this first average is calculated and then a discussion of the

manner in which the orientational average should be carried out. Lastly

we present the results of the averages for the moments of the correJ at ion

function and a listing of the proper conversion factors.

As mentioned in Chapter One the averaged interaction between spins

on two different molecules is found by evaluating the following integral,

over the isotropic motion of the two spins on two spheres:

f (AI. 2-1)

where y and r are the instantaneous angle and distance between the two

spins; the angle is between the external field direction and the vector

between the two spins. Also Sl and S2 are the variables appropriate to

two nontouching spheres whose centers are separated by the distance R

of radius r
l

and r
2

respectively. The result of this integration has

. 32-37
been reported and used many times in the 11.terature, but the spec Hie

details have never been presented.
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-3 32
If we average r itself we find, following Dimetrieva et al. that:

1
£n

2 2
R -(r -r )

1 2
(1\1. 2-2)

However if we average the full interaction the average becomes

(1\1.2-3)

where 8 is the angle between the external field direction and the line

between the centers of the two spheres.

To show this we will first calculate the integral of the interaction

between a point and a sphere with a uniform spin density. We take the

Z axis (Ho lIz) to be the line between the point and the center of the

sphere. The radius of the sphere is r 2 . Then y = e in equation (1\1.2-3)

and we find

P 2 (cosy)

< 3 >
r S2

1 3/2 co:~ y-~ 2
2nr sina da (Al.2-4)

where r is the distance between the spin at the point and the spin on the

sphere and a is the angle between the Z axis and the vectors from the

center of the sphere and the spin on its surface. Then:

r = and
2

cos Y
I 2 . 2
-r2 s~n a

2
r

(AI. 2-5)

This integral gives

(1\1. 2-6)
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If we now choose an arbitrary direction for the Z axis we must

transform the coordinates in Al.2-4. Note that

(AI. 2-7)

The transformation to a new Z axis is given by the addition rule for

2
spherical harmonics with a rotation defined by D ,(0,0,0) where 0

m,m

is the angle between the new Z axis and the old which is the line

between the point and the center of the sphere. This gives:

P2(cosy )
<R(O,e,O) 3

r

+R (O,e,O»S
2

P2 (COSY)
P 2 (cose)< 3 ->s

r 2

+ (AI. 2--8)

where S is the azimuthal angle about the vector between the point and

the center of the sphere. However we know that the cylinderical symmetry

of the system will average the terms with an B dependence to zero. For

example (see AI.2-4)

sin2y e±2iS 2
3 r sina da d¢ (Al.2-9)

r

where we retain the old integration variable a and ¢ is the azimuthal

angle of the vector from the spin on the sphere and the sphere's center.

By this definition S = ¢ and we have:



c 1
. 2

Sln y
3

r

sino. do.
±i2¢

e d¢ o
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(AI. 2-10)

since we note that y and r are functions of a only, because of the spherical

symmetr¥. This leaves only

<R(O,e,O)
P2(cosy) +

3 R (0,8,0»
r 52

(AI. 2-11)

which we have shown reduces to (see equation AI. 2-6)

(AI. 2-12)

To calculate the interaction of two spheres we note that we may

break the integral into two parts. First perform the average between

a fixed spin on Sl and the entire sphere S2. Then average this result

over the variables of Sl. The first average is of the form we have just

completed. But because of the simple form of this first average (Al.2-7)

the second integration is again the same integral yielding:

P2 (cosO)

R
3

(AI. 2-13)

which is much different than we found for <~> itself (AI.2-2). In words
r

then, the spins on two adamantane molecules behave as if they are placed

at the center of the two spheres, giving the average distance as R.

Usin~ the dist~nce R as indicated above we calculated the second

moment at many orientations of the lattice (See AI.l). The polycrysl::J I Ltile

average is then the average of these moments over a sphere. However, we

must prove that the average of the second moments is actually the second



moment of the polycrystalline correlation function which we obtain from

experiment. To prove we are correct in our approach remember that tlte

second moment of a function is,18

i
-.2 G(t) I~
dt t=O

G( 0)
(1\1.2-14)

Here we take G(t) to be the autocorrelation function. For a polycrystalLine

sample we must add up the func~ions G(t) for each crystallite giving the

overall correlation function

G(t ) - 1 G( t , r2) dQ
- Sphere

(1\1.2-15)

where the variables Q determine the orientation of the crystallite and

the integral is taken over a sphere. We find tltat polycrystalline

moment M2 is given by

i
- -2 G(t)~

dt t=O
G(o)

~Q M
2

(0.) G(O,0.)

- fl0. G(O,Q)

d
2r d0. - -2 G(t,Q) I

_jsphere.-__d_t ~

r d0. G(O,0.)
jSphere

(A1.2-16)

(1\1. 2-17)

Since the correlation function is normalized so that G(O,0.)

equation (1.49» we have finally

1 (sec

(1\1.2-18)
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which is the simple average of the individual moments. With this motivation

we find that

, ,
M2IS = 1.4508 51

8.6061 (AI. 2-19)

for an FCC lattice. For adamantane then

1(1+1) ,
3 N site M215

(AL2-20)

3.278 x 10
6 (1) (16) 1.4508

4
7 2 2

1.90 x 10 rad sec

(AI. 2-21)

6 7 1 1
3.278 x 10 05.184 x 10 (16) 916 8.6061

1.62 x 1014
rad

4
sec-

4

which gives

T
C

=(. 2 )1/2
M2

122 ~sec,for M2
(Al.2-22)
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Appendix 1.3 Computer Programs

The relaxation times, TID and TIP' the cross polarization times, TIS'

and the correlation time, T , were fit using the standard matrix form of
c

non-linear least mean squares. The program was a standard Oak Ridge

version called ORGELS. The voltage ranges on the Biomation were found

not to be accurate, giving a 5% error when changing from 50 mv to 100 mv

scale. This was corrected by using the ORGELS subroutine PRELIM (not

listed here), which scaled the 100 mv data properly before curve fitting.

This is in general not necessary, however. The only necessary user

supplied subroutine is the routine to calculate the relaxation function,

and its derivatives with respect to all of the parameters to be varied.

For TIS the equation 1-50 was used and the parameters to be varied are

2B
I

, En and TIS' This subroutine for TIS is given in Table I. (Note

2BAI BI , TAU = TIS' EPS = En , TlA = TID' a+ = ALPP, a ALPM,

a a aas DBB, ~ = DBT and --2 = DBE). It should be noted that equation
I IS dEn

(1-52) is in a particularly poor form for a least squares analysis, since

the parameters are all highly correlated. We use instead equation (1-50)

to aid in achieving convergence. It is even better to use (1-41) directly;

this will be done in Chapter 2.

The program for calculating lattice sums is given in Table 5 for the

CaF2 lattice. The CaF2 lattice is easily generated by first forming a

cubic lattice with the displacements

X LA

y

z

MA

NA

for L, M, N integers

and A the lattice cell size (i\l.J-l)
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1
and then displacing the lattice by - A in each direction in order to

2

place the origin at the tetrahedral calcium site.

X LA + ~ A

y MA+l:A
2

Z NA + ~ A (Al.J-2)

An FCC lattice is formed by excluding every lattice point for which

L + M + N is odd in equation (1). For the FCC lattice the origin

displacement is not needed. The subroutine for the formation of an

FCC lattice, COORD, is shown in Table III.

To calculate P2(cosS) the dot product formula was used

-+ -+
Hor Irl cosS

for the coordinates as directly generated from the lattice. This was

much faster than conventional methods, as suggested by McCall and

25
Hamming, for example. The lattice size for the sum S4 was smaller

than for Si and S; be~ause of time limitations. Fortunately, 54 converges

much faster than Si or S2 (see Section III iv).

Simpsons integration was found to be more accurate than Gauss'

method for integrations over a sphere. This was tested by integratIng

the function f(x) = lover a sphere. This is included as a subroutine.



Table 5. Derivative subroutine for TIS curve fitting. CALC calculates

the value of the function and its derivatives for the current values of

the trial fitting parameters for the least squares fitting program

ORGELS. (See the text for the definitions of the important variables).

8Y
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Table 6. Program to calculate lattice sums, the second and fourth moments

and the correlation time for a rigid lattice. The subroutine COORD forms

the CaF2 lattice (see Table IV for an FCC lattice).
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Chapter 2

I. Introduction

Solid state NMR is rapidly being developed into a powerful means of

probing electronic structure, molecular conformation and molecular

dynamics. Although these techniques have been applied to many different

1 " f " Lz (lH, 13C, 3lp , 109Ag , 43Ca , 19F , l5N) t h"nuc el a spln ~- tIle most U lquitous

spin species, protons, have remained the most difficult to deal with

experimentally. We present here a new method to circumvent the problems

resonance we choose to observe deuterium nuclei~~~~)__~l~~~l~~~lve

been substituted into the molecule of interest. This isotopic dilution

serves to decrease the strong dipole-dipole interactions ~lich might

obscure chemical shift information,l as we have seen in Chapter 1.

On the other hand, the ability to extract information from deuterium

resonance is severely hampered by the extreme broadening caused by the

interaction of the nuclear quadrupole moment with electric field gradients.

For deuterium, the quadrupolar splittings are typically of the order of

~ 200 kHz, whereas the chemical shifts are expected to span a range of

~ 500 Hz. We have developed two different techniques for dealing with

this problem. The first which we call Quadrupole Satellite Spectroscopy

(QSS) takes advantage of the very sharp lines which are available from

a single crystal to measure the small chemical shifts. If these satellites

are too broad, due either to crystal imperfections, chemical exchange

or complex due to many inequivalent spins or polycrystalline samples,

the second technique, Fourier Transform Double Quantum (FTDQ) Spectrosc~
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is used to effectively eliminate the quadrupole interaction, leaving the

chemical shift, dipolar and scalar interactions. Both of these methods

greatly expand the number of systems for which high resolution spectra

may be obtained. As an example we report the first measurement of the

chemical shift of deuterium in a solid. This includes the resolution

of chemical shifts for different deuterium nuclei in a crystal and a

measure of the anisotropy of the chemical shifts as the crystal is

rotated.

Cross polarization techniques have proven quite useful for carbon-1J­

proton double resonance (see Chapter 1). Since deuterium can now be

used as a high resolution probe we have extended these enhancement

techniques to the realm of deuterium-proton double resonance. _Ihe_

experiments involve a cross polarization of the deuterium double-quantum

transition. This completes the correspondence of established solid

state techniques to the deuterium case.

Apart from its practical significance the coherence properties of

multilevel systems is of great interest for many types of systems

including microwave double resonance, pulsed optical studies and optically

detected magnetic resonance.
2

Deuterium NMR is a useful tool in studying

coherence phenomena since it is a tractable three level system. We

present here an approach for the exact treatment of the coherence properties

of this system for both single and double resonance experiments.

We report the results of what we believe to be the first cross

polarization experiments, of the thermal mixing type at high field,

between deuterium and protons. The detection is achieved both indirectly

and directly, from which we have extracted cross polarization times,

correlation times and spin heat capacities, including the novel case of
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the double-quantum processes.

As an approach to high resolution spectroscopy we must dl'al with

interactions on three levels; first the very large electric quadrupoll'

interactions, second the dipolar interactions and third the chem-Lcal

shift. In the second section we deal with the problems caused by each

of these interactions in turn. Having presented the general philosophy,

the third section will give the necessary theory. The treatment of

double resonance is presented in the fourth section.
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Part of the del1terium spectrum of a powder of dimethylsulfoxide

(DMSO) is shown in Figure 1. The pattern is much too broad to extract

any fine structure. The spectrum of a single crystal however would

contain two sharp lines split by the electric field gradient along

the external magnetic field direction. High field spectra of this

type have been used for example to extract information on hydrogen

bonding and the reorientation and structure of water of hydration in

3-5
solids. The above work is based on the determination of the electric

field gradient (EFG) tensor and the observation of dipolar fine structure

of the quadrupole spectrum. We note that since the EFG tensor is trace-

less the spectrum will be centered at a frequency determined solely by

the chemical shift and small second-order quadrupolar effects. Following

the center of mass of the two lines as the crystal is rotated then

essentially maps out the chemical shift tensor. If there are dipole-

dipole interactions in the crystal, the results will show up as line

broadening and/or fine structures on the satellites themselves. The

main disadvantages of this method are

1) that it is difficult to strike a compromise between the high

resolution necessary to observe the small effects of the chemical shift

and the wide bandwidth required to observe the entire quadrupole splitting

and

2) the satellites may be so broad due to crystal imperfections,

etc., that it is impossible to obtain the resolution needed.

These difficulties can be resolved if a way is found of cancelling

out the quadrupole coupling while retaining the other interactions. The

level diagram for deuterium (S = 1) is shown in Figure 2. The normal



Figure 1. Deuterium spectrum of polycrystalline perdeutero Dimethyl

sulfoxide (99.5%). Note that the entire breadth is 88 kHz since only

toe middle portion of the powder pattern is shown. The temperature is

-75°C.
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Figure 2. Zeeman and Quadrupole energy levels for spin = 1. The

double quantum transition occurs at (DO since the m = ± 1 levels are

shifted by the same amount (to first order).
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allowed transitions for the spin-I are m == 1 + 0 and m == 0>- -1 which are

shifted by the quadrupolar interaction, ~~. To first order, the m ==

-1 splitting is not shifted, however, The spl i tting remains ,It 2 (jln no

matter what the quadrupole interaction is, cmd of course this spl iLL ing

contains the chemical shift. We induce the transit ion nI == 1 .)- -I wi t h ;1

radio frequency field of intensity wI at the unshifted frequency, w
O

'

placing the levels ± 1 in coherent superposition. This coherence,

which we label tentatively Q(T), now evolves as

Q(T) 'V aCT) cos 211WT (I)

where lIw is the resonance offset or chemical shift and aCT) is the decay

due to relaxation by deuterium-deuterium, deuterium-proton or deutl'r iUIll

lattice coupling. We shall see that Q(T) does not contain (jlQ and thus Wl'

have effectively removed the quadrupole broadening.

If we wish to observe only the chemical shift the dipolar coupling

1
must be reduced. This is conveniently handled by isotopic di lution,

as mentioned before. The more conventional choice for protons has beell

to use multiple-pulse line narrowing techniques, 7 to reduce llOnlOnuc]e;l r

dipole-dipole couplings. These techniques are difficult and our hope

was to replace them with something more generally applicable. For isotopic

dilution the homonuclear dipole-dipole coupling is reduced through its

distance dependence, leaving only the heteronuclear dipole-dipoll' coupling

which is easily averaged to zero by spin decoupling.

Lastly we must extract the full chemical shielding tensor. This can be

done either by rotating a single crystal about its axes or by observing

the polycrystalline lineshape (powder lineshape). As mentioned above,

direct observation of the quadrupole spectrum, QSS, is only ameflilblc

to the former method. While the double quantum approach may
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have the advantage of better resolution, its applicability is truly

demonstrated by it's ability to handle powder samples.

Isotopic dilution, however, decreases the signal to noise drastically

just as in the case of carbon-13. The cross polarization experiments

discussed will undoubtably aid in dealing with the. problem. For a spin 1

we have the additional possiblity of being able to cross polarize

anyone of the three different transitions. Cross polarizing either of

the satellites is the direct extension of the carbon-13 work in Chapter

1. Cross polarization of the double quantum transition will be seen to

produce a fundamentally different kind of deuterium polarization, a tensor

polarization. In addition the dynamics of the process help to confirm

the theory we have formulated.
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III. Theory

The total Hamiltonian for the deuterium spin system (S) neglecting

other spin species can be written (in angular frequency units):

(2)

The Zeeman term

Li SiZ

(3)

takes into account the projection of the chemical shielding tensor a

along the direction of the external field Ho ' aZZ. The deuterium

magnetogyric ratio is YS.

The quadrupole term is:

[S2 _ l S (S + 1)]
Z 3

(4)

3 2 Q 2 2
and we define further w

Q
= : i «3 cos 8Q-1) + n(sin eQ(cos2¢Q» which

is the actual splitting observed between the satellite and zero frequency,

see Figures 2 and 3. Q is the nuclear quadrupole moment, q is the largest

element of the electric field gradient (EFG) tensor and n is the asymmetry

parameter:

q with (5)



Figure 3. a) Quadrupole energy level scheme for a chemical shift of

o. The allowed quadrupole aatellite transitions are indicated in h).

The effect of fold over is indicated, for the case that the irradiation

frequency is exactly Wo in c).

]16
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where qii are the principal values of the EFG tensor. The angles SQ

and ~Q are taken between the laboratory axes as defined by Ho and the

principal axes of the EFG.

The homonuclear dipole-dipole term

2'L-Yrh

i c 3Jr ..
1.J

!2(3 cos
2
Sij-l) {31 I -I 01 }·Z·Z . .1. ] -1.-J

(6)

is taken in the truncated high field form, as is the quadrupole

Hamiltonian. The angle 8ij is taken between the internuclear vector

and the external field.

The radio frequency irradiation is given as

where

(7)

and HI is the strength of the applied rf field.

A. Quadrupole Satellite Spectroscopy

Let us first concentrate on the first two terms of equation (2); in

order to explain QSS. The Zeeman interaction generates three non-degenerate

levels characterized by m ~ +1, 0, -1, the quadrupole interaction then

lifts the degeneracy of the +1 + 0 and the 0 4 -1 transition to give

a two-line spectrum, as in Figure 3. The experiments were performed

with a single phase detector so that positive and negative frequency with

respect to the carrier frequency are indistinguishable. This causes the

spectrum to "fold over", and the splitting between the two satellites is

then:



2v +2v. v
offset chemlcal shift' offset

v-vo (8)

] I <J

where V ff is the spectrometer offset frequency and v
o set chemical shift

is the desired chemical shift.

J
The inclusion of the dipole-dipole term has been handled previously,

so it will not be discussed further, except to notice that the effect of

isotopic dilution will be a corresponding narrowing of tile satellites

which will allow the high resolution determination of the peak positions.

B. Fictitious Spin Operators

We wish to develop a theory for our system which is not based on a

perturbation approach. This is easy for two level systems. Since their

operators have a formal correspondence to angular momentum operators,

spin operators can be used as generators for rotations. This, then, is

the formal basis for viewing spin !z systems as precessing and l1utating

magnetizations. This correspondence breaks down for bilinear operators,

operating on a three-level system, such as the quadrupole interal:tion,

so closed form operator expressions are more difficult to obtain.

This difficulty can be somewhat alleviated by using fictitious

8
spin !z operators. Their usefulness has been demonstrated in work on

9
pure NQR systems. If any two levels are coupled by a nearly resonant

interaction, we can in some sense ignore any other levels. The resulting

system then corresponds to a normal spin !i system, that is, it has two

eigenfunctions and energy levels, and its operators can be expressed

as 2 x 2 matrices.
8

We choose these matrices to be the Pauli spin

matrices, whose correspondence to angular momentum operators allows the

transformation properties to be considered as rotations.
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The operators are defined by the commutation relationships given

in Table 1. Choosing a basis set which will be convenient for our

present calculations determines the matrix form of the operators as

follows:

Ix> = -1 (/+1>-1-1»
Ii
iIy> -J2 (/+1>+/-1»

Iz> 10> (9)

where /+1>, 1-1> and 10> are the eigenfunctions of Sz for S 1.

=~ S lt~
i n Ie 1

D leO D0 Sz 2 - 1 0 SZ,3. - 0-1
Sz,l 2 Z 2 0 0

, 2 0 0
2

00

1 Ie 0

D Ie 0 n 1C
0 nSy, 1= 2" Sy - 0 0 Sy 2 - 0 0 S 1 0 0

2 1 2 . y,3 2 00
,

-1 0 0

1 IC 0

D IC 0

-D ~ l(~
0 j)1< 1="2 Sx - 0 0 Sx 2 - a 0 S 1, 2 a 1

, 2 0 i
X,3 2 0 a

Here instead of the three linearly independent operators SX' Sy'

and Sz the set has been replaced by a set of nine operators, in such a

way that each corresponds to a spin ~ operator for one of the transitions

in the three level system. Only 8 of these are linearly independent and

this dependence is expressed by

~, 3 + ~, 3 + 5Z , 3 a (10)



Table 1. Commutation Relations

B

Sx 1 Sx 2 Sx 3 Sy 1 Sy 2 Sy 3 SZ,l SZ,2 SZ,3, , , , , ,

Sx,ll 0 - Sx 2 1. S 1 1 1 1. S 1
Sx 3 - 2" Sz 2 2" Sx 2 - 2" Sy, 1 2" S '), , 2 Z,l , , 2 y,2 X, <_

0 S 1 1 1 1 1 1
S 1- SX,3 - 2" SZ, 2 - 2" Sz 1 - 2" Sx 1 2" Sy 2 2" SY,l - - S
x,2 X,1 , , , 2 X,l

Sx,31 0
1 1

0
1 1

0S - SX,l - 2" SY,2 2" Sy 1 - 2" Sz 2 2" Sz 1X,2 , , ,

1 1 1
0

1 1 1
SY,ll- 2" SZ,l 2" Sz 2 2" Sy 2 SY,3 - Sy 2 + 2" SX,l - "2 SX,2 2" Sy 2, , , ,

SY,21
1 1 1

0
1 1 1

2" S2 2 2" SZ,l - 2" Sy 1 - Sy 3 Sy 1 - 2" Sx 2 - 2" Sx 1 - 2" Sy 1, , , , , , ,

1 1
0 Sy 1 0

1 1
0S 1- - S 2" SX,l Sy 2 - - 2" Sz 2 2" Sz 1y,3 2 X,2 , , , ,

5z,11 1. 5 1 1 1 1 1
0- 2" Sy 2 2" 5z ,2 - 2" SX,l 2" Sx 2 2" SZ,2 SZ,3 - Sz 22 y,1 , , ,

1 1 1· 1 1 1
Sz 3 0 Sz 1Sz,21- 2" SY,2 - 2" Sy, 1 - 2" SZ,l 2" SX,2 "2 SX,l - 2" Sz 1 -, , ,

1 1
0

1 1. S 0 SZ,2 0Sz,31- 2" SX,2 2" SX,1 - 2" Sy 2 - SZ,l, 2 y,l

[A, B1 iC
~
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The significance of these operators to other problems and their relation-

ship to standard spherical tensor operators is given in Appendix 2.1.

The similarity of these operators to the normal spin ~ operators

is seen through the commutation relations;

with

[S .,S .J
p,l N i Sp,k (J I)

p x, Y, or Z and i,j,k 1,2,3 or cyclic permutations

o p,q X,Y,Z

p -I q -I rand i 1,2,3 (12)

These show that S~, Sp;Z and S1+3 behave like Pauli matrices aX, 0Y'

0z for the transition p. The Quadrupole Hamiltonian is given as:

} 8(8+1» - 2w1 Sx coswt (13)

Transformation to a frame rotating at the frequency of the applied rf

field gives

with f':..w

~ 8(8+1» (14)

The functions Ix>, Iy> and /Z> were chosen to form the hasis set because

they are the eigenfunctions of the rotating frame Quadrupole H;lInil tonian

without the rf interaction:



~ (S(S+l)) (14a)
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The level scheme for this Hamiltonian is shov.rn in Figure 4.

We rewrite (14) in terms of our fictious spin half angular

momentum operators:

-2f:.w Sz 1, (15)

with p,q,r X,Y,Z or cyclic permutations and where

o

E
Z

The level scheme for this Hamiltonian is the same as for equation (14), and

Figure 4, where levels Ix> and /Y> are degenerate in the absence of the

rf irradiation. (Here we note the correspondence to both pure NQR and

Raman Spectroscopy). The operators Sx . for example, correspond to
,1

transitions between levels Iy> and /Z> where the elements 1,2,3 are the

Pauli spin operators between the two levels. The picture then corresponds

to three separate coordinate systems X, Y and Z each corresponding to a

different transition and each having axis 1, 2 and 3.

As a consequence of the basis set we have chosen the operators Sx .
,1

and Sy . which do not correspond to the normal transition 10> +-~ 1+1>
,1

and 10> ~ 1-1>. Instead, to find the operators which couple these transi-

tions we must take linear combinations of the operators. The /+1> and

/-1> levels are given by



Figure 4. Quadrupole energy level scheme in the rotating frame. The

allowed transitions are indicated. Note the analogy with Raman

spectroscopy.
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/+1>
- 1 (I x> ily»
j2

+

1-1>
1 (I x> - i Iy»= --

12
Simple algebra then gives the Sy(+) operator for the 1+1> +-+ 10>

transition as -(SY,l - SX,2) and SX(+) operator for the 1+1> +~ 10>

transition as -(SX 1 - Sy 2)' This can easily be verified by allowing

cach to operate on' the sp:n function 10> ( ~ (V). These operators

will occur in the cross polarization section. For the other satellite

we find the SX(-) operator to be SY,2 + SX,l and for the Sy(_) operator

S 2 + S 1X, y,
Note that these operators are the fictitious spin \i

operators for the satellites and not Sx and Sy' the full spin operators.

