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ABSTRACT

Expressions for the fan beam and para]]ei beam projection and back-
projection operators are given along with an evaluation of the point source
response for the back-projection operators. The back-projection operator
for the fan beam geometry requires the superposition of projection data
measured over 360°. Both the fan beam and parallel beam geometfies have
back-projection operators with point source résponses which are proportional
to 1/|r-r | and thus two-dimensional Fourier filter techniques can be
used to reconstruct transverse sections,from fan beam and parallel beam
projection data. The two-dimensional Fourier filter techniques may have
the speed over other methods for reconstructing fan beam data but the
reconstructed image requires four times the core storage so that thé
convolution result of one period does not overlap the convolution result

of the succeeding period when implementing the fast Fourier transform.



1.0
2.0

3.0

4.0

5.0

dOH H 0 U

£

4 9

EE ]

TABLE OF CONTENTS

Abstract . . . . . . . e e e e e e e S e e e e e e e e e e e

INTRODUCTION . . . . . . . . . . .. e e e e e e e e e e e
FAN BEAM AND PARALLEL BEAM PROJECTION OPERATORS . . . . . . ..
2.1 The Equations for the Fan Beam and Parallel Beam
Projection Operators . . . . . . . . . . . . . o ..
2.2 Projection of a Point Source . . . . . . . . . . . . ...
2.3 Projection of a Circular Disk v v v e e e e e
FAN BEAM AND PARALLEL BEAM BACK-PROJECTION OPERATORS . . . . . .
3.1 Fan Beam Adjoint Projection Operator . . . . . . . . . ..
3.2 . Parallel Beam Adjoint Projection Operator . . . . . . . .
3.3 Other Back-Projection Operators . . . . . . . . . . . . .
POINT SOURCE RESPONSE FOR BACK-PROJECTION OPERATORS . . . . . .
4.1 The Back-Projection Operation Represented as a
Convolution with the Original Density . . . . . . . . ..
4;2 Adjoint Transform of a Point Source Projection
Function for Fan Beam Geometry . . . . . . . . . . . . ..
4.2.1 The zeros 6% and 6} of g(e) . . e e e e e
4.2.2 The expressions for fdg(e)/de|e=e* and
[dg(e)/de|e=e* ....... P S
2
4.2.3 The expressions for S(6%) and s(e¥) . . .. ...

4.2.4 Solution to the transformed adjoint transform

4.3 Adjoint Transform of a Point Source Projection

Function for Parallel Beam Geometry . . . . . . . . . . .
4.4 The Back-Projection of a Fan Beam Point Source

Projection Function . . . . . . . . . . oo o o0 . ..
4.5 The Back-Projection of a Parallel Beam Point Source

Projection Function . . . . . . . . . . . . . o oo
DISCUSSION . . . . . . e e e e e e e e e e e e e
Acknowledgments . . . . . . . . . . Lo L 00w e e e

Bibjiography ...... e e e



1.0 INTRODUCTION

Fan beam and para]]é] beam geometries have back-projection operators
which accommodate the use of two-dimensional Fouriervfi]ter techniques for
reconstructing transverse sections from projections. Thesé back;projection
operators give an image representing the true image convolved with a
b]urring function which for the parallel beam geometry equals 1/r. The
relationship between the,true and the back-projected image is given by

the equation

b_(rse) = F(r,¢) » 1/r

where b_ is the back-projected image for parallel rays and f 1is the true
image. Budinger and GU]]berg [1] conjectured that a similar result was
a]so'true for'féh beam geometry énd for beams of arbitrary orientations
such as curved rays and randomly oriented chords from posjtron annihilation
events. This report shows that this conjecture is tkue for fan.beam
geometry where the blurring funétion'is equal to 2/r.

Using two-dimensional Fourier filter techniques the true image is

‘reconsfkuétéd'from the back—projected image for para]]é] beam geometry by

deconvo]ving-the-l/r blurring function using the relationship

f(r,9) = 9?;1*HRI qz{bz(r,cb)}!'

This result was obtained by Bates, Peters and Smith [2,3,4] and used in
phantom studies by Budinger and Gullberg [1]. The results developed herein
show that for the fan beam geometry the true image can be reconstructed

from the back-projected image by deconvolving the 2/r blurring functionv-



using the re]ationship

f(ro) = 5 F;{IRIT, b (re)]

where b<(r,¢) is the back-projected image for fan beam geometry.

The methods of reconstructing fan beam projection data can be divided

into five categories:

1.

Two-dimensiona] filtering of the back-projection.

This is developed in this report.

Re-ordering and rebinning the fan beam projection data
so that the data correspond to a parallel beam geometry
[5,6]. This allows the use of iterative methods,
convolution methods, or Fourier space methods which

are pfesent]y developed for reconstrﬁcting parallel

beam geometry.

. - Special convo]ution methods [7,8,9]. First a convolution

function is applied to the fan beam projection data and
the result is then back-projected.

Radon's integration method [10,11]. The projection data
are first differentiated, then followed by a Hf]bert

transform or an approximation using the trapezoidal

method of integration.

Back-projection of the filtered fan beam projection

data [3,12]. For each'projection the data is first

Fourier transformed, then filtered, next the inverse

Fourier tfansform is taken and the result is back-projected.

Presently most of the methods being utilized for reconstructing fan beam

data either rearrange the projection data so the data correspond to parallel



rays or use special convolution techniques which are adapted for.fan beam
geometry. | |

The text gives a detai]ed mathematical analysis of fan beam and
péra]]e] beam projection and back-projection operators by first developing
the expressions for the projection operators, hext developing the expressions
for -the back-projection operators, and then evaluating the point source
response for these back-projection operators. The results are summarized

in Figure 6, Section 5.



