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THERMODYNAMIC HP6T7 CALCULATOR PROGRAMS

Introduction

Thermodynamic data and phase equilibria are greatly needed to meet
current materials problems. Specific design criteria often require rather
unigue combinations of materials. Of the many combinations that might be
of interest, data are available for only a small fraction. Useful combina-
tions are often overlooked or great expense is incurred because an unnecessarily
large number of combinations must be tested. The calculation of thermo-
dynamic data and phase diagrams, even when no experimental data exist, is
posgible using spectroscopic levels of the gaseous atoms and chemical
bonding theory (1-11). This was demonstrated for a large number of transi-
tion metal binary and multicomponent systems for which 1little or no data
were available (2). Because of limitations of space for the large number
of binary and multicomponent systewms presented, projections of phase diagrams
along the temperature axis were presented ylelding only maximum extent of
phase boundaries at the optimum temperatures although the text did discuss
temperatures coefficients of the boundaries. The results of the calculations
as a function of temperature will be presented in detall in subsequent
publications. »

The present report is a supplement to a tabulation of the thermodynamic
and phase data for the 100 binary systems of Mo with the elements from H to
Lr. The calculations of thermodynamic data and phase equilibria were
carried out from 5000 K to low temperatures at which attainment of phase
equilibria would not be practical. The results of these calculstions are
to be published as a speclal issue of the Atomic Energy Review, a publication
of the International Atomic Energy Agency, Vienna. As only the results of
the calculations are presented in the Atomic Energy Review issue, the present
report is being used to present the methods of calculation used.

The thermodynamics involved is rather straightforward and the reader
is referred to any of the advanced thermodynamic texts, e.g. Ref.(12), for
derivations of the thermodynamic relations. The procedures for using
chemical bonding theory to provide estimates of thermodynamic data have been

outlined in previous publications (1-12).



Do

The calculations were largely carried oubt using an HP-65 programmable
calculator and the programs have been tabulated (13). In this report,
those programs have been put in form for use with the HP-6T calculator
which allows for a great reduction in the number of programs required to
carry out the calculations.

It is difficult in a compendium of calculation procedures of this
type to present topics in a coherent manner, but an effort has been made
to assemble programs into related groups. As the equations which serve
as the basis for the calculations are discussed in detail in Ref.(13), the

discussion of the background equations will be limited in this report.



CHAPTER I
Data Fitting Using the Chebyshev Polynomials

A, Least-Bguare Fitting Using Chebyshev Orthogonal Polynomials

The Chebyshev (Tschebycheff) polynomials, Tn(x) = cos(ncosmlx), are
orthogonal over the continuous interval 0 < x £ 1 and they have been shown
to be the most economical polynomial for expressing f(x) as a polynomial
series with the minimum number of terms for a given accuracy.

(1kh,15)

The Chebyshev polynomial can be modified to Cn(i) which is ortho-

gonal for discrete integer values of the variable, x, from 0 to N with
n

i

Co = 1 and Cy

‘<ml)m(n)(n+m> %1 (Wem)!

/A M/ (Fem) INT

=0

() = _

(nt+m)! %! (W-m)!
(n-m)1(g1)2 (F-m)IN!

The recurrence relation is

Cp+1l = [(2n+1)(N-2%)Cp - n(W+n+l)Cpoq ]/ (n+1) (W-n)
Co =1

Ci =1~ 2x/N

Co = 1 + 6x(x-N)/N(N-1)

For N = 7, for example,

- - - - - 2 -
Co =1, C1 =1 = &x)WCo =1 = X + Hx)%03 = 1 - $AZME)"~ 545)°.

The Chebyshev polynomials for discrete integer values are particularly
useful for least square fitting of experimental data. Because of the ovrtho-
gonality, cross terms are zero in the matrix used to solve the set of linear
equations obtained by setting the partial derivatives of the squares of the
deviations equal to zero.

Thus, the coefficients of £(X) = colo(x) + c1C1(x) + cololx) + c3C3(x) + .
are readily calculated without solution of a matrix by the relation

cp = (£,C)/(Cpq.Cn) where

(W)t (We-n )t
T (on+l) (W17

(£,Cp) Zj ) f(x)Cn(x) and (Cp,Cn) = 2,
x=0 x=0

a

For N+1 values of f(x) at N evenly spaced intervals of x, the values of

Cn(x) to be multiplied by f(x) are evaluated by the following program,



e
(en+1) (N-2%)Cn - n(N+nt+l)C

c - n-1
] (n+1) (N-n)
Co = 1 and Cp = (N-2%)/N
_3(n-2x)cy - (W2)
G2 = 2(N-1)
5(N-2%)Co = 2(N+3)Cq
03 = B(N“Q) 9 e’tc«

The integers ;a which range from O to N, are related to x by
x = (x-%i)/T = x/T ~ r, where xi is the initial value of x and I is the
interval spacing of x.-

The values of Cpn(X) are stored in the registers starting with C1(1),
Co(l) =° cnmax(l)s C1(2), Co(2) --- cnmax(g)s c1(3) ... . In each cycle
of calculations of Cp(x), n is incremented until Cnmax(x) has been calculated,
then x is incremented and the cycle started again at n = 1. The calculation
stops when x exceed W/2,as the second half of the values of Cn(x) are the
same as the first half except for change of sign for 0dd values of n. For
n' = 3, there is sufficient storage to calculate the Cn(x) values up to
N =15. For n'= 4, the maximum is N = 11. However, if storage is to be
provided for subsequent (feCn) calculations, the maximum N values for n'=3
and 4 are 13 and 9, respectively.

n', the maximum value of n or the order of the polynomial used for
fitting, is keyed in first, With N evenly spaced intervals of x, the number

of data points to be treated, N+l, is keyed in nextb.

Directions:
(1) TInsert tape Cheb Cp
(2) n'" 4 N+1 A 2L displayed at end of calculation

The values of Cp(x) calculated in the order of increasing n for each value
of X and in order of increasing X are stored in the registers in reverse
order from index number 24 to T. Tf it is desired to examine the Cp(x)
values, R/S following the calculations of step 2 will display 24 C1(1),
23 Co(1), 22 C3(1), 21 C1(2), ete. Only the contents of registers with
non-zero values are displayed. When no non-zero values remain, 6 followed

by 24 will be displayed (See Ref. 23).
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Ir it is desired to preserve the Cp(x) values for future (f,Cp)

calculations, key f W/DATA and insert data card.

also tabulated for several values of N and n in Ref.(13) and could be

Values of Cp(x) are

keyed in for calculation of (f,C,) values by Prgm. Cheb (f,Cp).

Prgm. Cheb Cp
(2) fLBLA 1 - 8T05  hRY 1 - ST06 2 5
h8TI 0 STOL 13
fLBLO RCLS 2 + RCLL 1 + gx>y GTo2 STOL
1 STO3  RCLLE 2 X RCLS + CHS 1 +
fDSZ  STO(i1) 35
fLBL1L RCLL 2 X RCL5 - X RCL3 2 X
1 + £  hxzy RCL3 X RCLS 1 + RCL3
+ X + RCL3 RCLS - + RCL3 1 +
+ fDSZ  STO(i)RCL6  RCL3 1 + gx>y GT00 STO3
hRY hRY fISZ RCL(i) hxey FDSZ GTO1 82
fLBL2 2 STO+5 giBLfe RCLH fINT STOL 2 L hSTT
hRTN 6 STO6  fLBLC RCL(1i) fx#0  GTOD DS GTOC fLBLD
hRCI  DSPO  hPSE RCL(i) gx=y GTOfe DSP2 foxm DS GTOC 152
R 3 L 5 6 Values of Cp(%) are
n=1 x=0 N n'-1 Index stored in reverse
to to N i order from E to A,
-1 int %‘ > 89 to 80, and 9 to T.
Test:
(2) n'=3 * No. of data pts.=14 A, 24 after L0 sec.
R/S 2h, ¢1(1) = 0.85; 23, Co(1) = 0.5h; 22, C3(1) = 0.08;
21, C1(2) = 0.69; 20, Cp(2) = 0.15; 19, Cz(2) = -0.L6;
18, €1(3) = 0.54; 17, Co(3) = -0.15; 16, C3(3) = -0.69;
15, Cp(b) = 0.38; 1h, Co(k) = -0.38; 13, C3(h) = -0.66;
12, C1(5) = 0.23; 11, Cp(5) = ~0.54; 10, C3(5) = ~0.LT;
9, C1(6) = 0.08; 8, Co(6) = ~0.62; 7T, C3(6) = -0.17; 6, 2k,
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The least square fit to the starting dats with teyms ranging in n up

to the maximum value, n', yields the equation f£(x) = 1,en)/(ChChl c(x),

which has the advantage over equations fit by other lgigt@square procedures in
not weighting the different powers unequally. Unless weighting factors are
added, all points will have equal weight. The equation can be expanded in
powers of X by substitution of

(ntmt )1 xt (N-m')!
LS IS
e VUt 1Y E (et VI
&= {nem® ) (m* 1) (x~-m")IN! .

N - . - . -\ 0 m
Each Cp(x) will provide n terms in powers of x ranging from (x)” to (x) .

Substitution of X = x/I = r will then convert each term to m' terms in %
. n' . . . .

ranglng‘from x° to X . The final eguation will be a polynomial

amx% nt Bach of these coefficients relate to the original (f,Cn)

For n' = 3, there will be ten by, coefficients.
For n' = L, there will be fifteen byn coefficlents to be evaluated, ‘
multiplied by the appropriate (f,Cp) values and summed to cbtain the ap
values.

The by coefficients are evaluated by the equation

B 1 1
P = (CnsCn) (COR ity
(N+n+1 )1 (N-n)!

(2n+1) (W1)2

+m? )8 (W)
and A, = (n+m' ) (u mg

where (Cp,Cp) =

non (n=m® Y1 {m"1 )1
1 {Nep )1
For m = n, m'=m=n, R =1 and A = 2n>°éN n)!
5 (m! )=N!
Y )i
Thus b = (ent)”(N-n)! for m=n.

T (n1)2 (W) (-1)2(CyCn)

For m = n-1, by_y n = (bpp)(~In)(W/2 + r)
9

For m = 0, Ryte = rlr+l) ... (r + m' - 1) and by, = 7
For m' = mtl, Rytm = mﬁg + %mﬁ(m?al)
For m = 1, m' = 3, Ry, = 3r° + 6r + 2

2
For m =1, m'" =4, R, = 2(2r3 + gr” + 1lr + 3)
Form=2, m'" =L, Ry = 6r° + 18r + 11.
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Values of bogs bpy, b11s bops b1os boos b3, D13, b239 and b3z are tabulated
for n=3 and N = L, 7 and 83 and 9 and equations as a function of N are given
in Table I-5 of Ref.(13).

When values of f(x) are given for x values that are evenly spaced at N
intervals of magnitude I starting with an initial value xy, Prgm. Cheb(f,Cy)
will convert to ﬁariable X =x/I = x1/1 = x/T - r with X varying by integral
values from O to N and then will least-square fit f(x) to a Chebyshev poly-
momial of order n' using the bp, coefficients of Prgm. Cheb C, corresponding

to n' and N as digscussed in Ref.({(13). If fe}lowed by Prgm. Cheb-a, the

Chebyshev polynomial is expressed as f(x) = : anxn upon ingertion of I and

r = x1/I, The following program is designed for n' = 3, but can be adapted
L N

ton' =L, 1 5 1s integer value of %-o

Directions:

(1) Insert Cheb (f,C,) Prgm.

(2) Insert Cheb Cp Data Tape for n's=3 and appropriate N
Display
(3) r(0) B £(0)
(W) (1) R/S £(1)
£(2) R/S £(2)
N : N
f(r-é= 1) . £(i3 -1)
N N N
f(lgﬁ When N odd, f(l§0C3(l§d; otherwise %
N o
f(i—é— +1) 5 ~f(i“1§- +1)
f(ig‘- +2) (2 40)
f(N-1) R/S ~F(N-1)
(5)e(w)  ® (£,00)
(fscl)
(fecg)
(fscs)

Start at step 3 for each new set of data with same N. Step 5 must be keyed

before starting again at step 3. For different N start at step 2.
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(2) TInsert Cheb Cn Data tape for n'=3 and N+1=1L data points.
(3) By 15 R/8; b0 R/S; 85 R/S; 156 R/S; 259 R/S; after each of these
steps, the inpul number used in the calculation is displayed;
L0O R/S -« 67.133; 585 R/S; 820 R/S; 1111 R/S:; 1héeh R/S; 1885 R/S;
2380 R/S; after each of these steps, the negative of the input number
1s displayed;
(5) 2955 E 12159, ~7h83, 2632, ~h08,
Prgm. Cheb(f,C,) '
glL.BLfe RCL5 PINT  STOL 2 i hSTI  hRTN g
(3) FLBLB  ST00 STO1L 8702  ST03  hRTN 1
(h) gLBLfc 4 4 + fGSB3  fGSB5 hxz2l  hRY  hRIN RCLL
£x=0 GTOfb  hRY GTOfe fLBLfb hRY GTOfd 31
FIBL3  STO+0  F£GSBL  STO+1L  fGSBL  ST0+2 £GSBL  STO+3 hRTN 80
FLBLLY  CLx RCL(i) £DS7 X hRTN 46
T1.BL5 b hxzl  gDSZ(i) hRTN f£GSB6 hxT hRTN 54
TLBL6  hxpl £I8%  RCLS RCL5 fINT  gx#y hRTN hRCI 3
+ hSTT hRITN 67
gLBLTd fGSBY  fGSBE  hRt hRTN  GTOfd 73
(5) FLBLE  £GSBT  STO+0 hRY STO+1 hRY  ST0+2 hRY  ST0+3 gGSBfe
RCLO RCL1 RCL2  RCL3 gSTK  hRTN : 89
FLBLT  CHS + CHS 0 CHS 4 CHS  hRTN -
FLBLE8  STO+0  £GSB9 STO+3  fGSBY STO+2 £GSB9  STO+1 hRTN 107
FLBLYO  Clx RCL(1) £IS% X hRTN 113 memory steps.
R 0 1 2 3 )y 5 T
N
(fa(jO) (fscl> (f$02> (fscg) X ? Cn
Index ’ Index
Cplx) values in B to A, 89 to 0, and P9 to 7.
Directions:
(1) Insert Cheb-a tape
(2) Inmsert (£,Co) to (f,C3) in registers 0-3
if not carried over from Prgm. Cheb.(f,Cp). Display
(3) T4 rA aQ
(ha) SST a7l
(bp) 8T an
(bhe) ssT a3
(5) = B~ f(x); B > f(x+I); B » £(x+2I), ete.
NOTE After step ke, the ap values can be reviewed by keying another SST

which will flash the four a, values in the order ap to a3z.
The' (£,Cp) values are retained in RO-3 and step 3 can be repeated

after N/2 8TO 5; for example, if incorrect valueg of I or r

are used.



Test:
(2) 12159 8TO0, TU83 CHS STO1l; 2632 ST02; 408 CHS ST03;6.5, STO5;
(3) 200 4 1.5 A 0.625; (4) 8ST 0.00375; SST -1.25%x10 ~ SST 1,25x1o*7
(5) 300 B hy ELS5, E4O, E85; 1500 B 400, E585, E820.
Prgm. Cheb-a
(3) fLBLA STOE hRV CHS  STOC  RCLS 2 X STOD 3
STOA STOB  fGSB1  RCL3  STO6 X STOG  fGSBY RCL3 X
STO8 2 STOA  STOB fGSB1 RCL2  STOS X sTo+8 TGSB2
RCL2 X STOT 3 STOA  STOB fGSBO  STOX6 RCLE 3
X 6 + RCLE X 2 + FGSB3 2 STOB
RCLE X 1 + fGSB3  + 1 STOB £GSB3 +
RCLC + RCL6 hSTI X STO+T 1 STOA fgsp1l  RCL1
X STO+7 fGSB2 RCL1 X STO6  RCLD 1 + h1/x
RCLO X STO4+6 2 STOA  fGSBO STOX5 RCLE fGSB3 1
+ o STOB  hR¢ RCLE 1 + - RCLE X 8TOL
TGSB3 + RCL5 X STO+6 3 STOA  RCLL fGSB3 1
STOB + RCLE  fGSB3 + 3 STOB  hR¥ RCLE 2
+ RCLY X fGSB3  + hRCT X STO+6 RcLs  hRTN
(k) RCLT RCL8 RCLY  gSTK 13
fLBL2  fGSBL RCLC X RCLA X RCLD ) . RCLE
+ X hRTN 147
fLBL1  fGSBO fGSB3 RCLC RCLA  hy¥ + hRTN 155
fLBLO  RCLD  hN! gx® RCLD RCLA - M + RCLD
RCLA + 1 + hi! + RCLA 2 X 1
+ X hRTN 178
fLBL3 RCLD RCLB - hit X RCLD  hN! + RCLA
RCLB + hiv! X RCLA  RCLB - hi! + RCLB
hi! gx° 3 hRTN ‘ 202
(5) fLBLE  hR4 RCLC - fLBLB 4 4 4 RCLY X
RCL8 + X RCLT  + X RCL6 + hRTN 921
R 0 1 2 3 b 5 6 7 8 9
2 N
(£,Co) (£,C1) (£,Cp) (£,C3) rT4r > (£,C3) a; ap ajy
(£,00)/(Co,Co ag
R A c B T
n m? =T T 4 or 5
(f503)/(c3903)
The three programs Cheb-Cp, Chebw(facn), and Cheb=a can be combined in
several ways. There is enough space on one tape to combine the first two

programs for a total of 204 memory steps if the 8 steps of gLBLfe are not
duplicated; thus there would be no need to put the Cn(x) values on a data
tape. However, if N+1, the number of data points, is frequently used,
it would save time to have stored the Cn(x) values on a tape rather than
to recalculate each time. If a data tape is used for the Cn(x) values,

a portion of Prgm. Cheb-a can be added to the end of Prgm.Cheb-(f,Cp).
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This would provide enough space for the following additions for calculation
x
of df{x)/dx and jﬁ f(x)dx upon keying xC and xD, respectively, or following
0
xB with R/S to obtain df(x)/dx and another R/S to obtain the integral.

hR+ FLBLC 4 4 RCLY 3 X X RCLB 2
X + X RCLT +  hRTN  hR+

fLBLD A 0 RCLY L : X RCL8 3 3
+ X RCLT 2 = + X RCL6 + X
hRTN

Tt is unusual to have thermodynamic data of sufficient accuracy to
warrant more than the four constant fit of Prgm. Cheb-a. Prgm. Cheb-C,
aiready can accommodate quartic or higher power fits. Prgm. Cheb~(f,Cy)
énd Cheb-a could be expanded to a quartic fit if desired.

For most applications of Prgms. Cheb Cp, Cheb(fgCn)9 and Cheb-a, the
same number of data points, N+1, would not be repeatedly used and there would
be no need to store the constants from the Cheb C, calculations. Then
Cheb C, and Cheb(f,Cy) would be combined on the same tape and the instructions

would be simplified to the following:

Directions:

(1) TInsert Cheb Cp~Cheb(f,C,) tape Display

(2) n'=3 4 N+l A oL

(3) (o) B £(0)

(k) £(1) R/S £(1)
£(2) R/S £(2)
f(ﬁml) R}S ~F(N-1)

(5) £(N) E (£,C0),(£,C1),(r,Cp),(£,C3)

(6) Insert Cheb-a tape

(1) T 4rA ag

(8) ST S8ST SST a1 ,80,83

(9) x B »f(x); B = £(x+I); E > f(x+2I), etec.

TEST: (Continuation of Prgm. Cheb C, test at top of pg. 8)
(7) 104+ 1A 1; (8)ssr .1, 88T .01, SST .001; (9) 10 B 4, El5, ELO.
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Chapter 1T

FPitting of Experimental Data by An Analytical Function

Two types of operations will be considered. The first type requires
a very accurate fit in a limited range of x for interpolation purposes, with
no smoothing of the data. The second type smooths the data to fit some
predetermined functional form by a least-square procedure. The first type
will be discussed first and illustrated with some examples.

A. Interpolation Fit to f(x) = Zanxn

Program Interp. GK fits four (X,y) pairs with the x values at evenly
spaced intervals of magnitude I to a cubic polynomial, or any three pairs
to a guadratic equation, or any two pairs to a linear equation, which can
be used for interpolation purposes. The calculations are outlined in
Ref. (13). In addition, the program is specifically designed to accept
values of -(G°-H8yq)/RT or -(G°-H§ 4)/T for each of the reactants and products
of a chemical reaction at two, three or four temperatures and fit the
resulting -(AG®-AHS 4)/RT values to an interpolation equation which can then
be combined with AHS:y or AHgtd/R for the reaction to calculate 1n K or K,

the equilibrium constant of the reaction, at desired temperatures.

Directions:
(1) Insert tape Interp.GK

2 Pt. Fit Display
(22) yy ty2 B y1-¥2
(3a) x1 * Xo R/S ag
(Lha) sgT ‘ al
(5) x B vy

3 Pt. Fit
(2b) y1 * yo t 3 B y1-¥2
(3b) xq boxy 4 ox3 R/S ag
(hb) 88T 88T : a7 580
(5) x E v

4 Pt. Fit
(2¢) y1 +yp ty3 49 C 1345
(3¢) T4 x R/S ag
(ke) sST SST SST a1 580,83
(5) x B ¥y
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For the reaction aA + bB = mM + nll + o0, the values of g = »(Gomﬂgtd)/RT

(a positive number ) for the reactants and products are keyed in as follows:

Display
() e Lo initiate a complete set of data 0.00
(b) gn taX ggtbX D 0.00
(¢) sy tmX gytnX ggtoX R/S ~(AGC-AHS, 4)/RT, 0.00
Steps b and ¢ are repeated at each temperature. If only one mole of a

reactant or product appears in the equation, e.g. n=l, omit n X and merely
key gy . After the values at each of the temperatures have been entered,
the following steps are carried out depending upon whether a 2, 3 or b pt.
fit is desired.