We now discuss the transformation properties of these 9perators

under rotations. For example an E degree rotation about the 2 axis in

the X coordinate system (~(E,2» will result in

S~,l

-iESX 2
e '

+iESX 2
e ' casE Sx 1, sinE

S~ 2 SX,2,

S~,3 sinE SX,1 + casE SX,3

S~ 1
E

sin
E

cos 2" Sy I 2" Sz 2, , ,

S'
E E

Ssin 2" Sy 2 + cos -
Z 1 2 Z,l, ,

<:' <: ' S Sz 3 (16)
u Y,3 u Z ,3 Y,3 ,

As is seen the rotation properties are straight-forward, except for

a rotation of one of the S 3 operators whose linear dependence on the
p,

other 3 operators makes matters somewhat complex. I\. summary of all possible

rotations is given in Appendix 2.2. In a similar way it is shown tlJ<lt
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-ia Sx,lt +ia Sx It
e Sx 3 e

,
Sx 3 cosat - SX,2 sinat

, ,

-ia Sx,lt +ia Sx It a (J..
( L7)e Sy 1 e

,
S cos -t + C; sin -t, Y,l 2 ~Z,l 2

where the first equation shows a rotation in the X-coordinate system

and the second equation corresponds to a regular Cartesian-coordinate

system rotation induced by the normal angular momentum operators SX'

The success of our approach in using these operators is dependent

upon our ability to write the Hamiltonian in two parts, the first must

have the form of a spin ~ Hamiltonian and the second, which contains

the rest of the system, must commute with the first. As we shal] see,

this second part may then be "ignored" in so far as the dynamics of the

system are concerned.

1. Single Quantum Transition Hamiltonian

There are two important limiting cases for the experiments that

follow, and the Hamiltonians for these are derived below. If we irradi<lte

near the frequency (6w away) of one of the satellites we will excite

single quantum transitions and the Hamiltonian, equation (15), can he

rewritten in a form particularly convenient for that case which fulfills

the above conditions of commutativity of the two parts. The second case

to be considered is when the frequency of the irradiation is near the

center of the spectrufl. Double quantum transitions can then he induced

with a high probability, and we rewrite the Hamiltonian to emphasize this

transition.

The Hamiltonian for the first case, where
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becomes

We now rotate the Z-coordinate system 90° around the 2-axis (K
Z

(90,2»

and we get,

H
S
''< ')(ow + W )S' + .?. W (S' - S' ) -.j2w (S' - Sy' 2) (18)_ ~\ Q Z,3 3 Q X,3 Y,3 1 X,l ,

Using equations

with respect to

(15) and (10) and assuming W «w we can ignore 0.(1)] S'
·---~-l Q 'ilL 'Y,2

4
3 wI s; 3 so that the Hamiltonian becomes,

"1< ,
HS -ow S~,3 - vrz-W

l S~,l (19)

In a similar way we get for irradiation near the other satellite

where

H"< ,
S

, ,
, t::: ' 4 (S - Sx 3)

-Sw sY,3 + '11 2 wI SY,2 + 3 wQ Z,3 ,
(20)

There is a more pictorial way of deriving (19) and (20). By

inspecting equation (18) we see that the energy associated with the

,
transition between levels X and Y, which corresponds to the S, 3

Z,

operator, must be 2(Owtul
Q

). Also since the Zeeman term is given as

,
proportional to SZ,3 the Z level must not be shifted, that is the

, ,
SZ,3 operator has a vanishing matrix element <zlsz,3Iz>. The energy

2
of the Z level must then be - 3" wQ. Using the fact th3t



E + E + EX Y Z o (21)
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where E denotes the energy of a level, we can gener-ate the level diagram

as shown in Figure 5b. We wish to write the Zeeman term so that it

corresponds to the Y -+ Z (+w
Q

) transition, so it must be given as

(22)

the energy of the rest of the system must then be proportional to

(SY,3 - SZ,3) and we can calculate the proportionality constant by noting

that if the system is in the state Ix> its energy must be

Including the r.f. irradiation term gives finally

(23)

-ow S~,3 - ~l S~,l (24)

Invoking the assumption that ow «w gives equation (19).
Q

The equations (19) and (20) now have the form that we required; the

first two terms correspond to a fictitious spin half Hamiltonian and the

last commutes with them. The effective gyromagnetic ratio along the

irradiation field for this fictitious spin is

In this way we are motivated to consider one satellite as a spin half

system with its effective gyromagnetic ratio YeS This is of course only

so if the r.f. field strength is much smaller than the distance hetween
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the satellites of the S-spin system, i.e., wI « W
Q

.

2. Double Quantum Transition Hamiltonian

We now consider the case in which the rf irradiation frequency is

near the center of the S-spin spectrum, i.e.,:

6w ow « (J.l
Q

After applying a R
X

(8
X

,2) rotation and using equation(16), we find:

-l\ ' ~VWQ2 2 ,
I '

,
H

S
,.. (2w

l
) Sx 3 - 3" wQ(Sy, 3 - Sz 3), ,

- 20W(SL I cos
E:: ,

~)- + Sy 2 sin
2 , 2

where

(25)

This rotation is analogous to the rotations used to find the effective

field for a normal spin 1'2 system irradiated near resonance. I\ssuming

ag~lin that W «wand <SUI « W
Q

' ignoring the coefficient of Sy 2 with
1· Q ,,

respect to the coefficient of Sy 3 and considering only first ()rder,

terms in wI we get

I (
2

,
SY,3) - 20w S,Z,l

(26a)

(26b)
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Here again the easiest way to visualize the rewriting is to construct

the level diagram. The energy of the transition Y + Z must be the

I ,

coefficient of Sx 3 since Sx 3 couples the Y and Z levels., ,

(27)

and the X level must remain unchanged since Sx 3 has no matrix element,

for the X level:

(28)

Using equation (21) allows us to complete the level diagram;

Figure 5c. We wish to focus attention on the double quantum transition

x + Y so the Zeeman term will be proportional to Sz 3' this we call,

the "double quantum" frame. We may then complete the Hamiltonian as

before yielding

i~ , I (VW~ 2
- WQ)SZ,3 - 1V0 ' 1

HS 2
+ (2w

l
) 2 wQ + (2w

l
) + :3 (tI

Q
)

I ,
(SX 3 - SY,3) - 20w Sz I (29), ,

Invoking the condition w «w gives the final result, equation (26<1).
I Q

Again we obtain a Hamiltonian in which the first two terms in

(26b) are a spin ~ Hamiltonia~which corresponds to the double quantum

transition measured in a continuous wave (CW) experiment. The ('ffee.tive

gyromagnetic ratio for this case is

(30)
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Figure 5. Quadrupole energy level scheme in the rotating frame with and

without rf irradiation. A single quantum "reference frame" is indicated

in (b). and the double quantum in (c). See equations 21-24 for the

single quantum frame and equations 27-29 for the double quantum frame.
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resonance offset and

if ow = o. Thus the effective magnetogyric. ratio here is 2ys for the

wI
-- Y

S
for__t_h_e_effective irradiation field.

w
Q

-
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C. Observables

It is necessary at this point to ascertain which spin ~ operators

correspond to physical observables. The best way of doing this is to

find those operators whose expectation values correspond to signals

measured in a pulsed NMR experiment. Here we detect the expectation

values of Sx or Sy which have been transformed into a frame rotating at

the irradiation frequency. This frame corresponds experimentally to

- - -
the phase detector whose axis we label ~, Y and Z. Signals whose initial

amplitudes lie along the X axis are termed in phase and those whose

initial amplitude lie along the Y axis are out of phase. The signal

from the phase detector is then Fourier transformed giving a complex

spectrum,~. In phase signals give rise to absorption shaped signals

in ReW and dispersion in ImW. Out of phase signals give rise to

absorption signals in Imw and dispersion in ReW. We choose this description

because unlike the spin ~ case, we shall see that the expectation values

of Sx and Sy can behave quite independently.

*Let us define the reduced density matrix of the S-spin system 0S(O)

at the beginning of the free induction decay (FlU) in the rotating frame

using the high temperature approximation. First the high temperature

approximation gives the full density matrix as

ps(O)

the reduced density matrix is given as
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(31)

This we may expand in terms of the nine operators giving:

0;(0) L a is.P p.1p=X,Y,Z;i:l,2,3
(32 )

From the solution of the Schrodinger equation

(33)

with the Hamiltonian excluding the r. f. irradi:ltion:

we obtain

( Db)

O;(t) =L
p,1

a . exp(-i Hs* t) S exp(+i ~s t)P,1 p,i
(34)

As a simple example, let us first apply this to a standard 1;pin Ii----_._. --~~._--_._---- -«----_.'

prohlem in order to make more explicit the above comments about til('

phase relationships. We use the simplest Hamiltonian

H
S

= t:lliJ S . (35)
Z

the general density matrix is for this case expanded in three operators:

(35b)

finding the time evolution with the Hamiltonian gives

*a (t) = ax (SX cos~wt + Sy s in~wt) + a y U;y cost.wt - Sx HI nl\llll) + ilZS
Z

Of! )
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We then observe,

<5 > => tr(o S )
Y 2 1 Y

when' tr(SX) = "2

ax ay
cos6wt - -- sin6wt

2 2

ay aX
-- cos6wt + sin6ult
2 2

(37)

To relate (37) to what is experimentally observed in our spectrometer

we must be somewhat careful about the phase relationships. Remember that

the X,Y,Z spin axes are determined by the rotating frame transformation

wit It respect to the r. f. irradiation, both in frequency and phase. The

phMW detector 1n general will not be in phase with the irradiation, that

is the X phase detector axis and the X-spin axis are not necessaril y

a.ligned. We assume for now that they are aligned since by dol ng so

we loose no real generality. We will discuss below the adjustments to

he made if they are not. The actual signals observed

assumptions are simply,

under these

(37a)

In the two channels of the phase detector.

The complex Fourier transform is defined by:

ljJ(w) = f (w)+ if (w) = ]dt e
iwt

(g_(t) + ig (t»
X Y 0 X ,r

(37b)

The complex Fourier transform of equation (3i'b) is then a delta

function at frequency 6w in ReljJ of intensity aX and a delta function

at frequency 6w in Im~ of intensity aye This is shown graphically 1n

Pigure 6a. The horizontal axis of the diagram is the frequency axis,

w. The vertical axis is the Re~ axis and that axis projecting into the



Figure 6. a) Schematic representation of a spin Ii Fourier transform

experiment, for a line of frequency 6w. b) The change of coordinates

accomplished by the Fourier transform phase correction. The x and y

axis are the spin axis which are transformed into a new axis system

x' and y' which is aligned with the phase detector.
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page is the Imlj; axis. The intensities, aX' a y are shown plotted along

their respective axis.

If we take into account n~laxation processes, the absorptiul1 lint'

shape will no longer he a delta function. We then introduce the fn'e

precession shape function or relaxation function a(t), (normalized to

1, see Abragam, ref. 8, for more details) whose cosine Fourier transform

yields the absorptive line shape,

00

g(w) = ~ a(t) coswt dt

Equation (37) then becomes,

07e)

<s >
X

<s >y

aX a(t) cosfl.wt - a y a(t) sin fl.wt

a y a(t) cosfl.Cllt - aX a(t) sinfl.wt 07d)

and corresponding after Fourier transformation,

f (w) +
X

ex;-- d iwt
i f (w) =J te (g_ (t) + i

X 0 X
g (t))

y

yields both absorption and dispersion in Relj; and Imlj;. The term

proportional to aX yields an absorptive line in Relj; and a dispersive

lineshape in Imlj; and vice versa for a y . We obtain hoth absorption and

dispersion automatically due to the complex Fourier transform. We will

schematically represent this more realistic case in exactly the same

way as before, Figure 6a.

The above assumed that the X spin axis in the rotating frame was

-
aligned along the X phase detector axis. This will always be ;lssumed
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for if it is not a trivial phase adjustment of the spectrometer

(the spectrometer phase) or a phase transformation after the Fourier

transformation, correct the misalignment. To illustrate the Fourier

transform phase correction assume that the X spin axis and the X

phase detector axis are misaligned by an angle ¢, Figure 6b. The

observed signal is then obtained from the time evolution of the density

matrix after it has been transformed into a new frame X', Y'; in which

the X' axis now lies along the ~ phase detector axis. The Fourier

transform of this signal will give some mixture of absorption and

dispersion in both Relj; and ImljJ. If we wish to obtain the Fourier

transform with respect to the old coordinate system (the original

rotating frame) we must apply a phase transformation with phase -¢.

As an example we choose the density matrix of a single spin species

after a 90° pulse has been applied (see Figure 6b).

0(0) (38)

where B is the laboratory inverse temperature. Transforming to the new

axes gives

0(0) (39)

The Fourier transform will give

ljJ(w) a (w) cos¢ - d (w) sin¢ + i(a (w) sin¢ + dj.l(w) cos¢) (390)
j.l j.l j.l

where 0j.l(w) and dj.l(w) are the intensities of the absorptive and disperslvL'

lineshapes at the frequency of interest. w, see Figure 6c. Had the X

and X axis been aligned the Fourier transform would have given only
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absorption in ReljJ and the dispersion in ImljJ. The effect of the

misalignment is then to mix some dispersion into the ahsorptioll in

ReljJ and some absorption into the dispersion in Im~). To obtain the

purely absorptive lineshape in ReljJ we must phase the Fourier transform

by (-¢) giving

-i¢
e ljJ(w) (cos¢ + i sin¢) ljJ a (w) + i d (w)

tl IJ
(40)

this must be computed for each value of w.

In order to find the observables for the fictitious spin operators

we carry out, now, the analogous analysis as we have sketched for

the spin ~ case. The appropriate Hamiltonian for a system of quadrupolar

spins is given in equation (33b). We rotate this with R
Z

(90,L} to give

*'HS

and

+ 1 , ,
RZ SX,l R

Z
- (SX 1 Sy 2)
2 , ,

+ 1 , ,
RZ SY,l Rz

- (Sy 1 + Sx 2)
2 , ,

We take the initial density matrix as (see equation 32)

(41)

~
p==X,y,Z
i==1,2,3

a .S .
p,l p,l

(32)

From equations (34) and (16) we obtain
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(J)~'(t)
, ,

=l:ap3
S + (a' S' + a' S~ 2) cos (wQ-/I,w) tp,3 X,l • X, 1 X,2

P
,

+ (a~ 1 S~ 2 - a' S' ) sin(W
Q

-6W)t, , X,2 X,l

+ (a~ 1 S~ 1 +
,

S~ 2) cos~-6w-wQ)tay 2, , , ,

+ (a~ 1 S~ 2 -
,

S' ) sin (-.6w-w
Q
)t (42)a y 2, , , y,l

*We must now rotate back with R
Z

(-90,2) giving (J (t). Only the

'1<
projections of (J (t) on the X,l and the Y,l axis are observables which

give the signal in the phase detector as,

1 + a ) 1
+ a 1)?<S > 2"(aX 1 cos(w -.6w)t - -(a sin ((;\~-1\(;) l

~ X,l , Y,2 Q 2 X,2 Y,

1
- aX 1)

1
- a X,2) sin (-W

Q
-.6(;) t- 2"(ay 2 cos 0DQ-.6W)t - 2"(aY,l, ,

2<S >
Y,l aX 1) sin (-.6W-(D )t, II

(43)

It is clear that all initial S . with p = X, Y and i = 1, 2 can be
p,l

detected. A summary of the results of Fourier transformation is given

in Table II.

Table II. Fourier Transform for an arbitrary initial density matrix

intensity
of

aX 1+3y 2, ,
a +a

X,2 Y, 1

a -a
X,I Y,2

a -a
Y,l Y.2

frequency shape

wQ-f:,w -disp.(-900)

-w -6w abs. (0°)
Q

-w -.6w -disp.(-900)
Q

intensity
of

a +a
Y,I x,2

a +a
X,I Y,2

a -a
Y,l X,2

a -a
X,l Y,2

frequency

W -.6w
Q

W -.6w
Q

-w -.6w
Q

-W -.6w
Q

shape

disp.(900)

abs.(OO)
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A simple example may help to clarify the above relat ionshi ps. Let uS

start with an initial density matrix aligned along the X,l axis.

*a (0) (44)

The time evolution is described by equations (34) and yields at time t

o(t) (45a)

(45b)

(45c)

(45d)

each of the terms above corresponds to a precessing magnetization as

diagramed in Figure (7a).

Note- the following,

1) the precession direction in the Y space is opposite to the X space.

2) if 6w = 0 all the magnetizations precess at the same ratc.

3) for 6w -I 0 d and c precess faster (W
Q

+6w) than a and c: (UJ
Q

-6w) .

We now find the expectation values of Sx 1 and Sy 1 to find the, ,

signals actually detected. This is easily done by inspection of Figure

(7a) .

-
X: 2 <S >

X,l

Y: 2< S >
Y,l

(46)

Note the following

1) if 611) = 0 there never appears a signal in the Y channel, that



Figure 7.
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The time development of an initial density matrix 0(0) = CSt"
X, ~

(a) Its schematic representation of the Fouri~r transform, and (b) the

observed signals from the phase detector. In (8) the magnetizations a, h, c

and d are from terms in equation (45) which show the free evolution

governed by the Hamiltonian (equation 41). Terms a and b give the

component of the Fourier transform at w -D.w and c and d give the
Q

component at -w
Q

-6w. In (b) we add a and d in the x-spin spact.' and

band c in the y space to derive the observed signal from the phase

detector channel (~) and the 90° phase detector channel(~).
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is, the signal is linearly polarized along the X,l direction.

-
2) if 6w f- 0 the initial signal in the Y channel is still zero,

but grows and decays at the frequency of the offset.

The Fourier transform of these signals is also given schematically

in Figure (7a). The density matrix may also be viewed by finding the

total magnetizat ion in each space. This is diagramed in Figure (711)

for a finite offset frequency, 6w. Note the follOWing,

1) At t = 0 the magnetization in the X spin space is a and in
X,l

the Y is zero.

2) the magnetization in each space precesses at w
Q

.

3) the magnetization in the X space shrinks as cos6w and the

magnetization in the Y grows as sin6w. The signals from the phase

detector are now easily derived, see Figure (7b).

One thing remains, we must indicate what happens if we only detect

one of <SX> or <Sy>' that is if we only have one phase detector.

Fourier transform will no longer distinguish between positive and

The

negative frequency and we get "fold over". The results of this are

easily generated from our diagrams by folding the diagram about the

real axis at zero frequency, this operation produces the _~orr_ec_t phas~~__

relationships between peaks of different frequency. For example fold over

for a Fourier Transform as indicated in Figure (7a) for the initial density

-1,
matrix a (0) = C Sx I would generate a peak of twice the intensity at,
frequency -w

Q
-6w. However if the components were along the same direction

in till' imaginary plane fold over would proc!llce clIlcl'llation of the two

signals, since the transform as folded about the Re axis gives the original

component along the 1m axis but the folded over component along the -1m

axis.
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D. Previous Double Quantum Experiments

The history of double quantum processes in NMR is quite long. The

first observations were on proton systems where there were spin-spin

10 11
splittings, for example the work of Anderson and Kaplan and Meiboom

in the late 50's. The complete theory for double quantum transitions

in continuous wave (CW) NMR was worked out by Yatsiv in 1959. 12 Deuterium

double quantum transitions were first detected by Yves Ayant et iLI._ in

1961 in CW_NMR,13 from O
2
° in zeolites. Deuterium double quantum transi-

tions were later detected in deuterated liquid crystals by Pirsson,

W .. d L" d l4a h l' d R' l4b d L dennerstrom, an ln man, C arvo ln an 19ny, an awson an

l4c
Flautt. The ease of deuterium decoupling in liquid crystals was

also ascribed to deuterium double quantum transitions by Meiboom et al~15

Pulsed NMR observation of double quantum transitions was not carried

out until this past year by Hatanaka and Hashi
16

and ourselves. Hatanaka

t I " d h . . 27Al · I I" f~~ carrle out t elr experlments on uSlng tle teclnlque o·

"transfer
l6a

of coherence". The method that we have developed for

deuterium is very closely related, although somewhat simpler to carry out

experimentally.

1. Double quantum spectroscopy

We must now determine how to create coherence between the m = ! 1

levels. Once this coherence has been created we must find the best way

to detect its decay. This is done through the two pulse sequenc.e shown

in Figure (8) . Starting with the equilibrium reduced density matrix:

°0 Swo S (47)
2,1

we apply a pulse of strength wI for a time T at resonance, w00
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Figure 8. Double quantum pulse sequence with simultaneous proton decoupling.

PI is the coherence pulse or double quantum pulse and P
2

is the probing

pulse.
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This corresponds to a time evolution generated by the Hamiltonian

(equation (26a»: with 6w = a

with

(48)

2+ (2w
l

) - w )
Q

(49)

Giving for the new density matrix

. 2 £ (5 5·)· £ [S (.+ Sln 2" Z 1 coswyt + Z 2 sl.nwyt + Sln 2 y 1 slnwZT
" ,

(50)

where

and

The term in 5
Z

2 corresponds to double quantum coherence, and we wish,
to isolate its effect from the other less interesting terms. We do so

by placing the proper constraints on the pulse strength and width.

For the coefficients of 5y 1 and Sy 2 to be zero we must have, ,

2nk k l,2, ... (51)



and for the S 1 coefficient to be zero, using equation (51)
Z,

15J

; (2n + 1) n = 0,1, ... (52)

Solving equation (5) and equation (51) gives

2m-l
T=--TI

w
Q

k,m 1,2, ... (53)

and with the definitions of W Z and wy

k,m = 1,2, ...

k ~ m (54)

Some selected values are given in Table 3.

Table 3. Allowed values of w1/w
Q

.62 .28

m

1 2
1 .84

2 1. 94 .44

3 .84

4 1. 24

5

3

.33

.87

4

.51

5

.24

By using an W
l

which is allowed by equation (54) and a pulse

length corresponding to equation (53) we can produce a density matrix

. after the pulse of

0(0) (55)
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This indicates that the pulse has created a coherence superposition of

the Ix> and Iy> levels, without affecting the other transitions. There

will be no signal after such a pulse.

The time dependence of this coherent superposition is governed hy

the Hamiltonian (equation 15):

i<
H

yielding,

(50)

(57)

So as expected the "precession frequency" for this double quantum

are contained in the constant which with the inclusion of spin relaxation

will be time dependent.

This coherence cannot be observed directly since it remains

entirely in the Z space, i.e.,

o j,k = 1,2,3

We must apply a second pulse to transfer this coherence to one of the

observable transitions. This second pulse P2 is also applied at resonance,

W , but now we investigate what happens if we use an applied field
a

strength WI as large as possible. Therefore we assume

so that the effect of the pulse is a simple rotation about the X.J axis
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giving for a pulse length of time T
p

; a rotation of R
X

(-2W
I

T
p

) with:

C(SZ 2 cos W T - Sy 2 sin WIT locos 26wt +
, 1 p, p

(59)

the observable coefficients are

(60)

The signals obtained can then be determined from equation (42), giving

a Fourier transform which corresponds to Figure (9a). We then repeat

this for a range of t
l

values to determine the full time evolution of

the double quantum state. This is an example of two dimensional Fourier

6c 2d
transform spectroscopy introduced by Jeener and by Ernst et ~l.

integrated over one axis. That is, the response after P
2

is double

Fourier transformed giving the double quantum spectrum for each value

(61)

where we have absorption for w
Q

and dispersion for w.

When there are several lines in the spectrum, or if the sample is

polycrystalline, then PI cannot be matched to all w
Q

simultaneously.

Equation (52) then holds with a distribution of Wz and the resultin~

double-quantum spectra will be distorted. This can be accounted for in

a straightforward manner and is the subject of further research.
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Figure 9. a) Schematic representation of the Fourier transform obtained

from the two pulse experiment for ideal pulses: PI producing only double

quantum coherence and Pz obeying wI »W
Q

. b) General results for the

two pulse sequence. PI is assumed to satisfy the condition wy ~ wz, in

equation , but with an error in the pulse length, thus giving an extra

term in the density matrix Sz l' This term does not oscillate for varying,
t

l
thus it will give a constant intensity after the probe pulse Pz for

different values of t
l

. The probe pulse transforms the Sz 1 term to the,
SY,l term shown in the schematic Fourier transform (see equation (71».

The term aX I is the first approximation to the effects of a finite probe,

pulse PZ. It oscillates at the double quantum frequency, and thus

introduces a phase shift as shown in the D.Q. FID, see equations (70) and

(7Z).
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Double Quan"tum: ideal

Re

o

General

Re 1m
°x,2

/

//~
ay,I ax f

0y, I,

0

°x,2

ay,2
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We must now ascertain by what factor the observed dipole-dipole

couplings are scaled in the double quantum frame. In high field the

dipole-dipole (SS) coupling is given for all pairs of spins by:

L a 10j (12 S S - S S )
1j iZ,l iZ,l -i-j

ij

and the quadrupole Hamiltonian is given by:

L
ij

(62b)

the effective dipole-dipole Hamiltonian will be that part of equation (62a)

which is secular with respect to H
5

, 1. e., commutes with it. We

calculate this in the following way. First we find the lime dependence

of H
5S

generated by H
S

:

-iH t
5

e

2 S ° 2 5 2
cos wQt - iX,2 SjX,2 Sln - wQT - iY,l 5jY ,1 cos wQt -

5 5 sin
2

w
Q

t + l2 (5 5 + S S )sin 2() t} (63a)
iY,2 jY,2 iY,l jY,2 iY,2 jY,2 'Q..