-4-

2.0 FAN BEAM AND PARALLEL BEAM PROJECTION OPERATORS

2.1 The Equations for the Fan Beam and Parallel Beam Projection Operators

The coordinaté systems for the fan beam and parallel beam geometries
are shown in Figure 1 and Figure 2 respectively. The equations for the
linear paths are dependent on their orientation relative to the axis of
rotation. If we require that the vertex of the fan beam is left of the
center of rotation as illustrated in Figure 1, then the equation of the line

emanating from the vertex in the (x,y) coordinate system is

R; sin &/R2 - X sfn (0 - £/R,) - y cos (6 - E/R2) = 0. (1)

This expression can easily be derived if we first express the equation of

the line in the (x”,y”) coordinate system,
y~ = tan £/R2 x7. (2)
With the coordinate transformation (X,y) = (x",¥7),

-

X

x cos © - y sin © + Ry | (3)

-

y

.x sin @ +y cos @ , (4)
‘we can substitute equations (3) and (4) into equation (2) giving

tan £/R, (x cos © - y sin @ + R;)

'x sin @ + y cos ©

x sih®@+ycos 0 = g%%—%é%%-(x cos © - y sin @ + Ry)
x sin © cos £/R, + y cos © cos £/R, = /

x cos O sin &/R, - y sin © sin E/R; + Ry sin &/R:. (5)
Collecting terms, we can express the above equation as

R, sin &R, - x (sin © cos E/R, - cos © sin E/R2)
-y (cos © cos E/R2 + sin O sin £/Ry) = O. (6)



FAN BEAM GEOMETRY

R, sin (€/R2)-x sin(8-€/R3)-ycos(8-£/Rp) =0

XBL767-9100

Figure 1. The projection data pP<(£,8) for a fan beam geometry
represent line integrals for the lines R; sin(&/R,) -

x sin(0-&/R,)) -y cos(e-¢&/R,) = 0,



PARALLEL BEAM GEOMETRY

"5'<

y ‘ | ¢'- xsin8ycos 8'=0

XBL767~-9099

Figure 2. The projection data p_(£°,06”) for a parallel beam geometry
represent line integrals for the lines £ -xsin9” - y cos 6~ = 0.
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Using the identities for the sine and cosine of the difference of two
angles, equation (6) can be simp]ified giving the result in equation (1),

R, sin &/R, - x sin(@-&/R,) - y cos(0-&/R,) = O . (1)

The equations of the colinear lines for parallel beam geometry.can be
derived in a similar fashion. Aﬁother approach would be to keep le‘ R1|
fixed and.al]ow R, and R, to approach « in equation (1) which in the Timit
gives the equation of a line for the parallel beam geometry,

) .‘E’ -Xxsin® -ycos @ =20 .. (7)
The CObrdinate system for the parallel beam geometry is illustrated in
Fig. 2.
Using equation (1), the fan beam projection operator, P> is defined

as P_:f » P wherg

p.(£,0) = ff f(x,y) <S<R1 sin £/R, - x sin(e—E;/Rz) -y cos(O-E/Rz))dxdy
R? - (8)

Thé integral is taken over R’ and if is assumed that f(x,y) =0 outside the
cone spanned by the fan beam. The limits of the'cone are a function of the
length of the curved detector and a function of R, which is the distance
between the vertex of the fan beam and the detector. Throughout this

report we assume that the detector spans an arc between -ﬂRZ/Z and sz/Z.
Using equation (7) the parallel.beam projection operator, Pz; is défined as

P_:f + p_, where

p_(¢7,07) = fff(X,y)G(g’ - x sin®” - y cose”) dxdy . (9)
R | | |
The parallel beam projection operator is linear and continuous when
f decreases rapidly at the boundary [13], and the projection function

satisfies [14]

p=(€’ae’) = pz('g’aO/ + “) -
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Likewise the fan beam projection operator is linear and continuous; however,

the fan beam projection operator satisfies

p(£,0) = p(-E, 0+ - 2E/R,) . (10)

The result given by equation (10) will become important when we consider
back projection operators and the appropriate limits of integratioh.
bThe coordinates (£7,07) for fhe parallel beam projection function

represent polar coordinates in the x-y plane and are related to the coordi-
nates (x,y) through the'transformation

x = & sin @

(1)

y = E" cos 07 .

However, the coordinates (£,0) for.the fan beam projection function do not

represent polar coordinates in the x-y plane but are related to the coordi-

nates (x,y) through the transformation

X R, sin‘g/R2 sin(o - E/Rz)

(12)

y R, sin g/R, cos(0 - &/R,)
and are related to the parallel beam projection coordinates (£7,0") through

the transformation

E;
6;

R, sin &/R, '
0 - E/R2

(13)

il

It is clear that the relationship between either the fan beam coordinates
(£,0) or the parallel beam coordinates (¢7,0”) and (x,y) is not one-to-one
since for any é or 07, (0,0) and (0,0”) map onto (x,y)=(0,0). The
transformatidh given by equation (13) is used to reorganize.the fan beam
data into parallel beam data so that reconstruction algorithms applicéble

to parallel beam geometry can be used [5,6].