Display
(@) £ = ~(AGO~AHE; 4)/RT at Lth
temperature or zero if
less than b temperatures

treated.
(ey) For b pt. fit: key C and then 13a3
continue with steps 3c,bc,and 5.
(e}) For 3 pt. fit: key f b m(AGouAHgtd)/RT at
third temperature
(e3) B y1-¥2
Continue with steps 3b, 4b, and 5.
(eh) For 2 pt. fit: key f b twice, ~(AGO-AHE 4 ) /RT at
second temperature
(eB) A y1=Yo

Continue with steps 3a,ka,and 5.

After the values of &(AGOméﬂgtd)/RT have been fit to either a linear,
quadratic or cubic equation for interpolation purposes, the following steps
yield values of 1nK or K.

Display
(6) “‘“AHgtd/R g70 6 ““AH%td/R
(7) Trfd in X
(8) 89T K

NOTE 1: A new set of data cannot be treated unless 5te€P d has been carried
out followed by step a. The program will accommadate an

equation with three different products or four products if there
is only one mole of the last product value entered. There can be
two different reactants or three if there is only one mole of the
last reactant value entered. However, any number of products and
reactants can be accommodated if + is keyed in after the second
reactant entry and every subsequent one and 1f + is keyed in after
the third product entry and every subsequent one.



NOTE 2:

NOTE 3:

NOTE L:

cont'd.
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The program can be used for s(Govﬂgtd)/T and Aﬂgtd as well as for
the dimensionless quantities used to illustrate the displays, but
step 7 will display R InK instead of 1nK and it must be divided by
R before obtaining K by step 8. R in appropriate units can be
stored in register D for use with step 7 or RCL D ST0+0 ST0:1
8TO+2 STO+3 will convert the equation for ~(AG°-AHZ4)/T to the
dimensionless -(AG®-AHZ¢)/RT form: so that it is unnecessary to
divide by R each time step 7 is carried out. Of course, the
appropriate -AH§¢q or —-AHS4/R must be used.

The values of u(ﬂGosAHgtd)/RT obtained at each temperature are
stored in the secondary registers starting with S0 during the
calculations following step d. Thus, a set of values at four
temperatures is available for repeat fits using two, three or four
of the temperatures. For each fit, after the first, key fPz5 and
go to step d and then continue with either step eh, ez, or ep
depending upon which fit is desired. ©Step d returns the values

to the secondary registers and they are avallable for repeated use.
Although the program will not fit more than values for four temper-
atures at a time, steps a-c can be carried out repeatedly for up
to ten temperatures. Any two, three, or four of these values can
be recalled and stored in the stack as one would do to initiate
steps 2a, 2b, or 2¢c. After fP23S to safeguard the values for
future use, one would then proceed with steps 2 to L4 for the parti-
cular fit chosen. Also as discussed in Note 4, this procedure
requires keying of hSFO if steps a to ¢ are to be used again.

Steps a to ¢ can also be used to evaluate AH8y4q/R of the reaction
from the enthalpies of formstion of the reactants and products.

One should use fP2S appropriately to insure that values of

- (AG°-AHE; 4 )/RT or values of ap that are wanted for subsequent
calculations are not erased by the AH calculations.

Flag 0 is used to control the index numbers that regulate the
storing of wvalues during steps a to ¢. The program sets FO when
inserted and subsequent operation of the program maintain FO in
the proper set or cleared position as needed. However, 1if the
use of steps a to ¢ is not subsequently followed by step d, the
next operation of steps a to ¢ will not start storage in RO but
will store beyond the last registers used.

) 1.978 4 2.536 4 3.25 B -0.558;
) 0.3 40.4 +0.5R/S 1.2L0;
b) SST 0.120 SST 7.800; (5) 0.L E 2.536;
) 1.552 t1.978 * 2.536 4 3.25 C 0.00L;
) 0.1 % 0.2 R/S 1.000
) SST 2.000 SST 3.000 SST 4.000; (5) 0.4 B 2.536
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Clgr) + 2C1o(g) = cciy(g) (a) fe 0.00
500 (by) 1.16 4+ 49.85 + 2 X D 0.005; (c7) 68.1 R/S - 32.76,
1.000 (bp) 2.78 + 55.43 4+ 2 X D 0.00; (c2) 81.31 R/S - 32.33,
1500 (b3) k.19 +58.85 4 2X D 0.00; (cg) 90.01 R/S - 31.88,
2000 (by) 5.38 4 61.34 4 2 X D 0.00;5 (c)) 96.53 R/S - 31.53,
K

(d) £ a = 31.530; {ey) C = 0.020; (3c) 500 *+ 500 R/S - 33.050;
(he) sST 3‘,6o><1,cf“LL 88T 5¢20><10“‘T ST 1.6ox10”10; (5) FEX 3 E - 32.330;
1.98719 STOD, -AHO/R = 25x10° RCID + = 12581 STO6

RCID 1.98719 8TO+6 STO+1 STO+2 STO*3

(7) 500 fd giB78 (8) ssT 5858

750 fd 0.392 1.479
EEX3 fd -3.689 2.50%x10-2
1500 fa  ~T7.656 I, 73x10-k
OFEX3 fd  -9.576 6.9hx10=>

fP2S f a -31.530; £ b - 31.880; (2b) B - 0.430; é3b) 500 4 EEX3 4
1500 R/S — 33.170° (4b) SST 8.0x10~4 gg7 4,ox1079;

RCID 1.98719 STO+0 STO+1 STO+2

(7) 500 fa  8.676 5858
750 f4  0.395 1.485
1500 f4 -T7.656 L.73x10~4

fP2S fa - 31.530; fb - 31.880 fb - 32.330; (2a) A - 0.L403;
(3a) 500 + EEX 3 R/S - 33.190; (La) ST 8.6x10-% (5) EEX 3 ® - 32.330;

RCLD 1.98719 STO+0 STO+1

(7) 750 £f4  0.397 1.487
1500 fd -7.666  L.69x10~k

(@R eNoNe)
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Prgm, Interp.GK

(a) gLBLfa RCLO RCL1 RCL2 RCL3 fP2S  hSFO  hRTN 8
(e,£) fLBLfb hRY  hRIN .
(a)  fLBLA  STOk - 0 ST02  STO3  hRY hRTN Ly
(3a2)  8TO5 - T STOL  RCLS X CHS RCLY + ST00
(ka)  nRIN RCL1 31
(2b)  fLBLB  hxzy - STO5  hRY hLSTx  STOL - 0
ST00 STO3  hR¥ hRTN -
(3b)  S8T09 hR¥ ST08  hRY STO7  RCLS - ¥ RCL8  RCLY
+ STOB X RCLTY  RCL8 + RCL5 X RCLYO  RCLSB
- STOA + - RCL9  RCLT - = ST01  RCLS
RCLA + - CHS RCLB + ST02  RCL8 B CHS
(kb)  RCLL + STOO  hRTN RCL1  RCL2 90
(2e)  fLBLC  hR+ STOC - STOT7T  hR¥ hLeTx = STO5  hRy
hLSTx - STOL  RCLT 3 + RCLY + RCL5 -
2 + hRTN 113
(3¢)  STOB hRY STOA 3 hy* 3 STO3  RCLB RCLA +
X 3 X CHS RCL5  RCLL 2 X - 2
+ RCLA  gx2 : + STO02  RCLL  RCLA + RCLA
RCLB 2 X + RCL2 X - RCLA RCLB +
RCLB X 3 X RCLA  gx2 + RCL3 X -
STOL 0 STO0  RCLB E CHS RCLC + STO0  hRTN, ;4
(Lke) RCL1 RCL2  RCL3 176
(7,8) gLBLfd& E RCL6  hR4 + + hRTN  ge¥ Ls
(5) fLBLE + 4 + RCL3 X RCL2 + X RCL1
+ X RCLO + hRTN Lug
(a) gLBLe 0 4 4 0 hF?0  hSTI  hRTN 207
(b) FLBLD + + STO(i) CLX hRTN 913
(c) + + + RCL(i) - STO(i) fISZ  hCFO f-x- fe
hRTN 22l memory steps.u2s
2pt. R O 1 2 3 L 5
(2a~ha) ag ay O 0 yo o xo
3pt. R O 1 2 3 b 5 6 7 8 9
(2b=lDb) 0 a7 an 0 o y3~¥2 X X0 X3
aQ
A B
X3=Xp Kotxsg
Lpt. R O 1 2 3 N 5 T
(2c~bke)  0O,ap a3 8y a3 Yo~V ¥3-Y1 Yh-Vi
K B C
I x ¥
R 0 to 3 L 5 6 T 8 9
Bach a, is Yo or used Aﬂgtd/R X1 or 0 0
in Ry yo=y1 yy=y1  or %p or x3
R A B I
X3=Xp Xo+x3 Index
or 1 or X1 or ¥yi
RS  0-3 store -(AG°-AHE(4)/RT for 2 to L temperatures in order of increasing

temperature.
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B. Least=-Bquare Fitting of Data to an Analytical Function

Least-square fitting of data to an equation y = f(x) is not a routine
process but requires careful consideration of the variations of errors in

(15 16,17)

vy as a Tunction of x 'or example, if it were desired to obtain

the values of ¢ and d in the expression y = cx;2 + dx3 that best represent
a set of data, one could leastwsquaré a variety of functions of y. The
use of the unweighted function would tend to heavily weight values of y at
large x. As just one alternative example, one could least-square

y/x2 = ¢ + dx and obtain, in general, quite different values of ¢ and d
that would correspond to more heavy weighting of values of y at low x than
for the previous procedure.

One should carefully counsider the magnitude of errors in y as a
function of x before selecting the appropriate procedure. One should apply
appropriate weighting to off-set any blas of the least-square procedure as
well as to attempt to correct for systematic errorsu(l7>

The first example will be the fitting of a set of data (x,y) to a three
constant equation, y = a + bf1(x) + cfo(x). To minimize [yma~bfl(x)mcfg(x)]2,
one takes partial derivatives with respect to a, b and ¢ and sets them equal

to zero to obtain

ia + Zfl(x)b + Ifp(x)e = Ly

I (x)a + pe1(x)1% +  If(x)falx)e = Iyfy(x)

Iy (x)a + e (x)fo(x)b  + Nfo(x)]?e = Iyfo(x)
where the sums are over the i values of x.
Directions:
(1) Insert tape LSf(x)
(2) GIO £ d W/PRGM, key in fy(x), SST SST, Key in fo(x), RUN
(3) & Display
(h) g repeat 4 & 5 for all i f1(x)
(5) y; R/S yifolxi)
(6) R/S a
(7) ssT 88T b,c
(8) = ¢ y

NOTE: Return to step 3 for each new set of data. To add more data after
step T, RCL3 STOX5 and start at step 4 again.
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x) = lnx, fo(x) = xml

(
é) W/PRGM £ LN SST SST h 1/x RUN; (3) A
L) 1 B 0.000; (5') 20.0 R/S 20.000
Ly 10 B 2.303; (5") 15.605 R/S 1.561
4")  Exx2 B 4.605; (5") 19.310 R/S 0.193
6) R/S 10.000; (7) sST 2.000 SST 10.000 (8) 10 C 15.605

Prgm. LSf(x)
(3) fLBLA fCLREG fP2S fCLREG hRTN 5
(k) frLBLB % + 4 fe hR+  fd o hLSTx hRTN
(5) fLBLL STO+5 X STO+6  hRY  hLSTx X  STO+7 hRTN 21
(6) RCLI+ STOL hRY  ST02 fP2S RCLYO  RCL8 RCLT  RCLS P25
STO8  hRY STO9 hRY STOL  hRY STO3 RCL1  gx2 RCL3
STO*5  * RCLS - RCL1 RCL2 RCL3 % X RCLL
- STO8 hxzy STOL RCL2  gx? RCL3  + RCLY -
STO9  RCL6 RCLT7 RCLS RCL2 X hx2y - hSTI RCL5
RCL1 X hr?t - STOO RCL4L RCLO X RCL8 gx°
- RCLO RCLO X RCL8 hRCI X - hxzy B
STOB  RCLh X RCLO hxzy - RCL8 =+ STOC RCL2
X RCL1L RCLB X + RCL3 +  RCL5  hxzy -
STOA  hRTN RCLB RCLC 118
(1) fLBLC 4 4 fe RCLC X hxzy fd RCLB ¥
+ RCLA + hRTN 132
gLBLfA [ £1(x) I hRTN
gLBLfe [ fo(x) 1 hRTN 136 memory steps + f£1(x)+fo(x)
R 0 1 2 3 L 5 6 i 8 9
t Ifp(x) Ifo(x) i Ify(x)folx) Iy Zyfy(x) Iyfo(x) Z[f1(x)]7 Z{ro(x)]”
1
q Eﬁy 8 r
RS I 5 6 T 8 S

o
[e2lve}
oo
oo

- Zyfy(x), u = Iyifo(x)/i = Zyfo(x)
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Linear Regression

For a simple linear regression to fit a set of (x,y) to f(y)=bf(x)+a,
the following program is adapted from program Stat 1-22 of the HP-65 User's
Library (18 ). f(x) may be 1/x and f(y) may be 1n y or more complicated
functions. In the equations for the coefficient of determination and for
the standard errors, f(x) will be taken as x and f(y) will be taken as y.

The coefficient of determination is given by

2 [Bxy - (5avy)/il”

T =

2 N 2 2,01
[2x7 - (Zx)7/1illZy" - (By)°/i]
The standard error estimate of y on x is given by
1 . 1
Vs 5
2 (y-y)°! Zy2 ~ aly - bixy

Sy.x T |TII2 i -2

°

i

The standard error of a is given by
1

17

§ ng
° X
TRk - (x)?

The standard error of b is given by

Sa = S

1
L2 2,4 2
sy = SyeX[LX - {Ix)5/1] .

Directions:
(1) Insert tape LR

(2) Key GTO fb W/PRGM, key f(x) SST 88T, key f(y) 8ST 88T, key f“l(y) RUN.
If £f(x) = x or f(y) =y, nothing need be keyed in for F(x) or for f(y) and fﬂl(y)a

(3) fa
(W) % 4y E 1
xo * yo E 2
xn’Tayn I A
(5) A a
58T b
(6) B =
(1) xc v
(8) » Sy.x
R/S Sg,
SeT
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NOTE 1: For data at regular intervals, after fLBLE add hLSTx f*l(x)I +
hx#y gLBLe and after fLBLC add hR+ Il+ + 4+ 4 glBLc where 1 is
the interval between x values and f (x) converts f(x) to x.
Step 4 is changed to % * yy fe, yo E, y3 B ... y, F and step(5)
is changed to x; t + 4 fc »yy, C > yp, C > ¥3 evn C > yy.
Prem. LR
TLBLE rd hxzy  fb T+ hRTN o
gLBLa fCLREG fPzS hRTN 10
fLBLA fPeS RCL8 RCLh RCL6 X RCLO + - STOC
RCL5 RCLL gx2 RCL9 + - STOD B STOB fP2S
fx RCLB X - STOA hRTN RCLB 37
fLBLB  RCLB RCLC X £P&S  RCLT RCL6 gx°  RCLO 3
- s fP2S  hRTN 51
fLBLC biflo RCILB X RCLA + £GSBO hRTN 59
fLBLD  fP28  RCLT RCL6  RCLA X - RCLE  RCLB X
- RCLS o - * £vx  hRTN 76
RCL5 RCLO  fPzS % RCLD * fvx X 4 4
RCLD V% : hxzy  hRTN hxy 92
gLBLb[ £(x )]hRTN
gLBLd [£(y) ]hRTN
FLBLO[ £~ @W?hRTN
R 4 5 7 8 9
2 2 .
nt(x) 2(£(x)) (y) 2(£(y)) e(x)f(y) 1
R A C D

se(y)i T(e(x))°-

(xe/(x))%/1

Test:
(2)
(3)

fa
1600 4 6¢96x10“2E

1300 C 1.k66x10

D, Slny.1/x

(L) 1300 4 1.47x10

=2

A, a=h.112 88T, b = 10835
gzﬁ 1600 C 6.99%10
= 0.012k; R/S 8, = 0.08; 88T sy, =

-2

GTO fb W/PRGM hl/x SST SST fLN SST SST gex RUN
E 1, 1400 + 2.63x10°

(6) B 0.9998

T E2, 1500 4 MQBXlOEQ E3,

Ths,
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Least-Square Fit of f(y) = afl(x) + bfo(x) + cf3(x)

Prgm. LSfyfof3 is an extension of Prgm. LSP(x).
a = (ALyfy - glfyfo + erlf3)/D

(qLfy? - BIyfy + s%f1£3)/D
c = <“r2fl2 ~ sLfyfp + CLyfy)/D

)

)2

1}

where Zf222f32 - (Lfpfy
£ 205057 = NEy£aTf,00
Lf)fplfpfy = Bfyf3nfp?
AXf12 - BEfifp + CIfyfg
Lyfii£3° - Lyf3lfofa
Lyfolfofy = Lyf3lfp?
Lyf3ifyfp - Lyfolffs

1}

i

il

i

it

A
B
C
D
q
r

i

s

If £y, fo, and {3 are not functions of x directly but are functions

f(x') of x' = £'(x), the program provides for conversion of x to x'. For
example, 1f a Solidﬁs or liquidus curve is to be expressed as a function of
Typ=T rather than T, f'(x) would be keyed in as Typ=CHS. After insertion of
a set of data, additional data can be added after steps (5)-(T7); follow with

steps (5)-(6) for new values of a, b, and c.

Directions:
(1) 1Insert tape LSfifpfg(x)

(2) Key GTO fa W/PRGM, key in f'(x) SST SST 8ST, key in fy(x) SST 8ST, key
in fy(x) SST SST, key in f3(x) SST SST, key in f(y) SST SST, key in £~Ll(y)
RUN. If any f(x) = x or f{y) =y, key in nothing for that function.

(3) A (before a set of data to clear registers) Display
(L) x; Y y; B repeat for all i. fl(x)f3(x)
(5) ¢ a

(6) s8T 88T b,c

(1) = D g

(8) (x7-100) STOE E > y1, E + yo, etc for

x at 100 intervals.
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L1y Fpr3(x)
(3) fLBLA fCLREG £P?S fCLREG hRTN 5
(4) FLBLB £a STOA hRY fa  STOB  RCLA X
STO+1  hRY 4 b STOC  RCLA X STO+2 hRy
RCLC  RCLB S nR¥ hRY  fe STOD  RCLA X STO+3
RCLC  RCLD £PZS T+ fPZS hLSTx RCLB X STO+0  hRTN 42
gLBLa f'(x) 4 + + £y (x) hRIN
gLBLb fo(x)  hRTN
glBLc f3(x)  hRTIN
gLBLA f%y) hRTN
glBle f-l(y) hRTN s5+F( )
(5) fLBLC fPZTS RCL5 RCL8  £PZS  STO9 hRY STO6  RCLT  RCL5
X RCLE  gx° -~ 8TOA RCLO RCL5 X  RCLO RCES
X - STOB  RCL9  RCLS X RCLO RCLT X -
STOC  RCLO X RCL6  RCLA X + RCLO  RCLB X
- STOD RCL2  RCL8 X RCL3  RCLT X - STOE
RCLO X RCL2  RCLS X RCL3  RCL8 X - hSTT
RCLO X - RCLA  RCLL X + RCLD : STOA
RCL3  RCLO X RCL2  RCLO X - STOL  RCLO X
RCLB  RCL1 X - hRCI RCL6 X + RCLD *
STOB  RCLC RCLL X RCLLY  RCLY X - RCLE  RCL6
(6) x - RCLD + STOC RCLA  hRTN RCLB  RCLC 14+ f(x)
(7) fLBLE RCLE EEX 2 + STOE  fLBLD fa RCLA X
STOkL hRY 4 b RCLB X STO+4 hR¥ 4 fe
RCLC X STO+4  RCLU fe  hRTN 1eo+T(x)
P O 1 2 3 i 5 6 7 8 9
ZflfB nyl Lyfo ryfa ng Zfzg ngfB i
2
S T 8 9
5r° S T
Reg. A B C D E T
£y) f1(x) fg(x) f5(x)
A B ¢ D
8 b C T q
TEST:

GTO f a W/PRGM 3 EEX 3 - CHS SST S8T 88T 88T 88T gxg ST 88T 3 h yx

SST SST h 1/x SST SST h 1/x RUN

(3) A (k) 1800 + 2,289ux10”u B 2907x1012
L _
SEEX 3 4 3.333%10° 1 B 1x1077%;
5.103hx10"" B b.1x10Mt

(6) ssT l9016x1o“3

¢, 0.992
1800 D 25289ux10“h

3.333x1074 B L4.100x10~4 1 501235x10“h»

ST 9.92x10°
(8) 1700 STOE E 2.2894x10"

T,

. 1900 4 2.7h65x10™" B 1.46x10M7;
2100 4 uelxz.o“’LL B 6.56X107;

(7) 2200 D 5.1235x10
E 2,7h6hX1OEu

2\:

. 2200

L
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The common practice of high precision fitting of experimental datas
with a power series with a large number of terms is not followed here,
The experimental error inherent in most data do not warrant high
precision fits and the use of a large number of terms that work against
one another makes it impossible to assign physical significance to any
term. When the data have been made available at even intervals, the
use of orthogonal functions such as the Chebyshev polynomials of Chapter 1L
to fit fly) = % an[f(x)}n offers many advantages. The orthogonality makes
the solution of matrices simple and a change in the number of terms does
not change the coefficients of the earlier terms. However, there are
often theoretical reasons to expect & better fit with a mixture of functions
such as lnx with powers of x as well as inverse powers of Xx. Then
fly) = a + bfy(x) + cfolx) or £(y) = af1(x) + bfo(x) + cf3(x) can be fit
using the previous programs. The next section describes ways of using

additional functions without increasing the number of independent parameters.

it of Data to Equations with More Than Three Constants

The soiution of simultaneous equations with more than three variables
requires U4xL and higher matrices. If the data are avallable at even spaced
x values, a much simpler procedure involves the use of orthogonal polynomials
such as the Chebyshev polynomials. Such & simpler procedure is to use
interpolation programs to provide data for evenly spaced x values and to fit
the data with a Chebyshev polynomial as illustrated in Chapter I.

