LLBL-5458

CARBON AND DEUTERIUM NUCLEAR MAGNETIC
RESONANCE IN SOLIDS

Thomas Wayne Shattuck
(Ph. D. thesis)

July 1976

Prepared for the U. S. Energy Research and.
Development Administration under Contract W-7405-ENG-48

8g¥S-"1d1



Carbon and Deuterium Nuclear Magnetic Resonance in Solids
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Abstract

In Chapter 1 we present the results on a study of cross polarization
dynamics, between protons and carbon-13 in adamantane, by the direct
observation of the dilute, carbon-13, Spiné. These dynamics are an
important consideration in the efficiency of proton enhancement double-
resonance techniques and they also provide good experimental models for
statistical theories of cross relaxation. In order to test these theories
we present a comparison of the experimental and thebretical proton dipolar
fluctuation correlation time T which is experimentally 110 ! 15 usecc
and theoretically 122 usec for adamantane. These double resonance
considerations provide the background for extensions to deuterium and
double quantum effects discussed in Chapter II.

In Chapter II an approach to high resolution nmr of deuterium in
solids is described. The m = 1 -+ -1 transition is excited by a double
quantum process and the decay of coherence Q(1) is monitored. Vourier
transformation yields a deuterium spectrum devoid of quadrupole splittings
and broadening. If the deuterium nuclei are dilute and the protons are
spin decoupled, the double-quantum spectrum is a high resolution one and
yields information on the deuterium chemical shifts Aw. The relationship
Q(t) v cos 2Mwr is checked and the technique is applied to a single crystal
of oxalic acid dihydrate enriched to v 10% in deuterium. The carboxyl and

the water deuterium shifts are indeed resolved and the anisotropy of the



carboxyl shielding tensor is estimated to be A0 = 32 * 3 ppm. A

complete theoretical analysis is presented.

The extension of cross relaxation techniques, both direct and
indirect, to proton—-deuterium double resonance is also described. The
m = 1 > -1 double quantum transition and the m = * 1 + 0 single quantum
transitions may all be polarized and we present the derivation of the
Hartmann-Hahn cross polarization conditions for each case. 1In addition
the dynamics of the double quantum process, for monodeutero benzenc are
discussed, giving proton dipolar fluctuation correlation times, and spin

heat capacities for the double quantum transition.
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Chapter I

1. Introduction

New double-resonance techniques have been developed for high

sensitivity and high resolution NMR of dilute spins in solids, and
: ) -5
these techniques have become quite common laboratory tools. The
spectroscopic utility of these techniques comes about because the
normally very large linewidths in solids are narrowed to the point
that chemical shift information may be obtained. This narrowing is
brought about by an isotopic dilution, which decreases the homonuclear
interactions, combined with spin decoupling which decreases the hetero-
nuclear interactions, giving rise to high resolution. However this
dilution necessarily decreases the sensitivity so that double resonance
techniques must be used. The basis of one set of these experiments is
the transfer of nuclear magnetic polarization from one nuclear species
. . 13

(I), normally protons, to a dilute species (S), such as ~7C, under study,

and the application of high power spin decoupling. A prime candidate
for application of the techniques is the determination of full 13C
chemical shielding tensors in organic single crystals.11 An important
considefation in the design and efficiency of such experiments is thaﬁ

of the dynamics of the polarization transfer from I to the S system,since
this ultimately determines the sensitivity enhancement, the time scale
accessible, and thus the range of possible systems that can be studied.
In this chapter we present a study of cross—polarization dynamics by

direct observation of the dilute nuclear spins, and an approach to

"total cross-polarization.'" The direct detection method is termed



Proton Enhanced Nuclear Induction Spectroscopy-

To make the problem more concrete, Figure 1 shows a schematic of
the general approach. Two extreme cases may be considered: '"multiple
cross—polarization' and "total cross-polarization." In the first, a
small amount of I polarization is transferred to the S spins and the
cycle is repeated many times as indicated, with the S signal being
accumulated. In the second, all or a substantial amount of the I

. 4 .
"in one shot" and the experiment and

polarization is tramnsferred
observation of the S spins are performed once per I repolarization. It
is not clear that the second approach is advantageous, since the dynamics
of the cross-polarization may render the process slow and technically
difficult. However, for experiments that require long observation times
of the S spins, such as long-lived spin echoes or very high resolution
spectroscopy, the multiple cross-polarization is clearly not possible,
since it requires the expenditure of rf power and the maintenance of I
spin order for unrealistically long times. Thus it is clear that a
quantitative understanding of the process is a mandatory prerequisite
for the development of these experiments.

The present experiments were performed on a small sample of solid
polycrystalline adamantane. Cross-polarization occurs from a proton

12,13 This approach is

system demagnetized in the rotating frame.
selected since the analysis is simple and the technical requirements for
total cross-polarization are not too stringent. The mechanism for the

cross-polarization derives from fluctuations in the I-S magnetic dipolar
. . . . 14,15 -
coupling due to mutual spin flips among the T spins. That is,

the proton-proton magnetic dipole interaction causes a modulation of the

magnetic field at a particular 13C nucleus. This fluctuating field



Figure 1. General schematic of cross polarization experiment: a) shows
the abundant I and dilute S nuclear species coupled to each other and to

the lattice with characteristic times TI (cross polarization times) and

S

TlI’ TlS (spin-lattice relaxation times); b) shows the general approach

where repeating the cross polarization step characterizes the multiple

contact procedure.
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induces transitions between the 13C Zeeman levels causing the energy
transfer, and can be characterized by a correlation time TC. This can
be thought of as the average time during which the magnetic fiecld at a
13 . . .

C nucleus stays constant. The correlation time can be rigorously
calculated knowing the structure of the solid of interest. These calcu-
lations are of great interest since (a) they are useful structural
tools, (b) they will permit the design of optimal high sensitivity
techniques for detection of rare isotopes, (c) they provide good models
for statistical mechanical theories of spin behavior. We have carried
out this calculation for an FCC lattice, and have found the correlation
time, TC, for adamantane. The experimental T. and theoretical are in
quite good agreement.

In the second chapter we present an entirely new approach to proton
magnetic resonance in solids. It is analogous to the carbon-13 proton
experiments above except now we choose to observe dilute deuterium
nuclear spins (2H). Wé show the development of two new spectroscopic
techniques which allow the first high resolution determination of
deuterium chemical shifts. We also show the application of double

resonance cross-polarization techniques to the deuterium proton system.

W



IT. Cross Polarization: Background

The cross polarization process takes place in three distinct steps.
First we cool the I spins, we then effect a transfer of spin energy
between the I and S spins and lastly we observe. We use two different
ways of cooling the I spins reservoir, spin locking (SL) and adiabatic
demagnetization in the rotating frame (ADRF). See Figure 8 for the
pulse sequences used. Spin locking serves to rotate the quantization
axis into the X-Y plane giving a net cooling of HO/H11 where HlI is the
intensity of the I spin radio frequency (rf) irradiation. ADRF produces
a low temperature in the dipolar state. This temperature concept
applied to the dipolar state is illustrated in Figure 2, where each of
the Zeeman levels is broadened severely by the dipole~dipole interaction
(numbers shown are for protons in adamantane). The populations of this
quasi-continuous level scheme are given by two spin temperatures, Tz

the normal Zeeman spin temperature and T, the dipolar temperature. In

D

the dipolar state TZ = o yhile TlD is finite. The energy of such a

system is given purely in terms of the dipole-dipole Hamiltonian for

like spins:

2
Y. h
H(O) = S S (3 COSZG.. -1 {31 1 - I.1} (1)
1T 3 2 ij iz 47 ~i~j
. r.,. -
1<j ij

or thermodynamically in terms of the local field HL,

(2)

oo

E = BCIH

where CI is the normal Curie constant,



Figure 2. Level scheme for a spin % nuclei interacting with cach other

through the homonuclear dipole-dipole interaction. The represcentative
frequencies given are for protons in adamantane in an external f{icld of
25 Kgauss. The populations of the Zeeman levels are described by the
Zeeman spin temperature TZ or the inverse temperature BZ = 1/k TZ' The
populations of the dipolar sublevels are given by the dipolar spin

temperature T, or its inverse BD.
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2,2
= h
CI YI NI @ I(I+1)/3

. ] . . 1
B 1is the appropriate inverse spin temperature [ = 7= and the local

kT
field is given bylz’29

2
er @l9?)
2 II .
i = 2 (3)
t M
r (M)
. . . - v hY¥I.. . ] et
where MZ is the magnetization operator MZ YIIEIlé HL is eflectively

the net field a spin would experience due to its neighbors. ADRF gives

rise to a net cooling of HO/HL.12’13’31
To effect an efficient transfer of polarization we must arrange that

mutual I- and S-spin flips become energy conserving. This will be true

. . . - - ;e 16
in the rotating frame if the Hartmann-Hahn condition is satisfied,

Yihr T Ysfis (4)
where we apply r.f. irradiation at the I and S Larmor frequencics of
strength HlI and HlS respectively.

The observation may be carried out either by directly observing
the S-spin or indirectly by observing the destruction of the I-spin
order. The direct observation has the advantage that high resolution
spectra may be obtained with the simultaneous application of spin
decoupling and this is the method used in this chapter. 1In Chapter 2
the indirect methods are also described for deuterium indicating the
greater sensitivity available. For reference purposes for the second

chapter we present the complete equations for both ADRF and SL cases.

These will be expanded but are presented now to introduce the notation.



10

The theory for these experiments is quite well established3’13’14’l6’17

and will only be briefly sketched here to define the notation and

provide easy reference.




IT1I. Theory

A. Hamiltonians
We consider the following system in a large external magnetic

field, H an abundant 1 spin system with a resonance frequency

O:

wOI is dipolar coupled to a rare S—spin system with resonance frequency

(A)OS.

= +
H HZ + HII + HIS Hrf(t) (5)

where H_ = H + H I w

z 1Z 5z = 7 Woply T WogSy and w
I

o1 = Y1t Yos = Ystpe

=2 S, =S and YI and YS are the magnetogyric ratios of
i

IZ i2’ 7 i iZ

the I and S spin reservoirs. We have neglected the dipole-dipole term
between S-spins, since we assume them to be sufficiently dilute that
they are isolated from each other. The I-I dipolar coupling is taken

in its high field truncated form as

2
h
(o) _ EE: o1 20 .
Hp ' = -5 3 (3 cos eij 1) {3 Iizljz }i;j} (6)
i<i  Tij

Where eij is the angle between. the internuclear vector and the external
field. The I-S dipolar coupling is also taken in its high field

truncated form:

55,) (7)

:E : 2Y_ Y
(o) _ _ I'S 1 2,
H = —_— (3 cos 6i 1) (IiA .

IS T 3 2
i

where only a single S spin is considered. For convenience we define

the following coupling constants:



Y.y
a,, = - —1;‘1-(3 cosze,,—l)
ij 3 2 ij
rij
2y.v.h
_ st 24 _
bi = r3 5 (3 cos Gi 1) (8)
i

These dipolar couplings are illustrated for 2 I-spins and one S in

Figure 3. Two strong r.f. fields with rotating components HlI and

HlS are applied at frequencies wOI and wOS'

Hrf(t) = =Y HlIIX cos mOIt =Yg HlSSX cos wost 9)

We remember that since

[H Hég)] =0 (10)

1z’

we must consider both terms as separate constants of the motion, during
a time t < T1 where Tl is the spin lattice relaxation time. We now

transform (5) into the double rotating frame using the transformation

operator:

T = exp{- it (wo + w SSZ)} (11)

I
IZ 0]

yielding the transformed Hamiltonian

%
H = Hz* + Hii) + Hig) (12)
where
H* =0 +H* =-w 1. -w .S

z - 1z SZ 117X 18°X



Figure 3.

Lattice variables for interacting spins.
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B. Thermodynamics

We now discuss the thermodynamic properties of the cross polarization,
followed by a discussion on the dynamics of the energy exchange. We may
use thermodynamics, following Redfield,since the Hamiltonian in the rotating
frame is effectively time independent. The two terms HIZ and HSZ may
then be considered as reservoirs of Zeeman energy, and because of the
commutation relation, equation (10), we must also éonsider the term HII

as a reservoir of dipolar energy. The equilibrium density matrix in

the rotating frame is

DZq = exp(- BH*)/tr exp (- BH™) (13)

We now invoke the high temperature approximation giving:

* -1 _ *
Peq = Z " (1L -BH) (14)

for which we use the shorthand notation

o* = pH" (15)

since the constant value, 1, will not enter into the expectation value
of any observable. This is the reduced density matrix for the system.
The density matrix for a system with a Hamiltonian given in equation (12)
is for the quasi-equilibrium state for which the T and S spin system are

not allowed to interact:

o =R H._+8H (16)

eq ~ Pyflpg * BgHg, + 8

IdHII

Here we will treat Hﬁg) as a perturbation, whose effect will be to



equalize BI and BS, but whose energy will be negligible in the thermo-
dynamic sense, thus it's neglect in (16). The expectation value of any

observable is given as

<Q> = tr pQ} (17)
giving for the energy of the spin system in equation (12)

2

1s (18)

= o* g1 - 2 2
E=tr { eqH } BICIHlI + BIchHL + BSCSH

where CI and C_, are the Curie constants given by C_ = YithII(I + 1)/3

S I

and similarly for C., and HL is the local field (equation 3). 1In the

S

spin locked state (SL) for the protons HlI >> HL so that the I spin

energy is given as

E. = B.C.H (19)

and for the adiabatically demagnetized state HlI = 0 giving
E. = 8.CH (20)
I I'TL
The heat capacities will be, for the I and S spins
JdE oE
I _ 2 2 S _ 2
o8, ~ ‘r'u °f G 3By Us'ls (1)

and the I and S spin magnetizations, the actual observable guantities

in these experiments,

MI=§—, M_ = B.C.H (22)