2.2 | Projection of a Point'Source

Tﬁe impulse response for'the fan beam projection operator can be
evaluated for a point source at the position (xo,yo) by substituting the
two dimensional delta function f(x;y) = 6(x-—xo)6(y-yo) into equation (8)

giving

p(£,0) ffa(x-xo)a(y-yo) 8(R, sin /R, - x sin(e-g/R)) - y cos(0-E/R,))dxdy
R

6(?1 sin &/R, - x, sin(O-E/Rz) - Y, cos(e-g/R2)> .
Substituting the expressions for X, and y in terms of polar coordinates,
X, =1 Cos¢, and‘yo = r@sin¢0, gives

p(£:0) = 8(R, sin &/R, - r, sin(o, + 0 - £/R))) (14)
Similarly evaluating the projection of a point source for the parallel beam

geometry gives
p(£7,07) = 8(27 - v, sin(o, +09) . - (15)

Later we will see that we can rewrite equation (14) as

. 2t r,sin (¢, +0)
, S & - an R, + r,cos (¢,+0)

: P<(€s@) = )
\[Rf +r2+2r R cos(¢y, + 0)
If we integrate p_(£,0) over ¢ we find that
) . R,
. ' p (,0)de = —
R \/Rf + ri +2r R, cos(o, +0)

Distance from fan source to detector

Distance from fan source to (xo, yo)

Whereas for the parallel beam geometry
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fp=(£',e’)d£' = 1.
R

'2.3 Projection of a Circular Disk

For the fan beam projection operator we consider the projection of

a circular disk, f(x,y), defined as

i 1 x? + y? <R <R,

fix,y) = §..
0 otherwise

Since the projection of a circular disk is independent of angle, the

projection of f(x,y) is just the length of a cord going through the circle

as illustrated in Figure 3.

N R
\/ 2
Figure 3. The length of the cord traversing the

circular disk is equal to 2V R*-x* .

The length of the cord subtending the circle is

2VR? - x? (16)

where x is the perpendicular distance from the center of rotation to the

R &



2'1}
line. Substituting the expression of X in terms\of €,
T SN o s [

X = R1 ;in g/R2

into eQuation (16) gives the projection of the circular digg,_f(x,y),)for

the, fan beam geometry,

; L e BRIy
a 2J/R* - R? sin &/R,  [sin &/R,| <R/R] ‘

L0 an p<(€,6) = 3 oy I . o . RS

0 otherwise . )

.
Using thectransformation given by equation {13).gives - 4 ., .. .y
f . . PR 2\/—R—2——_? . . |£’|‘<‘L“R L )
() = | (1)
0 otherwise .
S, o CT) asT .

The expression given in equation (17) is equal to the parallel beam projection
function where g7 is:identical to x and represents the closest distance.
between the Tine and the center of rotation.

AN

22N

wed by
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3.0 FAN BEAM AND PARALLEL BEAM BACK-PROJECTION OPERATORS

3.1 Fan Beam Adjofnt Projection Operator

The adjoint operator P: of the fan beam projection operator P, is by
definition the operator which satisfies the relationship

+
(P_f, py = (f, PLp) . (18)

where (, ) denotes an inner product defined as

(.9 fff(x,w 9(x,y) dxdy -
[R2

We will show in this section that the adjoint operator P::p< > p: is defined

by the equation

do

p:(r,cb)

f’"“” R p_(£*,0) rsin(e+¢)[R, + rcos(¢+0)]

6 [r? + Rf + 2R, rcos(¢-FO)]3/2

5
where

g = R, tan’ rsin{e+¢)-
2 R, + rcos(0+¢)

The kernel of the adjoint transformation satisfies the equation ;

R? rsin(o+¢)[R, + rcos(¢+0)]

K(R,»r,6,0) = (1'9)

[r2+Ri+2R1 rcos(¢j+e)]3/2

If we eliminate the kernel K(R,,r,4,0) from the expression for the adjoint
operator and extend the limits of integration for © to be from 0 to 2w,
then we obtain the fan beam back-projection operator, B.ip, ~ b<, defined

by the expression



b (r,¢) =f p (£*,0)do
0

The adjoint operator of the projection operator and the back-projection
operator are members of a class of "back-projection" operators which give
the superposition of the projection line integrals weighted by a particular

kernel which for the back—prbjection operator is equal to the identity
function. |

In Section 3.2 we will deveTop the adjoint operator for the parallel
béam projection operator [13] which satisfies the relationship

‘ i :
' p:(r,¢) = .’. p=(rsin(¢-+e’),e’) [rsin(¢+07)] do~ .
_ 0

Removing the kernel |rsin(¢+07)| from the integrand gives the expression
for the parallel beam back-projection operator, B_:p_ > b_, defined by the

equation

. . ™ .
b_(r,¢) = f p=(rsin(¢+e’),®’)de’ .
0

The back-projection operator for parallel beam geometry has been defined by
various authors — Peters [3] identified the back-projectién opefator with
the Iayerjram, Gilbert [15] called it back-projection, and Budinger and
Gullberg [16] identified it with linear superposition.

. For the digital implementation of the projection and back-projection
operation we use a projection operator represented by the matrix sz which
maps the transverse section.vector‘ﬂ into the projection vector E according

to the relationship

@.a-v»
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The adjoint operator of this projection operator is equal to the transpose

of the projection operator,
@r - @!