Sometimes, it is desired to fit data to a four constant equation, but
it may not be advisable to fit an equation with four simultaneously adjustable
constants, as errors in the data can yleld quite unreasonable constants when
the four terms are allowed to work against one another in an attempt to fit the
scattered data. A procedure for fitting the four constants with only three
being independently adjusted will be illustrated for heat capacity data and
for values of enthalpy increments available from drop-calorimeter measurements.
The equation Cp = g + T + che is often adequate for many substances for a
considerable temperature range above room temperature and can be fit as
described for a three constant fit. The negative c']?m2 term represents the
drop in heat capacity at lower temperatures due to quantized vibrational

levels, The 'a' term corresponds to the classical Dulong and Pettit value.
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The 'HT' arises from electronic, thermal expansion and anharmonicity contri-
butions. These contributions also provide higher order terms which together
with a contribution from vacancy formation necessitate g dT2 term at higher
temperatures. The enthalpy equation corresponding to Cp = g + bT + «:Tm2 + de
&lmwgid) + (d/3)(T3mT§td). As

the enthalpy data often have approximately the same percent error over the

) ] 2 2
is HT%HTStd = a(T-Tgpg) + %%(T ”TStd) - e(T

temperature range of study, the expression to be fitted by least-square
procedures is often
(Hp-Hyg, o)/ (T-Tgpq) = a + $0(T4Tgeq) + c/TTgeq + (d/B)(T2+TTStd+T§td),

If both the 'c' and 'd' terms are important, there will be a minimum
value of de/dT at (’I‘%)lJr = ~3¢/d with the contribution of the dT2 term
becoming very small at lower temperatures and with the contribution of the
chg term becoming very small at higher temperatures. A first approxi-
mation to T¥ can be obtained from inspection of the data. A revised value
can be selected upon examination of the deviations between observed and
calculated Cp values near T#, A practical way of treating the data is to
replace the constant d by w3c/(T*)h to obtain Cp = a + BT + C[T®2a3(T*)&MT2]q
One could also replace ¢ to obtain Cp =g + cT + d[T2w%(T%)hTm2]o The
equations are equivalent. Program LSf(x) can be used with f1(x) = T and
fo(x) = Tﬂ2 - 3<T%)th2 if the constant ¢ ig retained or with

folx) = T2 - %{T*)ung if the constant d is retained. Program LSC¥

P
is given here with the constant ¢ retained.

Directions:

(1) 1Insert tape LS C} Displa
(2) mT% A “““§¥“z
(3) 7 B repeat for all data T

(k) ¢y R/S Cp folx)
(5) R/S a

(6) ©8T 88T SST b,c,d
(1) T ¢ Cp
(8) T 4 Hj-Hpg8 fa Ty
(9) T D H~H;
(10) r/S H~Hpg8

NOTE: If Ty = 298.15, key H;-Hpgg = 0 in step 8. Start at step 2 for
each new set of data.  To add more data after step 6, RCL3 STOXS5
and start with step 3 again.
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Test:

(2) 740 A;  (3) 500 By (4) 1.35 R/S 2.0x10™C; EEX3 By 2.9 R/S — 2.6x10
1500 By L.7056 R/S - 100x10“ug 2EEX 3 B; 6.975 R/S - o gx10™"

(5) R/S 0.999; (6) SST 0.001001, SST -99932; SST o°9998x10”6

(7) 500 C 1.350; (8) 298.15 4+ 0 fa 298.15; (9) 500 D 179.9 (10) R/S 179.9

Prem. LS C#
{2) TTfLBLE ™ fCLREG  fP2S fCLREG STOE  hRTN 6
(3) fLBLB 4 4 4 fe hRt S+  hLSTx  hRTN 15
(k) gro+s X STO+6  hRY hL8Tx X STO+7 hRTN N 23 )
(5) The next 91 steps are unchanged from Prgm. LSf(x) through STO&S EPS25=115

RCLC  CHS 3 X RCLE L hy¥ + STOD  hx2y
(6) DRTN RCLB RCLC RCLD 128

gLBLfe RCLE L hy* 3 hxzy + CHS

hxzy  gx X hLSTx  hl/x + hRTN Ty
(7) fLBLC 4 4 + RCLD X RCLB + X RCLC

hR* gx2 + + RCLA + hRTN 160
(8) gLBLa ST00 hRY  hSTI hRTN 165
(9) fLBLD + 4 + hRCT + X  hRCI gxe +

RCLD X 3 + RCLC  hRCI +  hRY + +

hR+ hRCI + RCLB X 2 + + RCLA +

hR+ hRCI - X hRTN  RCLO +  hRTN 203 memory steps.

Registers are the same as for LSf(x) except for Hi-Hpg8 in O and for A-I.

A ‘ B C D B I
a, b c d T# u
Ty

Program LS CE can be readily adapted to the fit of (HTwHTi)/(TwTi) values
to the constants a, b, ¢ and d.
(HTmHTi)/(TmTi) = g' + b;T + et P(T) where
~ . D
al = o ko1 - eTH(T)7 = g 4 Loy + Lard
b' = 4b - ory (1%) ™ = Fo + ary
el = —c(T®) = %d
£(7) = T ;(T*)”/TTi



Directions:

I ta %
(1) TInsert tape LS H Disple
(2) T* 4 T; + Hi-Hpog A ¥
(3) T B ( repeat for all data T
(4) H-H; R/S | £o(T) (H=H; )/ (T=T5 )
(5) R/S ‘ d
(6) 8ST SST SST c,b,a
(1) T ¢ Cp
(8) T » H-Hj
(9) R/S H-Hpo8
Test

ThO 4 298.15 4+ 0 A ThO

500 B; (k) 180 R/S - 1570828, EEX 3 B; 1246.5 R/S - 10220,
1500 B; 3130 R/S 4113513; 2EEX3 B; 6030 R/S 12391015;

5) R/S 9,9997X1o*7 (6) 88T - 99953, SST 0.001000, SST 1.00048;
T) 500 C 1.35;500 D 180; R/S 180

e~
w N
e

rem. LS H*
(2) fLBLA fCLREG STO0O hRY fPS  fCLREG hSTI  hRY  STOE  hRTN
(3) fLBLB 4 4 + fe hRt I+ hLSTx hRTN 19
(L) 8700 CLx hRCI - RCLO  hxzy + hRt  hxzy

STO+5 X STO+6 hRY hI8Tx X STO+7 hRTN 36

(5) The next 91 steps to STOA are unchanged from Prgm.LSf(x) except for
changing hSTOI and hRCI to STO6 and RCL6 at steps T3 and 90.

RCLC 3 X STOD RCLB RCLC hRCI X - RCLB

STO1 hxey 2 X  STOB hRY hRCI X RCLA  STOO

- CHS STOA  RCLE 4 hyX RCLC X CHS SToC

RCLB hxy RCLD  hRTN hRY¥  hRY hRY 164
(8) fLBLD RCLL hxzy X hLSTx fe hLSTx  £vVx hxyy  RCLD

X 3 + hxzy hRY + RCLO + hR+ hRCI

- X hRTN  fP2S RCLO fP2S + hRTN 192

glBLfe RCLE 4 )y hy¥  hRCI * hxzy  F CHS

hLSTx  gx? + hRTN 206
(7) fLBLC A A hl/x gx® RCLC X  hxzy RCLB X

+ RCLA + hRTH 220 memory steps.

All registers are the same as for LSf(x) except that u is stored in R6,
Hi=Hpgg in &0, a' is added to RO, b' is added to Rl and A to I are as follows:

A B C D E I
al b c! d T#* Ts
a b ¢
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Program LSf(x) and the related programs fit data to a three constant
equation. To least-square fit the two constant y = bfl(x) + cfp(x) equation,
it is necessary to minimize X[y - bfy(x) - cfg(x)]g to ohtain the two
equations: bzfi + chfyfp = Yyfy and  bIfqf, + chg = Lyfo.  Simultaneous
solution yields b = (nylng ~ Lyfpolf1fp)/D and ¢ = (nyQfo ~ LyfyIfifp)/D
where D = ngng - (Zflfg)g, With £1(x) = XO, the above equations would
also fit to a equation with a constant term plus a function of x. However,
program SD-03A of the HP-67 Standard Pac(18)covers several of the commonly
used simple functions such as y = a + bx, y = aebx(a>0)§ y = a + blax, and
y o= axb(a>o)°

A program based on the above equations for a two constant fit is given
here to deal with properties of binary solutions as a function of molefraction,
x, which varies from O to 1. The properties Cp» Hy 5 and G are expressed(le)
as functions of x in the following manner:

Y = bxg + cx§§ ¥o = (b + %C)Xf - cx%9 and ¥ = x1xo(b + %c + %ﬂXg)o

In many solutions, the change from an excess of one component to an excess

of the other component changes the character of the interaction and the
constants of the functionu(lg) Thus, it is often expedient to fit each portion
of the compogition range independently ﬁith the change often at the midpoint,
but frequently at other compositions depending upon the orbitals being utilized
as one metal is added to another. When a single equation is not used over
the entire composition range for partial molal quantities, a constant of
integration of the Gibbsg=Duhem equation must be evaluated at the overlapping
composition for ?1 at high xp or for ?2 at high x7 to assure continuity of

the functions. The programs given below provide for evaluation of the
constant of integration when necessary.

Because of occurrence of substantial systematic errors in many data,
complications in the character of the interactions, and inherent bias of
the least-—square process when applied to the functions of interest, sultable
weighting of the data is very important. A variety of weighting procedures
are used. Key A makes a least=-square fit to ?l = bx% + cxg, which heavily
weights values at high xo. Key B uses Yl/ xp = bxp + cxg to reduce the
bias of the least-square process toward high xo values. Key C uses ?l/xg =b + cxo
to further reduce the weight at high xp. ‘Components are assigned 1 and 2
so that the experimental ¥ ig ?le When integral quantities are available,

key D fits Y/xyxp = b + %c + $exo.



range, the Integration of the Gibbs-Duhem equation(

5 S . G g AR

2=

When a single equation for Y; is not used over the entire composition

12)

to obtain Yo at high

%7 requires evaluation of a constant of integration which is obtained from

a = %{(b‘+c?)w(b"+c")] where the single primes apply to the constants for

the xé = 0.5 - 1 range and the double prime applies to the constants for

the x8 = 0 - 0.5 range.

not at

the midpoint, d = xi{[b' + c‘(gaxl)] -

When the change in equations is at a value of x7

[b" + c¢"(F=x1)1} which is

stored in RD for evaluation of ?2 and Y at low Xg,

steps 6 to 8 will yield the desired quanties.

To calculate ?19 ?2 or Y given b and ¢, store b in RB and ¢ in RC and

be stored in RD.

Directions:

(1)

Insert Prgm. LS Y
fa
To fit ?1 = bxg + cxg

(3a) xp repeat for all data
(ka) ¥, R/S
(5) R/s
(6) =xp B
(1) R/8
(8) R/s

Tofit ¥y/x, = bxp + CXE\
(30) 32 ; repeat for all data
(kv) ¥y R/S

Steps 5-8 as above

To fit ?l/xg =b + cxp
(32) x repeat for all data
(he) Y71 R/S

Steps 5-8 as above

To fit Y/xyxp = b + %c + %CXE
(34) 2 b repeat for all data
(kd) Y R/S
(5) R/S
(5d) R/S

Steps 6-8 as above

If necessary, d should also

Display

2
xp
= .3
leg
b,c

L)

Xp
Yyxp

%2
Ty /45

Y/xyx0

1 1
btge, Se

c,b
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NOTE 1: For each new set of data, start at step 2.
NOTE 2: Once constants b, ¢, and,if necessary, d are stored, steps 6-8
can be repeated for any values of x in range of fit.
NOTE 3: Jor calculations of'?g at low %o, d is needed if the original ?1
data were not fit to a single equation for the entire composgition
range as explained in the text. For such a situation, follow
step 6 with step 6' after evaluation of data for x3 = 0 to 0.5
range. Step (6'): (b'+c') fe will store d = %{(b'+c')w(b"+c")]
in register D. When the break in the data treatment is not at
x = 0.5, use equation for d in the text.
I ;;i
(2) gLBLfa fCLREG fP2S  fCLREG  hRTN 5
(3a) fLBLA 4 gxe X ST« ©+ hLSTx  hRTN -
(ha) X STO+1 hxzy  hLSTx X ST0+2 hRTN GTOO0 21
(3b) fLBLB gx° hILSTx T+ hILSTx hRTN 97
(bb)  STO+L X STO+2  hRTN GTOO 49
(3¢) fLBLC 1 D hRy hRTN .
(he) 4 nRY hx2y + STO+2 hR+4  hLSTx  gx© s g0+l
hRTN GTO0 ko
(3d) fLBLD  fGSBC A 4 1 - CHS hRTN 67
(ha) hxzy + STO+2  hxzy + STO+1  hRTN , 6
(5) fLBLO  fP3S RCL5  RCL8 RCLT  fPS  STO5 hRY STOL  hRY
3TO3 RCL2 X RCLL RCLY4 X - RCL3 RCL5 X
RCLY gx? - STOO 3 STOC  RCL1 RCLS X RCL2
(5a) RCLhL X - RCLO H STOB  fex- RCLC  hRTN -
STOB hLSTx 2 X ST0C fex-  RCLB hRTN 112
(6) fLBLE ST09 gxg hL3Tx RCLC X RCLB + SToA X
hRTN 123
(1) 1 RCLOY - 8TO8 gx®  RCLC 2 £ RCLA +
X RCLD + hRTN 137
(8) RCLY X hxzy  RCL8 X +  hRTN Tk
(6'") gLBLfe RCLB RCLC + - Y + ST0D  hRTN 153
R 1 2 3 L 5 8 9
D Syfp  Iyfp  Ifh Lfify 15 Xy %o
RS 5 7 8 A B C D
5ee 55 LEqf bte ;
Ly 5 12 2 ¢
b+CX2 b c d
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The following values can be used to test Prgm. Y.

X5 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
71 i 2k T2 160 300 50L 78k 1152 1620
Yo 113k 1024 882 720 550 38h 23h 112 30
Y 117 224 315 384 Los L32 399 320 189

As these values are derived from ¥y = bxg + cx% with b = 200 and ¢ = 2000,
any of the weighting procedures of Prgm. Y will yield b = 200 and ¢ = 2000.
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CHAPTER III

Standard Thermodynamic Calculations

A. Thermodynamic Properties of Gases

The several programs tabulated here are designed to calculate the
translational, electronic, vibrational and rotational contributions to the
thermodynamic functions of gaseous molecules using the equations given in
Chapter 27 of Ref.(12). For gaseous atoms, Prgm. E-A provides the elec-
tronic and transiational contributions to thé thermodynamic functions. It-
can also be used to calculate only the electronic contribution for either
atoms or molecules.

Program D-LT calculates the translational, rotational and vibrational
contributions for diatomic or linear polyatomic molecules. Program Cor
calculates the corrections to the results of Prgm. D-LT if the effects of
anharmonicity, centrifugal stretching and vibration-rotation interaction
are to be included. When it is desired to obtain moments of inertia for
the rotational calculations from molecular constants, Prgm. ID can be used
to calculate Be values for diatomic or linear molecules, moments of inertia
or products of moments of inertia for a variety of molecules including bent
triatomic, symmetric top CBA3, octahedral BAg, etc. Program NL uses the
product of the moments of inertia of non-linear molecules to calculate the
translation, rotational and vibrational contributions.

The spectroscopic constants used should be expressed in units of cmml3
the unit conventionally used in spectroscopic publications. All the thermo-
dynamic gquantities are calculated in dimensionless form, which is most suit-
- able for direct calculation of equilibrium constants. However, the programs
provide for multiplication by R in appropriate units to yield the functions
in the units desired.

In identifying quantities, the subscripts e, r, t and v are used to
refer to electronic, rotational, translational and vibrational contributions,
respectively. The superscript © for quantities including translational
contributions indicate that the values are for the gaseous standard state,
although the superscript is not always shown,as all yvalues are for the gaseous

standard state.
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Diatomic or Linear Polyatomic Gases

Program D-LT uses the rotational constants By and «, the symmetry
number O, the vibrational constants we and xgwe, and the molecular weight
M.  The calculations using the equations on pp. 420-30 of Ref.(12) proceed
as follows with y = hce(Be — 20)/kT and U = hc(we - 2xeWa)/KT.

2 2
Cot/R = &+ 3y /b5, 8 ¢/R = gé« Inyo - y /90 + $1nM - 3.665 + T,
~(G-H. )y t/RT = By /R + y/3 + 37 /b5 ~ 4,
A - 1 i 2
(Hag8~H )y, t/R = 298.15(3 - 57298 - Ts¥pqg) s
~(G-Hpgg )y /RT = =(G~H0)r9t/gT + (Hogg=Ho )y, 4/RT,
71 1
(H”Ho)rat/RT = 0w e 3y - uEyY
(H-H2g8 )y /R = [(HHg)yp t/RT = (Hogg~Ho )y ¢/RTIT with -(Hogg=Hg)y /RT
cbtained by subtracting m(GmH298)TQﬁ/RT from_m(GwHO)rat/RT stored in the stack.

i

Cy/R = ute™/(e%1)2, ~(G-H,)y/RT = -In(l-e” %),
(H-Ho)y/RT = u/(e'=1), Sy/RT = (H-Hy)y/RT - (G-Hg)v/RT,
(Hogg=Ho )y/R = (uT)/( u298m1)9 ~(G-Hpg8)/RT = —(G=Hg)y/RT + (Hpgg=Ho)y/R

e
(H-Hpgg)y/R = T[(H-Hg),/RT - (Hpgg-Hg)y/RT].
The various contributions to 5/R, Cp/R, =(G-Hpgg)/RT, (H-Hpgg)/R and (Hogg-Hy)/R

are summed and are finally stored in registers 5 to 9, respectively.

Directions:
(1a) Insert Tape D=LT
(1b) Insert Data Tape D-LT

Diatomic Gas

Display
(2) M4+ Bsratoh 1.5 1nM-3.665
(3)  we t xewe B uT
(L) T ¢ C3/R
(5) R/S S°/R
ﬁ(G°~H§98)/RT
(HG-Hggg ) /R
(6)  ssT (HZ9g=H? ) /R
(&}
(1) R D co
(8) ®m/s 50
m(GOmH§98)/T
Ho-H29g

cont'd.
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cont'd., from p. 1

Triatomic Linear Gas

Display
(2) M1tBstoato a 1.5 1nM=3,665
(3) w4 xewd B QT
(3a) wg * xgqug T D u''T
(3b) W& t xowe £ b W"T (doubly degenerate bend)
(hT) T E C2/R

(5-8) same as for diatomic gas.

NOTE 1: After constants are entered, start at step 4 or UT for each temperature.
After completing calculations for one molecule, go back to step 1b
before entering constants for new molecule. However, entering
f P25 RCL 2 8TO A RCL 3 h STI £ P28 or entering
3.665 STO A 1.4388 h STI will replace step 1b and allow starting
at step 2.

NOTE 2: w&'' must be doubly degenerate bending frequency. If 0 or XgWe
are not known, key zero.

NOTE 3: Step 7 can follow either step 4, 5 or 6, but step 5 can only follow
step b, step 6 can only follow step 5, and step 8 can only follow step 7.

9

Test for Diatomic

(2) 11h4.938 4 .31k 4 .003 4+ 1 A 3.L52;

) 700 4 7 B 987.017; (k) EEX 3 C L.h23

) R/S 32.981, 29.975, 3005.472; (6) SST 1080.765

) 1.98719 D 8.789¢ (8) R/S 65.539, 59.567, 5972.kuk
t for Linear Triatomic

) 113.936 4 .211 4+ 0 4 2 A 3.438;

) 700 4+ 0 B 1007.160;
T

31150 4 0 fb 215.820;
4T) EEX 3 E T7.342; (5) R/S 38.822, 33.87k, LOLT.O
) 8ST 1527.743; (7) 1.98719 D 1L.590; (8) R/S 77.1k6, 67.31k, 9832.4,
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Prgm, D-LT i

Data Tape: 298.15 in E, 3.665 in A and RS2, and 1.4388 in I and RS3.