16
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and similarly for S and for the ADRF experiment MI = 0.
The initial magnetization for a normal free induction decay (FID)
for both of these systems at equilibrium is given as

(o) _ _ ..
MI BLCIHO and MS = BLCSHO (23)

where BL is the inverse lattice temperature. We may produce a lower
spin temperature by spin locking, where the magnetization for the I-spins,

equation (23), is locked along the x axis in the rotating frame giving

E. = f C.H MI(O) = BOCIHlI

o = BH/H (24)

If on the other hand we adiabatically demagnetize the I-spin system we
obtain no magnetization but an enhanced internal dipolar order with

energy:

where = B H /HL (25)

Since HlI << HO and HL << HO both experiments correspond to a cooling

of the I spin reservoir.
In the absence of any coupling between the 1 and S spins, each
reservoir can be in equilibrium at a different spin temperature as

indicated in equation (18). If the perturbation H exists, however

1s

there will be a coupling between the reservoirs, and they will approach

equilibrium. As pointed out before this rate will be slow unless the



Hartmann-Hahn conditions is close to being matched

YIHlI z YSHlS for SL

and

YIHL YSHlS for ADRF (26)

R

Under such conditions the system will evolve from the initial
conditions characterized by the temperature BO and BS to the final

equilibrium state given by the conservation of energy as

2 2 2 2
BoCqtir *+ BgCollyg = ByCyHyp + ByCH g
or
B CHS + B.CH. = B.C.H + 8.C_H 27
01 L $°s"1s 1T L 1°s18 (27)

Solving for the equilibrium spin temperature assuming BS % 0 we obtain:

B, = By (1 - en?y”t (28)

1

2, . . . P
where €n 1is the ratio of the S-spin and I-spin heat capacities and:

NSS(S + 1)
ETYIa@ + D
I
with
Y. H
n = SHlS for ADRF
Y1ty
and
Y. H
5 1S for SL. (29)

Yt

18




The magnetization following this thermal mixing is:

1 _ 2 2.-1 .2 .
M = ByCgiyg = By +ent) = CiH )¢ (30)

We now inquire by how much has the signal been enhanced from the normal
FID, equation (23). This is for the S spin system,

(1)
M B.CH Y
S 2,.- -
S __ 1818 _ 15 o, 2=l D2l 31)

Méo) B CsHy Hiy Yg

If the Hartmann-Hahn condition is exactly matched n = 1 and

o)
Méo) YS 1+ €

for both SL and ADRF. Then € is usually small by virtue of experimental
design, i.e., NS << NI thus the maximum enhancement obeying n = 1 is
YI/YS which is = 4 for carbons and protons.

There are two ways of obtaining more of the polarization which is
stored in the proton reservoir; one by performing mulktiple contacts and
the other is to cross polarize such that n >> 1. This second case is
what we term total cross polarization.

For the multiple contact case (n = 1) the signal enhancement after

n contacts is, assuming € is small,

(n)
M Y
S I n
= (=) (1 - &) (33)
Méo) Ys

where we take the sum of all the n magnetizations for the final signal
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obtained. This is a very time consuming process and in practice is
restricted to 3-10 contacts for many systems. We wish instead to
optimize the single contact cross polarization. These conditions are

found by maximizing equation (29), obtaining

n= (ot T

Experimentally this means we must increase H until the heat capacities

18’

of the I- and S-spins are equal. The maximum enhancement is then

e
S oy v, == (35)
(o) I''Ss 5

¢ 2

which is then one-half of the enhancement which would be obtained by a
purely adiabatic transfer. However, we are no longer matched to the
Hartmann-Hahn condition, which will severely slow the cross polarization
process. If there are spin lattice relaxation mechanisms present whosec
characteristic relaxation times are of the same order as the cross
polarization time we will not gain from this process. We must therefore
consider the dynamics of the process before we can come to any conclusion

about the relative merits of the SL and ADRF experiments.

C. Dynamics
The equations describing the dynamics of the cross relaxation are well

4,16 and later in

known, and were first derived by Hahn and co-workers,
17 . '
more general form by Demco et al. We will use the latter author's

treatment of the Hamiltonian and sketch the former treatment of the

dynamics. Beginning again with equation (5) we apply the r.f. irradiations
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~at frequencies w_ and mS now no longer necessarily at resonance, and

I
for the ADRF case we will take wlI = 0. We now transform into the
double rotating frame and tilt each frame so that the Z axis lics along

the direction of quantization in each frame, which is defined by the

effective field. The rotating frame transformation is defined by

RIRS = exp(- 1wIIZt) exp (- 1wSSZt) (36a)
and the tilt by

TITS = exp(leIIY) exp(lesSY) (36b)
giving

* _ - (o) (ns)
H weI IZ weS SZ + P2(cosel) HII + HII + HP (37)
9 9 1/2
where the effective frequencies are w = [w;_ + Awl] and w =
1/2 el 11 I eS

+ i N - = - W

[wls AwS] with AmI wOI wI and AwS wOS W
(o)

The geometrical coefficient for H indicates another truncation this

I1

has the same form

(ns)
11

time with respect to the effective field where HEO)

as before, equation (1), but in the new axis system. H denotes the

remaining nonsecular terms for the SL case. For the ADRF case wyy T 0

2
and the effective field is the Zeeman field, so that PZ(COSGI) =<%(3 cosOI—l)

(ns)

1 while it is kept for ADRF. The

= 1. Thus for the SL case we drop H

Hamiltonian HP is the I-S dipolar coupling in the tilted axis system:

HP = coseI cos@S E bi IiZSZ + 31nGI 51nGS E bi IiXSX
i i

- SlneI coseS E. bi IiXSZ - CoseI 31n65 E bi IiZSX . (38)
i i
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To simplify matters we will choose to irradiate the protons on resonance

(this will hold for Chapter 2 also) giving for SL
HP = 31n6S E bi IiXSX - cosGS E biIiXSZ (39a)
1 N

and for ADRF (where Wy = 0):

HP = cos@s E bi IiZSX - 31nes E bi IiZSX (39b)

a

These equations point out the first real difference between the
SL and ADRF case. For the ADRF case the I-spin Hamiltonian is the
full rotating frame Hamiltonian, but for SL we truncate all of the
interactions one step further, with respect to the effective field.

We must now solve the equation for the time evolution of the density

matrix in the rotating frame

L R Ly (40)

which we want to cast into the form of a differential equation for the
macroscopic observables. (For a general discussion see Schumacher,
ref. 30). These equations must also include the appropriaté relaxation
mechanisms which are indicated in Figure 1. For the I-spin system, in
the SIL state the process is spin lattice relaxation in the rotating

and for ADRF the relaxation process occurs

frame chavracterized by TlpI

in the dipolar state with the time TlD' The S-spin relaxation is also

in the spin locked state with T The differential equation for the

1pS”

time evolution of the inverse spin temperatures is then, for the ADRF

state,



dB,

ac =" Bg m B/Tg - (BgmB)/Ty

By 2

qr T N BB Tyg = (BB /Ty (41)

2 . . .
where €n” is the ratio of the heat capacities, equation (29), B[ is

the laboratory inverse temperature, and TIS is the characteristic
time for cross polarization. TIS may be calculated with the assumption

of short correlation times from the master equation for the time rate

of change of the density matrix.18 This gives

[ee]
1 - 1
T - 2 /dr tx{s, [H,(0), [H (1), S, 1]} (42)
Z 0
where H_(T) = TH T+ T = [(H.. - w . S )iT]
prt/ T HHpt s B T €XPLURy T Weg Ozt
or with a small rearrangement,
1 1 Lot
T = 3 dt tr{[I—LP,SZ] T{H,,S,]T } (43)
IS tr SZ 0

We evaluate the trace, trs (where tr = tthrS) in (43) giving:

(e o]
- in%0 M d (w T)C(T)
IS Sin S ZIS T cos wes
0

trI( E biIiP exp(lHIP T) E lﬁ?ip exp(—lHIP Ta
i i
2
I
trI(Z bilip)
i

il

C(1) (44)

23



where M

is the Van Vleck second moment of the S magnetic resonance

218
line:19
2
y _ tr [HIS’ SX] “s)
218 tr S 2
X
and p = X for SL and p = Z for ADRF. H§§) is the normal high field
truncated dipole-dipole Hamiltonian. For ADRF w = 0 and then GI = 0°,

11

giving the effective I-I dipole interaction as

eff
- HII

(o)
11

- _ (o)
= P2 (cos@I) H = HII

HIZ

as we expect. But for the SL case Wy g # 0 and OI

the r.f. irradiation at resonance.

90° if we apply

We must then truncate the dipole-

dipole Hamiltonian one more time, in this case with respect to the

rotating frame defined by the effective field then:

= - eff
Hrx wyp Iy ¥ HTp
eff _ (o) . 1 (o)
Arr Py (cosbp) Hp, " = - 5 Hpp

C(1t) is the auto correlation function of the perturbation,

nuclear dipole-dipole interaction.

the hetero-

Taking the integral in (44) gives

the corresponding spectral density with the final result for ADRF

Tg = sin‘0g M, o J, @ ) (46)
and for SL (see Appendix 2.3 and reference 17 for details)

Tjs = 5 sin0g M) o J (A ) (47)
where Awe = (wes - weI). The spectral densities are given as

24
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(a3

Jx(w) = é‘dT coswt CX(T)
Jz(w) = {dr coswT CZ(T) (48)

and the correlation functions are

. 1 (o) ) 1 . (o)
tr Qljbi I exp(i¢ 35 H 1) zijbi Loexp(-i(= 5 177 0)))
ey (1) = 5
tr (zi:bi L)
tr (Z:LH‘IiZ exp(iH§§)T) E: bi IiZ exp(—iﬁé?)T))
A - . (49)

5
tr (Zbi Lz
1

~This, then, shows that the spin fluctuations due to the I-I dipolar
coupling is communicated to the S-spins via the I-S dipolar interaction,
these fluctuations induce flip~flop transitions between the I and S spins
equalizing the energies of the two reservoirs. The rate of the process will be
proportional to the intensity {spectral density) of the fluctuations at the
difference of the precession frequencies of the S and [ spins in their coffective
fields. 1If the precession frequencies are equal a [lip-flop transition between an |1
and S spin will conserve energy and this then will be a very rapid process.

We now wish to combine the thermodynamics and the dynamics to describe
the growth of the S-spin magnetization during the cross polarization
process. The thermodynamics provide the limiting state for the S magnet-
ization equation (31), and we wish to solve equation (41) for the
evolution towards this limiting value. For the case at hand we may

neglect the T term simplifying matters considerably. The solution

1ps



of equation (41) with boundary conditions BS(o) = 0 and BI(o) = BI and

assuming BL ~ 0 gives

By

at —ot r
T_ (0. - a) T e
IS + -

(e - ) (50)

Bs(t) =

with
2 1/2

(1+en2+_1’_> .1 [(mrﬁ+_l~) __4_..]
Trs  Tip 2 Tr1s  Tip TisTip

I+
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The maximum inverse temperature will be for t = ® and TlD = o, This
gives:
(o) _ 2 _ ;
o "(») = B /1+en” and B, = B/u Hy/H (51)
where the superscript o indicates the ideal case where T = oo,

1D

We have ‘also introduced the constant p to account for the fact that the
demagnetization is not perfect, some order is lost. Then u is the
efficiency of the demagnetization process in the rotating frame. Using

equation (22) we derive

M (t)
o' 7. un (e ~ -e b (52)

(o) T -
MS IS(a+ a_)

where for t = « and TlD = o
MS(O)(w) YI oo
@ My, 2 (53)
Mqo S 1+en

Note that TIS is a function of n also.

Then, while the magnetization is increasing due to cross polarization

it is being destroyed by spin lattice relaxation. The technique which



will be most successful for a particular n, will be the one which gives
I £

the shortest From general considerations we expect the spectral

TIS'
density to be broader for the ADRF case, making it the likely choice if
we wish to approach total cross polarization.

The complete solution of the dynamics is obtained by the maximirza-

tion of equation (52) with respect to t and n, given the relaxation

times, TlD and Tlp and the functional dependence Of'TIS on n. This

27

functional dependence is discussed in the next section for the ADRF case.

The results for the SL case are also given for reference in the second

chapter.

D. Correlation Time

We now wish to characterize the correlation functions in equation
(49). The exact solution would, of course, involve solving the complete
manybody problem. We must choose either an empirical form, or a form
determined directly from experiment. In the experimental section that
follows we show that the spectral density for the ADRF experiment is
exponential over much of its range, giving upon Fourier transformation

a Lorentzian correlation function. This agrees with the results of

17

14
Mc Arthur et al. for CaF,, and the theoretical study by Demco et al.
using a memory function approach. This latter study also shows the spin
locked state will give rise to an approximately Gaussian correlation

function and spectral density. This is an important distinction since

for the same value of the correlation time an exponential spectral density

will give more intensity at high fluctuation frequencies then a Gaussian
function.