The back-projection operator used for the digital application of the back-
projection operation is equal to the adjoint operator as indicated by the

expression

B. -el -6l

This 1$ in contrast to the continuous situation where the back-projection
and édjoint operator are not identical. The back-projection approach to
estimating the original density from its projection, as given by the

equation
8 = B.p -0lp

where ,§ is the back-projection vector, is the most rapid method of
reconstruction but gives an image which is equal to the original density
conVo]ved with 1/r. | |

To develop the expression for the adjoint operator of the fan beam

pkojeétion operator we first evaluate the inner product in equation (18)
(P fip ) = ff P F(x"y )p (x7,y7) dx"dy” (20)
RZ

Substituting the expression for the projection operator of equation (8) into

equation (20) gives the relationship
' 2m Rzﬂ/2

<P<f,b<> = f f fff(x,y) p.(€,0) x
L g . (21)

8(R, sin /R, - x sin(0-£/R,) - y cos(0-E/R,)) dxdy|d|dedo
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where dx’dy” is replaced by |J|d&de and J is the Jacobian for the transfor-
mation relating the coordinates (x”,y”) to the coordinates (£,0) given by

equation (12),

X~ R, sin &/R, sin(6 - &/R,)

-

y

R, sin &/R, cos(® - &/R,)

In equation (21) the limits of integration for £ and for O were
chosen so that the spacé R? 1is properly sampled. Figure 4 gives the trace
of the locus of points representing the projected coordinates of é point
source as it is rotated from 0 to 360 degrees. The trace for the parallel
beam geometry illustrates that p_(£7,8") = p_(-£%,m+0"); therefore, we can
always properly sample fhe projection space if we integrate £~ between -«
and +«, and @“between 0 and %. However, for the fan beam geometry the
trace illustrates that p_(£,0) = p_(-&, O+r -.2g/Ré) and in order to properly
‘sample the space R®> we need to choose the Timits of integration for &
.between 0-and R,m/2 and for O between 0 and 2m. In choosing the 1imits
for £, we assume that the detector for the fan beam spané an arc between
-Rzﬂ/Z and Rzﬂ/z.

The Jacobian for the transformation given above is the determinant

W
) .. 3& 00 .
j o= Ay (22)
3(&,0) 19y~ ay”
o9& o0
where
P R B
ox_ . 1 s -
SE - R2.§1n(@ : Zg/RZ) .
ax”

R, sin g/R, cos(e - &/R,)) ,
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SINDGRAM OF A POINT SOURCE FOR

FAN BEAM AND PARALLEL BERM GEDOMETRY

»
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Figure 4. The locus of points representing the coordinates (£,8) and
(£%,07) for a projected point source for fan beam and parallel beam
geometry, respectively.
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Yy - -R, sin g/R, sin(0 - &/R,)

Evaluating the determinant in equation (22) gives

‘ - - - - _R2
- ox” 9y" _ 9x” 2y - 1.
J. 36 90 56 IE g— sin g/R, cos E/R, . (23)

2

Returning to equation (21), we can rewrite the inner product by

interchanging the integrals

on Rom/2 : .
(P fop ) = fj f(x,y)f J-p<(g,e) G(Rl sin £/R, - xsin(e-&/R,)
» -!Rz 0 0 |
- ycos(o - g/Rz)) |J|dedo dxdy ‘ (24)

provided the functions f and p. satisfy the conditions of Fubini's theorem
[17,p.323], i.e. f and p. are Lebesque integrable on a closed subset of R,
This is always satisfied in real problems since f and p_ are continuous
functions almost everywhere and bounded functions on a closed subset of

R2. .In order to agree with equation (18), we take the inner double integral
in equation (24) and define the adjoint operator of the fan beam projection

operator as -
P 2w sz/Z

Pip< = p:(x,y) =f fp<(£,e) 6<R1 sin g/R, - xsin(@ - &/R,)
"0 %0

- ycos(0 - g/Rz)) |d| dede _ ~ (25)

Equation (25) can be simplified by integrating over the variable &.

In order to do this we use the relationship [18,p.38]
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R, /2 | - mR,/2

*

' '6(€ Ei)
p(£,0)8(h(£)) [3(g)|de = | 3 p_(£,0) |9(&) |dg
0 dh(g)

& Te=g? (26)

where J(£) indicates that the Jacobian is a function of £ and g? are the

zeros of h,

h(g) = Rlsin E/R, - xsin(o - E/RZ) - ycos(8 - g/Rz) . (27)

The function h has a unique zero £* which satisfies

Yy
1l

- i +
* R, tan 1 Xs$in® + -ycoso ,
| R, + xcos® - ysin®

(28)

R, tan™" rsin(6+¢) |
R, + rcos(6 +¢)

and sin £*/R, and cos £*/R, satisfy

Xxsind + ycosH
[Rf-sz-fyz-+2R1(xcose-ysine)]

rsin(¢ + 6)
1
[r24-R§+-2R1rcos(¢4-6)]2
(29)

sin £*/R,

N

* R, + xcost - ysine R, + rcos(¢ + 8)
cos & /R, = T T, I
[Rf+x2+y2+2R1(xcose-ys1'ne)]2 [r +R1+2Rﬂtoﬂ¢+6)]
. (30)
where the polar coordinates x =rcos¢, y=rsing are substituted for x and

y. Integrating the expression in equation (26) gives
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p_(£%,0) et
' ~ ifg >0
| dh(g) '
1TR2/2 | dg £=E*
f p.(£,0) 8(h(g))[J(g)]de =
0 » 0 | . otherwise

(31)
From equation (28) we see that if R, is greater than r, then the condition

£*>0 can be replaced by |0+¢]| < 7.
In order to evaluate the denominator in equation (31), we take the

derivative of h giving

R
d_hﬁé.)_ l = ! cos X ——'y j ’ ‘
= |5 E/R, + >— cos(6 - £/R_) - sin(6-- &/R.)
' dg E=€* R2 . 2 R2 2 R2 | 2 £=g*

Expanding and collecting the terms which are factors of sin g/Rz_and cos g/R2
gives |
dh(£) (R, +xcos6 - ysing) (xsin6 + ycoso)
e = R cos /R, + R sin £/R,

2 2

and in polar coordinates gives

R, + r cos(¢+9)
dﬁ&?l = [ ! - ] cos /R, + ﬁl sin(¢ + 6) sin &/R .