We now extract the time independent parts giving:

L
ij

4 a ° ° (2 S. 1 S 11J 1Z, j Z, 1 (S 5 + SloX,2 So 2)2 iX,l jX,l JX,

(63b)



The secular part of H
SS

is commutative with 26w 5
Z

and therefore the

effective dipolar interaction if independent of the single or double

quantum transition.

To find the difference of the dipole-dipole coupling between the

single and double quantum frames we calculate the second moment of

transition involved in each of the frames:
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tr[Sx I -,

for single quantum transitions and

where

(64a)

(6[~b)

for double quantum transitions. On the other hand we may rotate the

dipole-dipole Hamiltonian into the proper frame and calculate the

second moment:

where

Sl.X,1 + Sj X, 1
(Me)



Tilting the effective dipolar Hamiltonian into the single

quantum frame with the rotation R
Z

(90.2) (see equation (18» we

obtain

158

fj(O)T =
5S

(64d)

lole must now evaluate the following traces for the double· quantum case:

and for the single quantum case:

(65a)

-(O)T 2 tr { L 4 [-(SiZ.3 SjX.2 + SiX.2 SjX.3)tr[HSS • SX.l] a
ij

ij

+1:- (SiX 2 SjX.3 + SiX.3 SjX.2) +1:- (SiY.l SjZ.l + SiZ 1 S·Y 1)2 • 4 • J •
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We may now calculate the ratio of the double quantum and single quantum

second moments, it is:

64.2
16.3

24--
3

(65c)

This shows that the dipole-dipole coupling scales by a factor of 4
= 1.6 for the double quantum transition whereas the frequency offset

terms (chemical shift and frequency offset) scale by a factor of 2.

2. General solution

A more complete solution of the problem is needed in order to

conduct the experiments. Incomplete supression of unwanted terms in

the initial density matrix and the finiteness of the probing pulse,

P
2

, are factors which complicate the picture presented above; we will

discuss both in turn.

The most cornmon problem is a slight misadjustment in the pulse

length of the first pulse, PI' producing a term in the density matrix

at t o proportional to 5
Z

l',

0'(0) (66)
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Note that the term in Sz 1 is time independent during the subsequent:,

evolution.

( 67)

The probing pulse transforms this constant term to SY,l' as will

soon be shown. If we choose to observe only the Sy 2 term in equation,

(60) we have effectively canceled out this constant term since in the

Fourier transform they are 90° out of phase (ay 2 is absorption along,

Relji and ~,l is dispersion along Relji).

If the condition of equation (51) is not met, the terms in Sy ],

and Sy 2 appear in the density matrix, equation (66). Their time,
dependence will be an oscillation at the frequen~ow, not 20w as for

the double quantum coherence, as seen in the synthesized FID, obtained

from the first Fourier transform. These terms, then, will produce

peaks in the double quantum Fourier transform which should not interfere

with the double quantum lines. Experimentally, it is much casier to

avoId this type (54), of imperfection than the constant S. 1 term, in
Z, .

equation (66) since Sy 1 and Sy 2 give signals after PI' making pulse, ,

adjustment very easy.

The effect of the finiteness of the probing pulse is very complic3.ted,

and we only show the solutiori for the case that the field strength, (1\,

is finite but still obeys WI »W
Q

" The Hamiltonian during tllis pulse

is (equation 25).

u)
e

where



(25)
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The density matrix (equation 57) must be rotated by ~ (8
X

,2)

into this effective field frame giving

cos2owt l (S~,2 cos t + S~,l sin ~) +

sin2owtl [+ ~(S~,l sinE + S~,3 coSE

+ ~ (S~,3 - S~,3)] (68)

and the result of the time dependence due to the pulse must then be

rotated back.

In particular we wish to explain some imperfections (see

experimental section and Figure 31) which can only come about by

terms in the final density matrix after Pz proportional to Sx 2 and,

Sy I" The term we Sx ,3 will generate Sx 2 from Sx 1 in the density, , ,
matrix but it will not generate Sy 1. The quadrupolar term will,
generate Sx Z from Sy 1 in the density matrix along with Sy 1., , ,
But the quadrupole term commutes with Sx 1 and Sx 3 so this term, ,
in the density matrix is not affected. It is rather complicated to

calculate the effect of the quadrupole term, so at this level of

approximation we wish to drop it. This still allows us to calculate

exactly the effects of the SX,1 and SX,3 terms in the density matrix

due to the effective Zeeman Hamiltonian which will give us a good

starting point for understanding the origins of the experimental

imperfections. With the above comments in mind we approximate the

Hamiltonian equation (25) as

W
e

(69)



realizing that we are neglecting important contrihutions from other

terms in the density matrix. The final result of the tim<.' 0volution

during the pulse P2 of length Tp is:

101

Cll

0(t
l

,T p ) B{Sz, 2 cos2owt
l

e
cos

2

W
+ Sz I cos2()wt

l
sin

e
, 2

Sy 2 cos2owt
l

sin
we

2, T sine
P

+ Sx I sin2ows- (1 - COSWeTp ) (~ sin2t::), 4

sin2ows-
I

sint::)+ Sx 2 sinweTp
(+ -, 2

The observable terms are

W
B cos2owt sin

e
(-sine)a y 2 Tp, 1 s

aX,l B sin20wt (1 + COSWeTp ) (! sin2E::)
1 4

This is diagramed in Figure 9b.

(70)

The constant term in the density matrix, SZ,l' is transformed by

the same pulse as

cos
w

e T - S sin
2 P Z,2

cos

(71 )

The observable term is



w
eB cos

2
(72 )
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which is also diagramed in Figure 9b. If we align the phase detector

with a y I as the reference phase and observe 90 0 out of phase with that,
we find for a delay between the pulses of t

l
and time after P2 of t,

90
an FID given as S (tl,t). For simplicity we restrict our attention

to the high frequency satellite only giving:

with

ay 2
--'-
cos2owt

ax 1
--'-
sin20wt

etc. (73)

First, let us assume eX 2 = O. Then the Fourier transform of (73),

will give a mixture of absorption and dispersion in Re~. Upon synthesizing

the double quantum FID (D.Q. FID) for different values of t
l

we would

find signals for both the D.Q.FID synthesized from Re~ and the D.Q.FID

synthesized from Im~. However we can phase this FID taken as a whole so

that the intensity is shifted completely into the Re~ D.Q.FID. With the

inclusion of the term in Sx 2 this can no longer be done, so that no,
matter what phase corrections are performed on the FID there will always

be intensity in the part from Im~. This will be shown to occur for the

experiments that follow.

We can now use equation (72) to ascertain which new terms an.' the

most important in our experiments, the final signals from aX 2 or from,



! (d

IV. Cross Relaxation

A. Previous Quadrupole Cross Relaxation Experiments

A number of cross relaxation experiments have been performed which

involve quadrupolar species. They can be classified by the a) field

strength at which the cross polarization takes place, zero or low field

( < 1 Kgauss) or high '"" 25 Kgauss) and b) by the mechanism for the cross

polarization. The mechanism used will either be related to continuous

off resonance irradiation or thermal mixing from quasiequilihriunJ

states (e.g., spin locked or ADRF). One of the early cross po]ariz;ltion

experiments by thermal mixing was between quadrupolar species, hy

Anderson and Hartman, but the experiment was at zero field. Schwab and

Hahn
19

extended this method to cross polarization between a quadrupolar

species (chlorine or deuterium) and a spin ~ species (protons) also ilt

zero field. Goldman and Landesman
20

achieved cross polar i zat Lon Iwtwecn

a quadrupolar species and a spin ~ species by off resonance irradiation

of the quadrupolar spins also at low field. A level crossing approach

38
at low field has also been used by Demeo, Kaplan, Pausak ond Waugh.

The level crossing occurs between chlorine and protons which preceeds

a normal high field l3C_lH cross polarization experiment.
48

Hahn et 01.

have in addition, detected cross polarization to the double quantum

transition for deuterium in CaS04
0 2H

2
0 (gypsum). This was again a

low field experiment.

There have been two previous methods for cross polarization in

high fields.
21

Off resonance irradiation of protons was used by de Boer

(and references therein) to polarize deuterium.

used a slow frequency sweep across the chlorine

n
And Veeman clnd Yannon i

resonance to polarize
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protons, which they postulate to be similar to a thermal mixing

experiment.

The approach of de Boer ~ al. is most similar to our approach

in that the goal of the cross polarization is to cool the quadrupolar

reservoir (i.e., deuteriums). He has made a careful distinction between
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the types of polarization, which is defined as

P

<I >
P

I
p X,Y,Z (74 )

is the normal type of polarization produced in spin -~ PENIS

experiments. Another type of polarization is also possible, the

tensor polarization or alignment:

A =
<31

2
- I (HI»

Z

1(21-1) (75)

This is the type of polarization produced in the experiments of de

Boer et al. and in adiabatic demagnetization. The alignment is not

directly observable, but must be probed either with a pulse,

adiabatic remagnetization or continuous wave fast passage.

The density matrix that is produced after the first pulse in the

two pulse sequence in Double Quantum Spectroscopy is also a type of

alignment, with coherence in the X-Y plane. That is

0(0) (76)

is related to the spherical tensor components T
2

,±2 while the alignment

of de Boer et al. is related to T
2

,O (see Appendix 2). It will be seen

that our double-quantum cross polarization experiments, which are of

the high field thermal mixing type, can also produce a tensor polarization.

B. Cross Polarization Theory

We have shown that it is possible to write the deuterium Hamiltonian

in terms of a spin ~ Zeeman type interaction. We may now apply the theory

of cross polarization used in Chapter 1 to the case in hand, the thermal

contact of the abundant proton spins with an isolated deuterium which we
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now consider to be a spin ~ system.

The total Hamiltonian for this case is

H (77)

with the proton Hamiltonian the same as before

(78)

H
O

is the external magnetic field, H
II

is the field strength of tile radio

frequency irradiation-at resonance with the I spin system and H represents
II

the homonuclear dipole-dipole interaction. H
S

is given in equ<Jtions

(15, 19, 20, and 26b), where we neglect the interaction hetween the

S-spins. HIS is the heteronuclear dipole-dipole interaction hetween

the I and S spin, and is responsible for the energy exchange. In the

double rotating frame obtained by the transformation:

T exp(i w
OI

I
Z

+ i ~?Z)t

the Hamiltonian becomes:

,,< H(0) H"< ,'< H(O)H -w
lI IX + + + HS 2 +

II S,l , IS

with

(0) La .. (Jl
iZ

I - I .. I 0 )H
II • /0 1J jZ -.1 -J

1 ".1

H(O) aL-Do S liZIS o 1 Z,l
1

(79)

(HO)
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The interaction coefficients a .. and b. are defined in Chapter 1
1J 1

equation (8); these are the secular parts of the. dipolar interactions

,'\
H 1 equals the first two terms in equations 19, 20, and 26 depending

S,

on the S irradiation frequency Ws and H~,2 is the last term in each.

We derived these equations so that:

a (81)

~ ,,<
and therefore we must consider H' and H

S
2 as separate constants of

S,l ,

the motion.

The density matrix of the two spin systems in equilibrium is, in

the rotating frame, given to a good approximation by:

,,<
0" (82)

,~

where HI is given by the first two terms in equation (80). There are

two choices for the initial state (quasi-equilibrium) of the proton system,

either spin locked (SL) or adiabatically demagnetized (ADRF). There are

also three choices for the levels to be cross polarized; either one of

the satellites (single quantum) for which the deuterium irradiation

frequency is near one of the satellites or the double quantum transition

for which the deuterium frequency is near the center of the spectrum.
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1. Single Quantum Cross Polarization

If the r.f. field on the S-spins is applied near one of the side

bands the relevant equations for this case are taken from equiltion (19),

assuming UJ
Q

» ou)

-ow S~,3 - ji -w S"
eS X,I

(83)

where we applied a R
X

(8
X

2) rotation to ohtain the double primed operators,,
where

tan 8 = ow
X 2w

lS

"..jow2
+

2
w

eS
2w

lS

To describe the cross polarization thermodynamics, we apply the approach

outlined by Pines et aLL with an effective S-spin ~2 Hamiltonian given

The I-spin Hamiltonian can be written as

w I + P (cos8 ) H(o) = w I 1 ~ a (31 I - lor.)
- II X X I II - II X - ~ ~ il iX··X _1_]

i<j' .1

for the SL case and

L
i<j

a .. 01. z I
J
. z. - 1. 0 1.)

1J 1" ~.l ~J
(84b)

for the ADRF case. The SL dipolar interaction is obtained by takIng the

1 f 'H(o) h 1 IIIsecu ar part 0 II wit respect to w
IY

IX' Tle iilrtmillln-lIill\n COllcition

for this case is



(2
2 .£ 2)1/2w
lS

+ uW (85)
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where wI = yIH11 for SL and wI = YrHL1 for ADRF with H
L1

the I spin

local field (see Chapter 1). Bringing the two spin reservoirs to thermal

equilibrium (but disregarding spin-lattice relaxation) gives, from

equation (82), the density matrix:

(86)

We wish to find the
1

with 6
L

= kT
L

and T
L

is the lattice temperature.

final equilibrium inverse spin temperature 6
1

. This is done by solving

the equation for conservation of energy:

W 2
Be H

2 + Q C (~)
1 I II ~l eS Y

eS
(87)

where YeS = J2 YSand CeS = j2 Cs

This gives:

H
OB ­

L H
lI

where:

WeS

w
ll

N
S

(21+1)
and E: - ---­- N

r
(28+1)

1
2

l+E::ll

(88)

(88a)

The Curie constants in equations (87), (88a) were found by calclJlating

the energy:

E = tr(oH)
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using for the density operators 01 and Os I from equations (82) and [or,

the Hamiltonians:

- W S
eS X,l

The equilibrium density matrices are

°1 SI HI

Os BS HS 1,

then

2
2 2

tr Sx 1
E treSs H

S
) Ss w

eS
,

S Z

2 2 tr 1
2

tr(SI
XEr Hr ) SI w

lI Z

remembering that these spin operators are many spin operLltors:

We reduce the trace to a trace of single spin operators and we note

N
that Z = (2S + 1) giving:

B
S

2 (2S+I)N-1 2
E

S
w

eS
N

S (2S+1)N
tr SiX,l

Br
2 12I+1)N-_~ 2

E
I

w
lI

N
I (2I+1)N

tr I
iX

Reference to equations (9) indicates that

tr S2
iX,1

2
tr I

iX
I (Ii1) (21+1)

3
1
2
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since both S 1 and I. are spin ~ operators (see reference 47 for the
iX, lX

explicit evaluation of the traces). Finally we have:

1
-

5S CeS H~S
2 2

IS C
eS YeS N

S (2S+1)

1
2 2

YI Nr (21+1) (89)

Note that C
eS

and Cr differ only in the normalization. C
eS

is

normalized to a three state single spin manifold and C
I

to a two state

manifold:

(2S+1) 3 but (21+1) 2

Other than the normalization the fictitious spin heat capacity is

exactly the same as presented in Chapter 1. To obtain the intensity

of the FID signal after the single quantum cross polarization, we write

,;'r:
0c explicitly using equations (86) and (83),

;:)

We now need to transform this back to the normal rotating frame where

the signal is detected. This is done with a rotation by R
Z

(-90,2) to

invert the R
Z

(90, 2) transformation to equations (18) and (19). This

yields

1- ow 5 ).
2 1

(90)
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From Table 2, page l4~ we find the results after Fourier transformatIon

of the FID obtained from the initial density matrix, equation (90~

MX
2 <y S >

YS 61 C HIS
at - W - ()W-- QS X,l YeS eS

My 2 <y S > 0S Y,l

with

2 1
NS YeS 2

CeS 2S+1 (91)

The unenhanced FID gives two peaks, but after cross polarization

we obtain only one peak, that which is near the irradiation frequency.

C . h' . 1 (0) 0
ompar~ng t ~s result with the FID s~gna ,M ,after a singJe intense 90

pulse with wI » WQ gives

YS 61 CeS HIS

YeS BL Cs HO

1
2

l+£Tl
(92)

and with Tl

OW = 0

1 for exact matching of the Hartman-Hahn condition and

1
1+£

(93)

The cross polarization time TIS may also be easily derived using

that the levels we Irrad i,lte bC'have ,IS a spin \i system. Using tilt,

23
same theory as in Chapter 1 of McArthur ~ a1. :



1

! * }2tr,HS 1,

(0) *
td [HIS ' HS 1],
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[
H(O)

IS '
(94)

*where HS 1 is given in equation (83). The form of the heteronuclear,

dipole-dipole interaction in the same frame (double primed) where

'k
H

S
1 is defined, is obtained by rotating with R

Z
(90,2) and R

X
(8

X
,2),

giving,

This is now in the single quantum frame.

(95)

Carrying out the details,

which are given in Appendix 3 we find for the SL case,

(96)

and for ADRF:

(97)

with the following definitions:

tr[ ~2bi liZ SZ,l' SX,1-Sy,2]2
---------- 2

tr[ SX,1-SY,2]

00

J (w) =IdT COSWT C (T)
POP



C (T)
p

I.
lP

'p ( e) (0)
1 2 cos H

e I II}
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spectral density.

is the autocorrelation

M
2

»IS is the second moment of the satellite we irradiate during

cross polarization; the linear combinations Sx l-Sy 2 corresponds to, ,

the satellite at -(WQ+Ow), see Section IIIE. Cp(T)

function of the dipolar fluctuations and J(w) is its
p

As we expected, we get exactly the same result as for the spin ~ case,

taking into account the effective magnetogyric ratio for the single

quantum transition J2 YS·

2. Double Quantum Cross Polarization

If we irradiate near the center of the S-spin spectrum and take

the S-spin Hamiltonian to be (equation 26b)

2

* 1
w

lS ,
"

HS,l - 20w Sz 1 - --
SZ,3 -w SZ,3, w

Q
eS

* 2 , , 2 " "
HX,2 3" wQ (SX,3-SY,3) 3" wQ (SX 3-Sy 3), ,

(98a)

(98b)

where the double primed operators are obtained by a RZ(GZ 2),

rotation with
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This frame we term loosely the double_quantum frame.

Hamiltonian is exactly the same as the single quantum case.

Hartman-Hahn condition for the double~uantum transition is

The

if ow o ~w

eS
if Ow o (99)

This is shown schematically in figure 10 for ow = o.

After a mixing pulse the result for the final equilibrium temperature

13
1

is the same as in equation (88) except for the definition of YeSt

131 13L

HO 1
-
HlI l+En

2

wI
YeS W Ys (laO)

Q

for ow O.

The S spin density matrix after cross polarization again ignoring

relaxation effects is,

(101)

We must now transform the density matrix which is in the double quantum

frame back into the normal laboratory rotating frame to find the observable

effects of the cross polarization. Rearranging equation (101) and using
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Figure 10. Double quantum SL (spin locking) cross polarization for indirect

detection. a) The Hartmann Hahn condition is indicated for a prollln field

strength of w
lr

and a deuterium field strength of 01
15

and 8w
S

= 0, and

OWl = O. For OW = 0 the matching condition is

2
w

lS
wQ

wlr

and for ow # 0

4
2 1/2W

(~ + 4 ow ) wII2w
Q

see equation (99). b) The SL sequence for indirect detection is sllown

for the deuterium r.f. field strength w
lS

and the proton r.f. field

strength wII' Cross polarization is detected as a decrease in tile proton

FID.
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the linear dependence of the S operators we obtain:
p,3

2
1 w] , ,
7-~) (Sy _,-8./ 3)
"- (JJ

Q
,-1 L--J"

We now apply a ~(-E:,2) rotation to return to the rotating frame 2

wI
(see equation (25» and we assume that f\ :::: 0 such that B u) «C1 --}

L Q 1 lJJ
Q

yielding:

I
(SX,3 casE: - SX,1 sinE) - PI 2

(102)

It is clear that the FID signal after the cross polarization is very

small due to the sine ~ 2w
I

/w
Q

factor in the coefficient of SX,l.

order to measure the total polarization we must apply an additional

In

pulse either 90° or 180 0 out of phase with the mixing pulse; this will

be discussed shortly. The maximum FID signal intensi.c~aft~r__~he.J:!..!:Q£~r

Dulse is

with

(103)

for ow = 0

with C
eS

defined in equation (91). Comparing this with the maximum

signal from the double quantum transition which could be obtained, if
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we could detect the signal directly, M(o), we get

1
1+£

(104)

In a cross polarization exp~riment we can also extract the ratio

of the heat capacities of the S and I spins. We may then use this

experiment to provide a direct measure of the effective magnetogyric

ratio for the double quantum state. We must then explicitly calculate

the heat capacities of the two systems. For the experiments that

follow we take ow = O. We can then ignore the offset term in equation

(101). We also assume that Sl »SL' The heat capacity is then given

by
2

*' *' 2
H

S
==-_3_t_r-,.~;::-a":;:"~._H_S_l_) ~~~S)

, 2
tr(SZ,3 )

Z

Here we have included the normalization Z again, as was also done in

equation (83). And likewise,

(2I+l)N-l

(21+1)N

We remember that

1
2

since S.~ .... is a fictitious spin operator. This trace is easily
lL.,j

evaluated explicitly from equation (9). Finally:

(21+1)
(2S+1) (104a)
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We will now derive the cross polarization time for this casc. Using

equation (98), and its effective spin 12 form, allows us to derive tlte

details of the cross polarization.

We must first rotate the perturbation H~~) into the double quantum

frame. Following the derivation of (98) with the rotations RX(8
X

2),

(105)

we find

-1
tan (106)

cos
" Ox

cos 8Z - Sz 3 cos 2, sin G
Z

cos sin (107)

Assuming WI «wand ow « w gives:
Q eS

R(o) =L2b.
eX

S liZ (108)cos
2IS . 1 Z,l

1

calculate (98a), * (108), forTo TIS we now insert equations for HS ,l' and

the perturbation R* , into equation (94) and by a similar procedure as
p

for the single quantum case we obtain for the SL cross polarization:

1 2 eX
2 cos 2 (109)
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and for ADRF

(110)

and M
2

IS is the second moment of the double quantum transition due,

to the dipolar interaction between the I and the S spins,

M
2,IS

tr [H(o) Sz 3]2/ tr [SZ 3]2
IS', ,

Once again we have obtained the same result we would have for a spin

~ case, but with an effective magnetogyric

3. Magic Pulse

In order to recover all of the magnetization obtained after double

quantum cross polarization an extra pulse must be applied. We shall

dub this pulse a "magic" pulse and it must be either 90°, -90°, or 180°

out of phase with the mixing pulse. This is shown schematically in

figure (lla). If the cross polarization is performed at resonance for

deuterium and the magic pulse obeys

w »w
1 Q

the effect of the pulse is to cause a precession of the magnetizati on in

the X spin space. This is depicted in figure (lIb).

We now apply a (-X) pulse with the time development governed hy

the Hamiltonian (see equation (25»

(111)
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Figure 11. a) Double quantum ADRF cross polarization with direct detection

with a magic pulse. b) Precession in x-spin space caused by a magic pulse

of phase (-X). c) Schematic representation of the Fourier transform

obtained after the magic pulse, for the ideal

of the effective field is (see equation 25)

case

and the precession is described by equation (112).
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acting on the density matrix after cross polarization, equation (l02)

giving:

a"( (t )
M

[SX 3(COSE coS2E + sinc sin2E cosw t .)
, e

+ Sx 1 (sin2E cose cosw t - sinE cos2e), e M
2

(sin2e t
M

) ]
1 wI

(Sy 3-SZ 3)+ SX,2 sinw - 13 --
e 1 2 w

Q ' ,
( 112)

This will give rise to a Fourier transformed signal which is shown in

Figure 11. This indicates that both aX 1 and aX 2 can be detected,, ,
which will make the effects after the magic pulse look exactly like

a magnetization precessing about an effective field at polar angle -c.

The maximum signal after an -X pulse will be only one-half of the total

possible as in equation (103)

131 Y eS
--C

2 Y eS eS IS

4. Destruction Spectra

(113)

In an indirect cross polarization experiment, the destruction of

proton order through cross polarization to deuterium is measured. The

proton order is either the polarization in a spin locked state or the

dipolar order for a demagnetized state in the rotating frame. Destruction

spectra are an alternative to the method used in Chapter 1 for the

determination of cross polarization dynamics. In Chapter 1 we determined

the cross polarization time, TIS' for a number of different r. f. field

strengths and from that extracted correlation times. Here we show that

correlation times may also be extracted by observing the destruction as

a function of the deuterium offset frequency. The former has the
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advantages of being more accurate and more direct while the destruction

method is faster and more sensitive.