Using the Lorentzian function for the ADRF correlation function
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2 2. -1
CZ(T) =1+ 17/1.7)
giving
JZ(U)) = % T e e ‘ (54a)

Mc Arthur et al. calculate
Te exp(—weS To) (55)

and expanding equations (49) and (54) in a power series and equating

- 2 .
the coefficients of T gives

2
iZ]
]2

tr [HII’_¥ bi I

tr [zi:bi IiZ

(56)

_ .1
e 72

The correlation time, for the rigid lattice, is seen to be a function
purely of the lattice parameters through the coefficients aij and bi'

For the SL case we choose a Gaussian correlation function

2,2
-t/
Cy(r) = e (54b)
from which,
2 2
-w T /4
m
Ty (W) =\/§— Te e © (54c¢)
and
— 2 w212/4
o AL =
T-_1 =\/E sin 6g M T exp ec (55b)

IS 2 IS c

2
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At this point we wish tc be quite precise about our definitions,

since there is much confusion in the literature. Even though the

Hamiltonian in equations (1), (6), and (7) are the standard forms, in
order to be consistent with the work of Canters and Johnson20 and Demco
17

et al. we introduce new constants as they are defined in Van Vleck's

work. Here:

2
vy h
(o) _ a1 1 20 _ _ 1
i = 2 : 33 5 (3 cos 6ij b {IiZIjZ 3 Iizj}
i<j Tij
and
2
Y- h
A = -3+ L (3 cos%0, 1) (57)
ij 3 2 ij
rij
Y Yh
B E : I's 1 2,
HIS = -2 3 5 (3 cos ei 1) (IiZSZ)
i .
1
with
YYsh g 2
B, = 2 = (3 cos " 8,-1) (58)
i r3 2 i
i

The correlation time is given by the second moment of the correlation

function as (see equation (56))

/2

T - (2/M2)l (59)

carrying out the commutators and traces in equation (56) gives for the

second moment of the correlation function:



ISII ; Aij (Bi-Bj)z
M = M - I(I+1) i#j ) (60)

2 M4 2185 27 2 :BZ
i

i

ISTI
where M4 is the standard fourth moment of the absorption line shape

of an S spin due to surrounding abundant I-spins and MZIS is the normal
second moment of the S-spins due to the surrounding I-spins. This

. . 18
notation is that of Abragam.

We may rewrite (60) in terms of the lattice sums normally used in

moment calculations as

ISII -

%, Corasen) 515725,

M - 27 ( S ) (61)
215 1

with
2
5 7 :2::Bi
1
52 = § A2
T -
S=§;A2BB (62)
4 —d i i j
i
S.S,.-2S
or finally T_z - 104D ( 12 4) (63)
c 27 S1

We note parenthetically that using the definitions (8)

ISTI -
My ases+y %Ry

3 Ql

)
My1s

where
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B 2
Q4 = Zaij bibj

T

21
To evaluate the traces we used

1(+1) Dy

(e

2
tr I, =tr I =
Y

where

IX = E IiX for N spins. (64)

i
For the SL case the second moment of the fluctuation corrclation

. . . 17 .
function may also be obtained in the same manner with:

2 27(141) (5 518, + 85,

27 S1

M, = Pz(cosel) ) (61h)

Note that if the proton irradiation is applied at resonance

21(1+1) (5 55, + 85,

27 Sl

M 2‘% ) (61c)

2

The correlation time is still given by equation (59). We can now calculate

the ratio between the SL and ADRF correlation times,

2
Tosn_ 4 515 ~ 258,
2 5 8
Te aprr 5152 75 5,
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If S4 << SlSZ as we might be led to expect from calculations of the lattice

sums (see Table 1) we find that:

2
T T

g SL % giving TC sL 0.894
T¢ ADRF ¢ ADRF

that 1is Tc for SL is shorter than ADRF. Note that if the correlation
functions for the two cases were the same this would imply that the SL
case would have larger spectral density at higher frequency. But because
the SL correlation function is Gaussian this is not true.
We wish to find the correlation time for a polycrystalline sample of
. 27 . .
adamantane which has an FCC structure. Adamantane rotates rapidly in
the solid at room temperature, so that initially we assume that each
adamantane molecule can be approximated as 16 protons at each lattice
point. We choose the origin as a single carbon-13 occupying one of the
lattice sites, which will not interact with the protons in the same
molecule because of the rapid orientational averaging.
. 20
The lattice sums have been computed by Canters and Johnson, Mc Arthur
14 17 . . .
et al. and by Demco et al. for a simple cubic lattice. We extend
this to an FCC lattice and carry out the orientational averaging necessary

for a powdered sample. The lattice sums for the CaF, structure (cubic

2
for the F atoms with the Ca surrounded by a tetrahedron of F atoms) and
for adamantane (FCC) are listed in Table 1 along with the results of

Demco et al. for two orientations, a) for H ~along the 100 direction and

b) along the 110 direction.



Table 1. Lattice sums for simple cubic and TFCC lattices

Structure Direction of Hj Si Sé SL 1C(psuc)
CaF, 100 1.564 30.03 9.179 42.76
110 20.24 11.36 21.50 60.19
FCC 100 1.073 2.414 0.2514 149.4
110 1.534 3.451 0.1994 116.6
CaF2(17) 100 1.554 30.01 9.985 44 .16
110 20.34 11.36 22.32 60.42
Here we list the sums as unitless quantities with
Y Y ' % (v h) (Yygh)
- ' - Qo r-
S1 ( 3 ) Sl (———) and S4 7 b4 (65)
a a a
) ] - L
S 32 2 S4
and M2 = f( ; ) (66)
S
1
1 Yihz
with f = 18 3 Nsite
a

where a is the lattice spacing and N is the number of spins at each

site
o
lattice site. For adamantane the unit cell size is 9.43 A, N site =

-2
16 giving f = 4.61 x 107 sec . See appendix 1.3 for the details of

the computer program used to calculate the lattice sums. For CuF? the unit
° . 7 -2
cell size is 5.46 A, N site = 1, and £ = 5.98 x L0 sec .

Our lattice sums compare favorably with reference 17 even

though we took only 1331 F atoms to calculate Sl and 82 and 125 for SA'

The FCC calculations used 343 molecules for Sl and 82 and 64 for SA'



The sums did not change significantly upon increasing the number of
molecules to 512 for S1 or S2 (v 0.02% change) or upon decreasing the
number to 27 for S4 (2.5% change).

The lattice sums for 6 = 0-90° and ¢ = 0-45° where 0 and ¢ are
the normal polar angles are compiled in appendix 1.1. The orientation
dependence of T, is shown in Figures 4 and 5 for rotations of the

lattice about the 100 (6 = 90°, ¢ = 0°) and the 110 (6 = 90°, ¢ = 45°)

axis. The integration to find the powder average was carried out as

4 1

T- f0d¢ [d cos0 T_(0,0) 67)

where ¢ and cosO were generated in equal steps to give intervals of

equal area on the sphere and where we have taken advantage of the

34

symmetry of the crystal by integrating only over O = 0-90° and ¢ = 0-45°,

Both integrations were done numerically by Simpson's integration over

121 different orientations, giving the final result
%C = 122 usec (68)
and the powder averaged 2nd moments
1

_ 41 - 7 2 ~2
M2IS =3 I(I+1) S1 = 1.90 x 10" rad sec (69)

We now inquire about the assumption that the spins sit exactly on

the lattice points. We should actually find the averaged interaction,

Pz(cose)
T3 95 9%
b



Figure 4. Orientation dependence of T, for adamantane as the crystal

is rotated about the 100 axis.
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Figure 5. Orientation dependence of TC for adamantane as the crystal

is rotated about the 110 axis.

37



38

150, l T T T T ;
Rotation about 110 oxis
40— ]
(&
(4]
[72]
L 1301 | —
(&
2..;
a i
Averoge ———
120+ —
"o 1 | | | |
0 30 60 90 120 150 180
8, degrees

XBL 751-5607



39

where dS, dS, denote integration variables over two spheres with distance R

1 2

between their centers. This integration shows that the above assumption
. . S , 32-37
is actually rigorous, as has been indicated by several authors.

That is, we can exactly calculate Te in the presence of isotropic molion
over two non-overlapping spheres by placing the spins at the center of
each of the spheres. This is discussed in more detail in appendix 1.2,

along with a discussion of the polycrystalline averaging.
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IV. Experimental

A. Sample
Adamantane was chosen for the cross polarization study for three
reasons
1) Adamantane is essentially a rigid lattice solid. However the
rapid rotation of the entire molecule shortens the relaxation times into
a convenient range (= 1 sec.). T. is short enough to allow a fast repetition

1

rate and T1D is long enough compared to the cross polarization times

(TIS I~ TZ)'

2) The molecular rotation narrows the lines, and averages the dipole-
dipole interaction between directly bonded carbon proton pairs. The
effect of these very strong dipolar interactions is the appearance of
coherence oscillations in the cross polarization curves.2

3) There is a high density of carbons giving rise to very large
signals, which are observed with a 30 to 1 signal to noise ratio for the
optimum cross polarization conditions.

Adamantane (Aldrich 9947%) was used without further purification.
Recrystallization followed by sublimation did not change any of the
relaxation properties. The crystal structure is FCC with a lattice spacing

of 9.43 A.22

B. Spectrometer

The spectrometer was homebuilt, operating at v 25K gauss with a
Westinghouse superconducting magnet. The proton resonance frequency was
106.3 Mhz and the carbon 26.7 Mhz. The schematic for the spectrometer and
the probe are shown in Figure 6. Details are to be published separately.

The proton transmitter is a modified Millen radio amateurs transmitter



Figure 6.

Schematic of the 106.34 MHz spectrometer and probe.
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operatingat an output power of v 200 watts. The Carbon-13 transmitter

is an ENI 350 L operating at 50 watts. Repetitive spectra are averaged
and Fourier transformed with anon-line PDP-8 computer. Only onc channel
of the phase detector can be observed at a time, this causes the complex
Fourier transform spectrum to "fold over". That is, positive and negative
frequencies with respect to the irradiation frequency cannot be
distinguished.

One unique feature of the spectrometer is the adiabatic switch which
is used to adiabatically demagnetize the protons in the following cross
polarization experiments. A digital ramp 1s generated using a D-A
converter (Zeltex ZD432) which is converted into a power law function
(Zm) with desired exponent positive or negative by a hybrid multifunction
generator (Analog Devices 433).

Temperature control is achieved using a flow of nitrogen gas hceated
with a small tungsten wire coil. The gas is flowed in and out of the
probe through an evacuated transfer line. The temperature is monitored
with a copper—constantan thermocouple, which is tied into the fecedback

loop controlling the heater.

C. Adamantane dynamics

The cross polarization time can be easily extracted by monitoring
the intensity after a cross polarization time T. If one knows the
relevant relaxation times the experimental curves can be fit by equation
(52). The spectral density can be found by varying the carbon effcctive
field and extracting the cross polarization time. A plot of TIS versus
wg then yields exactly the spectral density. This in turn may be Fourier

transformed if desired to obtain the correlation function, whose second
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moment will yield the correlation time T.- We have chosen the ADRF
experiment from which to extract the dynamics for these reasons:

1) the analysis is simpler

2) the stability requirements for the r.f. power is much less
stringent since there is only one r.f. field applied during cross
polarization and

3) we expect the proton dipolar state to have a broader spectral
density than the spin locked state allowing a greater mismatch in the
Hartmann—-Hahn condition and therefore a closer approach to total cross
polarization.

The experiments were all carried out with simultaneous proton
decoupling during the observation of the carbon signals. The decoupling
field strength was Vip ® 26 khz = 6.1 gauss. The adiabatic demagnetization
times were varied from 1-10 msec, while the maximum signals occured at
2 msec, which is the value used for the following experiments. The carbon
field strengths were calibrated using simple 180° pulse width measurements.

The temperature in the probe was 10-13° C. The experiment repetition rate

was 8 sec.

1. Relaxation times

The proton relaxation time T was determined by the standard technique

1D
of an ADRF followed at time T with a 45° pulse which probes the dipolar
order. The results are shown in Figure 7. The deviations at short times

are as yet unexplained, but are quite reproducible. The relaxation time

extracted is

TlD = 0.30 + .0l sec. (73)



Figure 7. Proton dipolar relaxation time in adamantane, Tln' The
temperature was 13 * 3°C and the pulse sequence used was the standard
ADRF (for 2 msec) followed at time T by a 45° pulse. The solid 1line

is the exponential least square fit, omitting times shorter than 50 mscc.
The amplitude of the normal pulse FID is also shown, and was obtaincd
from a solid echo experiment. The zero time intcrcept of the TID curve

can then be used to calculate the efficiency of the ADR¥, p.
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The Tlp for the carbons was measured for ng = 6.6 klz = 6.18 gauss

(see Figure 9) and found to be

Tlp = 3.39 sec (74)

The experiment consisted of a SL type cross polarization, after which
the proton field was turned off allowing the carbon spin locked state
evolve for a time T, after which the signal was detected with simultancous
proton decoupling. The pulse sequence is shown in Figurc 8. The relaxation
times were found using exponential least mean squares. The dcetails of
all the fitting programs are to be found in appendix 1.3. Since Tlp is
approximately one or two orders of magnitude greater than the expected
cross polarization times we can use equation (52) safely to fit the cross
polarization curves.