2 2

Substituting the value of sin g*/R2 and cos g£*/R, given by equations (29) and

(30) gives
2 2 _..2
R, + rcos(¢+6)] r° sin“(¢+6)
dh(g) _ [ 1
l dg ' B 2 . p2 L ¥ 2, p2 L
E=g* Rz[r +R1+2R1 rcos(¢ +6)] R.[r®+RI+2R rcos(¢ +6)]?

[r? + Rf + 2R, rcos(¢>+6)]1/2 /R, . : (32)
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Substituting equation (32) into equation (31) and replacing the condition

g* > 0 with -¢ < 0 < m-¢ gives the expression

R, p.(£%,0)|d(g*)]

if -¢<0<m ¢

R, /2 [rzi-Rii-ZRl v'cos(<1>+(3)]l/2
f p_(£,0)8(h(£))]3(E) |dg = |
0 | 0 otherwise
(33)

We can now give an expression for the adjoint operator szby substi-
tuting equation (33) and the expression for the Jacobian [equation (23)]

into equation (25) giving

P "2 RIp(£%,6) sin E*/R, cos EX/R,
P = p(r9) = f de .

p
) [r2+R§+2R1 rcos(¢ +0)]1/2

The absolute value sign is removed since both sin £*/R, and cos £*/R, >0 for
-¢p < O < w-¢ and thir. If we substitute fdr sin g*/R2 and cos £*/R, given

in equations (29) and (30), the adjoint operator is

M= 2 . ,
R, p(g*,0) rsin(6+¢)[R '+ rcos(¢+6)]
P'p = pi(r,e) -f - < ! 372 do  (34)
<< < et [r? + Rf + 2R, rcos(op+0)]

where K(Rl,r,¢,e) is given by equation (19)'and the expression for £* is
given by equation (28).

The adjoint operator given by equation (34) represents the integration
over all projection values p<(£*,e) which pass through the point (r,¢)

weighted by the kernel K(Rl,r,¢,e). Therefore this adjoint operator is a
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" member of the class of "back-projection" operators. It will be proved
later that if the kernel is removed, we can define a back-projection operator

which gives a response proportional to 1/r for a point source projection

function.

3.2 Parallel Beam Adjoint Projection Operator

The adjoint projection operator for the parallel beam geometry can be
derived using the same methods developed in evaluating the fan beam adjoint
projection operator. From Fig. 2 we see that the coordinate transformation

relating (x,y) to (£7,07) is

X g’cos(m/2 - ©7)

y £’sin(n/2 - ©7)

and fhe Jacobian for this transformation is J = -£”. Therefore the adjoint

projection operator defined in equation (25) for fan beam geometry can also

be defined for parallel beam geometry using the equation
T ® '
+ + -~ - - s - - - - \ad
Pop. = po(x,y) = ff p_(£7,07)8(g” - xsino” - ycose”)|-g”|dg"de” ,
0 - '
or in polar coordinates using the equation

™ o
Pip. = pi(r.e) = -j.lj~p=(€‘,e’)8(£’ - rsin(¢+07))|£” [dg"de”
0 “w |

(35)
If we integrate over £ in equation (35) then the adjoint project%on
operator for parallel beam geometry is
m
Plo_ = pi(r.) = f p_(rsin(¢+0°),0°) [rsin(p+07)|d0” .  (36)

0
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3.3 Other Back-Projection Operators

Ein-Gal [13] defines two other transforms for parallel beam geometry
which are "back-projection" operators similar to the adjoint transform.
One of these operators is the unweighféd integration of p_(£7,07) along the

circle C shown in Fig. 5,

. ,
c(r,9) = fp=(rs1'n(@’+¢);®’) rdo” . (37)
0

(r,)

Figure 5. The value for the back-projection at the point
(r,¢) represents integration along the circle C.

Ein-Gal also defines another back-projection operator which is the transform-

ation of the scaled project%on functfon,

™
s(roe) = f p_(rsin(p+07),07) —9

38
0o |sin(¢ +07)] ,( )

Here again the integration is performed along the circle C in Fig. 5 but this
time the projection values are scaled by the factor 1/|sin(¢+07)].
Another back-projection operator for parallel beam geometry is

™

Bp. = b_(r.,¢) = f p=(rsin(¢’+e’),e’) de” .' (39)
0 .
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Peters [3] has identified this as the layergram, others have defined this
as linear superposition [16] or just back-projection [15]. Notice that in
this definition the diffe;ential arc length, rdo”, for the circle C in
equation (37) is replaced by do”. The result of this transform applied to

a point source projection function gives

B_ 8(¢” - r, sin(p,+07)) = b_(r,9) = —I— . (40)

| v,
For fan beam geometry, if we define a back-projection operator
2m

8o, = b (rs) f p_(£%,0) do (1)
! A |

where £* is given by equation (28), then b_(r,¢) has a similar response for
a point source projection function as does the parallel beam geometry
[equation'(40)],

2

[r-r, |

B (R, sin &/R, - v, sin(6,+0-E/R)) = b (r¢) = (42)

The kernel'KZRl,r,¢,6) in the definition of the fan beam adjoint projection
~ operator given in.equation (34) does not appear in the integrand for the
definition of the fan beam back-projection operator [equation (41)]. The
proof of the result in equation_(42) will be given in the next Section.