To derive the destruction of the proton order after a cross polarization

time t with deuterium field strength w
lS

and frequency offset ow, we take

the following form

-t/T
IS

6I(t) = -61(00) (e - 1) (114)

where 61 is the destruction and 61(00) is the destruction after equilibrium

has been reached between the two spin reservoirs. We neglect spin-lattice

relaxation at this point, its effects will be discussed below. The

limiting destruction is easily calculated from conservation of energy to

be

2
61(00) =-6 C H (Ell)

I I 1,1 2
I+Ell

(115a)

where 6
1

is the initial spin temperature of the appropriate proton state,

SL or ADRF, C
I

and C
eS

are the Curie constants for the protons and

deuteriums respectively, given in equations (89). We note that equation

(88a) gives:

E
2
3 II (USb)

2
Here again Ell is the ratio of the heat capacities, and

(U5c)
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The cross polarization time TIS is given for the SL and ADRF case in

equations (109) and (110) respectively. We must now assume functional

forms for the spectral densities. Chapter 1 has shown that a Lorentzian

correlation function, giving an exponential spectral density is quite

reasonable for the ADRF case.
24

Demeo, Tegenfeld and Waugh corroborate

this and also show that for the SL case a Gaussian correlation function,

giving a Gaussian spectral density are also very reasonable. Then for

the ADRF experiment

2 2-1
C(T) = (l+T IT )

c

giving for the spectral density

J(w) (116 )

and for SL the correlation function is

C(T) = e

2 2
-T /T

c

giving for the spectral density

J(w)
../i T

2 c e (117)

giving finally

61 (t)

for ADRF, and for SL

M(t)

2

( En
2

) [ (M M~T exp(-(ul -(JJ )21~~»_11
2 exp -t 2,51 4 c eS IT 4

l+En
(119)



where

2 eX
M = cos 2

Note that we can in principle from one e~periment (i.e., only one

deuterium field strength) determine all of the necessary parameters,

T , M
2

IS and y needed to describe the cross polarization process. We
c, eS

cannot, however, determine the actual shape of the spectral density

function other than by trial and error, whereas the methods in Chapter

1 give the exact shape of the spectral density.

186
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V. Chemical Shielding Tensors

The chemical shielding tensor is a second rank tensor which transforms

under a rotation from X,Y,Z to X',Y',Z' as

(120)

for the tensor in cartesian form and the r
ij

are the direction cosines

between the i unprimed axis and the j primed axis. We only observe the

projection of a along the external field direction which we call Z. The

Hamiltonian is then:

Alternatively we can write the tensor in spherical form giving,

(121)

.' (122)

where aii are the principal values of g. The tensor then transforms as:

Fi lJ • ~D~lJ (n) FR.m (123)
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where the D's are the Wigner rotation matrices, and n is the set of

Euler angles describing the X,Y,Z to X',Y',Z' axis rotation. The Hamiltonian

can then be written:

H = Hoaor =
2 t
L L
t=O lJ=-t

(124)

I .
Z

where the spin spherical tensors are defined as:
•

1
T2±1 =,f2 H I±

TZO ...IfH (125)

combining equation ~2~and U2~ and taking the form of the Wigner rotation

matrices gives the result37

where

(126)

l:ia ... a ­
33 .'

(127)

Using equation (126) we can easily show that a
ZZ

transforms DS P2(cos8) =

3 Z 1(2 cos e - 2) during a rotation of the crystal only if we rotate about

one of the principal axis. This will be quite useful later on. In

equation (126) we set ~ = 0 and 0 equal to the rotation angle. This change

of coordinates then corresponds to a rotation of the tensor about the a
22



principal axis. This gives

0' + l 60' (~cos2e-l)
i 3 2

where the prime indicates

o~
1

, 60' (128)

To find the general rotation dependence we first transform the tensor

from the molecular frame (with axes 1,2,3) to a set of cryst[Jl fixed axes

(N,P,S) using equation (126) or its equivalent cartesian form (120). We

then apply a second rotation about one of the crystal axes, the axis

to find the tensor in the laboratory frame (Y,Z).

the tensor is

. 2e 2e 2 . e e0pp Sln + 0NN cos - GNP Sln cos

The Z projection of

(129)

where e is the angle of the N axis relative to the Z laboratory axis, and

the 0ij ,~=N,P,S are the elements of the tensor in the crystal frame,

(130)

If rotations about three crystal axes N,P,S are performed we obtain the full

tensor in the crystal frame. This may be diagonalized to give the chemical

shielding tensor in the molecular frame, thus completing the determination.
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In the present case only one such rotation was performed, but we will

find that it obeys equation (128), that is GNP ~ 0 in equation (129). We

will then know only two of the principal elements(G
3

, °
1

) but we can also

determine the complete orientation of the tensor.
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VI. Experimental

A. Double Quantum Spectroscopy

1. Sample

The sample chosen was oxalic acid dihydrate. The short deuterium

relaxation time, less than 1 sec., and large chemical shielding an1so-

tropy of the carboxyl proton made it an ideal model material for this

study. The short relaxation times are due to rapid flipping of the water

molecules of hydration, about their C
2

axis. Commercial oxalic acid

dihydrate (J. T. Baker and Sons) was dissolved in either 100% 020

(99.8% D Biorad Laboratories) or 10% 020 in H
2

0 and filtered then allowed

to stand at room temperature to evaporate yielding large single crystals.

2. Double Quantum Pulse

A convenient orientation of the 100% deuterated oxalic acid dihydrate

was chosen giving a quadrupolar splitting of 15.2 ± .1

splitting is taken from a satellite to zero frequency,

kHz, where

.~-1.e., 2'11 -

the

15.2 kHz.

At this orientation of our crystal, the water lines are too broad to be

25
observed due to exchange by 180 0 flips of the water molecules. The

chemical shift on the other hand, is expected to be completely averaged

by this process. The spectrum is shown in Figure 12, on resonance, with

the line width ~ 82 ppm. Figure 13 shows the same orientation but 2000 +

50 hz. In order to obtain the limiting linewidth another orientation

was chosen, for which the satellites were well separated, see Figure 14.

Note that the limiting linewidth is 54 ppm.

The strength of the first pulse was adjusted so that w
lS

satisfied the

condition (54) with Wl/W
Q

~ 1.9. The length of the first pulse, PI' was

adjusted to be ~ 270 0 pulse according to equation (50), to ensure that PI
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Figure 12. Deuterium spectrum of 100% deuterated -a-oxalic acid dihydrate

(single crystal). The rf irradiation is near resonance. The spectrum is

taken at 13 ± 3°e. The spectrum is "folded over" (see Figure 3) and only

a small portion of the frequency axis is shown, i.e., 10 to 20 kHz, the

spectrum center is at 0 kHz and the satellites are at 1: 15.2 kHz.
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Figure 13. Deuterium spectrum of 100% deuterated -a-oxalic acid dihydrate

(single crystal). The rf irradiation is off resonance with a frequency

offset of 2.0 kHz, with other conditions the same as Figure 12. The

structure on each of the satellites indicates that the spectra is from 2

inequivalent deuterons with slightly different quadrupole couplings. This

spectrum is also "folded over", see Figure 12. Were there no fold over

one of these peaks would appear at positive frequency and the other at

negative frequency.
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Figure 14. Deuterium spectrum of 100% deuterated a-oxalic acid dihydrate

taken at a different orientation than that used in Figures 12 and 13, in

order to show well resolved satellites. This was necessary to find the

limiting line width of a single satellite.
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gave no signal. The phase detector was adjusted so that the FID

after a

198
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large pulse occured only in one channel, while on resonance, to align

the phase detector ~ axis and the spin X axis. A rotary decay was then

generated to check the prediction of equation (49). The rotary decay

which measures the Z magnetization proportional to a
Z

1 and a
Z

2 was, ,
obtained simply by varying the length of the first pulse t w with a fixed

delay before P
2

, t
l

- 5 msec, and fixed pulse length for Pr The results

are shown in Figure IS. The Fourier transform, Figure 16, shows two

frequencies V z and Vy ' the difference '~f which should be the quadrupole

splitting ~ee equations (49) and (50a»:

Experimentally, VIS = 26.8 kHz and V
Q

= 15.2 kHz giving Vz = 20.3 kHz

The peak positions in Figure 16 are 36.5 ± .5 kHz and 20.7 ±.5 Khz and

36.5 - 20.7 = 15.0 kHz. The agreement is quite satisfactory.

3. Double Quantum Decay

To obtain the double quantum decay the first pulse is set so that

no signal is obtained. It is necessary to ensure that the phase of the

double quantum FlO after P
2

is 90° out of phase with the normal FlO. Since

with an X pulse the normal FlO will be a 5y I while the O.Q.FID will be,
a Sy 2' This was done by Fourier transforming the FlD's after the probe,
pulse, P2 , with and without PI with t

l
= O. The length of the probe

pulse was chosen to be approximately a 45° pulse for a liquid sample, that

is

(132 )
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Figure 15. Rotary decay obtained with the two pulse sequence, Figure 8,

for 100% deuterated oxalic acid dihydrate. The length of P
l

is varied,

t wwith fixed delay between P
l

and P
2

, t
l

= 5 msec, and fixed probing

pulse length. The field strength of P
l

was V
IS

= 26.8 kHz and V
Q

= 15.2 kHz.

The two frequencies come from the Wz and wy terms in equation (49).
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Figure 16. Fourier transform of the Rotary Decay (Figure 15). The

frequencies are 20.7 ± ~5 kHz and 36.5 ± .5 kHz, giving a difference of

15.8 kHz, where the peak at 36.5 corresponds to the frequency Vy and

the peak at 20.7 kHz to v
Z

, see equations (48) and (49). The theoretical

Vz taking VIS (see Figure 15) = 26.8 is

1 ( 2 + (2 )2 _ w )2 VQ wI Q

in addition

20.3 kHz

The experimental numbers from the Fourier transform, Vz = 20.7 and

V
Q

= 15.8 kHz are in quite good agreement with the theoretical

predictions.
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If w
l

» W
Q

then from equation (25):

(133)

and from equation (60),

(134 )

giving the maximum sJgnal for the term we wish to detect. The double

quantum decay is obtained by varying t
l

, Fourier transforming the

resulting FID for each delay and plotting the resulting peak heights

verses delay time, giving the double quantum FID (D.Q.F1D). This is

again transformed giving the doubl~ quantum spectrum. It is noticed

however that there always persists a signal even for long t
l

. This

comes from a misadjustment in the length of PI' by adding the constant

term in Sz 1 to the density matrix (see Section 1IIE.2). It may be,

canceled out by adjusting the phase to the angle determined from a normal

FID and then observing the double quantum signal 90° out of phase with

it in the Fourier transform.

The double quantum FID's determined in this way for 100% deuterated

oxalic acid dihydrate are shown in Figures 17 and 18 for offset frequencies

o ± 50 hz and 2000 ± 50 hz, respectively. The Fourier transforms are

shown in Figure (19). The on-resonance FID, 0), is seen to be actually

slightly off-resonance, which is the reason for the larger linewidth

between Figures 12 and 13. The shift between (a) and (b) should be

26w ~ 4 kHz. Experimentally, they are 4.29 kH 4 apart.



Figure 17. Double Quantum FID obtained from the two pulse sequence

(Figure 8) for 100% deuterated oxalic acid dihydrate. The irradiation

frequency was near resonance corresponding to the deuterium spectrum in

Figure 12. The deuterium field strength for the coherence pulse was

W
1S

= 26.8 kHz giving Wl/W
Q

~ 1.9 and t z = 13.2 ~sec, where t z is the

theoretical 90° pulse for the double quantum transition, see equation

(50). The pulse widths used were PI ~ 36 ~sec (270° pulse) and P2 ~

5 ~sec (W
1S

= 50 kHz).
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Figure 18. Double Quantum FID obtained from the two pulse sequence

(Figure 8) for 100% deuterated oxalic acid dihydrate. The irradiation

frequency was 2 kHz off resonance, corresponding to the deuter fum slwctruOi

in Figure 13. The deuterium field strength for the coherence pulse I'
1

was w
lS

= 26.8 kHz giving W/W
Q

;;; 1.9 and t z = 13.2 IJsec, see Table J and

Figure 16. The pulse widths used were PI - 36 IJsec (270° pulse) and

P
2

~ 5 IJsec (W
IS

= 50 kHz).
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Figure 19. Fourier Transform Double Quantum Spectra of 100% oxalic acid

dihydrate for the two offset frequencies given in Figure 17 (a) and [8 (b).

The peak frequencies are a) 0.46 kHz and b) 4.75 kHz, for a difference

of 4.29 kHz, the spacing should be 4.0 kHz.



~I

o

-

210



211

An alternative to choosing the phase of the observation channel as

above and consistently correcting the phase of the Fourier transform was

also attempted. We chose the Fourier transform phase which maximized the

signal at each delay, t
l

. The results of this treatment are shown in

Figure 20. Note that this "best phase" result has been multiplied by

2. If the signal from the constant part of the density matrix is 3 y 1,

and that from the double quantum a y 2 then the signal intensity is,

I

Fourier transforming the square of the double quantum decay obta ined in

this manner should then give the power spectrum of the double quantum

transition.

The effect of the double quantum spectroscopy on the linewidths is

shown by comparing Figure 19 to Figure 14. The limiting linewidth in

Figure 14 is =54 ppm for the quadrupolar satellites in the normal FlO.

The difference in linewidths is approximately 3. For the double quantum

case, we would expect the relative linewidth to be identical between tl~

two spectra, (see Section IIlE.l) if the broadening were dipolar. Then

the factor of 3 is probably due to slight imperfections in the crystal

giving rise to a distribution in quadrupolar frequencies.

We now summarize the phase adjustments necessary to create a double

quantum spectrum.

1) Phase detector versus the spin axis-spectrometer phase adjustment.

At resonance the deuterium FID, which is linearly polarized. will project

onto the phase detector so that all of the deuterium FID occurs in one

channel. This adjustment aligns the X axis of the phase detector with

the X,l axis of the spin system.



Figure 20. Double quantum FID under the same conditions as Figure 17,

but derived from the "best phase" applied to the spectra from the first

Fourier transformation, rather than the consistent phasing used to

obtain Figure 17, see Section VI.3, equation (135). The FID has been

scaled up by 2 in comparison with Figure 17.
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2) Double quantum_coherence versus constant signal-Fourier

transform phase. We wish to cancel out the constant signal and find the

best Fourier transform phase to observe the double quantum coherence due

to a y 2· The FID after P2 without PI is transformed and phased so that,

it is purely absorptive in ImljJ; this phase is then the reference with

which all of the Fourier transforms from the two pulse sequence are

phased. With this consistent phasing the term in a y 2 is always purely,
absorptive in ReljJ.

3) Double quantum spectrum-Fourier transform phase. After the

double quantum FID is synthesized another phase adjustment is necessary;

this is shown by equation (72). The term from aX,l will add a dispersive

part to the double quantum spectrum. A small phase adjustment tu the

Fourier transform is needed to correct fo~ this.

B. High Resolution

1. Sample

These experiments were conducted on a sample of 10% deuterated oxalic

acid dihydrate. The single crystal~ morphology was well defined and was

used to mount the crystal in a well defined orientation. There are twu

crystalline forms possible, a and (3 with space groups P2l/h and P21 /
a

,

respectively. There are two molecules per unit cell related by a C
2

axis,

but not a center of inversion. Deuterons in the same molecule are related

by a center of inversion. Chiba
25

has conducted deuterium magnetic

resonance studies on the (3 form. His results are shown in Table 4.
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Table 4. Deuterium Quadrupole parameters for perdeutero-B - oxalic acid

dihydrate

species temperature eqQ/h(kHz) n ql1 q22 q:n (kHz)

carboxyl 139.2 ± .8 .098 ± .005 -57.3 -47.1 104.4

water -70°C 219.1 ± 2. .016 ± .036 -91. 7 -51.8 172.73

water -70°C 230.3 ± 2. .062 ± .006 -95.3 -69.0 104.3

water 6rC 121. ± 3. .93 ± .02 -87.61 -45.4 90.8

The q values correspond to the elements of the EFG tensor in its principal

axis system given as the frequencies that would actually be observed,

calculated from equation (4). The powder spectrum of our sample is given

in Figure 21. The peak positions are 48.8 ± .5 kHz and 39.4 ± .2 kHz

with a small feature at ~ 87 kHz. It is seen that our results do not

agree with Chiba's. There are two possibilities for the line assignments

1) that our peak at 48.8 corresponds to Chiba's at 47.1 or

2) that our lower frequency peak corresponds to Chiba's peak at

47.1 kHz.

Possibility (2) might be expected if our samples were actually in the

a modification. The difficul~with possibility (1) is that we cannot

then assign the other peak at 39.4 kHz. It cannot be from the water

since neither the low or the high temperature lines, as seen in Chiba's

work, would appear there. On the other hand, if the peak at 48.8 corresponds

to Chiba's high temperature water peak at 45.4 and the small feature at

~ 87 corresponds to the shoulder expected at 87.61, we cannot understand

why the carboxyl peak position is so low. Using data from Chiba's work

(see Figure 5, reference 25) and Coppins and Sabina's neutron diffraction

26
study we can roughly estimate the difference in the carboxyl eqQ/h



Figure 21. Deuterium powder spectrum of 10% deuterated a-oxalic

acid dihydrate. The central peak with the dispersion lineshape is

D
2

0 absorbed upon the surface of the crystal. The higher frequency

satellite at 48.8 ± .5 kHz corresponds to the waters of hydration which

are executing 180 0 jumps around their Cz axis in the rapid excllnnge

limit. The lower satellite, 39.4 ± .2 kHz, is due to the carboxyl

deuterons. The temperature was 13 ± 3°C.
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between the a and B forms. The oxygen-oxygen bond distance in the a

o 0

form is 2.524 A and in the B, 2.538 A. Chiba's work describes a rough
o

correlation between eqQ/h and this same distance, 42.5 kHz/A, giving

that eqQ/h for the a form should be ~ 6 kHz less than the heta form.

The difference between our line at 39.4 kHz and Chiba's carboxyl line

is 7.6 kHz, our result being smaller. This all fits nicely with

possiblity (2) and at the same time assigns our peak at 48.8 kHz to

the waters. X-ray powder patterns of our samples were also taken by

Dr. A. Zalkin and his colleagues at LBL and compared to a standard

spectra of a-oxalic acid dihydrate. 28 All of the powder patterns are

identical.
27

As noted by Delaplane and Ibers the lattice constants do

not change much upon deuteration (~ 0.5%), however the lattice constants

differ significantly between the a and B forms. These observations also

support our conclusion that our crystals are in the a modification.

Th b d d · f h d d d'f' . 26 h .e on lstances or t e euterate a rna 1 lcatlon are s own ln

Figure 22. The hydrogen bond is very short in this hydrated crystal.

There have been two previous studies on the shift tensors in oxalic

34 35
acid dihydrate, one in a single crystal and one in a powder. These

were of the multiple pulse type and as a consequence lacking in resolution,

both because of the technique and also the overlap of the water lines with

the carboxyl lines. These studies will serve as good comparisons to

illustrate the advantages of our double quantum technique.

2. Quadrupole Satellite Spectroscopy

= 30-35 kHz) is shown in Figure 23 for two

The deuterium spectrum of the
w

.:J l' . IIproton uecoup lng (:bT

single crystal. with simultaneous

orientations. The sharp lines arise from the carboxyl deuterons and the

broad lines are from the water deuterons. The line near 0 kHz is due to



Figure 22. Bond lengths and angles of perdeutero-a-oxalic acid (from

Coppens and Sabine, reference 26.)

2L9
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Figure 23. Deuterium spectrum of 10% deuterated ex-oxalic acid dihydrilte

for the orientations used in the high resolution double quantum experi­

ments, Figures 26 and 29. The frequency offsets are 522.5 Hz for 57°

and 576.2 Hz for 180°. The spectra were obtained while decoupl ing

protons. The temperature was 13 ± 3°e.
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small amounts of absorbed isotropic water on the crystal and was used as

the reference. The broadening of the water lines is caused by incomplete

25
exchange narrowing as the water molecules flip about their C

2
ilxes at

room temperature.

The quadrupole rotation plot was obtained by averaging the positions

of the carboxyl lines at each orientation. The result is shown ill

Figure 24. The solid line is the least squares fit to (equation 128)

,
(128 )

where

and ~ is the anisotropy of the EFG tensor and X is its isotropic value.

I
j(qll + q22 + Q33)' which should be zero. The fitted parameters are

~ = -77.54 kHz and X = 0.068 kHz. We can now ascertain the approximate

orientation of the crystal. The powder spectrum before showed that

q22 = 39.45 kHz, and q22 from the parameters ~ and X is 38.7 kHz or a

factor of 1.02 smaller. The crystal is therefore very nearly aligned

with one of its principle axis along the axis of rotation. If we assume

that the EFG tensor is axial, as might be expected (see Tahle 4) we now

know the complete tensor and its orientation. The fact that the rotation

plot is well fit with P2(cos8) also indicates that the alignment is

excellent. The crystal gives four carboxyl lines, two lines for each of

the two inequivalent deuterium sites, where the splitting is twice the

offset and chemical shif.t (see equation (8». The two inequivalent

deuterium sites give the same chemical shift rotation plot, when extracted

from the satellite splittings. The experiment was conducted with illl offset
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Figure 24. Quadrupole rotation plot for 10% oxalic acid. The data

were obtained by averaging the carboxyl peak positions at each orientation,

two of the orientations are shown in Figure 23. The least mean squares

fit to P2(cos8) is given as the solid line, giving the anisotropy, 0 ~

-77.54 kHz and the isotropic shift X 0.068. The actual carboxyl peak

positions vary in distance on either side of this average. This variance

is due to the chemical shift, and is plotted in Figure 25.
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frequency of 546.87 Hz below resonance and on resonance. The off resonance

rotation plot is shown in Figure 25. The solid line is least squares fit

to equation (129):

. 2 2 2Gpp Sln a + GNN cos a - GNP sina cosa (129)

giving Gpp = 125.6, G
NN 79.6, GNP = -.04 kHz or to equation (128') giving

6 = -31.1 ± 0.4 kHz and X = 110.4 ± 0.2 kHz. The on resonance rotation

plot was fit to equation (121) giving 6 = -24.9 and X = 18.7 kHz. Here

GNP is found to be zero within experimental error, so we conclude that

the chemical shielding tensor is aligned so that one of its principal

axis is also along the axis of rotation. We may assume then that the

principal axis of the EFG tensor and the chemical shielding tensor are

approximately the same. However there is a ~ 6° shift in the phase of

the chemical shift plot relative to the quadrupole rotation plot. The

signal to noise on the former is unfortunately not good enough to draw

any significant conclusions from this observed shift; however, if it is

true, the phase shift would indicate that the chemical shielding tensor

is not exactly aligned with the EFG tensor. The results are given in

Table 5 for the chemical shielding tensor in the crystal reference frame

assuming the tensor to be axially symmetric.

We have shown, however, that the EFG tensor and the chemical shielding

tensor are very closely aligned. Using the remarks in Section VI B.l, we

have also shown that the EFG tensor is aligned withthe crystal axes, to

within a factor of 1.02 in eqQ/h. Under these assumptions we may also

consider the values in Table 5 as being the elements of the chemical shielding

tensor in its own principal axis frame.



L27

Figure 25. Chemical shift rotation plot obtained using QSS. TIle Least

means square fit to the general tensor rotation function (Equation (129»

is given as the solid line. The offset frequency is 546.87 Hz below

resonance. The resulting anisotropy is D = -31.1 ± A kHz and tile

isotropic shift is X = 110.4 ± .2 kHz.
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Table 5. Carboxyl deuteron chemical shielding tensor.