We must also find the efficiency of the demagnetization. This was
easily calculated knowing that the height of the derivative FILD after
the 45° pulse for t = 0 in the TlD experiment should be 0.525 of the

12 - R
normal FID, assuming a purely Gaussian proton lineshape. The initial

height for the T experiment was obtained by extrapolating the lTince in

1D
Figure 8 to T = 0. The height of the normal FID was obtained by cxtra-
polating the height of a solid echo (90-1t-90) to 1 = 0. The ratio of

the two divided by 0.525 gives
p=0.87 +-03 (75)

The extrapolation to T = 0 was accomplished by a linear least squares

fit to a Gaussian function

2,2
I=a e“t /w
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Figure 8. Pulse sequences for direct detection of cross polarization.
The pulse sequences used for an initial dipolar state (ADRF) and an
initial spin locked state (SL) are shown in (a) and (b) respectively.
Tlp of the S spins is measured by polarization of the S spins for a
time T after which the I spin irradiation is turned off. The S-spins

spin locked state is then allowed to evolve for time T after which the

polarization is monitored with simultaneous spin decoupling.
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Figure 9. Carbon rotating frame relaxation time, Tlp for adamantane.
The temperature was 13 * 3°C and the carbon field strength was v o =

6.6 kHz (H1S = 6.18 gauss). The solid line is the exponential least

squares fit to the data.
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2. Cross polarization

A typical cross polarization curve is shown in Figure 10. The maximum
enhancement over the normal FID we obtained was x 15. This was obtained
after eliminating the Overhauser effect from the nérmal Fib by turning the
proton transmitter off duriné the time between experiments. Knowing the
relaxation parameters and the efficiency we can now carry out a least
squares fitting procedure, the results are given in Table 2, and in Figurc
11. The fitting was carried out by varying the two parameters TIS and HL.
The average HL found from these data was HL = 0.37 gauss Qhereas the value
expected from Resing's work was 0.544 gauss.23

The spectral density function, Figﬁfe 11, see equation (46), is seen
to be exponential over most of the range we studied. The flattening for small
w appears to be real and this feature had been reproduced. by the memory
function theory ofaDemco 95_314}7 This occurs because of the breakdown of
the short correlation time assumption that was used to extend the range
of integration in equation (42) to infinity. The long tail for large w
on the other hand is an artifact caused by the neglect of the carbon
T ‘. The cross polarization times are of the same order of magnitude as

1o
the T1p for these data points.
The cross polarization times were fitted to an exponential function.
The experimental points obtained while on resonance, Figure 12, are the
most accurate for this purpose since they provide better signal to noise

over a larger range of w, - We choose to omit the points 1 and 2 (large

w) for the above reason. The correlation time is then found to be

T, = 108 * 5 usec (76)



Figure 10. Typical cross polarization curve for adamantanec, from the

dipolar state (ADRF). Demagnetization time was 2 msec, the temperature
o Sv )

was 13 * 3°C, the frequency offset for the carbons was o = +5.24 kllz,

the effective field was He = 10.6 gauss. The cross polarization time

was 1.07 sec.
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Figure 12. Dependence of the cross polarization time on the carbon

1
r.f. field strength for the 3C field applied at resonance. Only

those points used in the curve fitting (exponential Lleast mean squares)

are shown. The TIS found is 110 * 15 usec.
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Table 2.

O 0N Y BN

=
(=)

22
23
24
25
26

27

28
29

Freq. offset Hle gauss

14.7
0 12.5
10.3
8.99
7.54
6.18
5.02
4.34
3.62
2.60

+ 2.74 kHz 14.94
12.8
10.7

9.46
8.09
6.84
5.81
5.24
4.66
3.92
3.49

+ 5.24 kHz 11.72
10.6

9.40

8.35

7.53

7.09

6.68

6.18

Cross polarization times

w (kHz)
e

15.7

13.4

11.0
9.63
8.08
6.62
5.38
4.65
3.88
2.78

16.0
13.7
11.5
10.1
8.66
7.33
6.22
5.61
4.99
4.20
3.74

12.5

11.4

10.1
8.94
8.06
7.59
7.15
6.62

11.3
13.2
15.9
18.0
21.2
25.4
30.3
34.0
39.0
48.4
57.4

28.6
32.0
36.6
42.2
48.2
3
2
1

57.
66. ]

1374
947.6
678.9
192.8

69.22

29.27

12.35
5.501
3.303
3.098

1508
1108
1139
361.6
150.1
71.97
33.73
15.90
12.47
13.26
16.72

1705

1071
491.3
267.5
162.8
138.1
150.0
232.0
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For small w, we have noted the flattening of the spectral density. We
should also omit this point (point #10) since its inclusion would not

be consistent with the exponential form for the spectral density which

is obtained from the short correlation time assumption. This omission

is quite justified on this basis because we wish to compare our theoretical
results with a theory which is only valid in a specific region, large w.
We do not expect to reproduce the behavior at small w. The correlation

time with this omission is found to be

TC = 115 usec (77)

If the data for the other two irradiation frequencies are included
the correlation time is (omitting points 1, 2, 11, 10, 21)
T, = 129 usec (78)

Taking into account all of the above fittings we then conclude that our

uncertainty is rather large giving,

T, = 110 * 15 psec (79)
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V. Discussion

The correspondence of the experimental and theoretical values for

the correlation time is quite satisfying.

TC (theory) = 122 usec TC (experimental) = 110 * 15 pusec

In the work of Mc Arthur et al. on Calcium Fluoride, theory and experiment
were also in close agreement, indicating that for rigid lattices, of which

both CaF, and adamantane are examples, the cross polarization dynamics

2
are indeed very well characterized.

The effects of relaxation are shown to be of considerable importance
for adamantane. The effect of relaxation is shown in Figure 13. The
solid circles are the experimental data from Figure 10. Superimposed
on this is the polarization expected, curve b, if there were no proton
relaxation. The inclusion of proton relaxation, which is shown as curve
a, combines to give curve c. As can be seen the proton relaxation
strongly limits the final polarization.

On the otherhand, the effects of relaxation for a multiple contact
SL experiment is clearly seen from Figure 14. Experimentally for 5
contacts we obtain an enhancement 2.4 times larger than for a single
shot, for 10 contacts 3.75 times, and for 20 contacts 6 times. Using
equation (33) the theory predicts enhancements of 4.89, 9.63 and
18.61 times the single shot enhancement. So then for a factor of 15
enhancement single contact ADRF must cross polarize for 0.125 sec at
the optimum 1. For a 15 fold cnhancement multiple contact SLomust

accumulate T 20 contacts each with a cross polarization time of 5 msec

for a total time of 0.4 sec.
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1

Figure 13. Growth of 3C magnetization after coupling to lH spins. The
circles are the experimental data from Figure 10. Curve (a) shows the
loss of proton spin order due to spin-lattice relaxation of the dipolar

. . 13, . .
reservoir. Curve (b) shows the predicted growth of the C magnetization

1 .
with no "H spin-lattice relaxation and curve (c¢) 1s the combined predicted

behavior (also shown in Figure 10).
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Figure l4. Multiple contact SL cross polarization, for n contacts.
The oscilloscope traces show the actual signals obtained which are
coadded to give the corresponding accumulated FID's. The total
elapsed time is also given. The mixing time was 5 msec and the

temperature was 13 % 3°C.
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The conclusion is that when the proton relaxation time is long ADRF
is a superior method to SL multiple contact experiments. We note that

if TlD is very long multple contact ADRF experiments provide even more

enhancement. However if the relaxation times are short TlD < TIg we must

choose n = 1 and then the SL experiment becomes preferable because it

allows a shorter TIS' The TIS for n = 1 for SL is shorter because it

samples the dipolar spectral density at w 0 where it is a

18711 T
maximum rather than at W g as for the ADRF case. TC is also generally
shorter for SL, compare equations (61) and (6lc) for small S4.

The use of these enhancement schemes have grown rapidly since their
inception. They allow the high sensitivity determination of chemical
shifts as mentioned before, but also of relaxation parameters, for c¢xample
the Tlp experiment mentioned in this chapter and T2 experiments which

. . 24 .
have also been carried out in our laboratory. Quite recently we have

also extended these methods to deuterium proton double resonance (see

Chapter 2) which should expand the applications even more.
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Appendix 1.1 Lattice Sums for an FCC Lattice and the CaFj Lattice

The details of the calculation are given in Section III D, and
the computer program is given in Al.3. For the following tables the
lattice sums and the second and forth moments are given in dimensionless
form with

Z pgcosﬁi,) 2
517 & ( 3 >

1 r,
1

(cosB ) 2
Vo 2 iis
) ‘:E:() 3 )

i r.,.
1]

2
P_(cos9, ) P_(cos0)) P, (cosH )
. EE: 2 2 2 i ,
s = (“‘":f‘%%L‘> ( 3 L ) ( 3 ) (Al.1-1)

b
i<j 1 s rj

for the angles as depicted in Figure 3 with r in units of the lattice

cell size., For Can the lattice cell size (a) is the crystallographic

unit cell dimension. For adamantane the lattice cell size is one half

the crystallographic unit cell size, since the FCC lattice is constructed
by omitting every other lattice point on a lattice cell grid. The unitless

moments are

ISTI, _ ' v '
M, - 25! 51 - 4s)
1 - 1 -
M1s =51 (A1.1-2)

The units are defined by:

2
Y.Yh
S, = LS s!
1 3 1
a
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v.h\2
N I '
S, = ( 3 ) Sy
a

2. .2 2
wgn (ﬁﬁ@)

s, = v s; (Al.1-3)
a
and
6.2, 4 )
ystr _ Yi's S+, 7 LISt
4 12 3 9 "
V2 %2
CYYsY s(s+) o, 4
My1s 6 3 s - (AL
and giving
ISTI
M ,
T = (—3—~—)‘l/2 (AL.1-5)
c 1s
2 M,

The angles 0 and ¢ are given as the polar angles of Ho’ the extcrnal
field, with respect to the crystal axis a, b, ¢, and for cubic lattices
a, b, ¢ are equivalent. The powder averages are discussed in appendix
1.2. The computer program used to calculate the table is given in
appendix 1.3. Table 3 gives the results for the CaF2 lattice and Table

4 for the FCC lattice with the Tc's given for adamantane. The polycrystalline

averaging is duscussed in appendix 1.2.
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ISIT , .
Table 3. CaF2 lattice sums, fourth moments (M4 ) and correlation times

(T ). The values for the lattice sums are given in dimensionless
c
units according to equation (65). The numerical value of f, equation
o 7 -2 . . .
66, is 5.6776 x 10" sec ~. The lattice size [or 51 for 1l atoms cubed,
for S2 it was 11 cubed and for S4 it was 5 atoms cubed. The

number of theta angles was 11 for 6 = 0-90° and for phi again

11 with ¢ = 0-45°,

6 0 510y ) s} s} ST 1 (usee)
- 0.00  0.00 1.558 30.01 6.606 67.11 39.41
- 0.00 4.50 1.558 30.01 6.606 67.11 39.41
- 0.00 9.00 1.558 30.01 6.606 67.11 39.41
- 0.00 13.50 1.558 30.01 6.606 67.11 39.41
- 0.00 18.00 1.558 30.01 6.606 67.11 39.41
- 0.00 22.50 1.558 30.01 6.606 67.11 39.41
- 0.00 27.00 1.558 30.01 6.606 67.11 39.41
- 0.00 31.50 1.558 30.01 6.606 67.11 39.41
~ 0.00 36.00 1.558 30.01 6.606 67.11 39.41
- 0.00 40.50 1.558 30.01 6.606 67.11 39.41
- 0.00 45.00 1.558 30.01 6.606 67.11 39.41
25.84 0.00 13.05 18.53 -3.973  499.8 41.81
25.84 4.50 13.07 18.51 -4.250  501.1 41.78
25.84 9.00 13.12 18.46 -5.052  504.8 41.70
25.84 13.50 13.19 18.39 -6.300 510.6 41.58
25.84 18.00 13.29 18.29 -7.869  517.8 41.44
25.84 22.50 13.39 18.19 -9.603  525.8 41.28

25.84  27.00 13.49 18.08  _-11.33  533.7 41.13
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Table 3 continued

0 ) Si(MéIS) Sé SA MZSII' TC(USOC)
45.57 36.00 24.62 6.978 ~26.74 344.7 69.13
45.57 40.50 24.97 6.633 - 1.582 337.6 70.34
45.57 45.00 25.08 6.515 - 2.022 335.0 70.79
53.13 0.00 18.77 12.82 14.30 424.2 54.41
53.13 4.50 18.96 12.63 13.61 424 .6 54.65
53.13 9.00 19.50 12.09 11.72 424.8 55.42
53.13 13.50 20.35 11.24 9.054 421.5 56.83
53.13 18.00 21.41 10.18 6.178 411.4 59.01
53.13 22.50 22.59 9.001 3.626 392.3 62.08
53.13 27.00 23.78 7.821 1.742 365.0 66.02
53.13 31.50 24.84 6.756 .6173  333.2 70.63
53.13 36.00 25.69 5.911 .1115  303.3 75.28
53.13 40.50 26.23 5.368 - .3254  281.8 78.92
53.13 45.00 26.42 5.181 -~ .4946  274.0 80.32
60.00 0.00 15.56 16.02 2.129 490.4 46.09
60.00 4.50 15.82 15.76 1.447 493.2 46.33
60.00 9.00 16.57 15.02 .3514  499.2 47.12
60.00 13.50 17.73 13.86 - 2.623 502.1 48.61
60.00 18.09 19.19 12.39 - 4.565 494.3 50.97
60.00 22.50 20.82 10.77 - 5.519 470.8 54,39
60.00 27.00 22.44 9.155 - 5.212 431.8 58.97
60.00 31.50 23.91 7.693 - 3.852 383.2 64.60
60.00 36.00 25.07 6.532 - 2.043 335.7 70.69

60.00 40.50 25.81 5.787 - .5412 300.9 75.76



Table 3 continued

$) ¢ Si(MéIS) Sé SA MZSII' TC(USGC)
60.00 45.00 26.07 5.530 .3814 288.2 77.80
66.42 0.00 11.60 19.98 -~ 6.132 488.2 39.87
66.42 4.50 11.92 19.66 ~ 6.927 496.6 40.08
66.42 9.00 12.85 18.72 - 8.953 517.5 40.77
66.42 13.50 14.31 17.27 - 11.27 539.7 42.13
66.42 18.00 16.15 15.43 - 12.75 549.8 44,34
66.42 22.50 18.19 13.40 - 12.50 537.6 47.58
66.42 27.00" 20.22 11.37 - 10.26 501.0 51.97
66.42 31.50 22.06 9.535 - 6.549 447.0 57.47
66.42 36.00 23.52 8.079 - 2.449 389.9 63.53
66.42 40.50 24.45 7.145 .7191 346.6 68.71
66.42 45.00 24.78 6.823 1.908 330.5 70.83
72.54 0.00 7.677 23.90 - 6.896 394.6 36.08
72.54 4.50 8.056 23.52 - 7.925 410.7 36.22
72.54 9.00 9.155 22.42 - 10.52 452.7 36.78
72.54 13.50 10.86 20.71 - 13.42 503.9 37.98
72.54 18.00 13.02 18.56 - 15.08 543.9 40.02
72.54 22.50 15.41 16.17 ~ 14.33 556.0 43.06
72.54 27.00 17.80 13.79 - 10.84 534.4 47.21
72.54 31.50 19.95 11.63 - 5.346 485.9 52.42
72.54 36.00 21.66 9.930 .5972  427.9 58.20
72.54 40,50 22.76 8.833 5.151 381.6 63.18
72.54 45.00 23.14 8.455 6.854 364.0 65.23
78.46 0.00 4,427 27.14 - 1.953 248.2 34.54