The resuits in equations (40) and (42) are desirable since it means there
exists back-projection operators both for the fan beam and parallel beam
geometries which represent the original density convolved with a function
proportional to 1/r. Therefore, two-dimensional Fourier fi]tervtechniques
can be applied for both fan beam and para]1e1 beam geometries to obtain a

reconstructed image from its projections.
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4.0 POINT SOURCE RESPONSE FOR BACK-PROJECTION OPERATORS

4.1 The Back-Projection QOperation Represented as a Convolution

with the Original Density

In order to prove that a back-projection operation represents a
convolution with the original density f(x,y) we need only to evaluate the
back-projection of a point source projection function. To illustrate why

this is so, let us consider writing the original density f(x,y) as
fx,y) = Jff(X’.,y’) s(x-x") s(y-y’) dx~dy”

Then applying a projection operator, P:f »p, we have

fff[ F(x,y")6(x - x")sly -y )dx"dy” 6(g(x.y,£,0)) dxdy

where g(x,y,£,0) represent some curvilinear path. Then assuming that the

p(£,0)

conditions are met which allow us to interchange the integrals, we can

integrate over x and y, giving
p(c,0) = fj f(x",y7) 8(a(x",y"»£,0)) dx"dy”

The delta function &8(g{x”,y ,5,0)) represents the projection of a point

source. Then applying a back-projection operator, B:p+b, gives
b(x,y) = fjf f(x7,y") 6(a(x",y",E*,0)) dx“dy~do

where £* is a function of x, y and ©. Interchanging the order of integration

gives

b(x,y) =fj f(x",y") /6(g(x’,yf,é*(x,y,@),@))d@ dx”dy”



. P

+

§.

where

ﬁ(g (x7y7>E*(x.y,0) ,e)) do

represéhts the point source_responsé to the projection — back-projection
operation.- Therefore if b(x,y) is to be represented as a convolution, the
point source response must be a function that can be represented és
h(x-x",y-y"). We will first show that such a functiona1>representation

does not exist for the adjoint transform of a projected point source both

“for the fan beam and parallel beam geometry. Then we will show that the

back-projection operators given by equations (39) and (41) represent a

convolution of the original density with a function proportional to 1/r.

4.2 Adjoint Transform of a Point Source Pfojection Function for

Fan Beam Geometry

The adjoint transform of a point source projection function is
evaluated by substituting the fan beam projection function for a point
source given in equation (14) into equation (34) giving

-9

i p+(r ) =." RfG(Rlsing*/Rz- rosin(¢o+-e- g*/Rz))rsin(¢+e)[R1+rcos(¢+e)]
<

- [r? + R? + 2R rcps(¢-+e)]3/2
v (43)

If we let g(0) denote the argument in the delta function in equation (43),

then we can substitute for £* using equations (29) and (30),

g(e) (R1+-r°cos(¢°-re)) siné*/R2 - rosin(¢°-+@)cos£*/R2

R (rcos¢ - r cos¢,)sine + R (rsing - r sing )coso + r,rsin(¢-¢,)
1/2

[r?® + R2 +'2R rcos(¢+0)]

de .
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Rewriting g(e),

_ a cosb +bsing + ¢ |
g(e) - S]/z (44)

where

a = Rl(rsin¢ - rosin¢o) = Rl(y - yo)

b = Rl(rcos¢ - rocos¢o) = Rl(x - xo)
A ) ,(45)
c = ryrsin(¢ - ¢,) = XY = XY,
S = r2 4 Rf‘+ 2R, rcos(¢ + 8)
and substituting into equation (43) gives
] TT—¢ 2 . N L
+ RT 6(g(6))rsin(e +¢)[R, + rcos(¢+6)]
p<(r‘,¢) - f 53/2 do . (46)

-¢

To evaluate equation (46) we need to determine the zeros 0% of g(e) as we did
in equation (28) for h(g) and evaluate |dg(e)/de|e=9*. This then allows us
' i

to rewrite equation (46)

=0 : '

. i R} rsin(0+¢)[R, +rcos(o+0)] |5~ 6(6-06])

p<(rs¢) = 53/2 i 'dg(e) ‘ de
) : de 6=6’;

4.2.1. The zeros 6% and e:'of g(s)

Let us determine the zeros of g{6) by first setting u = sin6 and writing

g(e) as

+ a\/l -u2 + bu + ¢

s1/2

g(u) =



Determining the zeros of g(u) is equivalent to evaluating the solution to

the equation

The solution of equation (47) is outlined in the following steps:

which gives

W

+av/1-u? + bu+c = 0

av/1-u? = -(bu + ¢)

a’(1-u?) =

b%u? + 2bcu + ¢?

(a? +b2)u? +2bcu + c? - a?