-~
6o (anisot ropy)01' (ppm) °11

0. D X
Experiment ~

on resonance 23.28 -4.65 13.97 -18.62 13.97 27.93

off fit to 128 26.95 -7.44 15.49 -22.93 15.49 34.38

off fit to 129 27.17 -7.69 15.56 -23.26 15.56 34.86

Double quantum 20.41 -9.33 10.49 -19.83 10.49 29.74

*ppm from adsorbed water reference; shift of water with respect to TMS is

4.76 ppm and of adamantane 1.81 ppm

3. Double Quantum Spectroscopy

The combined use of isotopic dilution and double quantum spectroscopy

allows the extraction of high resolution spectra in another new way. The

preceeding double quantum experiment (Section VI A.2) was repeated using

the same crystal of 10% deuterated oxalic acid dihydrate. The double

quantum spectrum was obtained for two different orientations, Pigure 23,

from which we may extract the full chemical shielding tensor, using the

same assumptions as in QSS Section VI B. 2. The same two pulse sequence

was used as before (Figure 8) but with the following parameters:

18kHz for which we find (see equation (49 »:

32 kHz (136)

Thri phases were adjusted in the manner explained in Section VI A.2. In

order to obtain high resolution spectra it was necessary to apply proton



decoupling during the delay between the

probing pulse, P2' The strength of the

230

pulses, t
l

" as well as after the
w

decoupling field was -2
11

- 30-35 kHz.
if

The decoupled double quantum FID's for the carboxyl deuteriums are shown

for the two orientations in Figure 26. If no decoupling is used during

t
l

the FID shown in Figure 27 is obtained. It is easily seen that

decoupling the protons from the rare deuterons is a very significant part

of the approach to high resolution. In Figure 28 we also show the double

quantum FID obtained from the water peak (high frequency peak at 47 kHz

in Figure 23). This shows that it is also possible to get high resolution

spectra even from a quadrupole satellite which is very broad; that is, ~he

chemical shift is fully narrowed by the water motion while the quadrupole

coupling, being much larger, is not. It also illustrates that the rang~

for which equation (51) is valid is relatively large. The water peaks

in the 180 0 orientation were too far from 40 kHz, where the coherence

preparation pulse, PI was matched, to obtain an FID. The Fourier transforms

of the carboxyl FID's are shown in Figure 29.

The analysis to obtain the double quantum FID's was carried out

automatically by computer,29 as follows. The intensity was obtained at

each delay, t
l

, by integrating a region of the quadrupole spectrum containing

the lines of interest and subtracting the integral of a region of the base-

line. The resulting intensities were then plotted, automatically, versus

the delay between the pulses. For the 57 0 orientation the area included

in the integrals corresponds to the third carboxyl peak from the left in

Figure 23. For the 180 0 orientation all three carboxyl lines were

integrated. In addition, the water spectrum at 57° was obtained by

integrating over a small region at the top of the peak, (± 400 Hz).



Figure 26. Double quantum FID for the two orientations given in figure

(22). The quadrupole splitting for both orientations was w
Q

a 40 kHz.

231

Th f " ld h 32 kH ." 2/ 2 0 63e le strengt was eUIS = z glVHlg wI w
Q

= • . The pulse

length of PI was 14 llsec (90 0 pulse) and of P2 was again 5 llsec. The

P2 r.f. field strength was 47 ± 2 kHz.
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Figure 27. Same as Figure 26 but without proton decoupling.
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Figure 28. Double quantum FID for the water (D
2

O) of hydrat ion for the

sr orientation. This was obtained from the same spectra as in Figure

26 by integrating the broad water (D
2

O) peaks at 47 kHz. Only the lop

of the peak was integrated, an area about the maximum of ± 500 Hz.
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Figure 29. Fourier Transform Double Quantum Spectra obtained from the

DQFID's in Figure 26. Spectrum a is from the 57 0 orientation and

Spectrum b is from the 180 0 orientation. The raw line positions are

for (a) 1711 Hz with an offset of 522.5 Hz and for (b) 1137 Hz with

offset 576.2 Hz. The spectra are shown here plotted in ppm from an

internal water reference. See Table 5 for the comparison of the QSS

and FTDQS results.
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The exact orientation of the crystal was obtained by comparison of

the frequencies of the lines with the quadrupole rotation plot using

equation (128). Knowing these orientations and the corresponding

chemical shifts, the chemical shift anisotropy may be calculated,

e
a

1711 Hz· V 522.5 Hz·, aZZ' offset

1137 Hz; V ff ~ 576.2 Hz; azz.o . set -

20.4 ppm

-.458 ppm

The results for the chemical shielding tensor are given in Table 5, wllere

the orientation dependence was assumed to follow equation (128). The

chemical shift for the 180 0 orientation compares very well with the

shift from QSS (see Figure 25) the value at 5r is however somewhat

lo~er than that from QSS making the overall anisotropy smaller by ~ 4 ppm.

Another approach to the analysis can be used which avoids the first

Fourier transformation. The initial value of the FID after a pulse is

the integral of the Fourier transform. Thus, following the initial value

of the FID after the probing pulse P2' should give the sum 0 f all the

double quantum FID's. Subsequent Fourier transformation then gives t}H.>

spectrum for all of the chemical shifts at once. In practice the initial

value of the FID cannot be obtained since it is obscured in the dead

time of the spectrometer. The use of a value at a slightly later time

will not produce a large effect, other than to distort the relative peak

intensities in the double quantum spectrum. Another alternative ~lich we

are currently exploring, with successful preliminary results, employs an

additional refocusing pulse to produce an echo. In Figure 30 we plot the

initial value of the FID after P
2

versus the delay between P
J

and P2' tt.

The pulse strengths are the same as used previously (see Figure 26).
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Figure 30. Double quantum FID and the double quantum spectrum synthesized

by obtaining the initial intensity of the FID. The two pulse sequence

2
parameters are the same as for earlier experiments with Wl/W

Q
= .63, see

Figure 26.
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Figure 30b shows the Double Quantum Fourier Transform of the FID. The

smaller peak is due to the water deuterons and the taller the carboxyl

deuterons. For reference we have included the D.Q.FID and its Fourier

transform taken by integrating just the carboxyl lines after a second

Fourier transformation from the same experimental results used for

Figure 30. These are shown in Figure 31a and b. Notice that the signal

to noise ratio is actually better when the initial point is taken, rather

than Fourier transforming a second time and integrating.

The effects of the finiteness of the probing pulse is easily observed

by analyzing each of the carboxyl lines in the 57° orientation separately.

from both parts of the first Fourier transform. Re~ and Im~. This is

shown in Figure 32. The signal from the imaginary part of the Fourier

transform after the probe pulse must come from the non-zero Sx 2 or S terms.
• Y.J.

Equation (73) estimates this effect. The probe pulse used had:

47 ± 2 kHz. Tp 4.25 j1sec (137)

making w • with the quadrupole coupling range for this orientation of
e

~ 40 kHz to ~ 37 kHz,

103 to 102 kHz

0.37 to 0.40 (138)

This decrease in wanly accounts for a 10% increase in the signal
e

height in the imaginary buffer. This is not surprising considering we

derived equation (73) for the condition wI »W
Q

. Here ul
1

and I.llQ are

approximately equal, so that the full Hamiltonian must be taken into



Figure 31. Double quantum FID and the double quantum spectrum ohtained

hy integrating the carboxyl lines for comparison with Figure 30. Thp

raw data used for both was the same, for Figure 30 the initial point

was taken and for 31 the carboxyl lines (all 4) were integrated.
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Figure 32. Imperfections caused by the finiteness of the probing pulse

P2. Line 1 is the highest frequency carboxyl satf'll He in Figur(' 2] for

the 5;0 orientation, and line 4 is the lowest carhoxyl line. Till's\'

double quantum FlD's were synthesized from the initial Fourier tranSfl)rmS

used in Figure 26, but this time integrating lin(~ hy line from both

components of the Fourier transform, real and imaginary. The double

quantum FlD's for each of the lines has been derived from the cUlIlponent

90° out of phase with the reference phase of the initial Fourier

transform.
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account during the pulse. In addition there was also a relatively large

frequency offset used which means that an exact analysis should incJude

the offset terms in the Hamiltonian governing the time evolution during

the pulse.

C. Cross Polarization

1. Sample

Monodeutero-benzene (99% D) obtained from Merck, Sharpe and Dohme.

was used without further treatment. Benzene-Dl was chosen because :£ts

relaxation parameters all fall in the intermediate range of about 0.5 sec.

The relatively high abundance of deuterium was also necessary for good

signal to noise ratios for these preliminary experiments.

2. Indirect Detection

Th 1 . . f . 2 3 b d h I Ie cross po ar~zat~on process was ~rst 0 serve t rougl tle

destruction of the proton order in the standard double resonance experi-

ments (see Hartmann and Hahn).The pulse sequences of the indirect spin

locking (SL) and adiabatic demagnetization (ADRF) double resonance exper:i-

ments are shown in Figure 33. The proton signal was observed after the

cross polarization spin locking pulse for the SL case. For the ADRF

experiments the proton order, which is dipolar in nature, was monitored,

30
after cross polarization, with a 45° pulse.

The sample was cooled by nitrogen gas to :::; -35°C. The demagnetization

time for ADRF was optimal at 2 msec, the same time as used in the carbon-13-

proton experiments in Chapter 1. The quadrupole splitting between the
(1)

regions of the powder spectrum and zero was -'l = V
211 Q

35.2 kHz. Since this was a powder the total range from zero freqency of

j{
(21T) was then +70.4 kHz. However most of the experiments were done with
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Figure 33. Pulse sequence for indirect detection of the cross polarization.

(Note that a derivative signal of the FID is obtained after the 45°

1 30,32)pu se .

proton FID.

Cross polarization is detected by the destruction of the

Indirect detection affords higher sensitivity but much

lower resolution than direct detection.
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philosophy that most of the area, as far as the actual cross polarization

experiment is concerned, is within a small bandwidth (few kHz) about

35.2 kHz, and this area acts as if it were from a single crystal.

The cross polarization experiments were carried out at two different

deuterium frequencies a) at or near the frequency of the high frequency

satellite at 35.2 kHz and b) at or near the center frequency (double

quantum). The proton destruction for both the single and double quantum

experiments as a function of deuterium power is shown in Figures 34 for

the SL case and Figure 35 for the ADRF case.

For the single quantum SL experiment the maximum destruction

experimentally occurs at 7 kHz. The matching condition is predicted to

be as in equation (85)

(139)

W
lI

For our case ;GT = 10 kHz and J2 x 7 kHz = 9.9 kHz. Thus, the results are

in good agreement with the theoretical prediction. The double quantum

matching condition is, for ow = 0, given by equation (99):

W
1S

Here the experimental maximum destruction is at 2n
19 kHz. Then

(140)

192

35.2
103 kHz (141)

W
lI

Indeed, the proton rf field used was:hT 10.5 kHz, again showing good

agreement with the theoretical prediction. The proton frequency was at



Figure 34. Indirectly detected 8L cross polarization for D-l-henzene

as a function of deuterium field strength. For the single quantum

fl..w
case a) w

II
= 10 kHz, the mixing time was 15 mseC and 211 = 35.2 kHz.

For the double quantum case b) w
lr

= 10.5 kHz, the mixing time was

OW
15 msec and -n = O. The temperature was ~ -35°C.
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The temperature was

case,

The mixing time for both was 50 msec.

For the single quantum

OW
b), 2n = o.

Figure 35. Indirectly detected ADRF cross polarization for D-l-benzene.

f...w
a), 2n = 35.2 kHz and for the double quantum,
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resonance, while the deuterium frequency was either at resonance oc!\ = 0

double quantum or 6(0 = 35.2 kHz single quantum. We note also that the

double quantum destruction peaks are much broader than the single quantum.

The destruction as a function of deuterium offset frequency is shown

in Figure 36 for the SL case and Figure 37 for the ADRF experiment.

The solid line in each destruction spectrum is included only to guide the

eye. The mixing times are 15 msec for SL and 50 msec for ADRF. The

irradiation fields
w

lS
8 kHz

w
lI

11 kHz for the 8L andwere 2n = and -- = case
2n

(olS
14.7 kHz for the ADRF The broad background for the 8L

2n
case. case

comes from single quantum cross polarization to the side peaks and from

the distribution of WQ's in the powdered sample. The two dips occur when

the offset frequency is large enough to match equation (99),

W
e

2n 1/2
~ 2

- ---- + 4(5.5)
35.2

2 11.1 kHz (l42)

the double quantum Hartmann-Hahn condition. The difference in the

destruction at the two minima is not predicted by the dynamics. Note

also that there is an asymmetry in the destruction peak positions.

The difference in the minima may at least be partially explained

by realizing that at the beginning of cross polarization there is some

of the room temperature deuterium magnetization present. The amount

which is left at the beginning of cross polarization will be the proJection

of the equilibrium magnetization on the effective field axis. That is

(143)

Conservation of energy then gives:
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Figure 36. Indirectly detected 5L cross polarization for D-l-benzene as

a function of deuterium offset frequency. The rf field strengths were

1 1
2n wlS = 8 kHz and 2n w

lr
= 11 kHz, the mixing time was 15 msec. The

solid line is included only to guide the eye. The asymmetry in the peak

positions and heights is not predicted by equation (117) .

•
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Figure 37. Indirectly detected ADRF cross polarization for D-l-benzene

as a function of the deuterium offset frequency. The deuterium field

strength was w
lS

= 14.7 kHz and the mixing time was 50 msec. The

solid line is included to guide the eye. The asymmetry in the peak

position.and heights is not predicted by equation (116).
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(144)

2
i 8 ( En )

s n Z 2
l+En·

This gives the asymmetry in the destruction minima as

I
Ys w

lr
sin8

Z
asymmetry +-

YI
w

eS
(145)

However this factor does not account sufficiently for the difference.

It also does not predict the aSYmmetry in the minima positions.

The width of the destruction peaks is a measure of the breadth (in

frequency space) of the correlation functions. In order to extract

correlation times for the two cases (SL and ADRF) equations (118) and

(119) were used to fit the experimental data. The second moments M1,IS

could also be obtained in principal from this procedure but the asymmetries

mentioned above make these figures very unreliable. The curve fitting of

the destruction spectra was carried out with C, Band Tc as variable

parameters where (see equations (118) and (119»

C = t\ Cr HI r,

and 8 ... !!.. t for ADRF2 M1,IS

and B ali ~~~St for SL.
2 2

The ratio of the heat capacites which was used was

(146)
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1/(2S+l)
2

I\T W
2 ..s eS

(147)Ell
~/ (21+1)

2
NI w

lI

This form will be experimentally validated later in this chapter. The

details of the computer programs for the nonlinear least squares analysis

are given in Appendix 2.4. The fitting gives

and

T
c,SL

T
c,ADRF

418 ]Jsec

577 ]Jsec

for SL

for ADRF.

(148)

For the ADRF case H
L

was taken to be HL = 0.646 Gauss. This value was

calculated from the proton line width in benzene, as will be discussed

later in this chapter.

It should be noted that the correlation times are approximate because

of the asymmetries and because only one value of W
Q

was used, treating

the quadrupolar spectrum as a single crystal as discussed before. Undoubt-

ably there is a range of WQ's which contribute measurably to the cross

polarization. Also the effect of relaxation was not included, however

when it is these results do not change significantly.

3. Direct Detection

These experiments are the immediate extension to deuterium of the

proton-carbon-13 cross polarization discussed in the first chapter. But

again we have taken two choices for the frequency of the deuterium

irradiation. near the high frequency satellite or near the center of the

spectrum. The follOWing results were obtained without proton decoupl ing,

since the linewidth of the satellites did not change significantly. The
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single quantum experiment is straight-forward since the polarized state

which is prepared is directly observable. The double quantum state must

be probed with a magic pulse, which we discuss first after the single

quanttrn experiments followed by the results of the standard experiment

on cross polarization dynamics. The results of the dynamics have already

been used in the preceeding section to discuss the destruction spectra.

The density matrix for the single quantum cross polarization is

given in equation (90), the only observable term is (SX,1-SY,2) which

indicates that only the satellite nearest the irradiation is polarized.

This is shown to be the case experimentally in Figure 38. The spectrum

in (a) is the normal FID., In (b) is the result

after cross polarization from a SL state with a cross polarization time

of 15 msec. The deuterium frequency offset was ~ 43 kHz above resonance.

The enhancement from the cross polarization was only 1.5, while the

theoretical value is 4.6. (Note that 36a has been multiplied by 1.5).

The effect of a magic pulse (see Figure 11) is shown in Figure 39,after

ADRF cross polarization with the deuterium frequency exactly at resonance.

The cross polarization time was 50 msec which was immediately followed

by a magic pulse 180 0 out of phase and of variable length. A-X pulse, which

is 180 0 out of phase with the X mixing pulse, was chosen since (see Section

IV B.3) it should only transform the X coordinate space. The intensity

follm.Js the approximate shape expected from equation (112) up to about a

180 0 precession of the magnetization, that Is t
M

= 10.5 usee, however the

pat tel-n should be symmetrical about 180 0
• Figure 110 shows the evolution

of the intensity (0) and the phase (0) of the sl3Oal. The component along the

X axis of the phase detector was extracted by multiplying the intensity

by the cosine of the experimental phase angle (shown as 0 ), the theoretical



Figure 38. Normal single pulse FID compared with the result of a SL

263

cross polarization for the single quantum transition. The frequency

f'..w
offset was 2'n = 43 kHz above resonance and the mixing time was 1~ msec.

The normal FID, a), has been multiplied by 1. 5. The temperature was

-35°C. These spectra accumulated for ~ 10 hours.
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Figure 39. Magic pulse cross polarization. The signal intensity is

shown as a function of the magic pulse width, for the magic pulse 180 0

out of phase with the mixing pulse. The demagnetization time was 2 IlIS('('

and the mixing time was 50 msec. The solid line is included only to

guide the eye. The magic pulse intensity is w
lS

= 16.1 kHz and wQ =

35.2 kHz giving EJ = 42 0 and we = 47.7 kHz. The 180 0 pulse time should

be 10.5 ~sec.
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Figure 40. Magic pulse cross polarization. Figure 38 is redrawn ( .. )

along with its phase angle with respect to the fixed phase dett'ctor.

The intensity multiplied by the cosine of the phase angle give;,; thl'

projection of the initial amplitude of the FID along the X phast·

detector axis (00). The solid line through these points is the

theoretical pulse width dependence (equation (112». for UI
Q

= 35.2,

w = 47.7 kHz and the constant p found by fitting the curve to the
e

first point.
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value

where

x p sin2E cosE coswt - P COS2E sinE (149)

p (I50)

from equation (112) is shown

experimental parameters, E =

as the solid line with E calculated from the
w w

42 ° .=.q = 35 2 ~ = 47.7 kHz, or for 18()0, 21T ., 2n

pulse = 10.5 ~sec and p was calculated by fitting the curve to the

initial point. As can be seen the behavior of the phase and the X

component are quite in line with the theory. The total intensity on

the other hand is very sensitive in its shape to imperfections. These

imperfections are generated by the finiteness of the magic pulse in that

the term from the density matrix in (Sy 3-SZ 3) will also be affected., ,
Another cause of the discrepancy may be the simultaneous cross

polarization due to off resonance irradiation, that is, a Provotorov

type cross relaxation. In an attempt to judge the magnitude of other

cross polarization mechanisms the following preliminary experiment was

performed. The magic pulse experiment was repeated but without the X

reservoir of the protons and the quadrupolar- and dipolar reservoirs of the

deuteriums. A signal wa3 obtained, with a significant intensity, which

was 90° out of phase with the signal derived from the experiment witll

the mixing pulse. Further work is needed in this area to fully

characterize these mechanisms for cross polarization.
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4. Double Quantum Cross Polarization Dynamics

We wish to verify that tIle rotating frame heat capacity of the

double quantum transition is simply that of the equivalent spin ~

system where

C
eS

1 (2S+l) y2
2 eS

2
and y

eS
(151)

The experiment was performed on resonance for both the protons and

deuteriums so that,

w
eS

w
IS

(152)

the deuterium magnetization was measured directly in an ADRF cross

polarization. We must be very careful at this point to know exactly

how much of the polarization we are measuring. We therefore use a

-x magic pulse to transform all of the polarization in the X-spin frame

so that it is directly observable. This is accomplished by adjusting

-x pulse length and phase detector for a maximum signal. Reference to

equation (112) and (113) shows that we can only recover one half of

the polarization in this way.

The cross polarization curve obtained with this magic pulse is

shown in Figure 41. The experimental parameters are

17.2 kHz, 12.5 wsec (153)

In order to extract the heat rapacity and cross polarization time all of

the relaxation parameters and H
L

, the proton local field, must be measured.

The proton relaxation time TID was measured in the standard manner, ADRF



Figure 41. Cross polarization
w

lS
The parameters used were ~

curve for D-l-benzene at 35 ± 1° C.

17.2 kHz, T = 35 ± 1°C, and the magic
L

271

pulse time was tHe-X) = 12.5 ~sec. The solid curve is the fit to th('

general cross relaxation equation, equation (156).
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followed at time T by a 45° probing pulse. These results are shown in

Figure 42. The experiment was done at -35 ± 1°C. Since the relaxation

times are quite sensitive to temperature it was necessary to control

the temperature fairly precisely. Linear least squares gives T =10

0.30 ± .01 sec. The equivalent of TIP for the double quantum transition

was measured using the pulse sequence in Figure 43. The deuteriums

are cross polarized for a time t, the proton 45° pulse then destroys

the dipolar order of the proton reservoir after which the deuterium

order decays for a time T before it is directly monitored. The results

of the experiment at -35 ± 1°C are shown in Figure 44 for HIS:: 14.7 kHz -

26.3 Gauss. The cross polarization time was 50 msec. Linear least squares gave

= 4.3 ± 1. msec. (154)

The proton local field H L' was determined from the proton line width,

31,32
which was assumed to be Gaussian, through the formulas,

2 1
H L = "3 M2

(155)

where 0 is the halfwidth at half maximum, and M2 is the second moment of

a Gaussian line. The local field derived in this way is the local field

in the rotating frame. We can now fit the cross polarization curve to

equation (41) of Chapter 1 to extract £,the ratio of the heat capacities,

and TIs,the cross polarization time. Since TID for the protons is so

short for benzene we must solve equation (41) in its full form. A closed

form expression was not derived, but instead the system of equations was

solved exactly (not by interpolation or integration) by computer. The

solution of the equation
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Figure 42. Proton dipolar relaxation time TID for D-I-benzene at 35

± lOCo The pulse sequence used was ADRF (for 2 msec) followed after a

time T with a 45 0 pulse. The solid line is the linear least squares fit

to the data.
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Figure 43. Deuterium rotating frame relaxation time, TIp' pulse

sequence. The double quantum coherence is prepared by a normal

cross polarization for time t after which the proton dipolar order

is destroyed with a 45° pulse. The spin locked deuteriums are allowed

to evolve for a time t before monitoring the polarization.
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Figure 44. Deuterium double quantum TIP using the pulse sequence in

Figure 43. The deuterium field strength was ul
lS

17.2 kHz the cross

polarization time was 50 msec. The temperature was 35 ± lOCo The

solid line is the linear least squares fit to the data.
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d
- v a + pv
dt -

where

280

(156)

+_1_
TID

with boundary conditions v(O) =6L ~O :Q\
,- 33 r)

of the demagnetization, is given by,

where ~ is the efficiency

f\. t -1 f\. t -1 -1-1
v = De D ~O + D(-l-e )D D f\. D a

f\. is obtained by diagonalizing p,

(157)

f\.
-1

D P D,

where D is found explicitly to be

C 1 )-P2l -p

D = Pn-A_ P2~A+
and
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The deuterium magnetization is normalized to the FID for this experiment,

and it is related to these solutions by

2M(t)
M(o)

where M(o)

Ss c~Q HIS
------,----

SB
SL Cs HO

is the magnetization for a normal FID and

(158)

where the superscripts remind us that the Curie constants contain the Y.,
eS

which is appropriate for the experiment performed, and

cDQ
WIS-- -

C
S w

QS

giving:

Ss
2

2M(t) W/WQ
M(o) f\ Wo

(159)

(l60)

The factor of 2 is introduced to take into account that we observe only

~ of the total polarization. The cross polarization curve is then fi.t,

knowing TID' TIP' B1' HIS' H
L

and H
O

and assuming l.l = 0.95 which was

obtained in the same way as in the carbon-13 cross polarization experiments

(see Chapter 1, Section IV C.I). The values of c and TIS were varied so

as to minimize the deviations by trial and error. The results are for

the ratio of the heat capacities:

2En
2 2

0.85 ± .05 (161)

and TIS = 77.6 msec.

2
Using YeS = (w1/wQ)Y

S
' we derive the theciretical value en = ].18.

These results are in good agreement, and we note that there were only 2



variable parameters used to produce the fit. Note that if YeS = j2 Y
S

then E would have been 10.3. So as expected the rotating frame heat

capacity is smaller than for the single quantum case.
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VII Discussion

A. Spectroscopy

We must be somewhat careful, and point out that the normal Fourier

transform relation does not hold for our form of double quantum spectroscopy.

That is, the time responses given by the double quantum decay is not the

Fourier transform of the continuous wave absorption experiment, this is

easily seen since the double quantum decay is at frequency 20w while

the continuous wave absorption occurs at Wo + ow. However the double

quantum decay is related to the absorption spectrum, which would he obtained

if wQ == 0, in the rotating frame by the Fourier transform relation,

is easily shown since in the rotating frame the doubfe quantum transition

behaves exactly as if it were a normal spin ~ transition.

The inclusion of second order effects for the quadrupole coupling must

be discussed since they can shift the m == 1 and -1 levels diffe:r:en!b'_.

This will effect the accuracy of both double quantum spectroscopy and QSS.

A rough calculation of the second order shift for the oxalic acid experl-

ment indicates that it is less than the uncertainty, i.e., : 1.5 ppm.