Tape D-LT

() fLBLA STOC hRY ) * - hRCT X STOB hR4
LN 1 © 5 X  RCLA -  STOA  hRTN Lo

(3) fLBLB fGSBO STOD hRTN 23

(3T) gLBLfb fGSBO hF?2 GTOL  STO0 hSF2  hRIN 30
FLBLO 2 X - hRCI X hRTN 37
fLBL1  ST01 hRTN 40

(kT) fLBLE hSFO fGSBC RCLO £GSB2 STOO0 f£GS8B3 RCL1  £GSB2 ST0L
fGSB3  f£GSB3  RCLO £GSB2 RCL1 STOC  hRY  STO0L hCFO GTOL

fLBL2 RCLD hxzy STOD hRY hRIN 66
(4)  fILBLC f£GSBS RCLB hxzy +  STO2  gx® L 5 o
8T03 3 B 5 STO6  + RCLC  RCL2 X LN
CHS RCL6 + RCL3 2 3 - RCLA + hRCI
fLN 2 ® 5 X + T+  hLSTx RCL2 3
+ RCL3 + ST03 +  RCL6 - RCLB 3 +
RCLE B 4 gx2 5 : + RCL6 - RCLE
X CHS STO9 hRCI + + STOT - RCL3 -
RCL6 + - hRCI X ST08 1l
fLBL3 RCLD hRCI = STO2 gx°  hLSTx ge® STO3 X
hLSTx 1 - STOk  gx2 RCL3 RCL4  + FIN
STO5  RCL2 RCLY ¢ STO6  + S+ RCL5 RCL2  RCLD
RCLE 2 geX 1 - 2 STO5  + STO+7 -
RCL6 + hRCI X STO+8 RCL5 hRCI X STO+9  hF?0
hRTN 192
(5)  fLBLL RCLI+ STO5 hxpy ST06 fLBL6 hRTN  hRY  f-x~  RCLT
(6)  f-x- RCLS hRTH RCLY 206
~ fIBL5 P25 G @T0h BTO6 fPS  hRY hSTI  hRTN 215
(r) fLBLD STOX5  STOX6 STOXT STOX8 RCL5  RCL6  GTO6 223
R 0 1 2 3 h 5 6 | GYH oo i i i
2T Wt oy yo/hs etel ~ln(l-e”Y) 3.5 |% - R§98 3 R298 5 agg 9
P N XEE (H298”H0)v u
3 L5 RT el
u'TutT g ! IS/R ZC,/R
R 82 53 sh sé R A B C D E I
3.665 1.4388  IS/R ZCP/R 3.665 yT o uiT 298,15 1.4388
u'T
( ‘%“lnM) uT T
~3,665 u'T
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Calculation of Contributions from Anharmonicity, Centrifugal Stretching
and Vibration-Rotation Interaction

Program Cor provides the corrections to be applied to the thermodynamic
functions calculated for a diatomic molecule by the harmonic-oscillator-rigid-
rotator approximation. The initial spectroscopic values are used in units
of cmml, The final results are first displayed in dimensionless form with
the quantities divided by R, the gas constant. Insertion of R = 1.98719cal/K mol
or 8.314kL J K tmo1 ™t will yield the values in either set of units.  However,
the dimensionless values are the most suitable if the values are to be used
for subsequent equilibrium calculations; steps T and 8 can be omitted if

quantities in dimensions are not needed. The calculations are based on the

following equations on pp. 430-7 of Ref.(12).

Wo = We = CgWe, By = Be = 30 _ X = WeXe /W,
u( = (he/k)we/T= 1.43879 wo/T, vy =B /e § = a/By = (Bo/o - 0.5)7"
[(7-H_)
m"ﬁg"' = [6+2xu/(eu~l)1/(eu-=-l) + 8 y/u
\ cor
[H-H
\ RTOE cor {oue + [2ue™(e™1)](2xu)/(e"1)} /(e"1)" + 8 y/u
Coor/R = {sue®(e®+1) + [oue® + u-2(e"-1) 1(2ue™) (2xu) /e1)}/ (e%1)3 + 16 y/u
Scor = (H"“HO)COI‘/T - (F"’Ho)cor/T Dis 1ay
Direchions: ks
I —
(1) 1Insert tape Cor
(2) wg txewed Be t o A (Hog8~Hp ) /R
(3) S8t (8298)c/R
(k) ssT (Co98)c/R
(5) T B ~(G-Hogg ) /RT
(6) SST will flash the following quantities (HmH298)C/R
sequentially Sc/R
C./R

~(G=Hpgg) ¢ /RT
(1) R ¢ ~(G=Hpg8) o /T
(8) ss8T (HmH§98)c

Co

m(G“HQQS )c/T

NOTE: Steps 3 and U can be skipped if corrections to 8298 and C298 are not
needed. Once step 2 has been run, start at step 5 for each tempera-
ture. Steps T and8 can be omitted if dimensionless gquantities are adequate.



Prgm. Cor
(2) fLBLA STO6  hRY  STOT hRV 4 4 2 X hR4
- CHS 1 o L 3 8 8 hxzy X
STOA nRY  hLSTx T STOB  hR¥ 8 hxy + RCLT
X STOD hLSTx RCL6 T ® 5 - hl/x  STOC
2 9 8 ® 1 5  fGSBB  RCLT RCLO X
(3,4) STOE hRTN  RCLO RCLS
(5) fLBLB STO0  RCLA hxzy T STOL + ge ST02 1
- ST03 + 2 X RCLB X ST05 RCLC +
RCL3 + RCLD RCL1 + +  hSTI RCL1 RCL2 X
STOh 2 X, RCL3 - RCL5 X RCLY RCLC X
+ RCL3  gx + RCLD RCLL + + STO7  RCLL
2 X RCL1 + RCL3 2 X - RCLL X
2 X RCL5 X RCLC RCL3 2 + X RCLY
X RCL1 X + RCL3 3 hyX = RCLD 2
X RCL1 + + ST08 RCLT  RCLO X RCLE -
STO5  hR¥ hRCI RCLY + STO9  hxey  RCLE RCLO +
(6) hRCI + ST06 RCL5 hRY  BRIN  gSTK
() FLBLC STOK5 STOX6 STOX8 STOX9 RCL5  RCLYO  RCLS RCL6  hRTN
(8) gSTK 172 memory steps.
RO 1 =2 3 I 6 7 8 9
T u et el ue” _EXU__ o Be C/R S/R
et H-il )
~Hp98 (G-Hpgg) — (H-Hj
R - RT RT
¢ D E I
R A B Hogg-Hg (G-HQ)
uT 8y R - TRT

Test:

02359.6 4 1k.h6 4 2,01 4 .0187 A 0.181; SST 0.001; SST 0.001

Px10° B 0.007; SST 23.7, 0.019, 0.030, 0.007
1.98719 € 0.0147; SST 47.1, 0.038, 0.060, 0.01h7
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Moments of Inertis

The moments of inertis of molecules are needed to calculate the
rotational contributions to thermodynamic properties using Prgms. DLT and NL.
When there is more than one value, Ig is the moment about the axis of
greatest symmetry. I" indicates a doubly degenerate moment.  The
symmetry number, O, 1s tabulated along with the equations for I. Ifm
is the atomic weight of A and r is the internuclear distance in ﬁa mr2

must be divided by loié Ny = 6902209x1039

39

to obtain units of g cm2°

Program ID calculates IX10™7 in g c:m.29 Be = h/8ﬁ2cI in c:m.wl for linear

molecules, and the product of the three principal moments of inertia,
117

Dx10 s, For non-linear molecules. For symmetric top molecules and

unsymmetric linear molecules, mj is atomic weight of A, mo of B and m3 of C.

Distomic Ao, 0 =2 " = dme?
Linear ARA, 0=2 "= 2mr2
2
Planar BAz, g=6 Ig = 3mr
"= %mrg
Tetrahedral BAL, o =12 I = %mrg
Trigonal Bipyramid BAg, 0 =6 Ig = 3mr2
In — 7 2
Octahedral BAg, o= 24 I = Mmrg
. _ - 2( l+cos@>
Bent BAo, g = 2 Ig = mr2 I:EE?EE
I = mr"(l+cos0)/(1+2m/ug)
I = mrg(lmcose)
/A
For a symmetric top C=~u»mB\\\\ . 0 = 3, and 6 in degrees.
\ om
A
. 2
Ig = 3myrip(l-cosd)
5 (mzme) (l+2cose)
" = 1= 0
myryo(l-cos) + 3ml+m2+m3
1
m3ro3 [ (.1 ecose)“z‘]
U L — 4 + 6 B=RCA-A AT
Sy gy O mo)rp3 + bmyripl T

If m3 = 0, the equations give I for the symmetric top B

(y o= 3,
If mp = 0, I" becomes the doubly degenerate moment of inertia of diatomic
C-B, 0 = 1,

If 0 = 0, I" becomes the moment of inertis of a linear trigtomic molecules with

atomic masses m3y, mo and my, if m; is divided by three at the initiation of the
program,



Directions:
(1) Insert Prgm. ID

(2) m+tr A
Diﬁﬁomic Aa

(3p) R/s

Linear ABA
(3LT)B
Plangr Béi

(3P) ©

Tetrahedral BAM
(3r) D

Trigonal Bypyramid BAg

(3TB)E

Octahedral BA6
(300) f a

Bent Triatomic BAs

(3BT )m/mg + 6 £ b

Symmetric Top CBAg

2a) rip tmy 10T c

3&) T23 4 m3 0 mo R/S

Symmetric Top BA3

(2b) rlg + ml f e f e
(3b) 0% mp R/S

20) rlg 4 ml fd

(

Diatomic CB
(2&) r23 ¢ m3 4 m2 i
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Display
ne’ /6.02009

I”Xlo395 Be

39

%1077, Be

15x10™7
I"xlo.39
DX10-LT

%107
Dx10137

T5x10°>7
Thx1039
px10LL7

IX1039
DxlollT
I]X1039
T,%x1037

39
nglo -
px101T

Q
ISX103“
I”xl039

DxlollT

15%10°
THx1039
DXlollT

0
%1039

Be
IUX1039

Be
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Prgm. ID

FLBLA X 6 o 0 2 2 0
STOL STOA  hRTN 14
o FGSBO  GTOL 18
FIL.BLB fGSBO  fLBLL STOO 2 o 7 9
3 hxy % STO1  hRTN 3
FLBLC FGSBO  8T00 1 o 5  f£GSBO  GTO2 43
FLBLD + 3 + £GSBO 4 GTO2 51
FLBLE FGSBO  ST00 3 o 5, fGSBO  GTO2 60
gLBLfa fGSBO 4 fLBL2 STO01  gx X STO3
PLBLO hxzy X feX=  hRTN 76
gLBLfb 1 + STO8  hxey  STO7T h 1/x 2
o - CHS 2 X £GSBO STOO0  RCLS
2 1 + 3 FGSBO  STO1 2 RCL8
fGSBO X X STO3  hRTN 112
gLBLfC STOD hR ST05 hxzy STOE fGSBA 1
- X STO6 2 X RCLD 2 X
+ hxzy STO0  hRTN 137
FLBL3 hxzy STOC + RCLA X RCLS 3
RCLB STO8 RCLC + STO9 + RCLT X
+ hSTI  hRY  RCLT 3 o /% RCLS
6 RCLE X RCL8  hRCI X + RCLC
hRCI RCLO  + RCLL + + ST0L  fex-
RCLO ST03 hRTN 191
gLBLfd + 0 gGSBfe hRTN 197
fGSB3 fGSB1 hRTN 201
gLBLfe CLX  hRY STOC  CLX hRY  hSTI  hRY
gGSBfe RCLC RCLB  fGSB3 RCL1  fGSBL hRTN 219
1 2 L 5 6 T 8
B 6.022  my mlrig(lmcose) 5%‘ I#cosf'  3mytmptmy
IV!
In I3 1+2cos0 3m3 +mo
B ¢ D E I
mg m3 cosb I‘lg I‘23
10 42 A 6.64 (30) R/S 3.32, 0.84
B 13.28, 0.21 (3P) C 19.93, 9.96, 1978.07
D 17.71, 5557.05 (3TB) E 19.93, 23.25, 10 769.50
f a 26,57, 18 755.05. (3BT) .1 460 f b 11.62, 8.30,3.32, 320.52
2 410 + 60 £ c 6.6k (3a) 3 430 4 20 R/S 57.95, 22305.50
2 410 260 f ¢ 6.6k (3p) 0 4 20 R/S 8.635, L95.25
2410 fd 0.00 (3¢) 3 430 4 20 R/S 37.92, 0.07
3430420 f e 17.93, 0.16
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Non--Linear Gasges

11
Program ID calculates  DX10 7, where D is the product of the three

principal moments of inertia, for a variety of non-linear molecules. The
following equations from Ref.(12) are used by Prgm. NL to calculate the
rotational and translatiocnal contributions to the thermodynamic functions

of non-linear molecules. The symmetry numbers, O, are available in Ref. (12)

and are also listed in the discussion of Prgm. ID.

CP /R = 4, (Bgg-H3), /R = U(298.15), (H°-H3gg)y ¢/R = 1(T-298.15)
80 ¢/R = UlnT + (7)1nM + %1ngbx10117) ~ 1no - 1.1823
h + 1n6hm” + 1n(82.057k3)/(h6NZio58°5) = -1.1823

~(G%-H3gg),. (/RT = 87 y/R - L(1-298.15/T).
The vibrational contributions are calculated using the same equations as used
for Prgm. D-LT,

The program requires that the Singly degenerate vibrational frequencies
be inserted first followed by doubly degenerate frequencies and finally by
triply degenerate frequencies. The number of frequencies of each type must
be entered. 11 is the number of singly degenerate frequencies, ip is the
number of doubly degenerate frequencies, and i3 is the number of triply

degenerate frequencies.

Directions:

(1) Insert tape NilY Display

(2) M40+ Dx10'A 0.000

(3)  Values of w in cmﬁl are entered on W)t B0
stack so that singly degenerate values Wi twBB>0

are inserted first (lowest on the

or
stack) followed by doubly and then triply w it B0
degenerate values. Groups of 1,2, but Wgéw%B+O
not over 3 values on the stack are entered 2 wé
and followed by B. A maximum of 10 values 15870
can be entered. 5
(k) iy 4 dip 4 igcC 1023, + ip +10 Tig
(5) T D -(G2H3gg) /RT
(6) R/sS (H°-H89g) /R
S°/R
a
Cp/R
O O i
(6') 88T (H29@wHQ)/R

cont'd.
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Directions, cont'd.

(7)
(8)
(9)

R STO B R
(o) [s]
E -(a EH298)/T
[o] o]
R/S H mH298
SO
CO
P

NOTE 1: Calculations at each temperature start at step 5 once the constants

have been inserted. Step T need not be repeated unless new
constants are entered in step 2.

NOTE 2: If dimensionless quantities are not wanted, step 6 can be deleted.

SST after either step 6 or step 9 will display value of (H§98mHg)/R,

NL Test:

(2

)
(3)
(5)
(1)

133.936 4 2 4 202.5 A 0.000;

700 4+ 150 B 0.000; (L) 24 0+ 0 C 200.00;

EEX 3 D 35.772; (6) R/S L588.2; L0.360, 6.835, SST 1466.9;
1.98719 STO By (8) E 71.086; (9) R/S 9117.6, 80.20k, 13.583.

Prom. NL .

(2) fLBLA fCLREG  PS 0 hRY £/ 3 fLN CHS
LN 1 o 5 X 1 ° 1 8
3 - + STOD CLX 1 0 hSTIT CLx

(3) FLBLB 1 B L 3 8 8 X STO (1)
CLx hR+ CLx hRY hRY fx=0  hRTN GTOB

(4) fLBLC  EEX 2 o + hxgy  BEX 2 X
STOA hRTN

(5) fLBLD  8TOC FLN i X RCLD + STOS i
RCLC X 2 9 8 o 1 5 STOE
X STO9 - STO8 RCLC + - STOT RCLA
2 + PINT F#0 fa  RCLA  EEX 2 %
=0 GTO8 EEX 2 X FINT b fLBL8 RCLA
EEX 2 X F#0 fe  GTOT
gl BLfa, 1 0 hSTT + STOL  FLBLO fGSB3 gx=y
GTO0 '
gLBLfb STO+L fLBLL frGSBY  £GSB3 gx=y hRTN  GTOL
gLBLfec STO+4 FfLBL2 fGSBL  fGSBY  £GSB3  gx=y  hRTN GTO2
FLBL3  f£GSB4L fFfISZ  hRCI RCLY  hRTN
fLBLY  RCL(i) RCLC * ST00  gx2 hISTx  ge” STOL
hLSTx 1 - 8T02 gx? + STO+6 RCLL RCL2
FLN STO3  RCLO  RCL2 $ 8ToL + STO+5 RCL3
RCL(i) RCLE T ge¥ 1 - B STO3 +
- RCL1 +  RCLC % STO+8 RCL3  RCLC X
hRTN

(6,6") fLBLY RCLT hRTN  RCL8 f-x— RCL5  f-x- RCLO hRTN

(8,9) fLBLE RCLB  STOX5 STOX6  STOXT STOX8 GTOT

hxzy
2

hRTN
TIS%
b8

60
STO6

EEX
gFRAC
gFRAC
116
hRTN 126
127
135
Thb
150
X 160

RCLO

STO+T

STO+9
201

RCLY 211
218

continued...
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cont'd. from pg. 38
R 0 1 2 3 b 5 g (g 08) H% . 98 .
: ] -1 ) .S . . ) A=1090G 20870
u e el ~in(l-e ) I§d§x Zﬁd ZﬁE* P R )X = by A
limit

. (575 )y

euwl RT
R A B C D I I RS0-9 are available for
ilOigeOiS R T (Srat/R> 298,15 Index up to 10 values of ul.
. ~L1nT

Calculation of Electronic Level Contributions to Thermodynamic Functions

Program A can be used to calculate the complete thermodynamic functions
for gaseous atoms including translational and electronic contributions or it
can be used to just calculate the electronic level contributions for either
atoms or molecules. Degeneracies and energies of up to seventeen levels can
be stored for the calculations. Although the program is intended for calcu-
lating the contribution of electronic levels to thermodynamic functions, it
can be used for any internal energy levels. For example, if the yvibrational
or rotational levels are Sufficiéntly perturbed to introduce significant
error even after using Prgm. Cor for anharmonic and centrifugal stretching
corrections, the partition function can be calculated, seventeen levels at

a time, to evaluate the vibrational or rotational contributions.
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The spectroscopic unit, cm@lﬁ is used for the energies. The thermo-
dynamic functions are calculated in dimensionless units, which are most
appropriate for equilibrium calculations, but insertion of the gas constant
R in appropriate units will provide the thermodynsmic functions in the same
units. The calculations follow the equations on pp. 422-L of Ref.(12).

After energy levels and degeneraci@s havé been stored in the preliminary
steps, calculations at various temperaturés commence with step(5). There
are gseveral choicesg in the sequénce of steps following step(5). If the
interest is primarily in the complete thermodynamic functions for an atom,
step (5) would be followed by step(6"a) to yield -(G°-H8gg)/RT and then by
step(6"b) if the remainder of the functions are desired in dimensionless
form. If u(GowH§98)/T is desired, step (6"a) would be Ffollowed by step(T)
and then by step(8) if the other functions are of interest. If values
for all functions are wanted both with dimensions and in dimensionless form,
the sequence after step(5) would be (6"a), (6"b), (7) and (8). If only the
electronic contributions are wanted, step (5) would be followed by step(6')
and then by steps (7) and (8) for values expressed in the units of the
value of R introduced in step(7). If, after obtaining the electronic
contributions of an atom through step(6'), the complete thermodynamic functions
should also be wanted, replacement of the directions of step(6"a) by
hRY hRY T STO D M D will allow calculation of the complete functions without
repeating step(5). The restrictions are summarized as follows:
step(8) only after (7), step(6"b) only after (6"a), step(7) after (6'),(6"a),
or (6"b), step (6') only after (5), and step(6"a) only after (5) except after
(6') with insertion of the special step given above.

In addition to the program tape, o data tape is used to store the
following constants: 3.665 ST0 A, 298.15 STO B, 1438.8 8T0 C. These constants
can be keyed in manually or by tape. If the constants have not been inserted

before step 2, integers will bhe lacking in all of the displays of step 2.
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Directions:
(1) Insert tape A and Data tape A Display .
(2-1)gy t & A 1438°8¢, *g1 %10
(2-2)gp + €p R/S 143886, g, X107
(2-i)g; * € B/S 1438786 °@;¥107°
i up to 17
(3) B (Hpgg—Hy) /R
(W) Rm/S (8p0a/R)e
98
(cpgg/R>
T ~(G~Togg ) e /RT
R/S <H°‘B298) /R
| (not to be followed by fa ' Se/R
| without step given in text) Ca/R %
~(C=Hpgg)e/RT J
(6") M D (H°-H3gg8) /R
(6%) R/S 8°/R
CO/R
(7) RE H-Hogg
(8) R/S S

C
S(Gwﬁggg)/T

NOTE 1: If a number of levels are inserted together at an average value
of €5, the total g must not exceed 99.

NOTE 2: If values of € larger than 69 502 cm.ml are to be used, change
constant in register C to 143.88 and change 3 at step 95 to 2 to

allow values to 695 000 cm™t. With this ch € val -
truncated beyogd .01 cm“ge * 15 ochange,t values are

NOTE 3: If values for more than seventeen energy levels are inserted, the
display will read Error. With seventeen levels, steps (3) and (5)
each require 45 sec calculation time. With fewer levels, the time
is cut as the calculation stops when a zero degeneracy is encounbered.
If calculations for a new atom or molecules is started by inserting
new level values, one can start at step 2 1f the same number cr a
greater number of levels 1s inserted: otherwise, one must reinsert

the data card. If only the electronic contributions are desired, up
to twenty levels can be gtored if three pairs of fGSBO hRTN are
added after step 36, RCLC at step 38 is replaced by 1438.8, BCLB at
step 54 is replaced by 298.15, the 19 of steps 112-113 is changed

to 22 after at least Tifteen steps of the fLBLD subroutine have been
deleted to accommodate the insertions.

cont'd
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Notes, cont'd.