78.46 4.50 4.848 26.72 ~ 3.264 272.2 34.52
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5103 ) 53 s) MESII' T, (usec)
6.071 25.50 - 6.594  336.1 34.76
7.975 23.60 -10.35  417.9 35.73

10.37 21.20 ~12.62  490.6 37.61

13.03 18.55 -11.92  531.3 40.51

15.69 15.89 - 7.837 530.3 44 .50

18.09 13.50 - 1.245  493.5 49.53

19.99 11.59 5.946  440.1 55.14

21.22 10.37 11.47  394.5 59.99

21.64 9.957 13.55  376.8 61.99
2.298 29.27 4.024  118.4 36.03
2.746 28.82 2.485  148.3 35.19

4,046 27.52 - 1.442  228.5 34.41
6.071 25.50 - 5.950  333.5 34.90
8.623 22.95 - 8.838 431.3 36.57

11.45 20.13 - 8.398  494.7 39.35

14.28 17.30 - 4.129 510.9 43.24

16.83 14.76 3.005  484.9 48.19

18.85 12.73 10.88  436.9 53.74

20.15 11.43 16.97  393.3 58.56

20.60 10.99 19.26  375.9 60. 56
1.558 30.01 6.606  67.11 39.41
2.015 29.55 4.981  99.22 36.86
3.342 28.23 .8231 185.4 34.72
5.408 26.16 - 3.977  298.9 34.79
8.012 23.56 - 7.118  406.1 36.33
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Table 4. FCC Lattice Sums and correlation times (TC - see equation (63)).
The values for the lattice sums are given in dimensionless

form according to equation (65). The numerical value of f for

adamantane is 4.6083 x 107 sec—z. The lattice size for Sl was

7 molecules cubed, for S2 it was 7 cubed and for 84 it was 4

cubed. The number of theta angles was 11 for 6 = 0-90° and

11 for ¢ = 0-45°.

6 o) Si Sé Sz Tc(usec)
- 0.00 0.00 1.072 2.413 L2514 14.93
- 0.00 4.50 1.072 2.413 L2514 14.93
- 0.00 9.00 1.072 2.413 .2514 14.93
- 0.00 13.50 1.072 2.413 2514 14.93
- 0.00 18.00 1.072 2.413 .2514 14.93
- 0.00 22.50 1.072 2.413 L2514 14.93
- 0.00 27.00 1.072 2.413 2514 14.93
- 0.00 31.50 1.072 2.413 .2514 14.93
- 0.00 36.00 1.072 2.413 .2514 14.93
- 0.00 40.50 1.072 2.413 2514 14.93
- 0.00 45.00 1.072 2.413 2514 14.93
25.84 0.00 1.356 3.052 -1286 12.31
25.84 4.50 1.357 3.053 .1290 12.31
25.84 9.00 1.358 3.056 .1301 12.30
25.84 13.50 1.360 3.060 .1318 12.30
25.84 18.00 1.362 3.065 -1340 12.29
25.84 22.50 1.365 3.071 -1364 12.29

25.84 27.00 1.367 3.077 .1388 12.28



Table 4 continued

§) ¢ Si Sé SA Tc(usec)
25.84 31.50 1.369 3.082 .1410 12.28
25.84 36.00 1.371 3.086 .1428 12.27
25.84 40,50 1.372 3.089 L1440 12.27
25.84 45.00 1.373 3.090 - L1444 12.27
36.87 0.00 1.497 3.370 L1757 11.76
36.87 4.50 1.499 3.373 L1776 11.76
36.87 9.00 1.503 3.383 .1829 11.75
36.87 13.50 1.510 3.397 .1914 11.74
36.87 18.00 1.518 3.416 .2023 11.73
36.87 22.50 1.527 3.437 .2146 11.72
36.87 27.00 1.536 3.458 L2273 11.71
36.87 31.50 1.545 3.476 .2390 11.70
36.87 36.00 1.551 3.491 L2484 11.69
36.87 40.50 1.556 3.501 .2546 11.69
36.87 45.00 1.557 3.504 .2567 11.69
45.57 0.00 1.533 3.451 .1992 11.66
45.57 4,50 1.536 3.457 .2028 11.65
45.57 9.00 1.545 3.476 L2134 11.64
45.57 13.50 1.558 3.506 .2305 11.62
45.57 18.00 1.575 3.544 .2530 11.60
45.57 22.50 1.593 3.586 .2790 11.58
45.57 27.00 1.612 3.627 .3063 11.55
45.57 31.50 1.629 3.665 .3320 11.54

45.57 36.00 1.642 3.695 .3531 11.52



Table 4 continued

8 o SZ'L S:')_ S[" Tc(usec)
45.57 40.50 1.650 3.714 .3670 11.52
45.57 45.00 1.653 3.720 .3718  11.51
53.13 0.00 1.497 3.370 .1757 11.76
53.13 4.50 1.502 3.380 L1802 11.75
53.13 9.00 1.515 3.410 1936 11.72
53.13 13.50 1.536 3.457 .2158 11.68
53.13 18.00 1.563 3.517 L2460 11.64
53.13 22.50 1.592 3.582 .2824 11.59
53.13 27.00 1.621 3.648 L3218 11.55
35.13 31.50 1.647 3.707 .3601 11.51
53.13 36.00 1.668 3.754 L3922 11.49
53.13 40.50 1.682 3.784 L4137 11.48
53.13 45.00 1.686 3.795 L4212 11,47
60.00 0.00 1.418 3.192 .1405 12.03
60.00 4,50 1.425 3.206 1441 12.01
60.00 9.00 1.443 3.247 .1555 11.96
60.00 13.50 1.472 3.312 .1756 11.88
60.00 18.00 1.508 3.393 L2052 11.79
60.00 22.50 1.548 3.483 L2435 11.70
60.00 27.00 1.588 3.574 .2876 11.62
60.00 31.50 1.624 3.655 .3323 11.56
60.00 36.00 1.653 3.720 L3712 11.51
60.00 40.50 1.671 3.761 L3977  11.49
60.00 45,00 1.678 3.775 .4071  11.48

66.42 0.00 1.320 2.971 L1281 12.49



Table 4 continued

6 ¢ Si Sé Sa Tc(usec)
66.42 4.50 1.328 2.989 L1291 12.46
66.42 9.00 1.351 3.041 1334 12.35
66.42  13.50 1.387 3.122 1439 12.20
66.42  18.00 1.433  ° 3.224 1638 12.03
66.42  22.50 1.483 3.337 1945 11.87
66.42  27.00 1.533 3.450 2343 11.74
66.42  31.50 1.579 3.552 .2780 11.64
66.42  36.00 1.615 3.633 .3180 11.57
66.42  40.50 1.638 3.685 3461 11.53
66.42  45.00 1.646 3.703 .3562 11.51
72.54 0.00 1.223 2.753 .1499 13.15
72.54 4.50 1.233 2.774 1472 13.08
72.54 9.00 1.260 2.835 1369 12.89
72.54  13.50 1.302 2.930 1369 12.63
72.54  18.00 1.355  3.050 .1408 12.35
72.54  22.50 1.414 3.183 1571 12.10
72.54  27.00 1.473 3.316 1858 11.90
72.54  31.50 1.527 3.435 2226 11.74
72.54  36.00 1.569 3.531 .2590 11.64
72.54  40.50 1.596 3.592 .2858 11.58
72.54  45.00 1.605 3.613 .2956  11.56
78.46 0.00 1.143 2.573 1936 13.93

78.46 4.50 1.154 2.596 .1870 13.81
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Table 4 continued

S ¢ Si SS'Z Sz', T, (Usec)
78.46 9.00 1.184 2.664 .1703  13.51
78.46 13.50 1.231 2.770 .1507 13.10
78.46 18.00 1.290 2.903 L1374 12.70
78.46 22.50 1.356 3.051 L1374 12.34
78.46 27.00 1.421 3.199 .1529  12.05
78.46 31.50 1.481 3.332 .1803  11.85
78.46 36.00 1.528 3.438 L2110 11.71
78.46 40.50 1.558 3.506 .2349  11.63
78.46 45.00 1.568 3.529 .2439  11.61
84.26 0.00 1.091 2.455 L2348 14,64
84.26 4.50 1.102 2.479 2254 14.47
84.26 9.00 1.134 2.552 .2007 14.05
84.26 13.50 1.184 2.664 .1695 13.50
84.26 18.00 1.247 2.806 L1432 12.97
84.26 22.50 1.317 2.963 L1307 12.52
84.26 27.00 1.386 3.120 L1357 12.18
84.26 31.50 1.449 3.262 L1554 11.93
84.26 36.00 1.499 3.374 .1812  11.76
84.26 40.50 1.532 3.447 L2025 11.67
84.26 45.00 1.543 3.471 .2107  11.64
90.00 0.00 1.072 2.413 L2514 14.93
90.00 4.50 1.084 2.439 L2510 14.75
90.00 9.00 1.116 2.513 L2133 14.27

90.00 13.50 1.167 2.627 L1779 13.66



80

Table 4 continued

) o) Si Sé SA Tc(usec)
90.00 18.00 1.232 2.772 .1467 13.08
90.00 22.50 1.303 2.932 .1295 12.59
90.00 27.00 1.374 3.093 L1306 12.22
90.00 31.50 1.438 3.237 L1473  11.96
90.00 36.00 1.489 3.352 L1712 11.78
90.00 40.50 1.522 3.426 1915 11.69

90.00 45.00 1.534 3.451 -1993  11.66
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Appendix 1.2 Averages for the Polycrystalline Cross Polarization Time

In the calculation of TIS for adamantane there are two separate
averages to be performed. We must first average the dipolar intcraction
between spins on two molecules over the rapid isotropic motion that
occurs at room temperature. From this averaged interaction the seccond
moment of the autocorrelation function is calculated, for a specific
orientation of the lattice in the external field. The desired poly-
crystalline moment is then calculated by averaging the individual sc¢cond
moments over many orientations. We presént in this appendix. a discussion
of how this first average is calculated and then a discussion of the
manner in which the orientational average should be carried out. Lastly
we present the results of the averages for the moments of the correlation
function and a listing of the proper conversion factors.

As mentioned in Chapter One the averaged interaction between spins

on two different molecules is found by evaluating the following intcgral,

over the isotropic motion of the two spins on two spheres:

3 1772
r

Pz(cosY)
[ —_— dS.ds (A1.2-1)

where Y and r are the instantaneous angle and distance between the two

spins; the angle is between the external field direction and the vector

between the two spins. Also Sl and 82 are the variables appropriate to

two nontouching spheres whose centers are separated by the distance R

of radius r and r, respectively. The result of this integration has
32-37

been reported and used many times in the literature, but the specific

details have never been presented.
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If we average r—3 itself we find, following Dimetrieva 25'31.32 that:

2
1 1 R '(rl'rz)z
<—§> = ARe T n 3 (A1.2-2)
T 8182 1°2 R —(r1+r2)

However if we average the full interaction the average becomes

PZ(COSY)

P, B(cos0)
< 2

> (A1.2-3)

3 T3
Y SlSZ R

where 0 1is the angle between the external field direction and the linc
between the centers of the two spheres.

To show this we will first calculate the integral of the interaction
between a point and a sphere with a uniform spin density. We take the

- _* ._) - »
Z axis (HOIIZ) to be the line between the point and the center of the

sphere. The radius of the sphere is r Then Yy = 0 in equation (Al.2-3)

2

and we find

P, (cosy) ) 2,
s = f 3/2 cos ¥4 pp, 2 sino do (Al.2-4)
S 0 3

2 r

where r is the distance between the spin at the point and the spin on the
sphere and o is the angle between the Z axis and the vectors from the

center of the sphere and the spin on its surface. Then:

l—r2 sinza

; - . 5

r = sz + r; - 2Rr2 coso and cos2Y = > (A1.2-5)

r
This integral gives
P, (cosB)
AR (A1.2-6)
3
r S R
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If we now choose an arbitrary direction for the Z axis we must

transform the coordinates in Al.2-4. Note that

Y
4T ,
P, (cosy) ~<?;> YZO(Y,B) (A1.2-7)
The transformation to a new Z axis is given by the addition rule for
spherical harmonics with a rotation defined by Di o' (0,0,0) where 0

is the angle between the new Z axis and the old which is the line

between the point and the center of the sphere. This gives:

PZ(COSY) + P, (cosy)

<R(0,9,0) 3 R (0,9,0)>S = P2(C089)<—‘—"‘—‘3-“~->S’
r 2 r 2
Y, ,(y,B) Y (vy,B)
+ 3ginfe («2t2 T, L ¥ T (Al.2-8)
8 3 S 3 S
r 2 T 2
Y, L (v,B) Y (v,B)
+2 sinf cosf (<—%L£—————> DT Tl SRS )
2 3 S 3 S
r 2 T 2

where B is the azimuthal angle about the vector between the point and
the center of the sphere. However we know that the cylinderical symmetry
of the system will average the terms with an B dependence to zero. For

example (see Al.2-4)

Y(Y,B) l’

Lo 2 L2 4*21B
i - (f—ﬂ) (%) f f S Y0 ¢ sina do d¢ (AL.2-9)
r 1 0 0 r ‘

where we retain the old integration variable a and ¢ is the azimuthal
angle of the vector from the spin on the sphere and the sphere's center.