This is true because the quadrupole coupling for the two orientations

was relatively small. However for more accurate work, and [or cases with

the maximum quadrupole couplings the second order shifts must be calculated

explicitly. This requires no new information. The second order correction

., 31
1S glven as

where jJ

-h

cos8
Q

2
wg 3 2 2 2 3 2 2 2

(-l-2-w"---) m [2 ~ (l-~ )(8m -41(1+1)+1) + 8 (l-IJ ) (-2m +2m(J(I+I)-1)
. 0

(162)
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QSS and double quantum spectroscopy are seen to give a great advantage

in that they can actually separate the spectra of species with very similar

or equal chemical shifts. This can occur in a number of ways. The most

general is that the quadrupole coupling is much greater than the chemical

shift in magnitude in comparison with the line width, which is the same

for both cases. For example if two species have slightly different chemical

shifts which are not resolvable because of the linewidth we may still be

able to separate the quadrupole satellites of the two species because

their quadrupole splittings will be much larger and then we can apply one

of the new spectroscopic techniques to the satellites individually. This

increase in discrimination can also come about through (a) differences in

quadrupole coupling size between the two species, (b) differences in

orientation dependence or (c) differences in motional averaging. A case

in point for the latter is seen in our oxalic acid experiments where the

water satellites disappear completely in some orientations leaving only

the carboxyl satellites.

For single crystals it may be preferable to carry out any experiment

with QSS rather than double quantum spectroscopy, since it is easier and

faster, with the time savings perhaps an order of magnitude or more.

For powders there is little choice and work is proceeding towards

developing better double quantum pulse sequences to handle them. The

water of hydration in oxalic acid is an interesting case though in that

FTDQS achieves much better resolution; this comes about because the chemical

shielding is totally averaged while the quadrupole interaction is not. II

dramatic illustraction of this is the fact that the linewidth of the water
-------------------------

peak in Figure 28 is the same. as for the carhoxyl line. The water
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satellites in the normal FlO Figure 23 for this same orientation are

approximately an order of magnitude larger than the carboxyl sat~~l}),__t_(~s_.

OQS yields then an order of magnitude increase in resolution, indicating

its usefulness for special cases.

An exciting extension of this work would be the observation of

oxygen 17 and nitrogen 14 chemical shifts. Nitrogen 14 is spin 1 and

the extension of our theory is immediate. It's quadrupole moment is

10 times bigger than deuterium's however, necessitating a different delection

technique, perhaps that of Hatanaka ~ a1. Oxygen 17, spin ~-, lias a

quadrupole coupling also of the same order as nitrogen, but the electric

field gradients may be somewhat smaller than deuterium~ for some el asses

of compounds.

B. Cross Polarization

Many of the inconsistencies between theory and experiment are basically

the result of the finite size of the deuterium rf field strengtll. One way

to overcome these inconsistencies is of course to use more deuterium

power, but more satisfying will be the development of more complete

solution for the time evolution for arbitrary rf strength, by calculations

on a computer. Such a program has been written and is now being used to

fill in the details missing from our more ideal closed form solutions.

This should clear up the difficulties with the observed response to a

magic pulse.

The simultaneous occurence of other cross polarization mechanisms,

which may be a difficulty for the magic pulse experiments, needs to be

pursued further also. The preliminary experiment performed, ADRF cnlSS

polarization without a deuterium rf field, should be expanded upon. However
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we judge these effects to be somewhat minor in their importance.

More problematic is our attempt to explain the asymmetry for the

indirect cross polarization experiments for a variable deuterium rf

frequency. The effect of the room temperature equilibrium magnetization

can easily be avoided by it's destruction before the cross polarization

is begun. This is a simple measure and it will be pursued shortly.

Taken in total, however, the experimental results seem to agree quite

well with our theory. They corroborate well our idea of the satellites

and double quantum transitions as fictitious spin ~ systems with effective

y's. In addition, the indirect detection methods are seen to provide a

new way to find correlation times for the dipolar state fluctuations.

To judge the accuracy of our determinations we note that the 5L and ADRF

correaltion times are relatively close to each othe~ as expected. In

particular,23 (see Chapter 1 for definitions, equations (61) and (6lc»:

2
\.;5L

2
T c,ADRF

4
5 (163)

~ ,0.894
T c,ADRF

Experimentally we find

(164)

~c;5L

T c,ADRF

418 ]Jsec
577 ]Jsec

0.724 ' (165)

From Table 1, Chapter 1, 5
1

5
2
/5

4
ranges from ~ 5-10. With this under



287

consideration Tc,SL/Tc,ADRF ranges from .696 to .788. Our experi~e~~~

result is then seen to be quite reasonable.

c. Chemical Shielding Tensor

We find a value for the total anisotropy of the carboxyl deuteron in

a-oxalic acid dihydrate to be

60 32 ± 3 ppm (166)

The most shielded direction is along the hydrogen bond direction, as found

by virtue of the alignment with the EFG tensor. The large size of tills

anisotropy is undoubtably due to the extremely short hydrogen bond
o

r o_o = 2.5 A.
34

Our anisotropy is somewhat larger than Yeung's, of

25 ppm. Our 01 = 27 ppm with respect to adamantane agrees quite well

with Haeberlen's estimate of ;:; 28 ppm.
35

In Table 6 are a number of other

carboxyl anisotropies from other studies for comparison.

At this point we should exercise a little caution, in that we must

realize that the substitution of a deuterium for a proton in a hydrogen

bond may have a large effect. (Note added in proof: It is difficult to

grow a mouse which is more than 30% deuterated, presumably due to hydrogen

bond perturbations). But this information is in itself very useful and

can now be studied using NMR. We note however that the agreement between

our work and Haeberlen's proton study argue against any large effect for

the sample we studied. The effect of substitution of deuterium in other

types of bonds can be expected to be much less critical, that being a

very small effect due to the change in the vibrational averaging.
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Table 6. Carboxyl chemical shielding tensor anisotropies

hydrogen bond
Compound Ref anisotropy partner bond distance

butynedoic acid 36 20 ± 2 dimer 2.668
46

squaric 36 22 ± 2 dimer 2.5544

oxalic acid dihydrate 35 ~ 28 water 2.52

oxalic acid anhydrous 35 17.8 dimer 2.7143

malonic 35 18 dimer 2.71 and 2.68
40

succinic 35 19 dimer 2.64 41

fumaric 35 16.8 dimer 2.684 ± .00245

maleic 35 25.8 itself 2.46 inter. 2.75
42

35 22 dimer 2.67 ± .05 39
phthalic

oxalic acid dihydrate 34 25 water 2.52
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Appendix 2.1 Transformation Properties of the Fictitious Spin ~ Operators

In this section all of the possible transformations generated by

the fictitious spin ~ operators are given. Using these relations we

calculate the effect of an r.f. pulse upon the density matrix for

several special cases.

Given an operator p, we may in general expand it in terms of the 9

fictitious spin ~ operators which are used as a basis set.

p=I;
p,i

s .
p,1

(A2.I-l)

A rotation about any axis defined by one of the operators in the basis

set is given by

R (8, i)
P

S'
p,i

U is. U+ . =
p, p,1 p,1 I;G is.. p, p,11p

/(A2.1-2)

The knowledge of all of the transformations of this form then completely

describes the transformation properties of any operator p.

In Table 7 we repeat the definitions of the fictitious spin operators

and the important commutation relations for easy reference. In Table 8

are listed all of the unitary transformation matrices generated by the 9

operators. Their action upon the complete set of "basis operators", the

9 operators themselves is listed in Table 9. Table 10 gives the trans-

formations for some specific angles.

The utility of these transformations are easily shown by the following

examples. We wish to calculate the effect of an r.f. 'pulse upon a density

matrix for two extremes ~w = w
Q

+ ow and ~w = O. Consider an initial

density matrix
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(A2.1-3)

which corresponds to equilibrium in the laboratory frame. We now apply

a pulse of strength w
l

(W
l

« W
Q

) at frequency ~w = w
Q

+ ow and duration

t. The Hamiltonian which governs the time dependence is,

(A2.1-4)

We now apply the rotations R
Z

(90,2) and R
X

(¢,2) and rearrange using

equation (2-10) in analogy to the derivation of equation (2-83), giving

(A2.1-S)

jTW
l

with ¢ defined by tan¢ = ~.

We have assumed wl « wQ and ow « W
Q

' in order to ignore the term

in Sy 2 in comparison with the term in Sy 3 (see equations (18) and (19»,, ,
and in order to approximate the quadrupolar term by ignoring ow (see

equation (24». The effective field is

and we note that

sin¢ and cos¢
ow
W

e

Transforming the density matrix into the same frame gives,

-c S" + .£ sin¢
Z,3 2

S" - c sin
2
¢/2 S"

X,l X,3
(A2.1-6)
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We must now solve

0*"(0)
iH*" t

S
e (1\2.1-7)

This is solved using Table 9 yielding

0*"(t) - c S" - c sin2<j>/2 S"
Z,3 X,~

sinw d
e

+ ~ sin<j> {S" 1 cosw t + S"
2 x, e X,2

(A2.l-8)

The rotations Rx(-<j>,2) and RZ(-90~2) are now applied to bring

o back into the until ted rotating frame. The results are given in

Table 11. The effect of a pulse at frequency !J.w = 0 for arbitrary

strength wI is solved in an analogous way, and the density matrix

immediately following such a pulse is given in Table 12. We include

for completeness the effect of such a pulse on all possible density

matrices.



Table 7. Fictitious spin ~ operators
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Basis set: IX>
2

(1+1> - 1-1»

Iy> (1+1> + 1-1>
2

Iz> 10>

Matrix Representation of Operators:

i

o

o

o

o

o

Quadrupole Hamiltonian:

1<
H = -2600 5 - 20015 1 + w 5 3 - Er(S - 5 )

5 Z,l X, r r p,3 q,3

wi t h (11" -00"
A 1

2
--00

3 Q



Table 7 continued

Commutation relations:

[s
p, i'

S ] i S i- j , k cyclic
p, j p,k

,

[s 3' s 3] 0 all p,q
p, q,

[{S 3 - s 3}' s . ] 0 all i, p l' q l' r
p, q, r,~

293



Table 8. Transformations generated by the fictitious spin ~ operators

294

U =(o~X,3

o
e·cos 12

-sin
e/2

o
-ie/2

e

o

o
cose/2

o
sin 12

(

COSe/2

Uy 1 = 0,
-isine/2

o
1

o

o
1

o

-~sinO/2)

cose/2 (

:080/2

Uy 2 = 0,
sine/2

o

1

o

(

COSe/2

= ~sine/2

(

2 -i8/2

= 0

o

sinO/2

cose/2

o

o
iO/2

e

o

(

COSe/2

-i~ine/2

-isinG/2

cosO/2

o

U 10-'012
X,3-y,3\O

(

e- i8/2

U = 0
2,3-X,3 0

o
-ie/2

e

o

o
is

e

o

o )o
e- iO / 2

(

iO
e

U = 0
Y, 3-2,3

o

o
-iG/2

e

o



Table 9. Rotations generated by Fictitious spin ~ operators

R (~i) is given by U . S U +.
P p,l p,l

Sx 2 + cosS Sx 2 + sinS Sx 3, , ,

Sx 3 + -sinS Sx 2 + cosS SX,3, ,

Sy 1 + cosS/2 5y 1 + sinS/2 5Z 1, , ,

5y 2 + cosS/2 5y 2 - sinS/2 Sz 2, , ,

SY,3 + Sy 3 + 1/2 sinS Sx 2 + sin2S/2 Sx 3, , ,

= 1 (5X,2 sinS - 5x ,3 cosS) +1:- (Sy 3 - 5Z 3)2 , ,

5Z 1 ->- cosS/2 5Z 1 - sinS/2 5y 1, , ,

Sz 2 + cosS/2 Sz 2 + sinS/2 Sy 2, , ,

Sz 3 + SZ,3 + 1sinS S
X,2

+ sin2S/2 5X 3, ,

1 (Sx 2 sinS - cosO) 1
- SZ,3)Sx 3 - 2 (Sy 3, , ,

~(O,2)

Sx 1 + cosS 5X 1 - sinS SX,3, ,

5X 2 + 5X 2, ,

Sx 3 + sinS 5X 1 + cose Sx 3, , ,

Sy 1 + cosS/2 5Y,1 - sinS/2 Sz 2, ,

Sy 2 + cosS/2 5Y,2 - sinG/2 Sz 1, ,

5 1 . G 2
Sy 3 + - - Sln 5. 1 + sin S/2 5X 3Y,3 2 1,, ,

1
(SX,l sine cosS) +1:- (Sy 3 - 5z 3)2 + Sx 3 2, , ,
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Table 9 continued

Sz 1 -+ cos8/2 Sz 1 + sin8/2 Sy 2, , ,

Sz 2 -+ cos8/2 Sz 2 + sin8/2 Sy 1, , ,

SZ,3 SZ,3 -
1 sin8 Sx + sin28/2 S-+
2 , X,3

1
(SX sin8 + cos8)

1
- SZ,3)- Sx 3 - 2 (Sy, 32 , ,

R
X

(8,3)

SX,l -+ cos8 Sx 1 + sin8 Sx 2, ,

Sx 2 -+ -sin8 S + cos8 Sx 2, X,l ,

SX,3 -+ SX,3

SY,l -+ cos8/2 SY,l - sin8/2 Sy 2,

SY,2 -+ cos8/2 Sy 2 + sin8/2 Sy 1, ,

SY,3 -+ SY,3

SZ,l -+ cos8/2 Sz 1 - sin8/2 Sz 2, ,

SZ,2 -+ cos8/2 Sz 2 + sin8/2 Sz 1, ,

SZ,3 -+ SZ,3

~(O,l)

SX,l -+ cos8/2 SX,l ~ sinO/2 SZ,l

SX,2 -+ cos8/2 SX,2 + sinS/2 SZ,2

SX,3 -+ SX,3 + t sine SY,2 + sin
2

S/2 SY,3

296
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Table 9 continued

Sy 1 -+ Sy 1, ,

Sy 2 -+ cosO Sy 2 + sinO Sy 3, , ,

Sy 3 -+ -sinO Sy 2 + cosO Sy 3, , ,

Sz 1 -+ cosO/2 SZ,l + sinO/2 Sx 1, ,

Sz 2 -+ cosO/2 Sz 2 - sinO/2 Sx 2, , ,

Sz 3 -+ Sz 3 + ~ sinO S 2 + sin2O/2 Sy 3, , y, ,

297

~ (Sy 2 sinO,

R.y(O,2)

Sx 1 -+ cosO/2 Sx 1 + sinO/2 Sz 2, , ,

Sx 2 -+ cosO/2 Sx 2 + sinO/2 Sz 1, , ,

SX,3
1 sinO SY,l + sin2O/2 S-+ Sx 3 - 2, y,3

1
sinO + Sy 3 cosO)

1
(SZ 3 - Sx 3)- 2 (Sy 1 2, , ,

Sy 1 -+ cosOSy 1 - sinO Sy 3, , ,

Sy 2 -+ Sy 2, ,

Sy 3 -+ sinO Sy 1 + cosO SY,3, ,

Sz 1 -+ cosO/2 Sz 1 - sinO/2 Sx 2, , ,

Sz 2 -+ cosO/2 S Z, 2 - sin8/2 Sx 1, ,

Sz 3 S 1 . 0
Sy 1 - sin2O/2 SY,3-+ - - s~n·, Z,3 2 ,

1 sinO + S 3 cosO) +l (SZ,3 Sx 3)- 2(Sy 1 -
, y, 2 ,



Table 9 continued

l\(8,3)

Sx 1 -+ cos8/2 Sx 1 - sin8/2 Sx 2, , ,

Sx 2 -+ cosS/2 Sx 2 + sin8/2 S, , X,l

SX,3 -+ Sx 3,

SY,l -+ cos8 S 1 + sin8 S
Y, Y,2

Sy 2 -+ -sin8 S + cos8 Sy 2, Y, 1 ,

SY,3 -+ Sy 3,

Sz 1 -+ cos8/2 Sz 1 - sin8/2 Sz 2, , ,

Sz 2 -+ cos8/2 Sz 2 + sin8/2 Sz 1, , ,

SZ,3 -+ Sz 3,

Sx 1 -+ cos8/2 Sx 1 + sin8/2 Sy 1, , ,

SX,2 -+ cos8/2 Sx 2 - sin8/2 Sy 2, ,

SX,3 -+ Sx 3 + t sin8 Sz 2 + sin2 8/2 Sz 3, , ,
1 sinS SZ,3 cos8) +1:- (S 3 SY,3)= "2 (Sz 2 - -, 2 X,

S -+ cos8/2 S - sin8/2 Sx 1y,l y,l ,

Sy 2 -+ cos8/2 S 2 + sin8/2 Sx 2, y, ,

Sy 3 -+ SY,3
1 . 8 S + sin

2
8/2 SZ,3, + "2 Sln Z,2

, 1L

(Sz 2 sin8 cos8) - S )- - S - "2 (SX,32 , Z,3 y,3
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Table 9 continued

SZ,2 + cos8 SZ,2 + sin8 SZ,3

Sz 3 + -sin8 Sz 2 + cos8 Sz 3, , ,

SX,l + cos8/2 SX,l - sin8/2 SY,2

300

+ cos8/2 S -
X,2

+ S - 1:. sin8
X,3 2

sin8/2 Sy 1,

Sy 1 + cos8/2 SY,l + sin8/2 S, X,2

Sy 2 + cos8/2 Sy 2 + sin8/2 S, , X,l

SY,3 + S - 1:. sin8 S 1 + sin28/2 Sz 3y,3 2 Z, ,

1
sin8 + cos8)

1
SY,3)- "2 (SZ,l Sz 3 - - (S -, 2 X,3

S + cos8 5Z 1 - sin8 Sz 3Z,l , ,

SZ,3 + + sin8 SZ,l + cos8 SZ,3

R
Z

<8,3)

SX,l + cos8/2 SX.1 - sin8/2 SX,2

5 + cos8/2 Sx 2 + sin8/2 Sx 1X,2 , ,



Table 9 continued

S -+ SX,3X,3

Sy 1 -+ cos8/2 SY,l - sin8/2 Sy 2, ,

Sy 2 -+ cos8/2 SY,2 + sin8/2 Sy 1. ,

SY,3 -+ Sy 3,

Sz 1 -+ sin8 Sz 2 + cos8 SZ,l, ,

Sz 2 -+ cos8 Sz 2 - sin8 Sz 1, , ,

SZ,3 -+ Sz 3,

~_y(8,3)

Sx 1 -+ cos 3/28 Sx 1 + sin 3/28 Sx 2, , ,

Sx 2 -+ cos 3/28 Sx 2 - sin 3/28 Sx 1, , ,

'Sy 1 -+ cos 3/28 SY1 - sin 3/28 Sy 2, , ,

Sy 2 -+ cos 3/28 Sy 2 + sin 3/28 Sy 1, , ,

Rx_z e8 ,3)

SY,l -+ cos 3/28 Sy 1 + sin 3/28 Sy 2, ,

Sy 2 -+ cos 3/28 Sy 2 - sin 3/28 Sy 1, , ,

SZ,l -+ cos 3/28 Sz 1 - sin 3/28 Sz 2, ,

Sz 2 -+ cos 3/28 Sz 2 + sin 3/28 Sz 1, , ,
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Table 9 continued

R
Z

_
X

(8,3)

Sx 1 -+ cos 3/28 S - sin 3/28 S, X,l X,2

Sx 2 -+ cos 3/28 S + sin 3/28 Sx 1, X,2 ,

Sz 1 -+ cos 3/28 S + sin 3/28 Sz 2, Z,l ,

Sz 2 -+ cos 3/28 Sz 2 - sin 3/28 Sz 1, , ,
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Table 10 Special Rotations

90 0 180 0 270 0

R
X

(8,1)

Sx 1 Sx 1 Sx 1 Sx 1, , , ,

Sx 2 S -SX 2 -SX 3, X,3 , ,

Sx 3 -SX,2 -SX 3 Sx 2, , ,

Sy 1 1//"2 Sy 1 + 1//"2 Sz 1 Sz 1 -1//2 Sy 1 + 1//2 Sz 1, , , , , ,

Sy 2 1Y2: Sy 2 - LVZ Sz 2 -SZ 2 -1,4/2 Sy 2 - I#,2 5 Z 2, , , , , ,

+.!.S 1
Sy 3

1 1
Sy 3 SY,3 + 2 SX,3 -SZ,3 - - S + 2 sX,3, 2 X,2 , 2 X,2

Sz 1 1Y2 Sz 1 - 1,V2: Sy 1 -Sy 1 -1,l!2 Sz 1 - l//T SY,l, , , , ,

Sz 2 1/12 Sz 2 + 1//2 Sy 2 Sy 2 -1/12 Sz 2 + 1//2 Sy 2, , , , , ,

Sz 3 + t Sx 2
1 1 1

S + 2 SX,3 -Sy 3 S - "2 SX,2 + "2 Sx 3Z,3 , , , Z,3 ,

~(8,2)

Sx 1 -S -SX 1 Sx 3, X,3 , ,

Sx 2 S S SX,2, X,2 x,2

Sx 3 Sx 1 -SX,3 -SX 1, , ,

Sy 1 1//2 Sy 1 - 1//2 Sz 2 -SZ 2 -1//2 S - 1//2 SZ,2, , , , y,l

Sy 2 1//2 Sy 2 - 1//2 Sz 1 -SZ 1 -11/2 S - l/n Sz 1, , , , y,2 ,
1 1 1 1

SY,3 Sy 3 - 2 Sx 1 + 2 sX,3 -SZ 3 Sy 3 + 2 S 1 - 2 Sx 3, , , , X, ,

Sz 1 1//2 Sz 1 + 1//"2 Sy 2 Sy 2 -1/12 Sz 1 + 1/17. Sy 2, , , , , ,

Sz 2 1/12. SZ,2 + 1//"2 SY1 Sy 1 -1//2 Sz 2 + 1//2 5y 1, , , , ,

5Z,3 S 1 + 1 S + .!. S 1- - 5 -5 S - -- SZ,3 2 X,l 2 X,3 y,3 Z,3 2X,1 2 X,3
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Table 10 continued
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Table 10 continued
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Table 10 continued

R
Z

<8,1)

Sx 1 1/12 S 1 + 1//2 Sy 1 Sy 1, X, , ,

SX,2 1/12 sX,2 - 1/12 Sy 2 -Sy 2, ,
1 1

-Sy 3SX,3 Sx 3 + "2 Sz 2 + 2 Sz 3, , , ,

Sy 1 1;12 Sy 1 - 1/12 Sx 1 -SX 1, , , ,

SY,2 1/12 Sy 2 + 1/12 Sx 2 Sx 2, , ,

SY,3 Sy 3
1 1

-SX 3+ 2 Sz 2 + 2 SZ,3, , ,

SZ,1 Sz 1 Sz 1, ,

SZ,2 Sz 3 -SZ 2, ,

SZ,3 -SZ 2 -SZ,3,

RZ<8,2)

SX,l 1/12 S 1- 1//2 Sy 2 -Sy 2X, , ,

SX,2 1/12 Sx 2 - 11/2 Sy 1 -Sy 1, , ,

Sx 3
1 1

-Sy 3S --S +-S, X,3 2 2,1 2 Z,3 ,

Sy 1 1/12 Sy 1 + 1//2 Sx 2 Sx 2, , , ,

Sy 2 1//2 Sy 2 + 1/12 Sx 1 S, , , X,1

Sy 3
1 1

-SX 3Sy 3 - :2 Sz 1 + 2 SZ, 3, , , ,

Sz 1 -SZ,3 -SZ 1, ,

Sz 2 Sz 2 Sz 2, , ,

Sz 3 Sz 1 -SZ,3, ,
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Table 10 continued

RZ(8,3)

Sx 1 1//2 Sx 1 - 1//2 Sx 2 -SX,2, , ,

SX.2 1//2 Sx 2 + 1//2 Sx 1 +S 1, , X,

SX,3 S SX,3X,3

SY.l 1/12 S - 1/12 SY,2 -Sy 2Y,l ,

Sy 2 1//1 Sy 2 + 1//2 Sy 1 +S 1, , , y,

SY,3 SY,3 SY,3

SZ,1 Sz 2 -SZ,1,

Sz 2 -SZ 1 -SZ 2, , ,

SZ,3 SZ,3 S.., 3
t...,
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Table 11. The effect of a pulse of frequency ~w = WQ + ow upon an initial

density matrix at equilibrium with the lattice for wI «w
Q

2 2 1
and ow «W

Q
' we = (ow + 2w1 )Z

*(J (0) 5
Z

1,

1 2
a X,l = 2 WI Ow/we (l-coswet)

1
a X,2 = Z wI/we sinwet

2 2
aX 3 wI/we (l~cosWet),

1
ay 1 = - W /w sinw t, 2 1 e e

122
aZ,l 1 - 2 wI/we (l-coswet)

122
a Z,3 -ZW1/We (I-cosWet)



Table 12. The effect of a pulse of frequency 6w = 0 upon an inItial

we 1 / L 1.
density matrix S . for wI «w V = -- = -- 'I//~11) + (jJ0.' e 27T 2'/T 1 (lp,l <

V

(coSVeTIt)(sinVQTIt) - v
Q

(sinVeTIt)(coSVQTIt)
e

1 2v1
~_ = - (---) {sin[(v +VQ)TIt] + sin[(Ve-VQ)TIt]}
Y,l 2 V • e

e
2V

1(--) (sinv TIt) (COSVQTIt)
V 'ee .