NOTE L: The dimensionless values for functions at 298 X given by steps (3)
and (4) can be multiplied by R by the following procedure. After
step (4), key R in the desired units followed by E to display (Hpgg-Hg ).
Then R/S will display the electronle contributions to 82989 Cog8, and
%(G298mﬂo)/wo Tf the total H%gngg is wanted for a gasedus atom, it
can be obtained by adding 1481.20 to the electronic contribution in
cal/mol.

NOTE 5. If w(GmHO)/RT is desired, it can be obtained after step 5 or any
of the following steps by keying h RCI. Keying of g e¥ would then
give Q, the partition function.

Tegt with S1 gag at 5000 K

(2 140 A 0.010
34 77.12 R/8 ' 110960.030
5 4+ 223.16 R/S 321082.050
5 4+ 6298.86 R/S 9062799.050
1 4 15394.37 R/S 22149419, 01
5 4 33326 R/S L7oLkolh8.05
9 4 39860 R/S 57350568.09
3 4 L0992 R/S 58979289 ,03

15 4 45303 R/S 65181956.15
3 4 L7128k R/S 68032219.03
5 4 47352 R/S 68130057.05

15 4 L8161 R/S 692940k6,15
9 4 Lo128 R/S T0685366.09
3 4 49koo R/S 71076720.03

21 4 L9966 R/S 71891080.21
5 4 50189 R/S 72211933.05

10 + 50535 R/S 72709758.10
B 162.716

(3)
(4) R/S, 2.108, 0.176; 1.98719 E 323.347 R/S L4.190, 0.350, 3.105
(5) 5 EEX 3 C 2.279
(6') R/S 84k4.589, 2.448, 0.277, 2.279

(7) 1.98719 E 1678.4; (8) R/s L.86L4, 0.550, L.528

or after (5) (6"a) 28.086 D 12599.21Lk; (6"b) R/S 27.579, 2.777, 25.059
(7) 1.98719 E 25037.031; (8) 54.80k4, 5.518, 49.796 cal.
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Pregm. A

(2=1 to 3) fLBLA 3 hoTT hRY fGSBO hRTN f£GSBO  hRTN f£GSBO hRTN
(p=L to 8) £GSBO hRTN fGSBO  hRTN f£GSBO hRTN f£GSBO hRTN f£GSBO hRIN
(29 to 13) £GSBO  hRTN F£GSBO  hRTN f£GSBO hRTN fGSBO hRTN f£GSBO hRTN
(
(

o-1k to 16)fGSBO  hRIN fGSBO  hRTN fGSBO hRIN 36
2-17) fLBLO  RCLC X TINT hxy EBX 2 B +  STO(1)
£18% hRIN  GTO9 4o
(3) fLBLB  fGSBL O STOE =~ RCLB STOD f£GSB2 £GSB3 hR*  STOE
() STOD © hRTN RCL1 f-x-  RCL2 hRTN 65
(5) fIBLC  STOD fGSBL  fGSB2 GIO3 70
fLBLL 0 STO0  STOL  STO2 3 hSTI  hRTN 78
fLBL2 RCL(i) 4 gFRAC EEX 2 X fx=0  hRTN hx2y
LINT REX 3 % RCLD  * 4 hRY CHS  ge¥
X STO+0  hR* X STO+L hSTx X STO+2  fISz 1
9 hRCI gx>y  hRTN  GTO2 113
fIBL3 RCL2  RCLO S RCL1 RCLO *  8Tol gxe -
STO2  RCL1  RCLD X RCLE -  RCLO fLW hSTI RCL1
+ STOL  RCLE RCLD + hRCT +  8T00 hRTN 142
(64) hr+ STOD  CLX RCL2  hxey gSTK hRIN 149
(63) fLBLD hR4 hxzy fLN  hLSTx RCLD X  fIN 2 .
5 STO+2  STOC X hx#y «  RCLA - 4 4
hRCT + hSTT hRY 0 4 RCLC  + STO+1 hRY
RCLB  RCLD * RCLC X +  S8TO+0 hRY RCLD  RCLB
- RCLC X + STOD 1 L 3 8 .
(6) 8 STOC  hR¥ fLBLY BRTN RCI1 f-x- RCL2  f-x- RCLO
hRTN 210

(7,8) fIBLE STOXO STOX1 STOX2 RCID X STOD GTOk 218

Data Tape: 3.665 STO A, 298.15 STO B, 1438.8 870 C.

R 0 1 2 Registers 3 to 9 have
Q Q' Q" 1L438+8e4°g;x10=2 with i = 1 to 7
~(G-Hpgg)
S/R

-2 .
RS 0 to 9 have 1438:8g;°g;x10 =~ with 1 = 8 to 17

R A B ¢ D 0 T
3.665 208.15 1438.8 i Hogg~Hg 3 to 20

H-Hogg : R several times
2,5 *WT?QL" «(GsHO)

1438.8 . =
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B. Calculation of Thermodynamic Functions from Cp or H Values

Heat capacity or enthalpy data may have been fit to Cp/R = a+bT+cTu2+dT2

or Cp/R = ag *+ aqT + a2T2 + a3T3 using the programs of Chapter II. Programs
CHSG and Cheb CHSG use the constants of these equations to calculate CP/R5
(H-Hpgg8) /R, S/R and -(G-Hpgg)/RT.

The Cp equations generally will have a limited temperature range of
application fixed by either the range of existence of the phase or by the
range for which the equation gives a sufficiently accurate fit. Thus, the
programs provide for joining at the temperature Ty at which a new range
starts and (Hiaﬂggg)/R and S;/R, calculated in the lower temperature range,
are inserted to allow extension into the higher temperature range. The
equations for Prgm. CHSG are based on CP/R = g + bT + chz + dT2o

2 2
(T3 ) [atgb (T+Dy ) +c/TT; +5a (T7+TT; +19) ]

(H-H; )/R
(5-8;)/R aln(T/T;) + (TmTi)[b+%c(T+Ti)/T2T§+%d(T+Ti)]

=(G-Hpgg)/RT = (8-81)/R + 8;/R = [(H-Hj)/R+(H;-Hpgg)/RI/T.

1

il

The constants a, b, ¢ and d are stored in registers A, B, C and D. If the
data have been fit to an equation with fewer constants, store 0 for the
unused constants. The program has been illustrated with dimensionless
functions; it operates equally well if the constants yield Cp rather than
Cp/R.  Then S5 and H;-Hpgg should be inserted in steps 3 and 4 and the
displays of steps 5 and 6 will be the indicated displays multiplied by R.
Tf it is desired to convert the dimensionless displays of steps 5 and 6 to
values in cal or J, R in the appropriate units should be stored in register
. Then step 7 will display the values multiplied by R, If the displays
of steps 5-6 are already in dimensions, step 8 will divide by R from register
E to display dimensionless values.

Directions

(1) TInsert Prgm. CHSG; store constants in registers A-D if not
carried over from previous calculation Display
T

(2) ™4 A i

(3) s8;/R  sST s /R

(4)  (Hi-Hpgg)/R  SST; 0 SST if T; = 298 (Hi-Hogg) /R

(5) B Cp/R

(6) SST SST SST (H-Hpgg) /R, S/R, “?Guﬂgga)/RT
(1) ¢ to multiply by R Co» B-Hpgg, 8, ~(G=Hpgg)/T
(8) D to divide by R .
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Prgm. CHSG
(p-k) FLBLA  STO5 hRTN  STO4  STO3
(5) fLBLB A STO2  RCLS + ST00 X RCLS gx? +
RCLD X 3 + RCLC  RCLS 2 RCL2 + +
RCLO RCLB X 2 + +  RCLA + RCL2  RCL5
- STO1 X RCL3 + ST06 RCLC 2 D RCLO
X RCL2  RCLS X gx? +  RCLB + RCLD 2
+ RCLO X + RCLL X  RCL2 RCLS + LN
RCLA X + RCLY + STO7T hxzy  RCL2 3 -
ST09 RCLD  RCL2 gx? X RCLC hLSTx + + RCLB
(6) RCL2 X + RCLA + aT08 hRTN  RCL6 RCLT  hR4
(7) fLBLC RCL9  RCLE X hSTI  RCL8 hLSTx X RCL6  hLSTx
X RCLTY  hLSTx X hRCI  gSTK RTN 112
(8) fLBLD RCL9  RCLE B hSTI  RCL8 hLSTx + RCL6  hLSTx
+ RCLTY  hLSTx + hRCI  gSTK RTN 129
R 0 1 2 3 I 5 6 7 8 9
T+T;  T-Ty T Hy-Hpgg 83 Ty Hepgg 8 Cp  =(G-Hpgg)
R R R R R T RT
A ¢ I
*(Ganga)
a C T
Test:

10 ST0 A, EEX CHS 3 STO B, 1 CHS EEX 5 STOC,
EEX CHS6 STOD, 1.98719 STOE

(2) 298.15 A; (3) 10 SST; (4) O SST

(5) EEX 3 B 11.900; (6) S8T 7563, SST 22,747, SST 15.183;
(6) € 23.648, 15029, L5.202, 30.172

(1) D 5.888, 3806, 11l.hkh7, 7.6L1

From Cp/R = ag + a3T + ang + a3T39

(H-H;)/R = agT-Ty) + lap (T°-15) + %ag(mz_mg) + lag(1"or{)
(8-81)/R = apln(T/T3) + a(T-T3) + tap(T°-T7) + %aE(TBng)

~(G-Hogg) /RT = (8-8;)/R + 8;/R - [(H-H;)/R + (Hi-Hpgg)/R)1/T
ap to az will be in R6 to R9 if evaluated by Prgm. Cheb-a.
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Directions:

Insert Prgm. Cheb CHSG and ap to a3 in R6-8 if not already there

Displ
- 155 ay

(2) T, ¢
(3) s;/R s8ST S: /R
(hv) (Hy-Hpgg) /R SST (Hi~Hog8) /R
(W) R 88T R
(5) T B Cp/R
(6) ssT 88T SST (H-Hpgg) /R, S/R, ~(G-Hpgg)/RT
(T) C repeats display of steps 5 & 6 multiplied by R if
R has been stored in register B by step 4'".
(8) D repeats display of steps 5 & 6 divided by R if the a,
constants gave C,, in dimensions of R and therefore steps
5 & 6 gave the indicated quantities multiplied by R.
NOTE: After step 6, another SST will flash in turn the four values
previously displayed if a review is wanted.
Prgm. Cheb CHSG
(2-4) fLBLA  STOA gxg STOB  hRTN - STOC STOD  STOR 5 8
(5) fLBLB hSTI RCLA - STO5  RCL6 X hRCI  gx RCLB
- STOk  RCLT X 2 2 + hRCT 3 hy*
RCLA RCLB X - STO3  RCL8 X 3 + +
hRCI Iy hy¥X  RCLB  gx@ - RCLY X L 3
+ RCLD + ST01  hRCIT = RCL3  RCLO X 3
* RCLY RCL8 X 2 + + RCL5 RCLT X
+ hRCI  RCLA  * LN RCL6 X +  RCLC +
STo2 hxzy - ST03  RCLY9  hRCI X RCL8 + hRCI
X RCLT + hRCI X RCL6 + STO0 hRTN  RCL1
(6) RCL2 hR+ gSTK 101
(7) fLBLC  RCL3 RCLE X STOL  RCLO  RCLE X RCL1L RCLE
X RCLZ RCLE X RCLA  gSTK hRTN 118
(8) TLBLD RCL3 RCLE + STOL RCLO RCLE + RCL1 RCLE
0 RCL2  RCLE = RCTLE  gSTK hRTN 135
R 0 1 2 33 5 12& 5 5 & 7 8 9
=13 -1y I-T5 ap ay ap a3y

Cp/R (H-Hpg8)/R S/R ~(G-Hpgg) /RT -(G-Hpgg) /T

A B C D E I
2
Ts Ty S: /R (Hi-Hpgg) /R R T




Test:

Cp = ag + ail + ang + a3T3 with Prgm. CHSG

1.50365 STO 6, 8J.9918><10“’3 STO T, -4.13509x10"~ STO 8, 9.21717x10“10 STO 93

(2) 1400 A; (3) Syyugo = 16.792 cal K™* 885 (h) Hyygo-Hagg = 7307 cal SSI,
1.98719 ssT; (5) 1Lkoo B 7.LOT7, 88T 7307, SST 16.792, SST 11.573;

2800 B 12.276, 8ST 20 320, S8T 23.057, SS8T 15.800; SST reviews the four

6

values, D divides them by R.

The programs of Chapters I and IT have provided least-sguare fits of
enthalpy or heat capacity data to four constant eguations. Programs CHSG

and Cheb CHSG calculate values of the other thermodynamic functions from

the four constant heat capacity egquations. Using eight values of the C:p
of molybdenum solid at 200 K intervals from 1400 to 2800 K,
0, = 1.5037 + 8.1992x1073T - 14.1351x10"°1% + 9.2172 107017

b
was obtained whichfit the original values with an average deviation of

0.009 or less than 0.1%. The same values were fit by Prgm. LS C¥, which
uses only three independent constants, to obtain
C. = 9.5466 - 3.8026x107°T - 1.360x10°T 2

b
This equation fits the original values with an average deviation of 0.06 or

+ 196987x10a6T2a

about 0.6%. Both equations were used with Prgms. Cheb CHSG and CHSG, res-
respectively.  The values of -(G-Hpgg)/T calculated by Prgm. CHSG using
the constants from Prgm. LS Cg were only slightly lower than those calculated
using the constants from Prgm. Cheb-s with an average deviation of 0.002 or
0.02%, thus illustrating the insensitivity of (G-Hpgg)/T values to errors
in Cp°

It is sometimes useful to go directly from the analytical equations for
Cp to an analytical equation for w(Gmﬁggg)/T, which will have six terms
derived from the four terms of the original heat capacity equations.
Prgm. CgK described below carries out this operation. This program not only
calculates values of »(GmHggg)/T§ but 1f the constants for each of the
reactants and products of a reaction are combined to obtain an equation for
WAC;, the program calculates m(AGomAH§98)/T for a given T.  The program can
be used for either Cg or Cg/R° The program providesfor multiplication or

division by R to provide consistency.
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The ability to calculate -(AG°%- H§98)/RT allows calculation of
AH398/R from a value of K, the equilibrium constant, or the calculation
of K from knowledge of AH§98/R° Normally the Cp equations will be of the
same Torm and ACp/R will either be

Aag + DajT + Aa2T2 + Aa3T3 or da + NOT + AT + pdT”,
Prgm., CgK will handle either form. In addition, if not all of the reactants
or product heat capacities are in the same form, the program will handle

3 + ACTEE, Constants of terms that are

2

ACP/R = lhag + DagT + AapT™ + AagT
not used should be entered as zero.
AC%/R = Achg + Aag + DagT + Aa2T2 + Aa3T3 where b terms are included in
Aaq and d terms are included in Aap.
Q(AGOmAﬂggg)/RT = laylnT + Aa_ﬂgT“’2 + AaﬂlTwl + Aaf + AaiT + Aaé'l‘2 + Aa§T3
where Aa§ = %§Aa39 Aaé = %Aag, Aai = %Aals ha_p = —%Ac9
bal = ASY/R - Aao(lgTi+l) + %ACTEQ - ﬁalTi - %ﬂang - %ﬂa3T§9 and

= 1 1 1 -
ba_y = Dagly + hay Ty + FhepTy + ghagTi - AcTy™ - (AHE - AH%QB)/R,
The equations are written for AH3gg but can be used for AHJ and (AG-AHg)/RT
if (AHgmAH§98)/R is replaced by (AH$- HJ)/R. T; is the temperature limit
for range of validity of the Cp equations. The following equations are used
for calculation of K, AH§98/R5 or AG°/R.

AiZgg/R = T[- (AG°-AH3Zgg)/RT - 1nK].
The values of AH§98 from a set of T and K values are averaged and then used
for calculation of AG°/R and K by 1nK ==AG°/RT = -{AG°- HEQS)/RT - (AH%gB/R)TQl°

When accurate entropies are not avallable for all reactants and products,
both AH® and AS® can be determined(zl)

A3gg/R ~ TASS/R = T[-(AG® - H8gg)/RT - AS§/R - 1nK] = T[A - InK]

through evaluation of

where A can be calculated from just the constants of the ACE/R egquations by
step 10 of Prgm. CgK if zero is entered for AS/R in step 3. If steps 1k
and 15 are carried out for a set of T and XK values with ASE/R = (0, the
display of step 15 is AH§98/R - TAS{/R which is stored in the secondary
register. These values can then be least-square fit to a linear equation
after all data have been inserted in steps 14 and 15 by carrying out step 21.
Step 21 displays first AH§98/R followed by AS§/R and incorporates these

constants; so that steps 10 and 18 to 20 can then be carried out.



Directions:

(1) 1Insert Pregm. CgK

(2) store bay in RO, daq in R1, Day in R2, Aaz in R3, Ac in RC, and
R = 1.98719 or 8.31kk in RE.

, Display
(3) T, * ASY/R 4 (AHS- AHBgg)/R A hag
(k) 88T ha_o
(5) ssT Na_q
(6) ssT ha
(1) ssT hat
(8) ssT hab
(9) ssT Aaé
(10) T B ~(AG°-AHSgg ) /RT
(11) £ a to multiply by R
(12) £ e to divide by R
(13) £ ¢ before starting set of data in steps 0.00

1k and 15

(1b) T3 4+ K5 C repeat for all i AHSQS/R
‘ 1
(16) R/S EZAH598/R
(17) R/S Standard Deviation
(18) T D K
(19) 88T 1n K
(20Y T E AG®/R
(21) £ a after step 15 if gQB/R, ASE/R

ASY/R = 0 in step 3

NOTE 1: Enter 0 for (AHE—AH%QS)/R if Ty = 298.15 K and enter zero for Ac,
Aaz, or Aao if the Cp equations do not use these terms.

NOTE 2: If it is desired to repeat the calculations using a changed value
of Ty, it is necessary to start back at step 2. BSteps 4 to 9 can
be bypassed if there is no need to check the constants. With
AS$/R known and stored in RA and step 3 completed, steps 10-12, 18
and 20 can be carried out in any order. If SY/R is known and has
been inserted in step 3, steps 16 and 17 follow the insertion of all
of the sets of K and T values. If S89/R is not known, it is entered
as zero in step 3 and steps 10 and 16-20 cannot be used until ASE/R
has been determined by carrying out step 21 after the insertion of
all of the sets of K and T values. After step 21, steps 10, 18 and
20 can be used in any order.
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Prem. CgK ,
(3) fLBLA STOB  hR¥  STOA  hRY + 4 STOD  RCL3
+ X RCL2 3 + + X RCL1 2 +
+ X RCLO  + X RCLC hR+ + - RCLB
- STOL  hRy  RCL3 3 + X RCL2 2 *
X RCI1L 4+ X RCLC hR+ gx? : 0
+ - hR+ LN 1 + RCLO X + RCLA
- CHS ST05 2 STO+1 6 STO+2 1 2 STO+3
(Lk-7)  RCLC p) £ 8TOC RCLO  hRTN RCLC  RCLY  RCLS RCL1
(8-9) RCL2 RCL3 82
(10) fLBLB + + + RCL3 X RCL2 + X RCLL
+ X RCLY  hR4 3 + RCLC  hR4 gxe S
+ RCLS5 + hRt  FLN RCLO X + hRTN 111
(11) glBLa RCLE X hRTN 115
(12) glBLe RCLE + hRTN 119
(13) gLBLe £P2S 0 STOL  8TO5  ST06 STOT  ST08  8T09 P25
(1k) LRTN  fLBLC fIN  STO6 hRY _ L3u
(16) B RCL6 - X hR+ L+ hR¥ hRTN  fx hRY
(17) STOT  hRTN gs  hRY  hRTN
(18-19) fLBLD B RCL7 hR4 + - ge hRTN  £LN 158
(20) fLBLE B X CHS  RCLT + hRTN 165
(21) glBLA fP2S  RCLL RCL6 X RCL9 RCL8 X - RCLY
gxe RCL9  RCLS X - % CHS STOA  RCLL4 X
RCL6 + RCLY T PSS STOT f-x- RCLA  STC+5 hRIN g5
RP 0 1 2 3 i 6 7
Aao Aal Aa2 AaB
Lo
? H H ? = %}
hay Aa2 AaB ha_y Aao 1nkK iZAH298/R
RS L 5 6 T 8
2 70 o} . o
P DM ZAMZQB/R ZiAHggg/R) ZT(AH298/R)
1O '”TAS 2
AH =TS
or o "
R A B C D E
AHS = AH2
AS%/R ““iwﬁﬂggﬁ‘ Ac Ti R
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Test with Qp = ag + aT + a2T2 +,agT3 for Mo, 1400-2800 K:
(2) 1.50365 STO 0, 8.19918x10”3 STO 1, ah,13509X1o”6 STO 2,
9.21717x10710 g10 3, 0 8TO C, 1.98719 STO E;
) 1L00 4 16.792 4 7307 A 1.50365; (kL) SST 0; (5) SST -63.706;
) SST -3.8T7h; (7) sST h00996x10“3; (8) ssT m6,892x10“7; (9) ssT 73681x10“ll;
10) 1400 B 11.573; (12) £ e 5.82h; (10) 1800 B 12.956;
0) 2200 B 1hk.171; (10) 2800 B 15.800; (12) f e 7.951; (11) £ a 15.800.