By this definition 8 = ¢ and we have:
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Y. . (Y,B) o .2 .
<—2—’%-> = C f ﬂ;—Y sina da f et 12% 44 = 0 (A1.2-10)
r S 0 T 0

since we note that Yy and r are functions of o only, because of the spherical

symmetry. This leaves only

Pz(cosY) + Pz(cosY)
<R(0,06,0) 3 R (0,0,0)> = Pz(cose) <~——~T;—~> (Al.2-11)
T 82 r 82
which we have shown reduces to (see equation Al.2-6)
P, (cosy) P, (cos0)

2Tt 2 (AL.2-12)
3 3
r R

To calculate the interaction of two spheres we note that we may
break the integral into two parts. First perform the average between

a fixed spin on S, and the entire sphere S Then average this result

1 2°

over the variables of Sl. The first average is of the form we have just
completed. But because of the simple form of this first average (Al.2-7)
the second integration is again the same integral yielding:

Pz(cosy) Pz(cose)

< 3 > = (A1.2-13)

r SlSZ R

which is much different than we found for <j§> itself (Al.2-2). In words
then, the spins on two adamantane moleculesrbehave as 1f they are placed
at the center of the two spheres, giving the average distance as R.

Using the distance R as indicated above we calculated the second
moment at many orientations of the lattice (See Al.l). Thepolycrystalline

average 1s then the average of these moments over a sphere. However, we

must prove that the average of the second moments is actually the second



moment of the polycrystalline correlation function which we obtain from
experiment. To prove we are correct in our approach remember that the

. . 18
second moment of a function is,

2

_ 4 G(t)
__dd Jt:o 1.2-14
2 = G(0) (Al.2-14)

Here we take G(t) to be the autocorrelation function. TFor a polycrystalline
sample we must add up the functions G(t) for each crystallite giving the

overall correlation function

G(t) =f CG(t,Q) dQ (AL.2-15)
Sphere

where the variables {! determine the orientation of the crystallite and

the integral is taken over a sphere. We find that polycrystalline

moment M., is given by

2
2 2
- G a0 - % (e,
- dt t=0 Sphere dt ) t=0
W, - v - (A1.2-16)
SpheredQ (0,5

~/SQ MZ(Q) G(0,8)

) /;19 G(0,8)

Since the correlation function is normalized so that G(0,Q) = 1 (see

(A1.2-17)

equation (1.49)) we have finally

f de M, ()
ji -Sphere = 2 (Al.2-18)

2 f s
Sphere




which is the simple average of the individual moments.

we find that

\J
218 1.4508 = Sl

1ISTIT Tt
M4 = 8.6061 = ZSlS2 - 454

A

for an FCC lattice. For adamantane then

2
v - Ys"\ 1) g o
218 JE 3 site’ "2Is
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With this motivation

(A1.2-19)

(A1.2-20)

= 3.278 x 106 (%) (16) 1.4508 = 1.90 x 107 radzsec2

= 3.278 x 10°-5.184 x 10’ (fg)-% 16 8.6061

= 1.62 x 1014 ra<i4sec_4
which gives
, /2 MZSII
Tc =(::—> = 122 usec, for M2 = M
M 218

2

2h 2 h 2 2 —_
MTTEa A A WA AF: ra+n (1) . ISTT
4 B JE e 3 9] " site 4

(A1.2-21)

(A1.2-22)
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Appendix 1.3 Computer Programs

The relaxation times, T and Tlp’ the cross polarization times, T

1D 18’

and the correlation time, T.» were fit using the standard matrix form of
non—-linear least mean squares. The program was a standard Oak Ridge
version called ORGELS. The voltage ranges on the Biomation were found
not to be accurate, giving a 5% error when changing from 50 mv to 100 mv
scale. This was corrected by using the ORGELS subroutine PRELIM (not
listed here), which scaled the 100 mv data properly before curve fitting.
This is in general not necessary, however. The only necessary user
supplied subroutine is the routine to calculate the relaxation function,
and its derivatives with respect to all of the parameters to be varied.
For T the equation 1-50 was used and the parameters to be varied are

IS

B., Enz and TI is given in Table I. (Note

I This subroutine for TI

s’ S

2 - -
BAI = BI’ TAU = TIS’ EPS = en, TlA = TlD’ o, = ALPP, a = ALPM,
—EL-= DBB, 9 = DBT and J = DBE). It should be noted that equation
2B aT 2
I 1S 9en

(1-52) is in a particularly poor form for a least squares analysis, since
the parameters are all highly correlated. We use instead equation (1-50)
to aid in achieving convergence. It is even better to use (1-41) directly;
this will be done in Chapter 2.

The program for calculating lattice sums 1is given in Table 5 for the
CaF, lattice. The CaF2 lattice is easily generated by first forming a

2

cubic lattice with the displacements

X =1A

=
i

MA for L, M, N integers

Z = NA and A the lattice cell size (A1.3-1)
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and then displacing the lattice by %'A in each direction in order to

place the origin at the tetrahedral calcium site.

A ' (A1.3-2)

<
1]
+

N[ N N
o=

An FCC lattice is formed by excluding every lattice point for which
L+ M+ N is odd in equation (1). For the FCC lattice the origin
displacement is not needed. The subroutine for the formation of an
FCC lgttice, COORD, 1is shown in Table III,

To calculate Pz(cos6) the dbt product formula was used
Her = 8| |r] cos®

for the coordinates as directly generated from the lattice. This was
much faster than conventional methods, as suggested by McCall and

Hamming, for example.25 The lattice size for the sum SA was smaller

than for Si and Sé because of time limitations. Fortunately, Sa converges

much faster than Si or Sé (see Section IIT iv).
Simpsons integration was found to be more accurate than Gauss'

method for integrations over a sphere. This was tested by integrating

the function f(x) = 1 over a sphere. This is included as a subroutine.
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Table 5. Derivative subroutine for TIS curve fitting. CALC calculates
the value of the function and its derivatives for the current values of

the trial fitting parameters for the least squares fitting program

ORGELS. (See the text for the definitions of the important variables).
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Table 6. Program to calculate lattice sums, the second and fourth moments
and the correlation time for a rigid lattice. The subroutine COORD forms

the CaF2 lattice (see Table IV for an FCC lattice).
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Table 7. Subroutine COORD used to form an FCC lattice for the program

PDR. See Table 6 for the main program.
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Chapter 2

I. Introduction

Solid state NMR is rapidly being developed into a powerful means of
probing electronic structure, molecular conformation and molecular
dyﬁamics. Although these techniques have been applied to many different
nuclei of spin % (lH, 13C, 31P, l09Ag, 43Ca, 19F, 15N) the most ubiquitous
spin species, protons, have remained the most difficult to deal with

experimentally. We present here a new method to circumvent the problems

posed by solid state proton nmr. Instead of observing the proton magnetic

resonance we choose to observe deuterium nuclei (spin -1) which have

been substituted into the molecule of interest. This isotopic dilution

serves to decrease the strong dipole-dipole interactions which might
obscure chemical shift information,l as we have seen in Chapter 1.

On the other hand, the ability to extract informétion from deuterium
resonance is severely hampered by the extreme broadening caused by the
interaction of the nuclear quadrupole moment with electric field gradients.
For deuterium, the quadrupolar splittings are typically of the order of
v 200 kHz, whereas the chemical shifts are expected to span a range of
Vv 500 Hz. We have developed two different techniques for dealing with

this problem. The first which we call Quadrupole Satellite Spectroscopy

(QSS) takes advantage of the very sharp lines which are available from

a single crystal to measure the small chemical shifts. If these satellites
are too broad, due either to crystal imperfections, chemical exchange

or complex due to many inequivalent spins or polycrystalline samples,

the second technique, Fourier Transform Double Quantum (FTDQ) Spectroscopy
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is used to effectively eliminate the quadrupole interaction, leaving the
chemical shift, dipolar and scalar interactions. Both of these methods
greatly expand the number of systems for which high resolution spectra
may be obtained. As an example we report the first measurement of the
chemical shift of deuterium in a solid. This includes the resolution

of chemical shifts for different deuterium nuclei in a crystal and a
measure of the anisotropy of the chemical shifts as the crystal 1is
rotated.

Cross polarization techniques have proven quite useful for carbon-13-
proton double resonance (see Chapter 1). Since deuterium can now be
used as a high resolution probe we have extended these enhancement
techniques to the realm of deuterium-proton double resonance. The_

experiments involve a cross polarization of the deuterium double-quantum

transition. This completes the correspondence of established solid
state techniques to the deuterium case.

Apart from its practical significance the coherence properties of
multilevel systems is of great interest for many types of systems
including microwave double resonance, pulsed optical studies and optically
detected magnetic resonance.2 Deuterium NMR is a useful toolvin studying

coherence phenomena since it is a tractable three level system. We

present here an approach for the exact treatment of the coherence properties

of this system for both single and double resonance experiments.

We report the results of what we believe to be the first cross
polarization experiments, of the thermal mixing type at high field,
between deuterium and protons. The detection is achieved both indirectly

and directly, from which we have extracted cross polarization times,

correlation times and spin heat capacities, including the novel case of
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the double—quantum processes.

As an approach to high resolution spectroscopy we must dceal with
interactions on three levels; first the very large electric quadrupole
interactions, second the dipolar interactions and third the chemical
shift. 1In the second section we deal with the problems caused by ecach
of these interactions in turn. Having presented the general philosophy,
the third section will give the necessary theory. The treatment of

double resonance is presented in the fourth section.
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II. Approach for High Resolution

Part of the deuterium spectrum of a powder of dimethylsulfoxide
(DMS0) is shown in Figure 1. The pattern is much too broad to extract
any fine structure. The spectrum of a single crystal however would
contain two sharp lines split by the electric field gradient along
the external magnetic field direction. High field spectra of this
type have been used for example to extract information on hydrogen
bonding and the reorientation and structure of water of hydration in
solids..B_5 The above work is based on the determination of the electric
field gradient (EFG) tensor and the observation of dipolar fine structure
of the quadrupole spectrum. We note that since the EFG tensor is trace-
less the spectrum will be centered at a frequency determined solely by
the chemical shift and small second-order quadrupolar effects. Following
the center of mass of the two lines as the crystal is rotated then
essentially maps out the chemical shift tensor. If there are dipole-
dipole interactions in the crystal, the results will show up as line
broadening and/or fine structures on the satellites themselves. The
main disadvantages of this method are

1) that it is difficult to strike a compromise between the high
resolution necessary to observe the small effects of the chemical sﬁift
and the wide bandwidth required to observe the entire quadrupole splitting
and

2) the satellites may be so broad due to crystal imperfections,
etc., that it is impossible to obtain the resolution needed.

These difficulties can be resolved if a way is found of cancelling
out the quadrupole coupling while retaining the other interactions. The

level diagram for deuterium (S = 1) is shown in Figure 2. The normal
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Figure 1. Deuterium spectrum of polycrystalline perdeutero Dimcthyl
sulfoxide (99.5%). Note that the entire breadth is 88 kHz since only

the middle portion of the powder pattern is shown. The temperature is

-75°C.



110

DMSO -dg (~995 %)
T~-75°C
2D Fourier Transform, 16.3MH;

fs— 44 KHz

X

XBL756-6464




Figure 2.

Zeeman and Quadrupole energy levels for spin

double quantum transition occurs at w, since the m = *

0 +

shifted by the same amount (to first order).

= 1.

The

1 levels are



112

SPINTI=|

Zeeman Quadrupole

+|

XBL 763-629



allowed transitions for the spin-1 are m = 1 > 0 and m = 0 > -] which are
shifted by the quadrupolar interaction, mQ. To first order, the m = 1 »
-1 splitting is not shifted, however, The splitting remains at 2 mo no
matter what the quadrupole interaction is, and of course this splitting
contains the chemical shift. We induce the transition m = 1 » —f with a

radio frequency field of intensity w, at the unshifted frequency, w

1 0’
placing the levels * 1 in coherent superposition. This coherence,
which we label tentatively Q(T), now evolves as

Q(t) ~v a(r) cos 2AwT (D)
where Aw is the resonance offset or chemical shift and a(r) is the decay
due to relaxation by deuterium-deuterium, deuterium-proton or deuterium
lattice coupling. We shall see thath(T) does not contain mQ and thus we
have effectively removed the quadrupole broadening.

If we wish to observe only the chemical shift the dipolar coupling
must be reduced. This is conveniently handled by isotopic dilution,
as mentioned before. The more conventional choice for protons has been

) . . . 7
to use multiple-pulse line narrowing techniques,  to reduce homonuclear

dipole~dipole couplings. These techniques are difficult and our hope

was to replace them with something more generally applicable. For isotopic

dilution the homonuclear dipole-dipole coupling is reduced through its
distance dependence, leaving only the heteronuclear dipole-dipole coupling
which is easily averaged tb zero by spin decoupling.

Lastly we must extract the full chemical shielding tensor. This can
done either by rotating a single crystal about its axes or by obscrving
the polycrystalline lineshape (powder lineshape). As mentioned above,
direct observation of the quadrupole spectrum, QSS, is only amenablic

to the former method. While the double quantum approach may

be
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have the advantage of better resolution, its applicability is truly
demonstrated by it's ability to handle powder samples.

Isotopic dilution, however, decreases the signal to noise drastically
just as in the case of carbon-13. The cross polarization experiments
discussed will undoubtably aid in dealing with the problem. For a spinl
we have the additional possiblity of being able to cross polarize
any one of the three different transitions. Cross polarizing either of
the satellites is the direct extension of the carbon-13 work in Chaptor‘
1. Cross polarization of the double quantum transition will be seen to
produce a fundamentally different kind of deuterium polarization, a tensor
polarization. 1In addition the dynamics of the process help to confirm

the theory we have formulated.