-bc *+ ava? + b? - ¢?

a2+b2

Substituting u back into equation (47)

and ej such that -

sine¥

L%
COSG1

.k
S1n62

*
COSG2

we see that there are tWo roots ej

0

ava? + b? -

- =bc +
a2+b2
. _-ac - bv/a® + b2 - c?
a2+b2
_ -bc - av/a® +b* - ¢?
a% + b?
-ac + byva®> + b* - ¢*

a2+b2

(47)

(48)

(49)
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The expressions for a’+b? and a’+b’-c? can be'simplified using equations (45),

giving the vector equétions

a®+b% = RI(r? +r2 -2rr, COS(¢:'¢O)) = Rfl[ﬁ'[o|2 (52)
a?+b%-c? = Rﬂg-ng-rﬂfﬁn7¢-¢ﬁ = Rﬂi'iﬁz‘lﬁxiﬁz
(53)

Therefore g(6) has two roots ef and_e: which satisfy equations (48)-(51).

4.2.2. The expressions for Idg(e)/de|e=e* and Idg(e)/de|e=e*
1 2

Next we want to evaluate [dg(e)/deje=e* and |dg(e)/de|e=e* where the
1 2

derivative of g(6) [equation (44)] with respect to o is

de
S

We know from equation (47) that the expression acosd +bsing +c is equal to

zero for e=ef and e=e:. Therefore

Ij&&ﬁl_

\ 'l —asinef + bcosef

51/2(ef)

Substituting the expression for sinef and cosef given in equation (48) and

equation (49) and using the expression in equation (53), gives

2 2 2
ldgfeQ \/a2+bz_c2 VIR1|£‘£¢)[ - lﬁ"ﬁol

ds |e=et s1/2(g*) s12%)

(54)



Likewise for'e=e: we have

. *
-asing, + bcose}

"/2(9 )

45(0)
de

oot
0=0)

2
\,a2+b2-c2 - V/R |~ ~° - |r><£|

(55)

. . * *
4.2.3. The expressions for S(87) and S(67)

The denominators in equation (54) and equation (55) are evaluated by
substituting Sine? and cose? given by equations (48)-(51) into the expression

for S given in equation (45). First, for s(ef) we have

- s(eY) r®+R; + 2R rcos¢ cos6} - 2R, rsing sino¥

C(r®ARE 2)(a®+b?) - 2R,c(xa-yb) - 2R (Xb'+ya)\I;—:];;_—_- (56)
a? +b* o

where the expressions,

2Ric(xa-yb) = 2R (x;y - xy,)[XR (y-y,) = yR(x-x;)]

2R§|£ox‘£|2

and

2R, (xb +ya)/aZ+bZ-c? 2R (xR (x-x,)+yR (y- ¥,))va*+b*-c?

2 2 2 2
2RiTx - (n-r) VRS-, 12 - e
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Substituting these expressions a1ohg with equations (52) and (53) into

equation (56) gives

sofy - TR R2Ir -1, 1% - 2R2|r, xrl? - 2R [re(r - ) 1YR: - rl% - Ir x|

1

R, Ir -r |2

o 2 |
(2 +R) r -, |2 - 2l i - 2l (e 0 )IYRE I -1 2 I, P

2
L= r,1°
We can rewmte s(e*) as
]r T l - Ir x rl -Z[r (r r )]Q/& Ir -r | - lrxr ] +r | r-r, | IﬁﬁxPIZ
S(ef) = =
| r-r %
~ ~0 K

(57)

Since [r-(rAro)]2.= fzjrfrolz-?lroxrlz, the numerator in equation (57) is a
perfect square and we can write S(ef) as

2 2
{\/Efl*‘-ro'lz - ey xxel® - re (L-r,o)}

s(e%) = ~ o~ : - (58)
Jr - rl?

For 5(6:) we obtain

s(e7)

* . .
r2-+Rf + 2R rcosp cose) - 2R rsing sing} -

: (r?+Rf)(a2+b2) -2R1c(ax-by)-FZRl(xb-fya) a’+b2-¢?

a? + b?
' 023 1o w12 2 ' 2 2 2
R e, 1P - 2l 2l (e DI WRG Lt 1 |
- 2
|£-r.o|
2
_ {{Riltﬁoﬁ - Ir,oxﬂz' * L'(L',’:o)}
) 7 (59)

lr - x,l



Substituting the expression for S(ef) into equation (54) gives the

expression for |dg(6)/d6|

—nk s
9-—61 |
2 2 | 2
] oy | Y RELnr, 12 - frxey | o
) |
= 2 v
00 YRrer, 12 Irpxrl? - relrer)

and substituting the expression for S(SZ) into equation (55) gives the

expression for [dg(6)/d6|,_o* »
2

(61)

2 2
ld (o) _ [r-r,| Q[R2|r-r 1< = frxr |

6=62 dR]rrl -|r><r| «(r-r )

Notice that the expressibns for these derivations differ only in the'sign of
the second term in the denominator. The denominator in equation (60) would
normally be expressed as the absolute value since it comes from the square

root of a perfect square. However, if we assume that R1 is greater than r,

and r then V/.Rflrl-r/‘)lz- 'LOX£|2 > ’E-(ﬁ.’to) = V/;‘ZIE_I:O'Z_ l:ox,tlz and the .

denominator expressed in.equation (60) is precisely equal to its absoluté value.
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4.2.4. Solution to the transformed adjoint transform

We can now rewrite the adjoint transform,given in equation (46) as

¢

. R rsin(e+¢)[R +rcos(s+6)] | = 8(6-6%) 5(8-6%)
plr,¢) = f ' +
26 $3/2(4) , lgﬂiﬁl ‘Qﬂiﬁl
- | | d 0=07 40 lg=g*
(62)

where the expressions for ldg(e)/d9|e=e* and |dg(6)/de|6=e* are given by
. 1 2
equations (54) and (55). Integrating over 6 the adjoint transform of the
point source projection function can be expressed as
’ o *
2 Rf-rsin(e:j+¢)[Rl-+rcos(¢-+6i)]