1 2V1
a = - (---) {cos[(v +V

Q
)7Tt] - cos[(v -V

Q
)7Tt]}

Y 2 2 vee, e

2v
1

(--) (sinV TIt) (sinV
Q

7Tt)
V e

e

0*(0) = Sz 2
, 1 V

Q
1 V

Q
'

a Z ,1 ="2 (1 + v) {sin[Ve-VQ)1ft]} - 2 (1- v-) {sin[Ve+V
Q

)7Tt]}
e e

V

(COSV 1ft) (sinv 1ft) + ~ (sinv 7Tt)(COSVQ1ft)e . Q V e
e

1 VQ 1 ~
a = - (1 + --) {cos [(V -v )1ft J) + -2 (1 - ) kos [(v +VQ)Trt]}2,2 2 V e Q . v e

e e
V

Q(cOSVeTIt)(COSVQ7Tt) + -- (sinV 7Tt)(sinv TIt)
V e Q

e
1 2V1

= -2' (--) {cos [(v +V )lrt] cos [(v -\) )'nt]}
V e Q e Q

e
2v

1(--) (sinV 1ft) (sinv 1ft)
V e Q

e

J09



V

+ 1. (1 - ~) {cos [(v -V )1rt])
2 V e Q

e

Table 12 continued

1 2V1 ,
(---) {sin [v -V

Q
) lTt] + sin [(v +V ) lTt ] }

2 Vee Q
e

2V
1

(---)(sinV lTt)(COSVQlT t )
V e

e

, o'~ (0) = SY,l
1 vQ 1 V

ay ,l = 2 (1 + V-) {cos[(Ve+VQ)lTt]} + 2(1 - v
Q

) {cOS [(V
e

-V
Q

)1Tt])
e e

V

(COSVelTt) (COSVQlTt) - v
Q

(sinVelTt){sinvQnt)
e

1 V 1 VQ '
= - 2 (1 +v

Q
) {sin[(ve+vQ)lTt]} +"2 (1 -V-) {sin[(V

e
-V

Q
)1TtJ}

e e
V

(cosvent)(sinVQlTt) - v
Q

(sinVelTt)(cosvQnt)
e

1 2V1
a

Z
1 (--) {sin[(v +vQ)nt] + sin[(V -vQ)ntJ}

, 2 Vee
e

2V
1

(~) (sinVent)(cosVQlTt)
e

1 2V1
a Z,2 = '2 (~) {cOs[(ve+vQ)nt] - cos[(Ve-VQ)lTt]l

e
2V

1
(-)(sinV lTt)(SinvQnt)
V e

e

0*(0) = Sy 2

a y l' = t (1 + ~Q) {Sin [ (ve+vQ)nt]) -- t (1 - ~) {sin [ (ve -VQ)nt])
, e e

V

(cosv lTt)(sinVQlTt) + ~ (sinv lTt)(cosvQnt)
eve

e
V

= 1. (1 + ~) {cos [(v +V
Q

] lTt])
2 V e

e
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Table 12 continued

311

az 1, ....

0*(0) = 5Z 3,

1 2V1(---) {cos[(V +VQ)TIt] - cos[(v -v )TItj}
2 Vee Q

e
2V

1(---) (sinV TIt) (sinVQTIt)
V e

e

1 2v1 ·
(---) {sin [(V +VQ)TIt] + sin [(V -vQ)·rrt J)2 Vee

e
2V

1
(v--) (sinVeTIt) (COSVQTIt)

e

1

__ VIVQ
aX,1 2 [1 -cos(2TI Vet)]

V
e

VI

V
e

2v 2
=_1

2
V

e

1

sin(2TI V t)
e

[1 - cos(2TI V t)]
e

VI
sin(2TI V t)

V e
e

V
e

0*(0) = 5
X,I 2

-~aX 1 - 2, cos(2n V t)
e

24v1+ --­
2

V
e



Table 12 continued

aX 2 COS(21T V t), e

2V
1 sin(21T V t)aX 3 \) e,

e

*a (0) SX,2

ax 1 -~ sin(21T V t)
V e,

e

aX 2 COS(21T V t), e

2\)1
sin(21T V t)aX,3 - --

V e
e

a)~ (0)
SX,3

aX 1

2V
1

V
Q [1 - COS(21T V t)]

2 e, V
e

2V
1 sin(21T V t)aX 2 = --

V e,
e

2 2
4V

1 COS(21T V t)
V

Q
aX 3 2 e +-2,

\) V
e e
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Appendix 2.2 Fictitious Spin ~ Operators and Group Theory

The utility and significance of the fictitious spin ~ opprutors

goes much deeper than is evident so far. The name chosen for them is

in fact quite inapropos, since these 9 operators plus the identity are

in fact a complete basis set which spans the space of operators which

describe the properties of a spin 1 system, in exactly the same manner

as IX' I y ' 1
Z

and I span spin ~ space. These operators provide us with

a rigorous representation of the complete quantum mechanical problem,

so in fact there is nothing fictitious about them. We have persisted

in using the term "fictitious spin ~" to underscore their analogy wi.th

two level systems and to remind us of their original cunstruction as

generalized Pauli spin matrics. We therefure present in this appendix

a slightly more rigorous and general presentation of their properties.

We first discuss their relationship to the more familiar spherical

tensor operators and then we discuss the formal basis for our approach.

Finally, we relate the operators to their matrix elements and the methods

of solution used for other non-spin multi-level systems.

Let us begin by obtaining a complete set of linear unitary operators

for a spin ~ system. We begin with the operators· IX' I y and I Z as

represented by the Pauli spin matrices and then obtain all necessary

quadratic combinations made from them, to complete the set.

1:-(0
2 1

1:- (0
2 .

~



o (A2.2-1)

It is obvious that no other forms are possible and that the set of

span the operator space for S =~. We could have

predicted this from the beginning since we know that the Pauli matrices

are a complete set of 2 x 2 matrices. For S = 1, however, quadratic

combinations of IX' I y and I
Z

generate new operators, for example in

the 11>, 10>, 1-1> basis set we find:

o 0)o 0 = Al
o -1

1
o
1

giving

2 G
0

~) G
0

D=I Z
a:: 0 0 A4

0 -1 0

2 C1 0
2

G
0

D=I a:: I 0 2 AS (A2.2-2)
X 0 1 0

plus others, where A
4

, AS' etc., are the new operators. For this case,

S = 1, we find we must use (21 + 1)2 - 1 S traceless independent

operators in addition to the unity to span the necessary operator space.

Convenience dictates that some linear combinations of these operators

(AI-AS) are more appropriate than others. For S = ~, for instance, we

depending on the problem to be solved. For S = 1, we use the Hamiltonian
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of interest, the Quadrupole Hamiltonian, to generate the most convenient

basis operators. This is most easily done by building the set lip using

all of the possible commutation relations. For example assume IX lS

a good choice for one of the basis operators, then commut ing this with

H
Q

gives:

and

-iI
X

(A2.2-3)

Thus IX and (IyI
Z

+ IZIy ) are seen to be good basis operators. The

fictitious spin ~ operators are generated in exactly this way, consider-

ing all of the possible commutation relations of H
Q

, IX' Iy ' I Z and eal:h

of the new operators in turn. And, of course when the operators arc

represented as 3 x 3 matrices, this process generates a complete set.

The results of the process are listed in Table l3B. Any general operator

for spin 1 may now be expanded in terms of these operators giving

Q L
p,i

a . I .
p,l p,l

(A2.2-4)

This brings us to the connection between the set of spherical

tensor operators and the fictitious spin operators. A spherical spin

tensor operator of rank k transfers according to the kth irreducible

representation of 0(3). It is found by reducing the product of a tensor

of rank m and rank n where m + n :: k. For spin ~ we form all combinations

I ,I for p, q = X, y, Z which can be reduced according to;
p q

j (l).Q...\I(O) .. h .
) G') glvlng t e spln tensors as

( I-) (!,:)
1)'2 (1)2 =



316

1 + 1
(IX+iIy )Tl,+l =)21 = -

j2

= l I 1
(IX-iIy )Tl -1 -, Ji j2

TI,O = I Z

TO 0 I (1\2.2-5),

For S = I the spin operator products are reduced as D(l) @D(l) =

D(2) <:a) D(1) (£) D(0) and the spin tensors are given in Table 13A, for

an operator TL M' We may now fully relate the two sets of operators,,

spin tensor operators and fictitious spin operators by combining

Tables 13A and B. The results of this algebra is given in Tables 13C

and D.

We now note that in order to solve a dynamics problem we must find

the transformation properties of the basis operators of the form

I . (t)
P,l

-iH t
e Q I .

P,l
(A2.2-6)

this will involve terms like

I . (t)
P,l

= e

. 2
-11 t

p,i
I . e
P,l

. 2
+11 .t

p,l
(A2.2-7)

which we wish very much to avoid, since we must involve nonlinear

algebra.
-iI t­Z-

For example we know the form for the transformations e
-iI t -iI t

e X and e y, since these are the transformations which comprise

the group 0(3). We know that any such transformation may be put into
. 1

terms of Euler angles. Then the transformation is given by D~(a,G,Y)



for S = ~
k

(n 2 is the basic representation, i. e. , the representation is
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given by the generators of the corresponding unitary group). For S = 1

(1) -i(IyIZ + IZIy)t
we would use D (a, B, y) . But for e there is no sueh

easy form. Therefore we have defined a new oper~tor I x,2' and have found

-~IX 2 t

its matrix representation and then calculated e ' explicitly. This

was done in Table 8. In group theory terms we go to a higher symmetry

group (we have added 5 new transformations giving SU(3» and use a new

representation (the octet representation of the higher group) for our

transformation properties.

There is in principle no advantage in doing this, that is the

transformations are actually the same. However we do gain in that we

may consider all of the transformations in the new group (SU (3» in a

much simpler algebraic form, that is as simple rotations abollt a specified

axis. And in addition we have shown that in certain instances we lIIay

rigorously draw analogies between two level systems and our spin 1

system. This allows a much better visualization of the dynamics. And

it is for this last reason that wemai,ntain the name "fictitious spin J...i"

8
as was originally proposed by Abragam.

We can ascribe another meaning to our description using the

fictitious spin ~ operators. As was mentioned before we can expand any

function in the I .' In particular the density matrix is given as,
p,~

p L
p,i

a .
p,~

I .
p,l.

(1\2.2-8)

We have also shown the correspondence of the I . and the spherical spin
p,~

tensor operators (Table 13 ). So, what we realize by the expansion in

equation (8) is in effect a tensor expansion or a multipole expansion of



the density matrix.
. 37

This treatment was first suggested by Fano, and
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it is also implicit in the distinctions made by de Boer (see Section III D)

between vector polarization and alignment, when put into terms of the

density matrix. But instead of the standard expansion in spherical

harmonics, our expansion is seen to be the most convenient one for such

a description for our system given the sYIlUl1etry and form of the Hamiltonian.

As an example of this concept's utility we note that it has been shown

that without an external perturbation, the tensor rank of the density

matrix will be conserved during time development. For our system this

implies that once the density matrix has been prepared in a state

which corresponds to pure alignment (1 3) that no vector polarization
Z,

will spontaneously develop and conversely once the density matrix has

been prepared in a state which corresponds to pure polarization, no

alignment will spontaneously develop.

We conclude with a reminder of the relationship of our operators to

the actual matrix elements which would be obtained in a particular

basis set. This then indicates the coincidence of our method with the

normal matrix element methods of treating multilevel systems as used

f 1 2b. 2e 1 d . 1 d' 2a d 1in or examp e ENDOR, mlcrowave, ,pu se optlca stu les, an tIe

6
approach of Hatanaka et al. for multiple quantum coherence. We wish

to find the matrix elements of the operators S . for the following two
P,l

basis sets,

1+1> and Ix> = 1/ 2 (1+1> - 1-1»

10>

1-1>

Iy>

Iz>

i/ 2 (I +1> + 1-1»

10> (A2.2-9)



with which a general wave function ~ may be denoted as,

~ alX> + bly> + elZ>

or

al+l> + slo> + yl-l>

The appropriate matrix elements are given in Table 14.

J19

(A2.2-10)
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Table 13. The relationships between the Fictitious spin ~ operators

and the normal Cartesian operators (Ix,Iy,I
z

) and the

spherical spin tensors.

a Normalized Spherical Tensors

-2 ~1 0 1 2

0 0 0 I I-I 1(1+1) 0 ()

10 1
I

Z
! I1 - ,-- I 0

12 1- +. 2

1. 1 2 1 I I
Z

)
1

(31
2

- I-I)
1

IXIZ) 1:. 12
2 ~ -(1 I + 2" (IZIX +2 - 2 z- 16" z 2 X

b Fictitious Spin Operators vs. Cartesian Operators

I 1 2 3

c

p,1

1 1
IZIy )

1 (1
2 r::)X "2 IX "2 (IyIZ

+ - -
2 Z

1 1
IZI

X
) ! (12

1
2

)Y 2" I y "2 (IxIZ + -
2 X Z

1 1
(IXIy + IyI

X
)

1
(1

2 2
Z lZ - - IX)2 2 2 Y

Spherical Tensors vs. Fictitious Spin Operators

I 0 2 a
I 0 12 (-HIX,l-IY,l)

l-iI -I I -iII Z,2 Z,3 y,2 X,2

-(Iz ,3+ilZ,2)

T
_ &m

o

1

2

-2 -1 o

± I

1 2

o 0

I 2+iI 2 I -iIy, X, . Z,3 Z,2



Table 13 continued

d Fictitious Spin Operators vs. Spherical Tensors

I
p.i

1 2 3

12
(Tll-T

l
_

l
)

i
(T

21
-T

2
_

1
)

16 +l ('1' +'1' )X - I; T204 2 4 22 ·22

]21

y

z

12
i

4

1
-- T
2 10

I~ '1' + l (1'22+1'2-2)- 4 20 4



Table 14. Relationship of the fictitious spin operators to final

matrix elements.

Basis sets:

1-1> Ix> -l/II (1+1> - 1-1»

322

10> Iy> i/12
1+1> Iz> ;: 10>

Wave functions:

(1+1> + 1-1»

~ ;: alX> + bly> + elZ>

al+1> + 810> + yl-1>

b-ia b+ia b ;: a+y
a;: 12 ' y = 12 ' 8 = c , 12' a

Matrix elements:

. a-y
1 /I

<s > =
z,2 ~

* *1/2 (a b + b a) * *-i/2 (a y - y a)

* *-1/2 (a y + Y a)

<S >
y,l ~

* * . * 1( 0/ * *1/2 (a e - c a) = 1/7/2 (a 8-13 a) + -1 2/2 (13 y - y (3)

* * * * * .-1/2 (a e + e a) = 1/'1/2 (a*8+S a) - 1/2/2 <B y+y ID

<S > = i / 2 ( - b *e + e *b )
X,I ~

<S > = -i/2 (b*e + e*b)
X,2 ~

1/2/2 (a*S + 8*a) + i/2/I (8*Y + Y*I~)

* * 0 * *-il '},II (a 8 - 13 a) + 1/2/2(13 Y - Y 13)
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Appendix 2.3 Derivation of the cross polarization time

The details of the derivation of the cross polarization time TIS are

given below for the S = 1 single quantum case. The calculation for the

double quantum case is straight forward once equations (2-98~ > 2-10~> are

derived. The commutator in equation (94) is calculated using equations

(2-83 and 2-95) giving

b IS". . X21 lp
(A2.3-1)

where p = X for SL and Z for ADRF (as in all that follows). Substituting

1 back into equation (2-94) gives for ADRF

{ " }2tr SXl

00.

~ dT geT) (A2.3-2)

geT) tr{(~2bi IipS~2)(S~2 COSWeST + S~3 sinWeST) exp(i H;p)
1

T L!J. I. exp( -1 H~pT)}
i 1 lp

The traces can be taken over the I and S spins separately since tr = tr1tr
S

.

However instead of evaluating the traces over the S-spins explicitly we

choose to multiply by:

2
tr(Lb.I. )

i 1 lp

and rearrange using equation (1) to give:
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2
cos ex

trJ(~ bil ip ) exp(i H~pT)(~biliP) exp(-i H;pT)}

tr( b.I.)2
i ~ l:p

(A2.3-4)

*The forms for HIP are exactly as that given in Chapter One where

for SL:

and for ADRF

The commutator is in exactly the same form as the VanVleck second

moment in the reference frame for the appropriate transition, which for

this case is a single quantum reference frame (see Section III B-1).

Mil
4l S

S" ] 2
Xl (A2.3-5)

If we apply a R
Z

(-90,2) rotation to get back to the normal rotating frame

(see equation (2-95» we obtain:

tr[ ~biliZ SZl,SX1- SY2]2

tr (SX1-~2) 2

(A2.3-6)

The linear combination of operators SX1-S 2 is the operator for the

sideband nearest the irradiation frequency, 1+1> + 10> (see Section 111-81)

To complete the calculation for the SL case we simply use the form
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24
for the correlation function derived by Demco et al. Since we have

shown by equation (4) the correspondence to the normal spin ~ case given

in Chapter One. That is, the time development governed by H~X generates

spectral density functions at frequencies; weS-w
eI

, WeS+weI and (DeS·

However in high field only one of these weS-w
eI

is important since it

involves the lowest frequencies for which the spectral density is still

high. Taking this into account gives the final result.

1 2 e
2 cos X

where the factor of !z reflects the neglect of the other spectral density

terms. For ADRF we conclude

where eX
-1

tan

To calculate the cross polarization time for the double quantum

case we need only repeat the above calculation with the new perturbation

Hamiltonian. This only involves a change in the geometrical factor (see

equation (2 -108) so that we may write the results directly in correspondence

with the single quantum case:

(t09)

for SL and for ADRF:

(UO)

(105)
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Appendix 2.4 Computer Programs

The programs to fit rotation data to equations (2-128) and (2-129)

are given in Tables 15 and 16 respectively (see Section V ) . Linear

least mean squares is used for the two parameters ~ and X for (128) and

the three parameters CYpp ' CY
NN

and CY
NP

for (129). In addition a phase

angle is required which is simply a reference angle between the initial

data point and the maximum of the rotation curve. The programs are

written in Basic and are quite specific to the particu~ar equation fitted.

The indirect detection experiment, Section VI-C2, must again he

fitted with nonlinear least mean squares. The program for the ADRF Case

is given in Table 17. The matrix of derivatives with respect to the

three parameters c, 6, and T (T = G) is inverted explicitly for speed.
c c

For the SL case the program is modified according to equation (2-119),

after allowing the proton field strength w
lI

to be read into the program.

The program to fit the cross polarization dynamics for the case in

which neither TID or TIP is negligible is given in Table 18 . The formulas

are given in VI-C4. Because of the difficulty of obtaining the derivatives

of the simultaneous solutions with respect to the parameters needed for a

least squares analysis, a general search algorithm was implemented for

the parameters TIS and E. The subroutine DIFEQ2 generates a completely

general solution for two simultaneous differential equations at a single

time t. This solution is not based on the normal integration techniques

but instead is the exact solution. The factor for the effective field

which enter into the calculation of the final normalized magnetization is

added as a parameter (see equation (159)). Then Mag,C st
= w1/wQ for the

double quantum case and = 1 for the normal spin ~ case.



Table 15. Program to fit crystal rotation data to the function y

(cosS) + X, using linear least mean squares.

J27



P2FIT E;R 1. l3

328

1 DIr1 RC·!(1,l, 5-:4(0, Sj ':'1(1)
3 LET P=J. 1415926
6 PRINT "INPUT I.ORIENTATJON AND SHIFT"
8 IrWUT LA, S
10 IF 1=8 GO TO 18
12 LET RCI)=A*P/180.
14 LET S-: 1):=5
16 GO TO 8 .
18 PRINT "GUESS ISOTROPIC SHIFT RND ANISOTROPY AND PHASE"
20 I HPUT :':., [), 1"6
21 LET "'=0
22 PRINT "HUMBER OF POINTS TO FIT"
23 INPUT J
24 FOR 1=1 TO J
25 LET R6=ACI)-P6~P/1Se.

26 LET P2~1. 5*rOSCA6)*COSCA6)-. 5
28 LET 51CI)=D*P2+X
30 LET Y=Y+CS1CI)-SCI».CS1(I)-SCI»
32 NE:n I
34 PRINT "STANDRRD DEVIATION"
36 pr~IrH .,'
] 7 GOSUB 3:00
38 pf;:HH "PLOT,?oo
40 INPUT "':l
42 IF Y$="Y" GOTO 513
44 GO TO 18
50 PRINT "ORIENTATION ,EXPERIMENTAL, FIT"
51 FOR 1=1 TO J
52 Pf<:I1H r-t.: I), SC 1),51·: I)
54 NEin I
56 PRINT
57 PRINT
60 FOR I=~L TO 3:6
61 LET U:=40. ID
62 LET V=25. -413. *X/D
63 LET J=S~I).U+Y+O. 5
64 LET A6=ACI)-P6*P/1BO.
66 LET P2=1. 5*COSCA6)*COS(AS)-. 5
68 LET 51(I)=D*P2+X
78 LET K=51CI)~U+V+B. 5
72 IF INT(J»INTCK) GO TO leo
74 IF INTCJ)=]NTCK) GO TO 9~

76 IF INTCJ»B GO T080
78 PRHH OOll".; Tr-tE'Cn.; "*"
79 GO TO l1(i
80 PI~lIH THB':J); "+00; TAPO(); 00.,."
82 GO TO l1C1
90 pfntH TfWCJ); "~.OO

9:~ GO TO 1 to
11313 PRlIH 'rHE:o:t~); ""'".; Tr~S':J); "+00
110 HE:n I
111 PRINT PNIC1B~.PNTC1B);PNT-:1e);PNT(1B);PNT(1B)

112 PRINl "NEW GUESS?"
114 lfWUT 'r''f.
116 IF ','$::""'" GO,TO 18
118 PRINT "t~EI4 r,r-tTfi~'"

120 INPUT ','$

122 IF YS="Y" GO TO 6
]1)0 LE T ;':1 '"0
]02 LET \,'1o:Et



3134
3B6
308
310
3:l2
314
7.16
318
320
322
324
326
328
3313
380

LET :<2''')
LET \,'2~(1

FOr: 1=1 TO J
LET AG=A(1)-PG~P/18a.

LET P2=1. 5*COS(A6)~C05(R5)-.5
LET ;',1'":<1 +P;,
LET ,'1'=','1+5'; 1)
L E r >:;~::: ~<;-~ + F' 2 ~.:F';~

LET ','2"','2+P;:'~S( 1)

NE>:T I
l_ET ~~6= Yl~::<2-~<j~:Y2:) <J~X2·-Xl~:Xl)

LET DC= J*Y2-~1~Yl)/ J~X2-Xl*~1)

PRINT" M5 ISO AND A ISO SHFT=";X6;D6
RETUF.:r~

Ern;.