Test with Cy = a + DT + dT2 + cTﬁQ for Mo, 1k00-2800 K

(2) 9.54656 8T0 0, s3,80258x1o”3 STO 1, 1.6987x10“6 sTo 2,
0 STO 3, =1,3595ux105 STO ¢, 1.98719 STO E;

) 1L0o0o + 16.792 4 7307 A 9.5L656; (4) SST -67 977, (5) SST 3982.51;

) 88T -58.2878; (7) SST -1.90129x107°; (8) SST 2.8312x107'; (9) S8T 0;

0) 1400 B 11.573; (12) f e 5824; (10) 1800 B 12.955;

0

) 2200 B 1u0168; (10) 2800 B 15.796; (12) f e T7.949; £ a 15.796

Test of complete program with ASE known
STO 1, 10m6 ST0 2, 0 8TO 3, ”106 STO C, 1.98719 STO E;

(2) 18100, 1075

(3) 10° 4 20 4 100 A 1.000; (k) SST -5x10”; (5) ST 2733 15 (6) SST 10.092;
(7) ssr leo“”; (8) ssr %XlOET; (9) 0o; (10) 105 B 19.900;

(10) 2000 B 20.601; (11) f a 40.939; (12) f e 20.601 (13) f c 0.000;

(1h) 10° 4 0.905 C 19 999.8;  (1k) 2x10° 4 ko 194 ¢ 2000.0;

(16) R/S 19 999.9;  (17) R/S 0.3;  (18) 105 D 0.905;

(19) s8T ~0.100 (18) 2000 D k40 196; (19) SST 10.602; (20) 10° & 99.918

Test of program with AS? to be determined

(2) same as above; (3) 103 40 4 100 A 1.00; (L4&5) same as above;

6) 8ST -9.908, (7-9) same as above; (13) f ¢ 0.000;

(
(14) 10° 4 0.905 C -0,180; (1) 2x10° 4 Lo19k ¢ -19 999.98;
(

21) £ d 19 999.6, 20.00; (10) 10° B 19.900; (10) 2000 B 20.601
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As Prgm. CgK would be repeatedly used for equilibrium calculations of
the solidus-liquidus equilbria for molybdenum, it is worthwhile to use a
variant of Prgm. CgK specifically designed for this type of equilibrium
calculation. The program can be simplified by calculating -(AG®-AHE;4)/RT
for the fusion process at several evenly spaced temperatures and fitting
these vélues with Prgms. Cheb (f,C,) and Cheb~a. The resulting four ap
values are then put on a data tape to be stored in registers 0 to 3. Also
AHE&t /R for the fusion process would be on the tape to be stored in register
9. The atomic weight of molybdenum, 95.94 would be stored in register C
to be used if any data in weight percent are to be converted to mole fraction.
With the molefractions of Mo in the solid and liquid phases at a given
temperature, the program provides values of yr/Yg and lnYL/XS, For values
at several temperatures, a least-square fit is made to estimate the excess
entropy and enthalpy of mixing in the liquid phase. With these constants
and for systems with moderate solid solubilities, the liquidus curve can then
be calculated by the present program.

The choice of standard temperature to serve as a reference for enthalpy
values and the choice of liquid standard state i8 sometimes found to be
confusing. A number of possible choices for molybdenum were discussed in
detail in Ref.(13) to demonstrate that the final calculations do not depend
upon the arbitrary choices that can be made. A-summary of the different
types of calculations from Ref.(13) is presented here. The heat capacity
data for Mo(s) at 200 K intervals from 1400 to 2800 K were fit by Prgms.

Cheb (fgcn) and Cheb-a. The heat capacity of Mo(l) was extrapolated to
lower temperatures by Cg/R = 2,832 + 5,923X10ahT to join the solid C3 at
800 K. For Mo(s) = Mo(l), AC;/R = 2,075 - 3053Mxlog3T + 2.0809%x10" p°
- 14.638x10710p3 for 1400-2800 K.  This choice of Cp for Mo(1)
fixes the metastable liquid standard state between 1400 and the melting
point. If 298.15 K is chosen as the reference temperature and Aﬁgtd is
the enthalpy of fusion at 298 K, the method of extrapolating the liquid

thermodynamic properties from 1400 K to 298 K can be completely arbitrary
with no effect upon the calculations in the operating range of 1400 to 2890 K.

This 1s most simply seen from the equation
¢]

In K = -AGO/RT = =-(AGO-AHS 4)/RT - AHyq/RT = @ - (AH-DH8yq)/RT-AHG, . /RT
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where ¢ represents those terms of a(AGOuAHEtd)/RT that depend only upon the
heat capacity contributions and T4, the bound to the range of validity of
the heat capacity equation, and not upon Tgig. It 1s apparent that any
change in the standard reference temperature or in the methods of extra-
polating to the standard reference temperature cancels out due to an equal
change in (AG-AHS8t4)/RT and in Aﬁgtd/RTo This was illustrated in Ref.(13)
by using different heat capacity equations for liquid Mo between 298 and
1400 X and as expected from the above equation, identical values of 1ln K
are obtained in the range 1400-2890 K. Also the use of 2890 X instead

of 298 K as the standard reference temperature gave identical 1n K values.
Likewise, Tgyg = O K changes (AH{-AHS1q)/RT and AH§4/RT equally. If the
same standard reference state, e.g. Mo(g) at 298.15 K, is used for both the
solid and liquid phases such that AHBgg = 0 for Mo(s) = Mo(1l), LHY)g~L0HS g
is changed correspondingly to yield the same AG®/RT. The various quantities
are shown for comparison where A corresponds to extrapolation of the liquid
Cp equation from 1400 to 298 K; B takes ACy = 0 from 800 to 298 K, C refers
both liquid and solid to the solid reference state at 298 K and D uses

2890 K as the standard reference temperature.
f

A B c D
Tep g 298.15 298.15 298.15 2890 K
AHE 4/R 5305 5323 0 4303 K
(AHS Y 00-AHE g ) /R 2 17 5307 1005 K
= (2GS o~DHE q) /RT 1.90kL 1.916 ~1.885 1.188
-0GS),00/RT ~1.886 -1.886 ~1.886 -1.885

Within the limit of rounding errors, the final results are identical.
Since there is no difference, Prgm. {xb is set-up to use the conventional

standard reference temperature of 298.15 K but a wider temperature range is

handled than previously (13). For the range 900 K to the melting point,

CO/R = 2.18 + 2.048Ux10™ T - 1,1ou9x10“6T2 + 0.31558x10"953

for the solid.  For the liquid, cg/R = 2,832 + 5,923x10 T

was used
was used
to extrapolate from the value of L.5LL at 2890 K to join the solid value of

3.306 at 800 K.  For Mo(s) = Mo(1), ACQ/R = 0.651-1.456x107°T +1°10h9x10’6T2

-0.31558 107903 from 900 X to the melting point. AC; was taken as
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zero below 900 K. AH§890/R

AS§pp/R = ~(8G8pp=~LHSgg ) /RT
The constants of the AC; equation were inserted in Prgm. CgK with

Ti = 900, ASP/R = 1.921, and (AH§-AH8gg)/R = 0.  Values of -(AG°-AH3gg)/RT

4303, AH§p/R = AH3gg/R = 5329 K and
1.92L

[

were calculated ranging from 900 K to the melting point and fitted with
Prgms. Cheb. C,~(f,Cy) and Cheb-a3 to obtain

~(AGO-BH3gg) /RT = 1.9357 - 3.5kkx107° R o3

T + 3.123x10° T - 1.042x107"
for Mo(s) = Mo(1) between 900 K and the melting point with an average
deviation of less than 0.00L compared to the values from
Prgm. CgK. '

K = xﬁoyﬁo/xﬁoyﬁo and Yﬁc/Yﬁo are calculated from the equation

Ink = -AG/RT = -(AG°-AHS98)/RT - AH3gg/RT = 1nyﬁo/yﬁo + 1n xﬁo/xﬁoe
From just the liquidus curve, it is not possible to unambigously fix the
enthalpy of mixing and the excess entropy of mixing for the solution.
However, the approximation of assuming that both the enthalpy of mixing
and the excess entropy of mixing vary as (1“XM0)2 is made for preliminary
treitmentmgf the datas Affyo/R = bh(lgxﬁg)gg A§§O/R = +bs(1nx§0)29 and
Inyy, = AGMo/RT = (byp/T - bs)(l - XMo) where the partial molal quantities
are for the mixing of liquid Mo with the other component. At a given
temperature, bh/T = bg will be designated as . When Xﬁo and Yﬁo are
close to unity, lnyﬁo willl be very small and will be approximated by

S L , 8 S 2 L 2 . 5 .8
InyMe = [In(yio/YMo) 1 (1-xy) "/ (1-xys )", If the resulting Yy,Xuo> 1,
Yﬁo is approximated by Sl . Then multiplication of y&o/yﬁog determined

in the equation above fﬁgﬁ the liquidus and solidus points and AG®/RT of
fusion, by yﬁo will yield Yﬁo which can then be converted to Q2 or by/T - bg.
From values at several temperatures, a least square fit will yield the
values of by and bg from which the first approximation to the enthalpy and
excess entropy of mixing of liguid Mo with the other component will be
available,. Then using bonding theory to fix reasonable enthalpy and
entropy values, a second approximation to by and bg is obtained that fits
both the liguidus data and provides reasonable enthalpy and entropy values.
An approximate liquidus curve can be calculated using the initial by and bg
with an estimated solid solubility. The program also provides for
converting Celsius temperatures to Kelvin and converting weight percent

to molefraction.
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Directions:
(1) Insert Prgm. $xb

(2) 1Insert data tape with constants of equation for ~(0G°-AH8gg) /RT and
AH598 for the fusion of Mo and the atomic weight of Mo.

(3) If any weight percent data are to be treated, store atomic weight of

second component in register C. .
Displa
() E (to preceed each new set of data) 0.000
S L L S
(5) T4 (T-xyp) *(T-xyo) A Q5 YMo/YMo
Repeat step 5 for data at each T
(6) R/S after all data entered in step 5 by by
p L
(7) (lnxﬁo)f(luxMo)B values will flash until T within 2°
(8) T fa ~AGH/RT
{(9) + ¢ T
(10) wt.%8 D xp = (1-xy,)

NOTE 1: Step 9 is used to preceed steps 5, T and 8 when t°C is to be
converted to T°K.

NOTE 2: Step 5 calls for xp = (l-xy,). When wt.%A is available, step
(10) converts to xp. Starting with wt.%ZMo, key 100 wt.%Mo - D
for step 5.

NOTE 3: The initiation of a new set of data in step 5 must be initiated
by step 4 which clears the secondary registers. At any time
after completion of step 5 and before step 4 is carried out to
prepare for a new set of data, step 6 can be repeated by keying f c.

NOTE L: 1In step T, small values of xi have little effect on the liquidus and a
rough estimate can be used, xp=10"" or 10™2 can be used for all very
small solid solubilities. The calculation is inadequate for large

1lid lubiliti . R .
NOTE 5: The '¥a geg‘%%lbﬁegnd by obtained in step (6) are sensitive to

experimental error. After modification to match reasonable
enthalpies and excess entropies, the revised by is stored in RS
and the revised bS is stored in RI; step T will then use these
values for calculation of the liguidus curve.

NOTE 6: To use for another component, store AHZ/R in A, ASE/R in 0, and
0 in 1=-3 if ACP = 0. 1In steps 5 and T, ¥y, is replaced by xo.
When AC, # 0, the next level of approximation is to use the average
values of AH%/R and ASP/R over the temperature range. For Mo, one
can use AHR/R = 5127 and ASR/R = 1.77Th as averages for 1400-2890 K.



(9) fLBLC  RCLD + hRTN N
(10)  rLpnb TEX 0 : hl./x | - ROLC X RCT.R
: | + hi/x  hIUN b
(4) FLBLE  £P2S 0 STok  8T05  STO6  STO8  STO9 PS8 hRTN
(5) fLBLA STOE 1 - hxzy hSTI 1 - + LN
ST06 hRY  STOU fa RCL6 - ST09  hRCI  RCLE 3
gx® X A 4 1 nRCI - £LN + £x>0
fGSBL  hRY  STO8  RCLY + RCLE  gx° 3 STOT RCLY
X hISTx I+ hLSTx + f-x~ RCLO  ge¥ hRTN 78
(6) gLBLfc fP2S RCL4 RCL6 X RCL8  RCLY X - RCLY
gx? RCLY RCL5 X - 2 CHS hSTI  RCL4 X
RCL6 + RCLY + fP»3 STO5  f-x- hRCI  hRTN 107
(7) fLBLB 1 STO8  STO9 hRY  8TO-9 gx< hx=zy  ST0-8 gx?
- 4 4 RCLS X RCLA + STOT7  RCLS8 RC19
+ fIN  hRt  hRCI X + ST06  RCLO + t
fLBL3  f-x~ fa  RCLA hR+ + + RCLT  hxsy RCL6
+ + STOL - hABS 2 gx<y  GTOL  RCLL hRTN
fLBLL  RCLLE  @TO3 160
(8) gLBLfa + 4 4 RCL3 X RCL2 + X RCL1
+ X RCLO + RCLA hR4 + - hRTN 179
FLBLL 1 hRCT - fLN - CHYS = 4 hRTN 187
RP 0 1 2 3 L 5 7 8 9
o S YI\L/I
ap aq an a3 T by, ln‘=‘§"“ Q In YMe 1n ‘“’"S’Q‘
*Mo o
g L
used used XMO XMO
RS n 5 6 7 8 9
5T 577 xar $0°0° Tort 4
R A B C D R T
L S
AHEQS/R 95.9L M, 273.15  xy Xp
bS
Eizﬂs

(3) 157.26 81O C

(9) 150 ¢ Lk23.15; (10) .09 D 5.L9x10™ ", 1.53 D 9.39x1o’3;
(L) E 0.000; (5) 2800 4 1073 4 .0553 A 1.715, 1.005;

(5) 2700 4 1o“u 4+ .132 A 1,741, 1.031; (5) 2600 4 1072 4 .o522 A 1.769, 1.119;
) 2500 4 10“6 4 .5hk202 A 1.800, 1.697; (5) 2L00 4 10“6 + L7315 A 1.833, 2.667;
) R/S 1977.8, =1.009; (7) 10“3 4 .0553 B 2683, 2783, 2797,2800,2800;
)

)

L

1077 4 L2522 B 2523, 2592,2599,2600; (8) 2700 f a -0.111;
f ¢ 1977.8, -1.009
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Calculation of Composition Boundaries of Saturating Phases

Such calculations require that Gibbs energy of solution be expressed
in analytical form as a function of temperature and composition. The
functional form of the regular solution equation is the most practical for
most systems.

The regular solution derivationlg?go

gives the Gibbs energy in terms
of volume fraction. If the volume fraction is expanded as a truncated power
series in wmole fraction, one obtains

~B 2 ~E 2
AGY/RT = Dgxp * chg and AGo/RT = [bgtyeglxy - chﬁ

AE% is the excess partial molal Gibbs energy of component 1 and Vq is the

molal volume of component 1. As the regular solution equation is derived

under constant volume conditions, an excess entropy bterm arises from the

volume change upon mixing. In addition, since bgﬂ(vg/vl)[AEl/Vl)“’%;(AEQ/Vg)‘%"]g/RT9
the temperature coefficients of the molal volume and of the energy of

vaporization, AE, also result in an excess erﬁ;ropy,l2 The enthalpy and

excess entropy can be expressed as similar functions of mole fraction.

Their combination to give the partial molal Gibbs energy equation yields

for each component in its standard state dissolving in the solution

.y 2 2
Inyp = AGT/RT = (by/T-bglxs + (Ch/T”Cs)XS = Qx5

B . 2 2
lnyp = AGH/RT = [bh/TmbS+§(ch/TmcS)]xl - (Ch/TmcS)xf = Q%7

where the signs of the by, c¢p, by and cg terms are the same as the signs
of the corresponding enthalpy and entropy terms in the Gibbs energy
equation. Thus, bgT at a temperature T eqguals bp-bgl, ete. Thegse equations
average out the contributions of ACp values to the Gibbs energy by using
the average enthalpy and entropy values over the temperature range of
interest. Analytical equations of this form are found to reproduce,
within the range of experimental uncertainty, the thermodynamic properties
of many metallic solutions over a considerable range of temperature and
composition,

When a miscibility gap exists in the solution at a given temperature,
the partial molal Gibbs energies of both components are equal in both
saturating phases. If the mole fractions are expressed as x; = l-y and

¥o =y in the phase with excess component 1 and as xq = x and xp = l-X
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in the phase with excess component 2, the equilibrium condition can be

expressed as

)33 = In(l-y) + by2 + cy3

)3

1nx + b(lwx)g + c(1l-x
2 3

lny + (b+§c)(luy)2 - c(1l-y = In{1-x) + (b+§c)x - ex”

where b = (bp/T-bg) and similarily for c¢. When the same values of b and c

are not applicable for both phases, the equations become

Inx + by(1-x)® + ey (1-x)” + ey = In(l-y) + (byrdey)y” - cpy” = iy
2 2
Iy + by(1-y)% + ep(1y)” + ey = In(lx) + (byrey)x” - o x° = -dy

The subscript x indicates the constants apply in the phase region for which

x = x7 is small and y indicates applicability in the phase region for which

1

y xp 18 small. These general equations may be reduced to the first set

if by = b, by = b+%c, cx = ¢, and Cy = =C. When the solubilities are small,
the cubic terms can be dropped with the constants of the gquadratic terms being
Q0% = bytey and Qy = by+0y° The e, and ey terms are discussed below.

For a symmetrical immiscibility gap when the molal volumes of the two
components are closely the same, ¢ = 0 and by = by resulting in equal values
of x and y. The two equations reduce to Inlx/(1-x)] + b(1-2x) = 0 which is
readily solved by Prgm. Im. If the excess entropy is neglected,
b will be inversely proportional to T and the calculations can be repeated
at a new temperature Tp by multiplying b by Tl/Tg, This can be done by
Ty + Tp + STO X 4 RCL 4 £ b to obtain the value of x =y at Tp. The
temperature that brings b down to 2 will be the critical temperature. For
b < 2, the system will be miscible.

Program Im carries out the simultaneous solution of these two equations
for x and y to yield the compositions of the saturating phases. The
iterative solution using the secant method is based in part on a portion of
Prgm. 8D~11 of the HP-6T Standard Pac(18). Program Im first assumes that
the solubilities are small enough to neglect dy and d-'Y and to approximate
1-x by 1. This yields as the first approximation x' = e_(bx+cx)e x' is

used to calculate the first approximation of dy.

2 3
lny + by(l=y) + cy(luy) tdy fey = 0
is then solved by iteration to yield y". If flag O is set, the value of
y obtained by each iteraction is flashed. The process continues until the

fractional change in y in the last iterative step rounded to the number of
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places after the decimal designated in step 2 is displayed as zero. The
same process is then used in step 7 to calculate x". The value of x" is

used to calculate a new value of dy and the equation for y is solved again
to obtain y”f Steps 6 and 7 are alternately repeated until the values of
x and y show no additional change. To speed convergence, step 2 should
be set initially at DSP 2 and no change in x and y will be noted after
Ax/x or Ay/y < 0.005. TFor x and y ~0.1, the values of x and y will be
accurate to 0.0005 and can be read to 4 places by keying DSP L. If it is
desired to calculate x and y more accurately, steps T and 6 can be repeated
with DSP 3 or L. If there is no interest in the progress of the iteration
at each step, hCFO will stop the flashing of successive x or y values.

hSFO will change back to flashing.

If the same standard states are not used for both phases, a constant
term would be added to dy or dy or both corresponding to the Gibbs energy
difference between the standard states divided by RT. The equilibrium
between the solidus and liquidus portions of a phase diagram will be
considered as an example. For solid with largely component 1 in
equilibrium with the 1iquid phase, then e, = AG%sl/RT = AH?al/RT - AS%SI/R
and ey = =AG%52/RT = »AH%ag/RT + AS%SQ/R5 where AHZ and ASP are the average
enthalpies and entroples of fusion of the two components over the temperature
range of interest, In the equations given on the previous page, b, and by
will be considerably different, in general, for the example of solid-liquid
equilibrisa.

Program Im provides for insertion of the enthalpy and entropy terms
to allow calculation of by, €y, ey, by9 Cy and ey at various temperatures
and then to solve for x and y values for the saturating phases at the given
temperature. When the b, ¢ and e values are already known for the desired
temperature, the enthalpy values are inserted as zero and the b, ¢ and e
values are inserted with reversed sign for the entropy terms as illustrated
in one of the test examples.

For mutual solubilities of two liquid phases or two solid phases for
which there are no ey, or ey terms due to differencesg in standard states,
AH%;DAS%;DAHggg and AS%92 are entered as zero. When the difference in

standard states corresponds to the solid phase transition, then AH% and
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AS% are replaced by the corresponding values for the transition. For
liquid immiscibility with small enough solubilities for the approximation
lny; = (bx+cx)y2 and lnyo = (bx+%cx)(lmy)2 in the phase rich in component
2, the regular solution theory predicts (bx+cx)/(bx+%cx) = (Vo/V1),

This is sometimes useful, but, in practice, the value of ¢ is often more
dependent upon change in character of the bonding across the solution range than
upon the volumes of the pure materials, especially with change in electronic
configuration upon solution. One can sometimes obtain a useful value of ¢ by
comparison of (lnyl)/xg = b+c at large xp with (lnyg)/x§ = b+%c at large xq.
Tf ¢ = 0 is used in Prgm. Im, (lnyl)/xg and (1ny2)/xi are taken equal for a
given solution, but their value can be greatly different on opposite sides of
the miscibility gap.