115

III. Theory

The total Hamiltonian for the deuterium spin system (S) neglecting

other spin species can be written (in angular frequency units):

HS = HSZ + HSQ + HSS + Hrf(t) (2)

The Zeeman term
H = -wo (l—ozz)SZ where SZ = Zi SiZ

(3)

takes into account the projection of the chemical shielding tensor O
along the direction of the external field Hg, OZZ' The deuterium
magnetogyric ratio is YS'

The quadrupole term is:

2
- 3eqQ 2, 2 2
HSQ 8 L(3 cos GQ 1) + n(sin BQ cos ¢Q)] .
2 1
[s; ~3 8 (5 + D] | )
3e2 2 2
and we define further wQ = —§—§9 ((3 cos GQ—l) + n(sin GQ(COSZ¢Q)) which

is the actual splitting observed between the satellite and zero frequency,
see Figures 2 and 3. Q is the nuclear quadrupole moment, q is the largest

element of the electric field gradient (EFG) tensor and n is the asymmetry

parameter:

q = Q33s n =-———— with lQ33l > lq22! 2 lqll' (5)
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Figure 3. a) Quadrupole energy level scheme for a chemical shift of
0. The allowed quadrupole aatellite transitions are indicated in b).
The effect of fold over is indicated, for the case that the irradiation

frequency is exactly Wy in c¢).
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s

where 94 are the principal values of the EFG tensor. The angles GQ
and ¢Q are taken between the laboratory axes as defined by H, and the

principal axes of the EFG.

The homonuclear dipole-dipole term
2
-Y+h
I Y VO 1
Hrr s 3 33 cosT0,y-) {31, 1,,-1,01.) (6)
i<j rlj

is taken in the truncated high field form, as is the quadrupole

Hamiltonian. The angle eij is taken between the internuclear vector

and the external field.

The radio frequency irradiation is given as

Hrf(t) = -ZuolsX cos wt

where

(7)

and Hl is the strength of the applied rf field.

A. Quadrupole Satellite Spectroscopy

Let us first concentrate on the first two terms of equation (2); in
order to explain QSS. The Zeeman interaction genérates three non-degenerate
levels characterized by m = +1, 0, -1, the quadrupole interaction then
lifts the degeneracy of the +1 + 0 and the 0 -+ -1 transition to give
a two-line spectrum, as in Figure 3. The experiments were performed
with a single phase detector so that positive and negative frequency with
respect to the carrier frequency are indistinguishable. This causes the

spectrum to "fold over", and the splitting between the two satellites is

then:
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= V-V (8)

&y =2 voffset + 2 vchemical shift; voffset 0

where v is the spectrometer offset frequency and v

offset chemical shift

is the desired chemical shift.

The inclusion of the dipole-dipole term has been handled previously,3
so it will not be discussed further, except to notice that the effect of
isotopic dilution will be a corresponding narrowing of the satellites

which will allow the high resolution determination of the peak positions.

B. Fictitious Spin Operators

We wish to develop a theory for our system which is not based on a
perturbation approach. This is easy for two level systems. Since their
operators have a formal correspondence to angular momentum operators,
spin operators can be used as generators for rotations. This, then, is
the formal basis for viewing spin % systems as precessing and nutating
magnetizations. This correspondence breaks down for bilinear operators,
operating on a three-level system, such as the quadrupole interaction,
so closed form operator expressions are more difficult to obtain.

This difficulty can be somewhat alleviated by using fictitious

. 1 8 . .
spin °; operators. Their usefulness has been demonstrated in work on
9 .
pure NQR systems. If any two levels are coupled by a nearly resonant
interaction, we can in some Sense ignore any other levels. The resulting
system then corresponds to a normal spin % system, that is,it has two
eigenfunctions and energy levels, and its operators can be cxpressed
. 8 . . .

as 2 x 2 matrices. We choose these matrices to be the Pauli spin
matrices, whose correspondence to angular momentum operators allows the

transformation properties to be considered as rotations.
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The operators are defined by the commutation relationships given

in Table 1. Choosing a basis set which will be convenient for our

present calculations determines the matrix form of the operators as

follows:

|x> = \% (|+1>=|-1>)

[y> fJ% (|+1>+]-1>)
|z> = [ 0> (9)
where |+1>, ,—l> and [O> are the eigenfunctions of SZ for S = 1.
0 i 0 0 1 0 1 0 O
1 1 1 1
=S, =5-1 0 O S ==f1 0 O S ==40-1 0
%172 %2 2(0 o o z,2 "2\, 0) z3 2 (0 0 0
0 0 1 0 0 i -1 0 0
1 1 1 1
=->S,=<510 0 O S =10 0 O S = 0 0 O
¥,172 5y .2(l o o v,2 72\ 0 o 0 Y,3 2‘ O l)
0 0 O 0 0 O 0 0 0
1 1 1 1
S == 5 =3>10 0 1 S = {0 0 -1 S =={0 1 ©
%172 5% 7 2 (0 . o) X,2 "2 (o ° o) X,3 2 (0 N _1)

Here instead of the three linearly independent operators SX’ S

Y,

and SZ the set has been replaced by a set of nine operators, in such a

1.

way that each corresponds to a spin % operator for one of the transiticns

in the three level system. Only 8 of these are lincarly independent and

this dependence is expressed by

%37 {3+ 5, 43=0

(10)



v Table 1. Commutation Relations

B
5%, 1 5%, 2 5%, 3 Sv,1 5¢,2 5¢,3 SZ,l 52,2 52,3

5%,1 0 5¢,3 7 5x,2 %Sz,l "%Sz,z %Sx,z %SY,l %Sy,z 3 X, :
5,217 Sx,3 0 S%,1 ‘%Sz,z '%Sz,l _%SX,I %Sy,z %SY,I % X,1
5,3 Sx,2 T Sy 0 —%—SY,Z %SY,l 0 %Sz,z % Sz.1

SY,l B % SZ,l % Sz,z % SY,Z 0 5¢,3 N SY,2 % 5%,1 % Sx,z % Y,2
) %Sz,z %Sz,l _%SY,I T Sy.3 0 5v,1 %Sx,z %SX,l % v,1
Sv, 3™ % Sx,z % Sx,l 0 SY,Z - SY,l 0 % Sz,z %‘ SZ,l

SZ,l %SY,I ‘%Sy,z %Sz,z —%Sx,l %Sx,z %Sz,z 0 Sz,3 z,2
82,2 ‘%Sy,z _%SY,l '%Sz,l %Sx,z %—SX,l "%Sz,l 52,3 0 z,1
52,3 "%Sx,z %Sx,l 0 ‘%Sy,z %Sy,l 0 52,2 52,1

[4,B] = iC

1l
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The significance of these operators to other problems and their relation-
ship to standard spherical tensor operators is given in Appendix 2.1.
1

The similarity of these operators to the normal spin % operators

is seen through the commutation relations;
[S ., .1 =158 (1)
pi

with

p=2X, Y, or Z and i,j,k = 1,2,3 or cyclic permutations

[ ]=0 P,q = X,Y,Z

SPS’ 8%3

{ ]=0 p#fq#r and i =1,2,3 (12)

S .-S ., S .
p3 4¢3’ ni

S and S behave like Pauli matrices O

pl’> “p2 n3 x> v

07 for the transition p. The Quadrupole Hamiltonian is given as:

These show that S

(82 - %—S(S+l)) - 2w

H, = - SZ + W 7

g 0 1 Sy coswt | (13

Q

Transformation to a frame rotating at the frequency of the applied rf

field gives

st 2 1
HS = —AwsZ - mlsX + wQ(SZ -3 S(S+1)) (14)
with Aw = w,-w.

0

The functions ,X>, [Y> and ,Z> were chosen to form the basis set because
they are the eigenfunctions of the rotating frame Quadrupole Hamiltonian

without the rf interaction:
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H = —Aw S + 0 (52 - L (s(5+1)) he
S 7z Tz 73 (14a)

The level scheme for this Hamiltonian is shown in Figure 4.
We rewrite (l4) in terms of our fictious spin half angular

momentum operators:

Hy = -2, | - 2w S . +w_ S_ - Ep (S 4= (15)

s z,1 x,1 7% 5.3 ,375q,3?

with p,q,r = X,Y,Z or cyclic permutations and where

wx=—wY=wQ,wZ=0
- -1 . - _2
EX = EY 3 wQ 3 EZ 3 wQ

The level scheme for this Hamiltonian is the same as for equation (14), and
Figure 4, where levels |X> and |Y> are degenerate in the absence of the
rf irradiation. (Here we note the correspondence to both pure NQR and
Raman Spectroscopy). The operators SX,' for example, correspond to
transitions between levels |Y> and |[Z> where the elements 1,2,3 are the
Pauli spin operators between the two levels. The picture then corresponds
to three separate coordinate systems X, Y and Z each corresponding to a
different transition and each having axis 1, 2 and 3.

As a consequence of the basis set we have chosen the operators Sx i

3
and SY 5 which do not correspond to the normal transition |0> <> [+1>
3
and lO> <> I—l>. Instead, to find the operators which couple these transi-

tions we must take linear combinations of the operators. The |+1> and

l—1> levels are given by



Figure 4. Quadrupole energy level scheme in the rotating frame.
allowed transitions are indicated. Note the analogy with Raman

spectroscopy.

The
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-1
[+1> = == (|x> + i[Y>)
V2

|-1> S (Jx> - i]y>)

V2

Simple algebra then gives the SY(+) operator for the |+1> > |0>
A _ _ > < >
transition as (SY,l SX,Z) and SX(+) operator for the |+l > IO

transition as - (S - S ). This can easily be verified by allowing

X,1 ~ °Y,2

cach to operate on the gpin function l0> (= (%))_ These operators
will occur in the cross polarization section. For the other satellitc

and for the § operator

we find the SX(—) operator to be S Y (=)

Note that these operators are the fictitious spin s

+
v,2 T Sx,1

+ & .
Sv,2 ¥ %y

operators for the satellites and not S, and SY’ the full spin operators.

X
We now discuss the transformation properties of these operators

under rotations. For example an € degree rotation about the 2 axis in

the X coordinate system (RX(E,Z)) will result in

S! = e_iESX’2 S, . e+iesx’ = cosE S - sine S

X,1 X,1 X,1 X,3

S%,2 = Sx,2

Sk’3 = sing SX,l + coseg SX,3

Sé,l = cos % SY,l - sin-% SZ,Z

5, ) = sin % Sy, * cos %'Sz,l

Sv,3 752,37 Sv,3 7 52,3 (16)

As is seen the rotation properties are straight-forward, except for
a rotation of one of the Sp 3 operators whose linear dependence on the
s

other 3 operators makes matters somewhat complex. A summary of all possible

rotations is given in Appendix 2.2. In a similar way it is shown that
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a G
e SY,l e = SY,l cos Et + S sin Et (L7

where the first equation shows a rotation in the X-coordinate systen
and the second equation corresponds to a regular Cartesian-coordinate
system rotation induced by the normal angular momentum operators SX’

S S

Y> vz’
The success of our approach in using these operators is dependent
upon our ability to write the Hamiltonian in two parts, the first must
have the form of a spin % Hamiltonian and the second, which contains
the rest of the system, must commute with the first. As we shall see,
this second part may then be "ignored" in so far as the dynamics of the
system are concerned.

1. Single Quantum Transition Hamiltonian

There are two important limiting cases for the experiments that
follow, and the Hamiltonians for these are derived below. 1If we irradiate
near the frequency (Sw away) of one of the satellites we will cxcite
single quantum transitions and the Hamiltonian, equation (15), can be
rewritten in a form particularly convenient for that case which fulfills
the above conditions of commutativity of the two parts. The second case
to be considered is when the frequency of the irradiation is near the
center of the spectrum. Double quantum transitions can then be induced
with a high probability, and we rewrite the Hamiltonian to emphasize this

transition.

The Hamiltonian for the first case, where

Aw = wQ+6w
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becomes
HY = =2(8w + w.) S +_§ w (S - S ) - 2w, S
S Q Z,1 3 70 X,3 Y,3 1 X,1

We now rotate the Z-coordinate system 90° around the 2-axis (R7(90,2))

and we get,

- V2w, Sy 1= Sy U8

2
+ T ! S
2(8w + w.)Ss w (S Y.2

H ]
S Q’%z,3 7 3 0%, 3 Y,3

i

'l

Using equations (15) and (10) and assuming w, << w_. we can 1gnoreV/7n Y )

Q
with respect to-% wy S; 3 so that the Hamiltonian becomes
e v _i ' _ Q! :
HS Sw S vf~ml X,1 3 wQ (S SZ,3) (19)

In a similar way we get for irradiation near the other satellite

where

Aw = -w. + Sw

s, . - s. ) (20)

Hg' = —Sw S, . +2 w, S + 2 Z,3 X, 3

Y,3 17Y,2 37Q

There is a more pictorial way of deriving (19) and (20). By

inspecting equation (18) we see that the energy associated with the

\J
transition between levels X and Y, which corresponds to the S7 3
'y

operator, must be 2(6w+wQ). Also since the Zeeman term is given as

'
proportional to SZ 3 the Z level must not be shifted, that is the
1]

1
S7 3 operator has a vanishing matrix element <Z]S7 3|Z>. The energy
Ly “

of the 7Z level must then be - %—wQ. Using the fact that
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E,+ E, +E, =0 (21)

where E denotes the energy of a level, we can generate the level diagram
as shown in Figure 5b. We wish to write the Zeeman term so that it

corresponds to the Y -~ Z (4+w.) transition, so it must be given as

Q

(EY - EZ)SX 3 (22)

the energy of the rest of the system must then be proportional to

) and we can calculate the proportionality constant by noting

Sy 37 553

that if the system is in the state |[X> its energy must be

_ 4 -
By =3 g + Sw (23)

Including the r.f. irradiation term gives finally

- G, kW) (s, 4 - S,

%y )
3°Q 3 Z,3

1
Hy' = -Sw S, - v@&l S

, X,1 " (24)

Invoking the assumption that dw << w, gives equation (19).