3L9

REAl)'"



Table l6N Program to fit crystal rotation data to the general tensor

transformation equation (2-129) using linear least mean

squares.
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TENSFI T 1. (1

1 [)Jl1 R0:40), 50:4(1:', SlO:·H.1:l
3 p=]. 1415E:
6 PRWT "IIWUT I, C,I;:]Et~HiTION ~1N~;' ~;f'I]FT"

8 INPUT L 11, 5
~B IF 1=0 GO TO 18
12 LET RO:I)=R*P/180
14 50)=5
16 GO TO 1::
18 PRINT "GUESS SNN,SPP.SNPAND PHASE"
20 INPUT P2.N2,P],P9
22 PRINT "LIMITS FOR FIT"
24 INPUT t1, (I

25 Y9=1000
26 R:~=(1

27 E:3=l1
28 C3=0
29 []'=0
30 F:?=O
31 13=(1
32 ,r3=O
33 1(3=(1
34 L3=(1
35 Y4=(1
40 FOr.: N=rnO (I

42 X2=AtN)-P9*P/180
44 52=SINO:X2)*SINO:X
46 C2=COS(X2.)*COS(~~

43 53=-2. *SINO:X2)*C O:X2)
59 Y8=P2*S2+N2*C2+P *S~

5~~ fG=IE+S2*52
54 B]=B~:+S2*'C2

55 C:-(::;C3+5~>f;5]

56 E]=E~:+C2"'C2

57 FJ:=F~:+C2*S:!:

58 13= I :!:+S:i:*'S3
60 "'7=5 on --"'8
62 J3=JJ:+S;;:*"?
6 3 I( J: =Ie! + C;;: *, ','7
64 L].=L]:+S:i:*',?
65 "'14="'14 +,I? *',.17
70 NO:T Il
71 [)=RJ:*EJ*IJ:+B3*FJ:*C]+S]*F]~CJ-C3*E3*CJ:-FJ:*FJ*AJ:-BJ:*BJ:*IJ:

72 Q1=O:El*IJ-FJ:*F}')/~

74 Q2=(-8]~:I}·~(:3*F}:),/()

75 Q3=(BJ*FJ-EJ*C}.)/D
76 Q4=tAJ*I}.-CJ*CJ)/D
77 Q5=(-fl]~:FJ+C]~B:?:)/D

78 Gl6= 0: rUt'E J'-[:]:'I[;:!) 1[;'
80 P4=Ql*JJ+Q2*1(]+U3*LJ
81 r~4=(0 2*J :i: + G'4+1::~ +CO::' >'L:!:
82 P5=Q7*J3+US*KJ+D6*LJ
85 P2=F,>~F"

86 N2=tl2 +N4
87 PJ=PJ:-~P5

88 PRINT P2,N2,PJ,Y4
89 IF ABSO:Y4-V9)/Y9< 001 so TO 94
91 Y9=\,"1
92 GO TO 2':-
94 pr?lt~T II~;'NH. 5PP, SNF':;,;lI; F'2 .. ~J2, !:'~:. 1I~~::'[IE""=Il; 1,'4
1130 pr.: IIn "PLOT")"
101 IrWIJT ','t
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102 IF Yt="Y" GO TO 104
103 GO TO 1~:

104 F'r<:I1H "Of.: EtHfUm.. E:';!"E~I:1ElnAL, FIT"
1B5 FOR 1=1 T 37
106 X2=A(I)-P ~P;1SA.

107 51(I)=P?~ IN(X2)**2+~2.COS(X2)**2-PJ*2*5IN(X2)*COS(X2)

109 Pf<:I1H fi<1 ,5<1), 51(])
110 NE:n I
111 PRI tn
112 PRI tn
113 FOR 1=1 TO 37
114 U=4B. !(2!J~(P2-N2))
115 V=25. -40 ~:(P2(··<2,::~*':f)2~~.2):)-1.)
116 J=5(I)~U+V+O 5
117 1::'=S1( 1 )*U+\/+0. 5
118 IF Iln(,[:,}Itn(!::) GO T0127
119 IF INT(J)=lNT(KJ GO TO 125
120 IF INT (J)}0 GO TO 123
121 F RI tJT "W'; T rHo: ( t:::l; "*"
122 GO TO 128
123 P r.; I rn THE: ( J ); "+"; T1': S ( !:: ); "","
124 GO TO 1:~t:

125 PI<ltn TfiB':.[); "i'"
126 GO TO 128
12;> P 1< I In 1 HE: ( I:: ); )' * " .; TH~: .; J ); "+"
128 r~E:n I
129 PI< lin r'tn (10); PIn (HI); PIn (1(1); PIn·: 1(1).; PIn 0: 1(1)
130 PRINT "NEN GUESS?"
131 I NPLrr "'$
132 IF Y$="Y" GO TO 18
133 PRINT "NEN DHTH?"
j. 3" I IH" UT ',' $
135 IF YS="Y" GO TO 6
300 ENC'

READ'"
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Table 17. Program to fit the destruction spectra from the cross polarization

experiments, using nonlinear least mean squares. DISFI']' is for

the AORF case and OrSSL is for SL casc.



DISFIT 8A 1. 0

1 Dlt1 A <:>1).. S 0: ;, 4 :>, S 1 0: ;: 'I )

2 F'1i~Itn "JNPUT OI1E('Al~... Dl1ECiR Q. Ot1EGR 1 Rr~C' COt"·;'Ef':CiEtKE FfICTCIIi:"
3 INPUT 01.02,OB,F5
4 T8=1(10
5 E8=4. 6666[-03/(0 *
6 T3=ATN<SQR<2l*Ol 0
8 PRJNT "JNPUT 1,0 F T AND ~ DJ51"

.9 WPUT LA<l),Sn
10 IF 1=9 GO TO 18



12 IF H:< E:S-:AO:1)-fi-:I·,LI) GO TO 1f.
14 TB=RES A(I)-A(]-1JJ
16 GO TO
18 PRINT GUESS C.BETfi.GRMMA"
19 INPUT C,B.G
21 r'R III T "L H1 IT S F (I1~ FIT"
2] I1WUT 1'1. a
25 Y9=1(1(1(i
26 A3=0
27 133=0
2B C3=0
29 D='O
30 F:-~=O

31 13=('
32 J3=0
33 1(3=0
34 L3=(l
35 "'4=0
40 FOR 1=11 TO 0
42 GO SU£) ~OO

46 AJ=R:?+R1~'R1

47 B3=[:3+1;:1*;;':2
48 C3=C:?·tla~,r-:3

'19 E3=EJ+I~2*R2

50 F3=FJ+r\2~,r,J

51 I3=I3+RJ~K!

52 "'7=S(])-I?
53 J3=,T:.:+IU* ..'7
54 1(]=I(J:+1~2*Y7

55 L3=L3+RJoIco.,·7
58 ..... =..·4 +0.,'7*0.,'7
60 HE)<l I
62 D=A]*E301cIJ+8J*F3*CJ+B3*F3*CJ-C3*E3*C]-Fl*FJ*AJ-BJ*Sl*11
63 Q1=(E3*IJ-Fl*FJ)/P
64 Q2=(-8JoIcI3+C3~F3)/D

65 Q]=([:3*FJ-EJ*CJ)/D
66 Q4=(AJ*IJ-CJ*C])/D
67 Q5=(-fi3*FJ+CJ*B3)/D
68 Q6=(RJ*EJ-BJ*B3)/D
70 C4=Ql*JJ+Q2.KJ+QJ~LJ

71 B4=Q201cJJ+Q4o1cIC3+0S*L:~

72 G4=Q3*JJ+Q5*K3+Q6*LJ
73 GO SU[: 700
74 C=C+C4
75 B=B+84
76 G=G+G4
78 PRINT C.B.G.Y4
79 ]1' A8S(Y4-Y9)/Y9(0. 01 GO TO 93
81 Y9=o.,'4
82 ]NPUT G$
83 ]F GI="U" GO TO 26
93 PRINT PNT(10);PNT(jO);PNT(10)
94 PRINT "C,BETA.GAMMA=";C,D.G,"S2DEY.-;Y4
95 GO ",','£) 600
96 19=. ll(101
97 PJ;:Jrll "O/FSET • ;! DISTRUCTlOIl. FlT­
98 "'4=13
99 I'OR ]e1 TO 0
joe GO SUB ~Of)

101 S1())=)7
102 IF 19)17 GO TO 104
11B T9=];7
104 PR]NT A(]).S(]).S1,:])
105 Y4=Y44<S(I)-51(])**2
106 NEXT 1 .
107 PI;'lIn prn (llD; "5::'D£:'..-:. ... "'4; PIn <10) -' PIn (1l")
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10 E: P rn In " PL0 1 "
109 J r~;:'UT ~'$

110 J F ','$=" W' GO TO 95
1:1.2 Pfdtn prnO(1); ptn(10); ptnel.O)
113 1,';=-1

114 FOR 1=1 10 24
116 U=Cf:,"T9
118 1/=',,'+1
119 IF A(1) )18*I/-A(1)+ 005 GO TO 121
12B GO '10 12:?
121 PF'ltlT
122 GO TO :Ll8
12s J=S<J)",U+2 5
124 K=51(j)*U+2. 5
126 JF INT(J)}JNT(K) GO TO 137
127 IF Itn U)=Jln(I::) GO TO 135
128 JF JNT (J)0 GO TO 1J}
1]0 Pfnrn "W'; TAB-:I::); "*"
:131 GOTO :ut:
1 3 ~ P fn tn T Ii E: ( J ); "+"; TAE: o:!( ); "*"
134 GO 10 1 ~:8

1 3 S ~'fn rn 1 A f~ <,r ); "*"
13:6 GO TO 138
137 PlntH THE:<K); ">I"; TAS<J); "+"
13:E: tH:::n J
14 0 PRJ rn P tn ': 1 (l ); Prn <10 ); F'IH <10 ); P NT <1(1 )

142 PRINT "NEW GUESS?"
143 I tlF'UT ~''t

1'44 IF ~';t="','" GO TO 18
145 PRINT "NEW DATA?"
146 J tlPUT ','$
147 IF ','$= '",''' GO T:) ;.:
160 REM SUB ROUTINE TO CALCUL~TE FUNCTJON
500 T2=ATN<2*A<J)/(01*01/02))
502 DS=50R'Ol**4/(02*02)+4*A(I)*A<11)
504 t1:,=~~T::,'L }~",~:.,.f~'iJ:;'\fbot .:, j I~ (r]) f':: i II 0:'1 ::/:~ ) d'" 1 IJ (T? I ) -of~ =1
506 I4=C*<E8*05*05/<1, +E8*05*(5))
50S 15=E~<PI:-05*G:)

510 I6=EXP(-8*MS*G*JS)
512 J7=J4*'J6-1. )
~;14 Rl=I7/C
516 R2=-J7*15*M5*G
518 RJ=J7*8*M5*I5*<G*05-1.
530 r;:ETur;:tl
600 REM FJNAL JNPUT ROOUTINE
601 PRJNT "FINAL PARAMETERS?"
603 lNPUT C2.B2.G2
605 ]1' C2~0 GO TO 611
607 C=C2
61W F:~B2

G09 G~G2

61~L RETUf;:rl
700 REM CONVLRGE~CE FUDGE
702 IF AF:S<C4/C)(B. 01 GO TO 70G
704 C4~C4/F~)

706 IF A8S(B4/B){B. 01 GO TO 710
/03 84~E:4/F5

710 IF A8SCG4/GJ(G 01 GO TO 714
712 G4=G4/F.~'

714 RETURN
800 Erw

RERD~'

JJfJ
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*CJ+83~FJ·C3-C3*EJ.CJ-F3"'FJ*AJ-8]*B]*IJ

/{)

)/D
/[)

,I()

:> /[>

1 V I '1 r1 <2" ) 1 S <2 4 ) 1 S 1 .: 24 )
2 PR!ln "HlPUT 011EGH1~" Or1EGFl Q, Ol1EGfi I AIH:- COINEF:GEtKE FFiCTOP"
]: INPUT 01,02.08,F5
4 Tf:=100
5 E8~4. 6GG67[~·-'}3t!(08~08*. 1535*. 1535)
6 T3=ATN(SQR(2)*01/0Z)
B r R I NT" 1I~ F' 1I T L 0 F F SET filW ;~ DIS T "
9 lIWUT LH(I),SO)
10 IF I=G GO TO 18
12 IF TS<ABS(R(IJ-A(I-l)) GO TO 16
14 TB=A8S(R(IJ-R<I-1))
16 GO TO 9
18 F'R Itn .. GUE::'5 C, 8E TA, Gt1t111A"
19 lIWUT C, 8. G
21 [,'RINT "LHIITS FOR FIT"
23 lIWUT 11, ()
25 Y9=11300
26 rG=o
27 In=c
28 C3=0
29 c<,=(1
30 1'3=0
31 13=13
32 J}.=-O
31 IC}. '=0
3·\ L3=0
35 "'4={)
40 FOR 1=11 TO 0

. 42 GO SUB 5\;13
46 rG=AJ>l-R1*·R1
47 [::<=83+R1*R2
48 C}.=C:;·H;:1 *'R3
49 E3 =C? ·H~ ~>II;:2
50 F3=F3·~R2*'IU

51I3'=I3+RJ:·HU
52 ,,'?=s-:] )'~'1?

53 cT3=c1:?+Rl""'l
54 K3:=t<3+R2*"'7
55 L3=L3+R:?"''''?
58 "'4="'4+'t'?*S?
60 I~E~n I
62 ~=fiJ*EJ*13+B '"
63 Q1=(E3*I3-F3 I'
64 Q2=(-83*13+C '"
65 Q3=(83"'F3-EJ C
66 Q4=(A3*lJ-C3*C
6? Q5=(-AJ",F3+CJ*
68 Q6=(AJ*E3~BJ*8 /~



70 (:>I~01".J 'H1;'::*i:::>~G! '~L

71 84=Q:~>iJ +1:.'4,q::>H) ,'oL
72 G4=Q]~J -~Q5'~iC]·~G )~L

73 GO SUE: 00
74 C=C'~C4

75 E:~E:'184

76 G'=G+G4
78 PF: nn C, B, G, '1'4
79 IF ABS<Y4-Y9)/Y9(O. 01 .SO TO 93
81 Y9='I'4

82 lHPUT G'.
83 IF G$~"G" GO TO 26
9:$ PF:un prn(10); :o'n':113); PtH-:19)
94 PRu·n "e.. [:ETii, GRI111fi'="; C, B, G, "S2CoE\l~"; '1'4
95 GO :;UE: G1W
96 T9=. 0(1Wl
97 Pr::ltH "OFFSET, :; DISTRUCTIa~~, FIT"
98 '1'4=0
99 FOR 1=1 TO 0
100 GO SUE: ~,[t0

101 SlO:1)=}?
102 IF T9)I7 GO TO 1134
103 T9=I7
104 PR UH A<1), SO: 1), S1< 1)

105 Y4=Y4+<S<I)-510:I»**2
106 NE:n I
1137 PI~ ltH PIH 0(3); "S2DE'l=", '1'4; PIn <1(3); PIn 0: 10)
108 PRlHT "PLOT"
109 I t~PUT 0.,'$

1113 IF YS="N" GO TO 95
112 PRINT PNT(10);PNTO:10);PNT<113)
113 'l=-l
114 FOR 1=1 TO 24
116 U=68/T9
118 1,'=1/+1
119 IF R<I) )T8*I,'-A(1)+.0135 GO TO 121
120 GO TO 123
121 PRINT
122 GO TO 118
123 J=S(I)*U+2. 5
124 K=51(I)*U+2 5
126 IF INT<J»INT<K) GO TOll7
127 IF INT O:J)=INT(K) GO TO 135
128 IF INT (J)}0 GO TO 133
1313 PRINT "W'; TABO(); ">1<"
131 GoTO 138
133 PRUH TiiB(J); "+"; TAB(f(); "'t'''
134 GO TO 138
135 PId rn TA8 ( J ); "~"

136 GO TO 138
137 PF:lIH HIBO(); "*"; TAB':]); "+"
138 NE~<T I
140 PRlIH prH00); prn(0); f:-~n':l(); 1"1'10:10)
142 PRlIH "r,El~ GUESS?"
143 INPUT 'T"t
144 IF YS="Y" GO TO 18
14 5 P F: ltH "IIn, NiT A';> "

146 I t<PUT 'T'$

14? I F 'I' S ~ " 'I'" G() TO 2
160 REM SUB ROUTINE TO C~LCULR!E 5L FUNCTION
500 T2=ATN0:2*A(1)/O:Ol*01/02»)
502 05=5QR(01**~/0:02.02).4*R<!)*AO:I»)

504 r15 '0 .;..f O.J : L,' i: • I i!"" C. 05 '. Ho' . ~; I fj : or ~., 2.1 * • <". *.:: II. (1'l!) ) I I ::::"1
506 14=C >10 ': ES+O:5 ~ 0::',," 0: 1. '~E:::~o(i5'I'05))

508 15=f~~<F":·-·~i)5·-0S:)~':05-aS)~G)
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512 17=14$(16-1 ~

51·; F:l=I ?/C
516 R2=-1~"~:151:r15~G

518 RJ=]7~8+M5.]5+(G~(05-0S~~<D5-0SJ-l1

::,30 RETUIW
600 REM FINftL INPUT ROO~l]NE

G01 F'R]~n ">-ItJftL PfWRr1ET~RS')"

603 INPUT C2.82.G2
685 IF C2=8 GO TO 611
607 C'=C2
608 8'=82
609 G=G2
611 F:ETURN
700 REM CONVERGENCE FUDGE
702 IF RBS(C4/Cl(6. 01 GO TO 796
704 C4'=C4/F5
706 IF RBS(84/B)<B 01 GO TO 719
7138 84=B4/F5
710 IF R8S<G4/Gl<13 01 GO TO 714
712 G4'=G4/F5
714 RETURI~

800 Elm

3]<)



Table 18. Program to implement a search for the parameters to fit a

general cross polarization experiment.

340



C PROCi,iV, ','0 ;;OLVr: C'fWSS Fr.:L ..\X\'I'T')r~ r,If'r'r:0 FOli Cr.Nr:QI\f, CI\~~I:.

C TilEI; IT C)'",P;\PCS !":,~ULT TO ;';:~l'LYPI[:NTAL NLlW'\£cllS TYPE!) IN
C FkO!'! Tds /;CYrll),ilW.THE: HL~ULT 1::; PRIt~'i'l-:D Oil'!' IN '\ MI\'I'HIX OF
C S'l'l\:'; O,i PD DEV I tV,'I ()~\IS. VA IU hG '1' J S lINn [';P:; :1 HulPJIl CflO:'; I: loJ V,I\ LilES.

DI,"'c:NSIOt'2 VO(2) ,1\(2) ,R'J(2,2) ,V'I'(2) ,TI11C(14) ,PT(14) ,SI<HUF(ST,
1 TIS(S) ,llL'l'I\'J(14)

AccePT ,"NUMDER OF DATA POINTS:",N
DO 5 I=l,N
i\C C LPI ," l' Hi E: ( 1) =" ,T rr~E (1) ," P'I' ( 1) =" , 1'1' ( I) ,

5 CONTHH':S
100 ACCEPT ,"NO!\'iIlLIZE TO I=",NOHM,

ACCEPT ," T1k,'fID,DF.:'1'IiL,il1,xr·lU,f1fl,HL, ~l1\G ClJST=" ,
f,CCl:f-'T ,TIR,TID,flET/iL,ill,xr'lU,flO,i1L,CS'I'MG
COOL=HU/IlL
VO(1)=COOL*8LTAL*XMU
VO(2)=O.
A(l) =8ETAL/'1'IO
A (2) =l3ET/\L/TIH
TYPE ,"Tlf,=" ,TIE,"TID=" ,TID," 8ET/\L=" ,BETAL," BE'I'II lI1=" ,VO(l) ,

10 CON'I'INUE
ACCEP'l' ,"EPS=" ,TESEPS,"TIS=" ,TEs'rIS,
ACCEPT ,"EPS STEP=",ESTLP,"TIS STEP=",TSTEP,
DO 2<) 1=1, 5
EPS=(TESEPS-2.5*ESTEP)+FLO~T(I)*ESTEP

EPS=(EPS*fJl*f11)/(IlL*flL)
DO 30 J=1,5
TIS(J)=(TEST1S-2.5*TSTEP)+FLOIIT(J)*TSTEP
RO(l,l)=-(EPS/fIS(J)+l./TIO)
RO(1,2)=CP3/TIS(J)
kO(2,1)=1./T1S(J)
RO(2,2)=-(1./TIS(J)+1./TIR)
EHR0H(J)=O.
DO 25 K=I,N
'f=TH1E (K)
CALL OIFCQ2(VO,lI,RO,T,VT)
I3E'l~!3(K)=V'1'(2)

25 CONTINUE
DO 40 I!'=l,N
GETAB (I K) =i3ETMl ( IK) * (CSTl~G* Hl/ (lI0 *[3[;TAL) )

40 CONTINUe
IF(NORM .EQ. 0) GO TO 150
BETN~=I3ETlID(NOR~)/PT(NORM)

150 IF(NORM .CQ. 0) BETNM=l.
DO 50 IK=l, N
BETAi3(IK)=8ETAB(IK)/8ETNM
ERRQR(J)=CRROR(J)+(b~TAB{IK)-PT(IK»**2

50 CONTINUE
30 CONTINUE

WRITE(1{J ,1) EPS, (ERROR(KK) ,KK~l ,5)
1 FORMAT(E13.5,"I",5E13.5)
20 CONTINUE

WRITE(10,3)
3 FORHAT(13X,G5(" "»

\'RI'l'I.:(Hl,2) ('i'IS(KK) ,KI<=1,5)
2 FORMAT(]3X,5E13.5)
C TRY AGAIN?

ACCEPT ,",1\GAIN?" ,NYES.
I f ([ JY F: S • E() • 1 ) GO TO 10
ACCt:p1' ,"FINAL t,PS=",EPS,"FHJ7\L T/\U=",TAU
RO(1,1)=-(EPS/TAU+1./TID)
1<0 (l ,2) =EPS/TAU
kO (2,1) = 1 • /T..iU
RO(2,2)=-(1./TAU+l./TIR)
Wf<ITE(Hl,4)

4 fOk~IAT (I) X, "1'1 /-lE" , III X, "8l1" , 11 X, "B£3" ,11 x, "Mfl" , 1\1 X, " EX PF:!}" )
[lO ')\:J Y.=I, N



l'='1'H1E:(K)
CALL DIFEQ2(VO,A,RO,T,VT)
XN8=CS'lMG * 1ll/(1iJ *Vl' (2) / Gt-:l'AL
ViHI'1'E(UJ,l) 'l',VT(l) ,'1'1'(2) ,Xrl':;,PT(K)

9fl CONTIrWI::
ACCEPT ,"AGAIN?",NYES,
IF(NYE5 .EO. 1) GO TO 10
ACCEPT ,"I~EW PAHMIETL;RS?" , NYES,
IF(NYCS .EO. 1) GO TO 100
END

*



C ROU'rI N~u~l)o~6f~E %f)E8hb¥tl '~1~8r..tAMI6us 01 Ff'ERI N'rlAL EQUATION
C OY M.I\'!'HIX ~IE'l'1I00. DV(T)~A+PO'V('r) WHERE V,AANO VO ARE VECTORS AND RO IS A ~lATIX.

C VO~V(0) THE INITIAL CONDITIONS
C A~VECTOR OF CONSTANTS.
C RO "'MATRIX OF COEfFICIENTS
C V'r=V(T) THE SOLUTION /1'1' TIr1E ~T

Rt:;AL- LA~10P, Ll\~llW

1
OH1EN?ION 'v'O(2) /..A(2,1 ',RO(2,2) ,V'r(2) ,0(2,2) ,DI(2,2) ,CAPLA.'lI(2,2),
EX(2,2) ,TEMP(2,L) ,VrfoMP(2) ,SECPT(2)

C FIND EIGENVALUes
ROOT=SQRT ( (HO (1,1) +RO (2,2) ) * (RO (1,1) +RO (2,2) ) -4 • * (RO (l ,1) * HO (2,2) :..

1 RO ( 2 , 1 ) * hO ( 1 , 2) ) )
LMIDP",U. 5* (HO (1,1) +RO( 2,2) +ROO'I')
LAMDM=0.5*(RO(I,I)+RO(2,2)-ROOT)

C FINO NOTATION MATRICES
0(1,1)=1.
0(1,2)=!.
D(2,1)~-RO(2,1)/(P.0(2,2)-LAMDM)

D(2,2)--RO(2,1)/(RO(2,2)-LAMDP)
FACTOR~D(1,1)*D(2,2)-D(2,1)*D(1,2)

DI(I,I)=I./FACTOR*D(2,2)
DI(1,2)=1./FACTOR*(-D(1,2»

OI(2,1)=1./f'ACTOR*(-D(2,1»
DI(2,2)=1./FACTOR*D(I,I)

C FIND EIGEN VALUE MATRICES
CAPLAMI(l,l)=I./LA~DM

E~pU~I1 ~: fl;;;8:
CAPLAMI(2,2)=I./LAMDP

C AND EXPONENTIAL MATRICES
EX(l,I)=EXP(LAMDM*T)
EX(1,2)=U.
EX(2,1)=f).
EX(2,2)=EXP(LA~DP*T)

C CALCULATE SOLUTION VECTOR VT=D EXP(LAM*T) 0-1 va +
C D (-I-EXP(Ll\l',*'l'j) 0-1 0 LA/.l-l 0-1 A.

CALL MATRIX(2,D,EX,TEMP)
CALL MATRIX(2,TEMP,DI,EX)
CALL VCCTOR(2,EX,VO,VTEMP)
V'I'(I) =VTEMP(I)
VT(2)=V'l'EMP(2)
EX(l,lj=-I.+EX(l,l)
EX(1,2)=EX(1,2)
EX(2,1)=EX(2,1)
EX(2,2)=-1.+£X(2,2j
CALL MATRIX(2,D,CAPLA~I,TEMP)

CALL MATRIX(2,TENP,DI,CAPLAMI)
CALL VECTOR(2,CAPLAMI,A,VTEMP)
CALL VECTOR(2,EX,VTEMP,SECPT)
VT(I)=V'l'(I)+SECPT(l)
V'l'(2)=VT(2)+SECPT(2)
RE'fUHN
END
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