Directions:
) Insert Prgm. Im

(1
(2) DSP n, usually n=2 1n;t1aliy Display
s}
(3) AHG 3/R 4 AS3 1/R 4 by 4 by A ARG /R
(4) ~DHS o/R 4 -AS o/R 4 by 4 b R/S (or fa)  -AHR o/R
(5) cg 4 cg 0 Cg 4 cg R/S (or fDb) ci
(6) T B (or t° D) ', v ... y'"
(1) ¢ Repeat 7 and 8 alternately until e %'
o x and y show no change in succes- " ot
(8) R/S sive steps; read final values A v
with DSP n+l

If v is known:; after step T, DSP n to desired accuracy followed by
(8') y 8TO A fd dy
(1") ¢ X e Xpinal

If x is known; after step 6, DSP n to desired accuracy followed by
(1") x STO A fd dy
(8") ¢ 5 AR Yeinal

NOTE 1: The alternatives fa and fb for R/S in steps 3 and L4 allows alteration
of part of the data without need to reinsert all of the data. For
step 6, temperature in °C can be inserted followed by D to convert
to °K and initiate the calculations.

NOTE 2: The display control of step 2 can be changed at any time, but is
best started with only two places. If higher than 3 place accuracy
is desired, n can be increased at each successive repeat of steps
7 and 8. TFor each new T, start at step 6 following step 8. If step
7 was the last step, key fP2S before starting again at step 6.

cont'd.
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NOTE 3: C can be used in place of R/S for step 8, but alternating between
C for the x calculation and R/S for +the y calculation helps one
keep track of which value is being calculated.

NOTE L: TIf it is desired to repeat step 7' to obtain a value to a larger

number of places, change DSP n and repeat steps 8' and 7'. Similarily,

if x is known, repeat steps 7" and 8".

NOTE 5: After T STOD, E calculates AGQ /RT JigléTﬁl%" S ] g 1lates
, B , . 5 AGp 1 /RT, calculates by and fe calculates
¢y Tor component 1 if the compénent 1 constants are in the primary
registers. If dy =-ln aj is desired, it may be obtained by RCLS
after step 8.

NOTE 6: Step 6 assumes ¥ and y are small. If they are not, replace step 6
by T STO D x' 4 y' GTO 8 R/S, where x' and y' are estimates of the
solution. Then continue with steps 7 and 8. This procedure is also
used for calculating solubilities for a sequences of temperatures.
If the temperature intervals are small, only T STOD is needed for
step 6.

(3) 5127 & 1,774 4 Lx10” 4 .3 A 5127.00;
() 1371 4 ~.762 * 8><1o3 + .2 R/S -1371.00;
(5) 500 4 .1 4 500 4 .1 R/S 500.00;
(6) 2><1o3 B (or 1726.85 D) x=.07, y=.02, .02, .02, .02, .02;
(1) ¢ x=.10, .10, .10, .10;
(8) R/S y=.02, .02, DSP L, .0190;
(7) € =x=.101k, .101Lk,.101k,.201k, DSP 5, .10138;
(8) R/S y=.01902, .01902,.01902, DSP 6, .019022.
y = .019022 known
Steps 2-7 the same as above; (8') .019022 STO A f£d, dy=.017T;
(7') ¢ .101k, .101h, .101k, DSP 5, .10138
x = ,10138 known
Steps 2-6 the same as above; (7") .10138 STO A fd, dy = .0873;
(8") ¢ .0190, .0190, .0190, .0190, DSP 6, .019022

| X
ey:’:evzo? b§:2055bg:35 Cg::os'a nggl

3

) 040404 -2.5A0.00

) 040404 ~3R/S 0.00

) 04 -1 40 % -.5 R/S 0.00

) 1 B x=.05, y=.04, .06,.006,.06,.06

) Cc .08, .08, .08, DSP 3, .075; (8) R/S .062, .062, .062, DSP L, .0618
) C .0755, .0755, .0755, .0755
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Pregm. Im
(3) TLBLA  STO7  hRY STO6  hRY  STOL hRY STO3  hRTN 9
() gLBLfa fP2S A P25 hRTN L
(5) gLBLfb  STO9  hRY STO8  hRY  P2S STO9  hRY STO8 P28
hRTN 25
(6) fLBLB ~ STOD fc  fGSBG  + E + cHS  ge®  nPSE
fGSBO  fGSB1  RCL1  STOA  f£4 fe + FOSBE +
+ CHS geX hPSE  fGSBO fGSBL  GTOC 52
FLBLO 4 A 2 & STOO + STO1  hRIN 61
(7,7') fLBLC fe hSTI fogR6  STOE  fGSB2  fGSB3  STOA  fGSBL  RCLA
(8,8") fd RCLA  hRIN  GTOC s
(6") FLBLD 2 T 3 . 1 5 + GTOB B4
fLBLL  RCL1  RCLO - ST02 2 + - STOO  hRTN
gLBLfd fc X hLSTx 1 ® 5 X fESRE +
- RCLA gx? X 1 RCLA - FLN - fP2S
STO5 hRTN 1ie
fLBL6  RCL6  RCLD 2 RCLT - hRTN 123
gLBLfc RCL8  RCLD = RCL9 - hRTN 130
fLBL2  RCL1 fe STOC  RCLO  fe STOB hRTN 13
fLBL3  RCLC  GTO4  fLBL5 RCLL fe STOC  fLBLL RCLO  RCL1
- RCLC  RCLB - 3 X STO+1 RCL1 hF?0  hPSE
: fRND  fx#0  GTO5 RCL1 hRTN 164
gLBLfe fLN 1 hLSTx = gx®  hLSTx hRCT X
RCLE + X + RCL5 + E + hRTN 182
fLBLE  RCL3  RCLD * RCLL - hRTN 189
fLBL8  STOB  hRY fGSB9 RCLB  f£GSBY9  hRTN 196
fLBLY + STOA  STOO EEX  CHS i ST02 + STO1
hR¥ fd hRTN 5 209
FLBLT  fe RCLA X fGSB6  + RCLA  gx X g
RTN 220
R 0 1 2 3 4 T 8 9
P x! " Ax  AHS/R  ASP/R bh b cp cy
5 y' " Ay -0H3/R  -ASS/R A 194 et e
A B Flag 0 is set
xor(yt) £ly")
y'"or(x') £(x") %
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Gibbs Fnergy from Phase Boundaries

When the compositionsof saturatbing phases are known, two constants
can be directly determined. If the same b and ¢ values are assumed for

both phases for which the same standard states are used,
3 = In(l-y) + by2 + cy3 = lnay = AGy/RT

Iy + (b+de)(1-y)° = c(1y)7 = 1n(1-x) + (b+de)x® - ex® = 1Inap = AG,/RT

Inx + ‘b(l-ux)2 + c(1-x

The mole fraction of component 1 is x in he phase rich in 2 and is 1-y in
the phase rich in 1. The simultaneous solution of these equations expressed
as oqb + Bjc = g1 and opb + Bpe = €5 is discussed on pg. 114 of reference 13

using the quantities

o = 1= /()7 ap = 1= %/ (1)°,
By = 1 -x - v/ (1-x)2, Bo = 5 +7y - §x2/<lmy)2 + %0/ (1y)",
ey = [n(1-y)/x]/(2- P, o = [1n(1-x)/y1/(1)°,

and D = ale - azﬁla

When the same b and c¢ values are not expected to be applicable for both
phases or if the solubilities are small enough to combine the cubic terms
with the square terms, then one uses 1nY1/(lwx)2 = by and lnyg/(lmy)2 = by.
In addition to calculating values of b and ¢ or by and by, values of
lnyy = Aé%/RT and lnaj = Aél/RT and the corresponding values for the other
components are calculated for both phases. If a set of b and c values or by
and by values have been obtained at several temperatures, steps L-6 of
Prgm. {xb can be used to obtain enthalpy and excess entropy terms corregsponding
to b = by/R + bg or ¢ = c/T + by and similarily for by and by The steps
are (L) E, (5) T 4 b for each b value, then (6) f ¢ will yield by and bg

‘The same steps are repeated to obtain cp and cg values from the set of c

values.

Directions:

(1) 1Insert Prgm. yx-bec Display

(2) vy 4+ =xA b

(3) 88T c

(LY v+ x B by

(5) ssr by,

(6) ¢ 1nyq,lnay,lnyo,lnap for phase rich in 2
(1) D 1nyp,lnap,lny],lnay for phase rich in 1
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NOTE 1: b and ¢ can be obtained after step (5) by RCLE hRCI.

NOTE 2: Steps 6 and 7 can be used in either order following step 3 or
step 5.

Prgm. yx-bc Test:

(2) .095 4 .07 A 2.4837; (3) SST 0.5397;

(L) .ok 4 .03 B 3.6889; (5) SST 3.4635;

(6) € 3.4709, -0.0357, 0.0036, -0.0269;

(7) D 3.1920, -0.0269, 0.0051, ~0.0357;

after (2), (6) ¢ 2.5823, -0.0769, 0.0160, -0.0566;
(7) D 2.2973, ~0.0566, 0.0229, -0.0769.

Pregm. yx-be
(2) fLBLA STOS 1 - CHS  8T06  hxzy  STO3 1 -
CHS STOL  RCL5  hxzy + STO8  hR RCL3  hxzy 2
STO7  RCL6 o 5 +  RCL8  gx? X RCLh +
CHS 1 . 5 + STOD 1 RCLT 3 hy*
- RCL6 X STOC  RCLT £ILN CHS  RCLL gx° %
STO2 1 RCLT  gx° - STOA RCL8  fLN CHS RCL6
gx? + gro1 1 ROL8  gx° - STOB X hx2y
RCL2 X - RCLC RCLB X RCLA  RCLD X -
STO9 : nSTOI RCLC RCL2 X RCL1  RCLD X -
(3) RCLY * STOE  hRTN  hxy hRTN 9¢
(L) fLBLB A + hRCI  RCL5 X - STOC  RCL3 o
(5) 5 + hRCI X RCLE + STOD  RCLC  hRTN hxy
(6) fLBLC hRCI RCL6 X  RCLE + RCL6  gx° X STOO
RCL5  fLN + fa RCLS X - RCL5 gx° X
+ STOL RCL6 LN + RCLO  hRY gSTK  hRTN 145
(7) fLBLD fa  RCLL X -~ ROLL  gx? X 8702 RCL3
fLN + hRCI  RCL3 X RCLE + RCLY gxe X
0 STO9 RCLLY LN + RCL2  hRY gSTK  hRTN 17
gLBLfa RCLE 1 o 5 hRCI X + hRCT hRTN 8"
0 1 2 3 L 5 6 T 8 9
€1 €2 v 1-y x 1-x y/(l-x) x/(1-y) D
(2) ,__(2) (1) 1
Iny,"" 1ny, 10y, lmfi)
A B C D B T
Qg ao B Bo b ¢
b, by
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Calculation of Thermodynamic Properties of Ligulid Solution from Properties

of Solid Solution and Solidus-Liquidus Data and Effect of Errors

Program Im presents the equations for the solidus-ligquidus eguilibrium.
The same equations and symbols will be used here for Prgm. Qyxbe. This
program starts with enthalpies and entropy of fusion of both components and

the partial molal enthalpies and entropies in the solid phase and calculates

Q% = lny%/xg and Qg = lnyg/xi

for the liquid phase of compositixle = x in equilibrium with the solid
phase of composition XZ =y and then calculates by and cy of Q% = bx+cx(lwx),
It is often of interest to determine the influence of error in x and y on
the calculated values of () and (p. This program provides values of

df2/dx and df2/dy for both components. The variation of each § with the change
of by and Cy can also be calculated. An error in the entropy of fusion

of a component causes an error only in QZ for the same component. The

program gives the error in Qg for an error in ASg Q/R°
- 3

2
lnag = lny + by(l@y)g + cy(lmy)39 1na£ = ln(lmx) o+ (bx+§cxmcxx)x
L s o -
lnas - lnas = “AGfusaz/RL = ey
: 2
lna; +oey - In(l-x) = 1na§ e In{l-x) = (bx+§cxmexx)x2 = ng
2 ; 2
Qg’ = [lny + by(lmy) + Cy<l"*y>3 + ey - ll’l(l“x)]//x
lnaﬁ = lnx + bx(lmx)2 + cx(lmx)3
ma’lz - 1na] = -AG. . /RT = -e . )
A 3 X ] .
Fass ! 1naf = 1n(1-y) + (byricy)y” - oyy”

lnai - ey = lnx = lna% - Inx = (by * cy - cxx)(lﬁx)g = Q£<lux)2

£ 2 3 . 2
gr = [in(l-y) + (oyrdey)y” = cyy™ = ey = lnx]/(1l-x)
Cy = 2(§22 - Ql)a by = 301 - 20 + Q(ngﬂl)x = Q- cyx(l-x)

e
dsiy 1 ' 2l /2
— = = e - - 3 =

3 L 2 by (l-y) = Rey(l-y)"|/x dey - s A2, ) dfdy

‘ dv av dv

£ .
dey 1, N - 1 _W)2 where v = X,¥ 4Dy OF Cy.
— - [Wluy (2by + 2ey)y = 3eyy” | /(1-x)

¥

cont'd.
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cont'd.

2L
ank 2in(1-x) 1 2[x “O5rin(1-x)] _ 1 29%
dx x x2(1-x) x3 xP(1x) X
aaf ot 2nx [2(1-x) 20 +1mx] _ -1 2%
dx x(1-x)° (lux)3 (1-x)3 x(1-x)? (1-x)
)
dby %2 dcy x2
. 2
ah ooy afy 3 v
Py (1x)? = = (3-9) 3
y (1-x)
de = dQl dCX dﬂl dﬂg dﬂl
It = O R el T
dmﬁ T d (=T ) db 2V (=T o)
2 T-Typo °x _ 2(T-Typp x _ (2x=2)(T-Typp
d(ASg o/R) 2 ° a(AS¢ o/R) g2 > 4(AS¢/R) Ty @
Directions: .
e Display
(1) Insert Qyxbc tape
(2) AHf,l/R A Angl/R A AHfsl/R
Va4 Y
(3) -MHp o/R 4 =ASp o, by + by R/S ~Mg o/R
(L) cg 4 cg R/S cz
3
(5) T B by+§fy
(6) ytx ¢ 9
§ig
Cx
by
(1) D dﬂg/dy
dﬂl/dy
dQn/dy
dﬂl/dx
(8) E afQp/db
dQp/dey
gy /db
aQ1/dey
(9) Typp fa dQp/d(Asr, 2/R)
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NOTE 1: After step 6, steps 7, 8 and 9 can be carried out in any order.
NOTE 2: After step 9, 2X gives dey/d(ASg 2/R) which yields dby/d(ASe o/R)
by multiplication by x-1.
NOTE 3: If 1liquid thermodynamic data are available and it is desired to
calculate solid data from x,y values, the same program can be
used with reversal of 1 and 2 and % and y with the following
directions:
(2) =AHo/R 4 =ASs/R A
(3) AHy/R 4 ASl/R t ¥ 4 by R/S
(k) cf 4 cf R/S
(5) TB > be ity
(6) =x+y C > 0%, 08, cys by
Pr Kbec B
(2) fLBLA  fP38 STOL hR ¥ STO3 hP2s hRTN 7
(3) sTOT nRY STO6 hR+ STOL hRY STO3 hRTN 15
(L) 87109 hR STO8 hRTN L9
(5) fLBLB  STOD h 1/x RCL6 X RCLT - STO0  RCL8  RCLD
3 RCLY - 8TO5  fP28 CHS STOS5 3 X 2
3 - STOO fP2S  hRIN . h
(6) fLBLC fPZS STOL 1 - CHS STO2 fPZS  hRY STOA
1 hx 2y - STOB  hLSTx  fe + fPZS  RCL2  fLN
- RCL1 gx? 2 STO9 fexm RCLB fe - RCL1
FL - RCL2  gx° B ST08  f-x-  RCLO - P
X CHS STOT fex-  RCL2 X RCLS - CHS STO6 .
P35 LRTN ?
gLBLe LN 1 hLSTx - gx? nLSTx  RCL5 X RCLO
+ X + RCL3  RCLD = RCLY - hRTN Lo
(7) fLBLD RCLB  RCLB RCL5 X X RCLO 2 X
+ X RCLA n 1/x - CHS PS RCL1  gx? 3
hLSTx  f-x-  RCLA RCLA  RCLS X 3 X RCLO 2
X + X RCLB  h 1/x - RCL2 gx? : STOR
Fo¥me RCLY 2 X RCLL RCL2 X h 1/x - RCLL
3 CHS STOC fex—  RCIL8 2 X RCL1  RCL2 X
h 1/x - RCL2 + fPIS STOL RCLC ST02  hRY hRTN 185
(8) fLBLE fPJS  RCLB RCLL = gx? STOC fex-  RCLB X
FeXm RCLA  RCL2 + gxe Pk 1 5 RCLA
- X P hRTN
(9) gLBLa  RCLD - hLSTx 4 PS5 RCL1 gx? = CHS )y
P38 hRT
RP 0 1 2 3 b 5 6 7 8 9
doy dfio Ng v ¥ v
b —_— — ~AHo/R - =AS{ /R ¢ b b c c
Yo Ay dx 2 1 y h 8 b s
RS 0 1 2 3 by 5 7 8 9
by+§cy X l-x  AH /R AS)/R ~c,, by Cy 0 Qo
A B ¢ D E T
. : d
1-y a0/ dy,dflp/dby T Ay ap
dy dy
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TEST:  (2) 4300 * 1.487 A;  (3) -2184 t -0.993 + 2500 * 0 R/S;
(k) 200 4 O R/S; (5) 2773 B 1.010; (6) .10 * .78 ¢
0.328, 1.848, ~3.040, 2.517; (7) D 13.481, -18.829,
6.629, -9.686; (8) E 1.331, 1.198, 0.207, 0.289;
(9) 2199 fa 0.340; 2%, 0.680; (0.781-1)X, 0.150.

If it is desired to determine the effect upon by and cy of the liquid phase
of errors in by and Cy of the solid phase, Prgm. bc calculates dcx/dby,
dcx/dcy9 db-x/dbys and dbx/dbya

J 2 P
dey 2(é92 _ dﬂl> - 5 (1-v) ¥ j
HEY dby dby L %2 (l=x)2
B
dey 2(& - ﬁ) = D Q:L)j_ - (_?_by) “l:
dey ‘icy dey ] %2 2 (1-x)2
an de an ag o
by Sy S S o o2k Sa
oy dby db., dby dby ~ dby
2 2
R A (1-y) v
5 - 2(1-x) 5 5
(1-x) x (1-x)
Gor = de. - W)y o= ogo - 2lex)gm - g
Cy Cy Cy Cy C'y‘ Cy
2 3 2
— 3 (1-v) 3
= (Boy) L - 2(1-x) [ L () L
(1-x) X (1-x)
Directions:
Digplay
(1) 1Insert tape bc
(2) v+ x A dcx/dby
dcx/dcy
dby/dby
dby/dby,
Prgm., be )
fLBLA STOA. 1 - CHS STOB hR¥ STOC 1 -
CHS STOD  RCLA : gx° STO9  RCLC  RCLB * gx2
STO8 - 2 X STO2 i RCL9 RCLD X RCLE
1 ® 5 RCLC - X STOT - 2 X
STO3 fex- RCLS 1 RCLA - RCL2 X - STOO
faie RCLT 1 RCLA - RCL3 X - STOL hRTN g0

cont'd,



g L3 . ; o " g e 5
L4 o by e J e ¢ S8 g

Lo
0 1 2 3 it 8 9
B o & e & & &
y y y ' '
‘ s B ¢ b
X 1-x v 1-y

TEST: 0.38 4+ 0.42 A 3.50, 1.7h, -1.60, -0.53

There is no general procedure for applying the various programs that have
been described for treating a phase diagram. Liquidus data usually would be
treated first by Prgm. (xb which neglects the effect of solid solubility to
obtain a rough idea of the partial molal enthalpies and entropies in the
ligquid phase. Neglect of solid solubility or experimental error in the
data can yield values substantially in error and the initial values may
have to be somewhat wmodified to be within the range of reasonable
values indicated by various theoretical models. Program Im can be used
to calculate the boundaries of the solidus and liquidus from the selected
thermodynamic values. There are, in general, an infinite combination of
thermodynamic quantities that will fit a set of experimental data within
experimental error. Comparison of the results from Prgm. Tm with the
original experimental data will indicate what changes in the thermodynamic
data might be necessary to give a better fit and still be in the range of
reasonable entropy and enthalpy values. Program yx-bc is of use of obtain
Gibbs energy values from boundary values at a given temperature or Prgu. Qyxbe
will yield the molefraction dependence of the thermodynamic properties in
one phase knowing the properties in the saturating phase. This last program
can be of value in adjusting the thermodynamic data through analysis of
the effect of error in various guantities upon the phase boundaries and the
effect of error in one thermodynamic quantity upon related thermodynamic
values. For intermediate phases with relatively limited solid solubility,
the next program, Prgm. SP, is often of value. Because of the experimental
error 1n most observatlons and the resulting wide spread of thermodynamic
gquantities that could be used to fit the data, it 1s ilwmportant that this
fitting process not be carried out in a mechanical manner. Considerable
judgment using theoretical models with useful predictive value is essential
to narrow down the range of thermodynamic values consistent with the

experimental data.
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Solubility Product Calculations for Liquidus of Intermediate Phases

Combination of the equations AGS/RT = (AGoaAH§98)/RT + AH§98/RT for
A(s) + nB(s) = AB,(s), A(s) = A(L), and nB(s) = nB(L) gives for
ABp(s) = A(£) + nB(L), -AGP/RT = -AHSgg/RT - (AG°-AHZge)/RT = 1nK =
Inxp+nlnxp+lnyg+nlnyg = lnxytnlnxp-(bg=by/T)(1-x5) =(cg-epn/T) (1-x4)
- nlbg+icy - (bh+§ch)/T]xi + n(csmch/T)xi°

MHpgg/R + [bh+ch(lmxA)](lmxA)2 + n[bh+%chncth}x§

1

- AH : 2
E(égm%%§9§>eslnxA — nln(l-xp) + [bgteg(l-xp)](l-xy) +n(bs+§cS~chA)X§

2 2
bpten (L-x 1-xp )" + nlbp+deyn-cnxa lx
~AG®/RT = Inxy + nln(l-x,) + Dopten(1-20) 1 (1-xp) - (ontaen-cha

o) 2
- [bgteg(1-xp) I (1-xy)" = n[bs+%cs“CsXA]XA

Program SP can be used to calculate the liguidus curve when AH§98/R is known

or to calculate AH598/R when the liguidus curve is known.