Q
The equations (19) and (20) now have the form that we required; the
first two terms correspond to a fictitious spin half Hamiltonian and the

last commutes with them. The effective gyromagnetic ratio along the

irradiation field for this fictitious spin is
VE_YS - YeS

In this way we are motivated to consider one satellite as a spin half
system with its effective gyromagnetic ratio Yag* This is of course only

so if the r.f. field strength is much smaller than the distance between
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the satellites of the S-spin system, i.e., Wy << W,

2. Double Quantum Transition Hamiltonian
We now consider the case in which the rf irradiation frequency is

near the center of the S-spin spectrum, i.e.,

Aw = Sw << w
Q

After applying a RX(GX,Z)rotation and using equation(l6), we find:

o 2 '
s T\fUq T Cup Sy 5 §wQ(SY 37 57,9

28w(S,! | cos £ 4s! in )

7,198 2 T oy o sin
where
2w

B 1 _ 2 2 =

tanex = —w—Q-— and wes U)Q + (2(1)1) (2))

This rotation is analogous to the rotations used to find the effective
field for a normal spin % system irradiated near resonancc. Assuming

again that wy << W, and Sw << w _, ignoring the coefficient of SY ) with
. 2 ’

fo)

respect to the coefficient of S and considering only first order

< -

»3
terms in wl we get

A l 2 2_ Z ' B
HS = 5 ( wQ + (Zwl) wQ) S 3 + 3 wQ(SX 3 SY,3) 28w SZ,l

(26a)

A
= 4+ = y
SZ,B 28w SZ,l 3 w (S 3 S ,3) (26Dh)
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Here again the easiest way to visualize the rewriting is to construct

the level diagram. The energy of the transition Y - Z must be the

coefficient of Si 3 since Si 3 couples the Y and Z levels.
2 2 .
EY - EZ —\/gé + (Zwl) 27)
and the X level must remain unchanged since SX 3 has no matrix element

for the X level:

_ 1 )
E_ = 3 wQ (28)

Using equation (21) allows us to complete the level diagram;
Figure 5c. We wish to focus attention on the double quantum transition

X > Y so the Zeeman term will be proportional to ¢ this we call

2,3
the "double quantum'" frame. We may then complete the Hamiltonian as

before yielding

o1, [ 2 2 1, [2 2 1
HS = 5 ( wQ + (Zwl) wQ)SZ,B 2 wQ + (Zwl) + 3 mQ)
(Sy 3= Sy 9 = 2605, (29)

Invoking the condition wl << wQ gives the final result, equation (26a).
Again we obtain a Hamiltonian in which the first two terms in
(26b) are a spin * Hamiltonian, which corresponds to the double quantum

transition measured in a continuous wave (CW) experiment. The cffective

gyromagnetic ratio for this case is
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Figure 5. Quadrupole energy level scheme in the rotating frame with and
without rf irradiation. A single quantum "reference frame" is indicated
in (b), and the double quantum in (c). See equations 21-24 for the

single quantum frame and equations 27-29 for the double quantum frame.
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if dw = 0. Thus the effective magnetogyric ratio here is ZYS for the
W
resonance offset and Bl YS for the effective irradiation field.

Q

C. Observables

It is necessary at this point to ascertain which spin % operators
correspond to physical observables. The best way of doing this is to
find those operators whose expectation values correspond to signals
measured in a pulsed NMR experiment. Here we detect the expectation
values of SX or SY which have been transformed into a frame rotating at
the irradiation frequency. This frame corresponds experimentally to
the phase detector whose axis we label g, i and Z. Signals whose initial
amplitudes lie along the X axis are termed in phase and those whose
initial amplitude lie along the g axis are out of phase. The signal
from the phase detector is then Fourier transformed giving a complex
spectrum, . In phase signals give rise to absorption shaped signals
in Rey and dispersion in Im. Out of phase signals give rise to
absorption signals in Imy and dispersion in Rey. We choose this description
because unlike the spin ! case, we shall see that the expectation values
of SX and SY can behave quite independently.

Let us define the reduced density matrix of the S-spin system 02(0)
at the beginning of the free induction decay (FID) in the rotating frame
using the high temperature approximation. First the high temperature

approximation gives the full density matrix as

1—BH§
Og(o) T

the reduced density matrix is given as
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* *
0, (0) = BHy | (31)

This we may expand in terms of the nine operators giving:

* .
o,(0) = a S . (32)
S p=X,Y,z;i=1,2,3 P1 Pt
From the solution of the Schrodinger equation
3 % o * * .
with the Hamiltonian excluding the r.f. irradiation:
HY = -280s, . +2w (s S, .) (33b)
s~ z,1 73 %%x,3 7 °y,3
we obtain
* . . nyN
Os(t) = E ap’i exp (—-i HS t) Sp,i exp(+i‘ﬁ; t) (}4)

p,1

As a simple example, let us first apply this to a standard spin '

problem in order to make more explicit the above comments about thc

phase relationships. We use the simplest Hamiltonian

Ho = Aw S, (35)

the general density matrix is for this case expanded in three operators:
* 2
g (0) = E : apS (35b)
p=X,Y¥,z ° P : . »

finding the time evolution with the Hamiltonian gives

*
= & > i s S el bt S | H S
o (t) aX(Sx cosAwt + SY sinAwt) + 1Y(SY cosAwt Sx sinfwt) + 1,8,

(36)



We then observe,

v a a
Y .
< > = t S = .= - 2
\Sx tr (g qx) 5 cosAwt 5 sinAwt
ay aX
< > o= = kg
QSY tr (o SY) 5 cosAwt + 5 sinAwt . (37)

where tr(Si) = %
To relate (37) to what 1s experimentally observed in our spectrometer
we must be somewhat careful about the phase relationships. Remember thar
the X,Y,7Z spin axes are determined by the rotating frame transformation
with respect to the r.f. irradiation, both in frequency and phase. The
phase detector 1nvgeneral will not be in phase with the irradiation, that
is the g phase de;ector axis and the X-spin axis are not necessarily
aligned. We assume for now that they are aligned since by doing so
we loose no real generality. We will discuss below the adjustments to

be made if they are not. The actual signals observed under these

assumptions are simply,

gg(t) = <Sx(t)> and gg(t) = <SY(t)> (37a)

in the two channels of the phase detector.
The complex Fourier transform is defined by:

Pw) = £ (w+ if (W) = jdt et (g (t) + ig (£)) (37b)
AR S X ¥

i<

The complex Fourier transform of equation (37b is then a delta
function at frequency Aw in Rey of intensity ay and a delta function
at frequency Aw in Imy of intensity ay- This is shown graphically in
Figure 6a. The horizontal axis of the diagram is the frequency axis,

w. The vertical axis is the Rey axis and that axis projecting into the
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Figure 6. a) Schematic representation of a spin '3 Fourier transform

experiment, for a line of frequency Aw. b) The change of coordinates

accomplished by the Fourier transform phase correction. The x and y

axis are the spin axis which are transformed into a new axis systcem

x' and y' which is aligned with the phase detector.
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x> dy are shown plotted along

page is the Imy axis. The intensities, a
their respective axis.

If we take into account relaxation processes, the absorption line
shape will no longer be a delta function. We then introduce the free
precession shape function or relaxation function a(t), (normalized to

1, see Abragam, ref. 8, for more details) whose cosine Fourier transform

yields the absorptive line shape,

g(w) = fa(t) coswt dt . (37¢)
0 .

Equation (37) then becomes,

g
i(t)

<§ > - i
SX ay a(t) cosAwt aY,a(t) sin Awt

il
it

g_(t) <SY> ay a(t) cosAwt - a_, a(t) sinAwt (37d)

X

1<

and corresponding after Fourier transformation,

Y)Y = f (W) + i f (w) =v?kdteiwt (g (£) + i g (£))
X X b X

e

.

yields both absorption and dispersion in Rey and Imy. The term

proportional to a_, yields an absorptive line in Rey and a dispersive

X

lineshape in Imy and vice versa for aY. We obtain both absorption and
dispersion automatically due to the complex Fourier transform. We will
schematically represent this more realistic case in exactly the same
way as before, Figure 6a.

The above assumed that the X spin axis in the rotating frame was

aligned along the X phase detector axis. This will always be assumed
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for if it is not a trivial phase adjustment of the spectrometer

(the spectrometer phase) or a phase transformation after the Fourier
transformation, correct the misalignment. To illustrate the Fourier
transform phase correction assume that the X spin axis and the g
phase detector axis are misaligned by an angle ¢, Figure 6b. The
observed signal is then obtained from the time evolution of the density
matrix after it has been transformed into a new frame X', Y% in which
the X' axis now lies along the X phase detector axis. The Fourier
transform of this signal will give some mixture of absorption and
dispersion in both Rey and Imy. If we wish to obtain the Fourier
transform with respect to the old coordinate system (the original
rotating frame) we must apply a phase transformatioﬁ with phase -¢.
As an example we choose the density matrix of a single spin species

after a 90° pulse has been applied (see Figure 6b).

g(0) = Bwo SX ‘ (38)

where B is the laboratory inverse temperature. Transforming to the new

axes gives

a(0) = Bu, cosp S+ Bu, sing s;{ (39)

The Fourier transform will give

P(w) = au(w) cosd - dU(w) sin¢ + i(au(w) sin¢ + du(w) cosd) (39a)

where au(w) and du(w) are the intensities of the absorptive and dispersive
lineshapes at the frequency of interest, w, see Figure 6c. Had the X

and X axis been aligned the Fourier transform would have given only
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absorption in Rey and the dispersion in Imy). The effect of the
misalignment is then to mix some dispersion into the absorption in
ReY and some absorption into the dispersion in Im{. To obtain the

purely absorptive lineshape in Re) we must phase the Fourier transform

by (-¢) giving

e—i¢ w(w) = cos¢ + i sind) Y = au(w) +-idu(w) (40)

this must be computed for each value of w.

In order to find the observables for the [ictitious spin operators
we carry out, now, the analogous analysis as we have sketched for
the spin % case. The appropriate Hamiltonian for a system of quadrupolar

spins is given in equation (33b). We rotate this with RZ(90,2) to give

' ' !

* 2 !
= 20w S, . + = -
Hg w8, 3+ 308y 38y )
and
Teo r =1 (s sy
Rz °x,1 %2 75 x,1 7 Sy,2
+ 1 ' '
R, Sy 1 B, = N (Sy 1 + Sy ) (41)

We take the initial density matrix as (see equation 32)

* ,
Og (0) = E : ap,isp,i (32)

From equations (34) and (16) we obtain
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O*'(t)==%;a;3 s;’3 + (ay ) Sy g +ay, Sy ) cos(ughu)t
+ (a)'(’l Si’z - ai’z Si,l) sin(wQ—Aw)t
+ (aSE’1 Sé,l.+ aé’z Sé,z) cosE—Aw—wQ)t
+ (a\'[’l Sé’z - a§,2 S&,l) sin(-Aw—wQ)t (42)

*
We must now rotate back with RZ(—9O,2) giving o (t). Only the
projections of G*(t) on the X,1 and the Y,1 axis are observables which

give the signal in the phase detector as,

1 1
2< > = - : - - (- 3 — -
SX,l Z(aX,l + dY,2) cos(mQ Aw) t Z(dX,Z + aY,l) 51n(mQ Aw)t
—<£(a - a ) cos(w . —-Aw)t —<l(a - ) sin(~w _-Aw)t
2%%y,2 T %1 Q 2'%y,1 7 %x,27 ST,
2¢S. > = 2(a. . - a. .) cos(-w -dw)t - S(a. . - a. ) sin(-Aw-w )t
Y,1 2Y,1 X,2 Q 2Y,2 X1 ' i Q
+ 1{3 + ) cos(w . —~Aw)t —<l( - ) sin(-Aw-w )t
2%%,2 7 %y,1 ) 23y, 2 T 8,7 SRR,

l (43)

It is clear that all initial Sp i with p = X, Y and i = 1, 2 can be

b4

detected. A summary of the results of Fourier transformation is given

in Table II.

Table II. Fourier Transform fpr an arbitrary initial density matrix
Rey Inmy
intensity frequency shape intensity frequency shape
of of
aX’1+aY,2 wQ—Aw abs. (0°) aY,1+aX,2 wQ~Aw abs.(0°)
aX,2+aY,1 wQﬂm» ~disp.(-90°) aX,1+aY,2 wQ—Aw disp. (90°)
aX,l_aY,Z —wQ—Aw abs. (0°) aY,l~aX,2 —wQ—Am abs. (0°)
ay 1y, Wb ~disp. (~90°) Ay Ty, gTOw disp. (90°)
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A simple example mayhelp to clarify the above relationships. Let us

start with an initial density matrix aligned along the X,l axis.

G (0) = a (44)

X,1 5x,1

The time evolution is described by equations (34) and yields at time t

a
o(t) = —Eél (SX 1 cos(wQ—Aw) + SX 9 sjn(mQ*Aw) (45a)
+ SY,Z cos(wQ—Am) + SY,l s1n(wQ—Aw) (45b)
- SY,Z cos(—wQ—Aw) + SY,l 51n(—wQ-Aw) (45c¢)
+ SX,l cos(—wQ—Aw) - SX,Z sin(—wQ—Aw) (454)

each of the terms above corresponds to a precessing magnetization as
diagramed in Figure (7a).
Note the following,
1) the precession direction in the Y space is opposite to the X space,
2) if Aw = 0 all the magnetizations precess at the same rate.
3) for Aw # 0 d and ¢ precess faster (wQ+Aw) than a and ¢ (w.~Aw) .

Q

We now find the expectation values of S and S to find the

X,1 %y, 1

signals actually detected. This is easily done by insp