Directions:

1) Insert Prgm. SP

2) by tecy by teg E

3) AH598/R STOA, «(AGmAH§98)/RT STOB n STOE, 273.15 ST03
) xp, A>T

5) R/S =+t

(6) x4 4+ T B+ -AG°/RT

(7) R/S = AH®/R

(
(
(
(
(

A B C D E
AH598/R MQAGOEAH598 }/RT Xp lm-XA n
RP 0 1 2 3

by Ch used 273.15
RS bg Cg

cont'd.



Prgm. SP

fLBLE
hRTN
FLBLA
P25
RCLC
RCL3
£LBLO
RCLE
RCLD
FLBLB
X

P28

£P28

STOC
£GSBO
LN

gX
SToL

RCLC

STO1

£P2S

hRTN

RCLC

hR¥

LN
hRTN

hRY

RCLB

RCL2

£X

STOC

RCLB

~T3=

STO0

CHS

hxzy

RCLC

hRTN

£GSBO

hR¥

STOD
RCLD

RCLD

RCLL
RCLL

P28
£GSBO
FLN

hRTN

RCIL1
RCL1

CHS

STOL

RCLA

RCLE
RCL3

STOD

CHB

hRvY

RCLO
RCLO

fLN
£P25
LRTN

STOO

11
8102

hRTN

b

69
RCLE
£GSBO

98
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Chapter IV

Regular Solution Calculations

The previous chapters have frequently referred to regular solution
equations and their application to thermodynamic calculations.(12,19,20)

In Chapter IIT, it was pointed out that the partial molal Gibbs energies
expressed in terms of volume fractions as composition variables can be
conveniently expanded in terms of mole fraction truncated at the cubic term.
In its simplest form, the regular solution theory is a pair-interaction
model with interactions between unlike atoms or molecules being taken as
the geometric mean of the interactions between like atoms of molecules and
excess entropy contributions comes only from the temperature coefficients
of the volume and energy of sublimation terms. For most actual systems,
the geometric mean assumption must be modified and additional entropy
contributions must be considered. For metallic atoms, there is also the
question of the appropriate valence state to use for evaluating the cohesive
energy (7).

The programs tabulated below can use for AH either the enthalpy of
sublimation to the grotnd electronic state or to any valence state in
obtaining the first approximations to the solubility parameters. Subsequent
approximations depend upon the types of atoms being mixed and an appraisal
of the types of chemical interactions that can take place. Thus strain
contributions due to size disparity can add positive contributions to the
Gibbs energy of mixing for solids with equivalent lattice positions and can
add negative contributions for appropriate size differences for structures
such as those of the Laves phases, liquids, and other systems with non-
equivalent sites that achieve better space filling with appropriate size
disparities. The very substantial acid-base interactions that can take
place when atoms with non-bonding electrons are mixed with atoms with
unoccupied low energy orbitals must also be considered.(8) However, the
simplest form of internal pressure calculation is the starting point for
most systems. For this level of approximation, the energy of vaporization

is taken as AHaRTi where T; 1s the average temperature of the range of interest.
B 2 o § 'AHn L AEq ) Lio
T8y = Tinyp/(l-x7)" = V3(8,-81)7/R = Vl?[(*§~ SV A LR | e /Vl]2

Tlnyn/xf = Vn(énaél)g/R

il

™,
2 =2
Teritical = [2Vn(8y=81)7/R1/[1+(V,/vy)2]
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Program RS can store data for eight binary systems of component 1.

Directions:

Display
(1) Insert Prgm. RS
1
(2) R4 Ty + AHy 4 V] A [(AHy /R-T3)/Vq |7
“(3) B 2
(L) AH, * V, C; repeat for all n V1(5n“51)2/35 Vn(énmél)Q/R
up ton =9 o o
(5) T4+nbD W =lny1/x,,  Q=lny,/x]
(6) n E Tt gt for l-n system
critical

NOTE 1: Step 3 is required before a new set of data in step L.

NOTE 2: Steps 5 and 6 can be used in any order. If it is desired to add
more values in step 4 after step 5 or 6 has been used, carry out
step 6 for last value of n used in step 4. Then key f b and
step 4 will accept values for n+l, n+2, etc. up to the maximum of 9.

Prgm. RS
(2) fLBLA STOA hRY  STOB  hRY STOC hRY STOE RCLB  hxzy
+ RCLC - RCLA 3 Y% STOD hRTN 18
(3) fLBLB 2 hSTT  hRTN -
(L) fLBLC STO0 hRY  STOL  RCLE 2 RCLC - RCLO +
#v/%  RCLD - gx® 4 STO(i) fa RCLO  STO(i)
b hx2y RCLA X f-x-~  hRY  hRTN 49
(5) fLBLD hSTI hRY  RCL(i) hxzy + 4 4 fa RCL(1)
X hx2y RCLA X f-x-  hRY  hRTN 6
(6) fLBLE hSTI RCL(i) 2 X fa RCL(i) X RCL(i) RCLA
: £V 1 + gx® &+ KRN 63
gLBLfa hRCT 1 0 + hSTI  hRY  hRTN 91
gLBLfb hRCT 9 - hSTI  hRY hRTN 98
A B C p D E T
AHy /R=Ts\ %
vy AHy T, <-L~§z~i) R Tndex
P 0 1 2 3 Ceeceseneae 8 9
v A (6,-6,)2/R  (8,-62)°/R (81=68)°/R  (81-80)°/R
1n gel 1“2 1‘93 eeeeeeeeeeee 1“8 1=9
S 2 S 8 9
V2 VB eeeeeeee 62 002 280 605605 c o068 O V8 V9
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Use of Regular Solution Eguations for Fitting of Data

When there is substantial solid and liquid solubility and Prgm. Im
of Chapter III is required, an exact analytical solution cannot be given,
but quite accurate fitting of the results can be obtained in terms of a
polynomial fit of the deviation from simple limiting equations.

If the solid and liquid solubilities are small, the liquidus of

. . , L -
component A of an A-B binary system is given by 1n Xy =0 + a7 * where
L L L
o = AS%/R + by + cg and a_y = «AH%/R - bh - ¢y
and all quantities refer to component A. The solidus can be expressed as
1n xg = as + ailel
where
s _ S S S _ S S
o = «AS%/R + by + cg and a_, = AH;/R - by - cp

and all quantities refer to component B.
Actual data are Titted to the equation ln x = a_lTnl + A, where A is

= aelTnl+A.

a power series in T. It is sometimes useful to fit 1n TX T

o~
When the liquidus or solidus is of very limited extent near the melting
point, a simpler equation can be used. The 1imiting liquidus near the

melting point of B becomes

L
XA AS%/R

TETEY S S

T'aw'T -

(Te~1) T(1-x, /%)

from Eq.{(19-1L) of ref.(12) which reduces to
Xy 6S9/R

(Tf= ) T

when solid solubility is small.

The various modifications of these limiting equations can be used to
obtain accurate least square fits for liquidus or solidus boundaries to a
polynomial with a minimum number of terms. Prg. LSA is designed to handle
the variety of situations thatmight arise by evaluating the constants of
f(x,T) = a/T + ag + aT + a2T25 where f(x,T) may be ln[x/(waT)]5 in x, or
X/(TfmT)ﬂ a_1 is fixed as indicated below by the type of equilibrium and
A= £(x,T) - a_7/T is fit to a power series in T or under some circumstances

in Tf“Tr



oo
for £(x.T) = =L 2
Prgm. LSA for f(x,T) = S A, A = ag + alT + aoT
Display
(1) TInsert tape LSA
(2) Store a_j in B a_q
(3) fa to clear registers a_q
(k) Modify prgm. to fit £(x,T) = x/(Te-T) or lnx in place of 1n 58;0 7
il N ¥ 2 o B
(5) % T B 7 A
If any of T values are evenly spaced,
key xA after 2nd of regularly spaced
values if 10~2 has been replaced by
proper L.
(6) R/S a0
<7) SsST 88T a_L N 8,2
8) T D ®
E after 2nd of regularly spaced T bd
(9) ¢, ssT al, al for Te-T in place of T
(10) ™ rd x
fe for evenly spaced T X
NOTE 1: Prgm. is set for f(x,T) = In - X*ﬂwg although usually a simpler
N . . 2890-T
function is used. ,
WOTE 2: TFor f(x,T) = lnx, remove fGSB 1- in 3rd line (steps 22-3) and
FGSBL + near end of LBL D (steps 132-3 minus 2) and if To~T power
series  be used, remove hRY fLN + of gLBLd, step 192,
NOTE 3: 1If x is keyed in as 109k, add EEX n * in 3rd line (after hRtof step 20)
NOTE L: Tor melting point of metal other than Mo, replace 2890 by Te after
fLBLL, fLBLC, and end of gLBLAd.
NOTE 5: Tor even spaced btemp. at intervals T other than 1.00°, replace EEX 2
by T after fLBLA, fLBLE, and glLBLd.
NOTE 6: TIf x is to be used instead of lnx, remove fIN in 3rd line (step 21),
and remove ge* at end of fLBLE and end of gLBLe.
, ) . e 3 ‘ 2
NOTE T: TFor an A-B system with 1n Yy = bxé + cxp and In B = (b+%C)XA“CX2ﬁ

there are the following combinations of £(x,T) and a_q.



Solid~Liquid Fquilibrium

A liguidus, low XE
A solidus, low XE

liquidus, high Xi

A

. . L
A solidus, high Xn
B liguidus, high x
B

L
B

L
B
solidus, high x

Solid-Solid Equilibrium

=T B

{x,T)

In xp
1n xq
xp/ (Tp 4=T)
Inxp or 1H[XB/(Tf9A*T)]
xp/(Tp p=T)
lnx, or 1H[XA/(Tf5B“T)]

hRTN

A solidus 1n xp @bsm 5

B solidus In xp ~bSec

Pregm. LSA

gLBLA RCLB FCLREG FPYS FCLREG STOB hRTN 5 7
FLBLA RCLE EEX 2 + fLBLB  STOE + A gx©

L+ hLSTx  hR4 LN FGSB1 - RCLB RCLE + -

FPS ot hLSTx RCLE X STO+1L  fP2S  hRTN -
RCLL RCL8 FPYS ST02 hR¥ ST00 RCLY +  STOL RCL6

gx2 RCLY + RCLT - hISTx  RCL6  RCL9  + X

RCLS - STO3 hxzy ST08 RCLT gx2 RCLY9 + RCL5

- STO5 RCL1 RCL2 RCLA RCLT X hxzy -  hSTI
RCLL RCL6 X hR4 - STOR RCL& RCL5 X  RCL3

pxe - RCLE RCL5 X RCL3  hRCI X - hxzy

2 STOC RCLS8 X RCLE hxzy - RCL3 +  STOD
RCLT X RCL6 RCLC X + RCLY i RCLY hxpy

- STOA hRTN RCLC RCLD 120
FLBLE hR4 EEX 2 o+ fLBLD  fb RCLB hR+  +

+ fGSB1 + g eX hRTN 135
fIBLL 2 8 9 0 hR4 - fLN  hRTN o
gLBLb 4 4 4 RCLD kS RCLC + X  RCLA

+ hRTN 156
FLBLC 2 8 9 0 b STO3  hR+ RCLD X

2 X RCLC + CHS STOL hRTN  RCL3 174
gLBLA hR4 EEX 2 + gLBLe 4 4 +  RCLD

X RCLL + X RCL3 + hR4 LN + 2

8 9 0 hR4 - RCLB hxzy + +  ge¥

205
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RS STA P L D R ¥ K B
then 1
RP A greA s 1l v 4
¥ ¥
al a2
b 5 6 T 8 9
RP D L T N
then
RS
A B C D T
a1
agn ay an t u

A fifth chapter entitled "Philosophy of Critical Evaluation and Compilation"
has been written which describes the compilation procedures and use of some
of the programs described in the earlier chapters and which particularily
reviews some of the bonding models used to predict thermodynamic values
for systems lacking data. Because of the length of the present report, the
decision was made to issue the fifth chapter as a separate report (LBL-T666)
and the present summary of calculation programs will be ended with a program
used to estimate enthalpies of formation using the Rittner model for .

gaseous halides with a large icnic component.
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Bonding Fnergies of Gaseous Halides Using the Rittner Model

Rittner (24 ) has used an ionic model including polarizability to
calculate bonding energies of gaseous halides, There are a number of
difficulties in the model having to do with the proper treatment of over-
lap repulsion, the appropriate value of the polarizability to be used, and
the contribution of higher order terms. In spite of the limitations,
Cubiceciotti (25927) and Hildenbrand (26 ) have reported success in using
the model for compounds of highly charged cations and criteria have been
developed to predict rdnge of applicability of the model.

It 1s of interest to determine how far the model can be extended among
the gaseous transition metal halides., for which thermodynamic data are very
scanty. It would be useful to compare the calculated values with the
available experimental data to determine if the model or some modification
of the model might yield useful data. The HP-67 calculator program given
below follows the calculations of Cubicciotti, Hildenbrand, gz)ggy( 27 ).
Enthalpies of formation or dissociation energies to the gaseous ions can
be readily calculated for MX, linear MX,, planar MX3, and tetrahedral MX)
glven a value of the cation-anion distance and the polarizabilities. These
molecules will be described as MX, with x=1 to k. The operation of the pro-

gram will be illustrated using typical parameters for Zr and Mo.

H§/R = 167 103[ay/r +0Lbn/rh] for
(1) W)+ nX(g) = MEy(e)
3

where o 1s the anion polarizability in A~ for the symmetrical molecules and
is the sum of the anion and cation polarizabilities for MX molecules. The
constant 167 103, given by egNOﬁ 0@8R = e2/10”81«: = (b, 803%)2101‘/1,3806%

yields values of AHR /R in Kelvin units when r is given in A The values. of

ap and by, are (27 ):

P
o
i

ap ® -i7 by = =5F
ap = -H(3.5) by = -4
a3 = -i7(9-v3) by = -gH8.17)
ay = -1p(15-3/1.5) by = ;7(16 48)
where~%% =1 - %~and E%"“ 1 - %—with p, the power of the overlap repulsion

term, taken equal to 11.
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+ P
gXQ =M (g) + nX (g) is given by the

sum of AHS for the following reactions.

The value of AHB/R for M{s) +

(") M(s) = M(g)

(3) %Xg = %X(g) i

where X, is taken as gaseous for Fp and Cl, at OK and solid for Brp and I,.

(W) nx(g) + ne (g) = nX (g)
(5) Mg) = M (g) + ne(g).

For reaction (2), AHZ2/R = 78970+250K was used (29 ) for Mo and T2560+500K
was used (28 ) for Zr. TFor reaction (3), AHZ/R was taken (30-35) as 9 2L0%70
for F, 1k 386+1 for C1, 14 185%5 for Br, and 12 889+2 K for I. For
reaction (h),VAHS/R was taken (36,37) as =39 LL0t20 for F, -41 930£30 for C1,
-39 030+30 for Br, and <35 550+30K for I. The ionization potentials in mel

from Moore (38 ) for

+ o + L+
Mo 57 260, o=t 130 300, Mo-T 219 100, Mo 37h 180
+ + + N
7r 55 1khs, ng 105 900, 7> 185 L0 and Zr ' 276 970
are used to calculate AHS/R for reaction(5). The gum of AHS/R values for

reactions (1) to (5) yields AHB/R for the formation from the elements.

(6) Ms) + 2 %ylg) = WXy (p)
MiZgg/R = MHG/R + (H3gg-HE)/Rux, - (H3ga-HJ)/Ry - %{H;QB«HS)/RXQ,

For M(s), (H;98wH8)/R = 552K for Mo and 665K for Zr. For gaseous Xo,
+(H3gg-H3)/R = 531 for Fp and 552 for Clp. For Brp(L) at 298K, %{Hgg8aﬂg)/3 =
LUTUR and for To(s), 3(H3g-HE)/R = TOkK.  Values of (H3gg-H§)/R for Mi,(g)
are tabulated in Table A.

The calculation of AH§98/R for reaction(6) can be expressed as AH§98/R =
U/R + M, + nXx+ (H?98“H8)/RMXH" where AHS/R for reaction(l) is expressed as
U/R = Ap/r + oBy/r with Ay = 167 103 a, and By = 167 103 by, My is the sum
of the AHJ/R values of reactions(2) and (5) minus (H§98«H8)/R for M(s), and
Xyis the sum of AHJ/R values of reactions(3) and (4) minus (H898“H8)/R for
%Xga The My values are calculated by step 5 of the program. The other
values, along with oy, values, are tabulated as follows:
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n An By _Xx 0,
1 -151 912 - 53 169 F =30 730 1.2
2 =531 691 ~325 660 C1 -28 100 3.0
3 -1 10k 087 ~-868 800 Br =26 320 L.5
b -1 872 L2g -1 752 500 I =23 k450 6.h2

The o value for I is from Cubicciotti, Hildenbrand, et al.( 27 ).  The other
values are from Dalgarno (39 ). The calculatlion is carried out in two stages.

After storing A, and By, U/R is calculated from the M-X distance r by

U/R = Ap/r + aBp/r .  Then the value of U/R is combined with (HSgg-H§)/R
of MX,, to calculate AH§98/R of reaction(6). Constants are stored in registers
or are inserted with a data card as indicated.’ '
RP 0 1 2 3 i 5 6 T 8 9
RS 1 2 3 L 6 T 8 9
Bl Bg BB BLI Ml ME M3 Ml&
A B C D E I
Xy My, . Ay Oy By R 69
n
n+l10
n+l5
TABLE A Values of (H2gg-H)/R in K
MoF,  MoCl,  MoBr,  Mol,  ZrF,  ZrCl,  ZrBr,  ZrI)
n
1 1079 11h1 1176 1221 1092 1132 1172 1213
2 1624 1948 2080 2200 1423 1783 1872 1842
3 1768 210l 2395 2570 1817 2119 2321 2930
L 227k 2678 2987 3168 2278 2713 3001 3185
TSR e
(1) Insert Prgm. I
(2) Insert Data Tape I Display
(3) at+tntrt6forF, 7 for C1
8 for Br, or 9 for I A U/R of MXp(g)

(3a) If calculation is to be repeated
for different nwith same X,

atntr B U/R of MXn(g)
(k) With U/R displayed, key
(Hpgg-Ho)/R of MX, R/S AH3gg/R of My (g)

(5) To insert data for different M,
AHG/R subl. of M 4(H3gg-HE)/R of M(s) E  1.hk
1P, 4 IP3 4 IPp + IP] 4 R/S M),
(6) fa to multiply any value by R
(7) fe to divide any value by R
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NOTE 1: o is o, of halide ilon except for n = 1 where sum of o values of
anion and cation are used.
NOTE 2: Step 2 leaves registers prepared for fluoride calculations. One
can go dirvectly from step 2 to step 3a for MF, calculations.
Prem. 1T
(3)  fLBLA  hSTI hRY  RCTi  STOA  hRY  FIBLB  STO0  hRY  hSTI
hRY RCLA STOC  hR¥ hRCT 1 0 + hSTI  hRY
RCLi X STOD  hRCI 5 + hSTT RCLi  STOB RCLO
n§~ RCLC  hxzy X RCLD  hLSTx U ny” X+
hRT -
(W)  + hRCT 1 5 - RCLA X + RCLB  +
hRT 52
(5)  fLBLE 1 9 nSTI  hRY - STO1 fDS%  STOi  £DSY
STO1 £DSYZ STO1 RCL5  STO0  hRTN 68
STOX0  hRV RCLO STO+i £Is8Z  hRY  RCLS X RCLO  +
FGSBO  £GSBO  STO+i RCLi  STOB  hRTN -~
fLBLO  8TO+i  fISZ hx=y  RCLS X + hRTN 92
(6) gLBLa  RCLE X hRTN 96
(7) glBLe RCLE + hRTN Loo
TEST
(2) RP O 1 2 3 L 5
hREG, 0 ~151 912  -531 691 -1 104 087 -1 872 L2og  1.4388
6 T 8 9 A B E
-30 730 -28 100 -26 320 -23 450 ~30 730 0 0 1.98719 0
RS 1 2 3 I 6 T 8 9
- 53 169  -32560 868800 -~1752500 160802 348275 663510 1201871
(3a) 1.2 4 b 4 1.82 B -1220b77, (L) 227k R/S 139252
(3a) 8.2 414 1.82 B -12320Lk,  (4) 1079 R/S T94T
(3) 34+h 4226474 mLO?OOMJS()) 2678 R/S 62108
(32) 10 4 1 4 2.26 B -87599, (L) 111 R/S h62L5
(3)  6.h2 4 342,66+ 9 A -526181, (4) 2570 R/S 69249
(5) 78970 4 552 B 1.4k, 374180 + 219100 + 130300 4 57260 R/S 1201871,
(6)  fa 2388347 (7) fe 1201871
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