+ *
p_(rs¢) =2 DLo% | (~¢,m-0)] (63)
) i=1 S(e?)‘/Ri[r-ro|2 - [rxro|2 '

where D[G?!(-¢,ﬁ-¢)],= 1  if e?e(—¢,n-¢) and 0 otherwise. From the information
we have about e: and e: given in equat%ons (48)-(51), it is not immediately
obyiou5,whether ef and e: are both in the interval (-¢,m-¢) or just one or
neitbef. Since the terms of equation (63) must be positive for any ee(—¢,n-¢),»
we can determine under Qhat conditions the roots ef and 03 will be in the
interval (-¢,n-¢) by evaluating equation (63). It turns out that only one of

the two roots will be in the interval (-¢,m-¢) for any projected point source.

For i=1, we have

rsin(e:+¢)

. * .
rcose sin®] + rsing coset

2 2_.2 PP 2412 _ A2
- rcos¢(-bc+a\/a + b°-c )+ rsincp( -ac - by/a%+b2-c )

a‘+b? aZ+b?

- -ub+ywc+-Ua—yMMGZ$zzf

a2+b2




Substituting the values for a,b,c, a’+b?, and \/a’+b%-c?® from equations
(45), (52) and (53) gives

-R (x(x=x ) +y(y—y°)) (x,y-xy,) +R (x(y-y,) - Y(X-Xo))VIRflL‘-EOIZ e, |2

rsin(6*+¢) >
! R - 1,12

| 2 2
- (e Mx y-xy, ) + (Xoy"xyo)dRi Ir=rol” - x|
2
Rllr - rol

-re(r-r,) JR [r-r, { - |r><r°|
= " - (64)
RyIr - 1,

= (xy - xy,)

Likewise for rcos(6} +¢), we have

rcos(o7 +¢) rcos¢ cos6} - rsing sing’

_ (-ac - by/a%+b?- > ( -bc + a/a®+b? - >

a2 + b2 aZ + b?

_ -(xa-yb)ec - (xb+ya)v/a®+b®-¢?

a? + b?

|2 e, |2

-R (x(yy) yxx))xyxy)-R(X(XX)*')’(YY))V/R|

R2r - r Nk
) A

-I:ole2 - :-(:-J:OW/R‘? Ir;r,olz- l,rxzo|2

; (65)

R r-x

If we express rsin(6*+¢) and rcos(6* +¢) as
1 1



where

-34.

Lo X ‘ +S°

rsin(e, +4) = (x,y - xy,) —2+2 >
LY
rcos(et-+¢) B + AS 5
R1|£'£0|
A= -re(r-r) ’
B o= . 2
lexr,l | , (66)
PR Z 2 : |

§ = \/Rllg-gol ==l .

then the first term in equation (63) gives

Rf rsin(ef-k¢)[R1 + rcoﬁ(ef;+¢)]

S(8Y)VRZ[r-ry 2 - [rxr, |2

Rf[R1 rsin(ef+¢) + rsin(ef+¢) rcos(ef+¢)]

2
: Rl[Rl(xoy-xyo)

ST VRS [ror, 2 - [rxr, 12

-

+ A+S” +AS”
A+S >+ (Xoy'xyo)< A+S 2)( B +AS 2)]
R Lr-r,| R Ir-r, 1%/ \Ry -1, |

s(e}) - §”

RE(x y-xy,) [ R2Irer, |20+ S7) +(A+57) (B +AS")]

*.,2_4
S(el) S R1|£'Io|

2 2 2 - . . .
(x,3-xy) [REIrar, |* A+ Re|ror, |7 57+ A +5°8 +A%S +45”]

* - 4
s(eY) +S7Ir-r |

(equation cont.)
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: 2 - { . -
(39 ) R rr, 12 A4 A8 4857 4%l rop, | +8 +A%)57

*y - 4
S(67) + $7[r-r, |

(xoy—xyé)[(Rilﬁirolz-FB)A-FAS’2-+(S’2-+A2)S‘]

- 4
S(67) S7Ir-r, |

(xy-xy, ) [S“?A+AS"* + (572 +A%)S”]

- 4
S(67) S”le-r, |

[S2+ 205~ +A°]

= (x,y-xy,)
0 0 S(e*) |T-F l4
1 ~ ~0
(5” +A)2
= (xy-xy,) ¥ 7
| (6,) Ir-r |

If we substitute S(e:)'from equation (58) into the above equation, we have

R, rsin(ef-+¢)[R1-rrcos(et-+¢)]

* 2 2 2
5(91)\[k1|ﬁfﬁo| ’1f5fp'

(s"+ A)? Ir - r

(x,y-xy,)
2 2 2
{ RylE-rg 1™ - drxel™ - re(r-r

(x,y - xy,) e (x,y = xy,)

. i (67)

| ? , 2
. -Alj-r,ol‘ =y o Ir - r,l

Equation (67) is the expression for the first term in equation (63) and
immediately one sees that this is positive only if (xoy-xyo) > 0. Therefore

6% is in the interval (-¢,m-¢) only if (x y-xy ) > 0.
1 0 0 A
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For i =2, we have

-bc -av/a?+b%-c? -ac +by/a?+b%-c?

. *
rsin(6” +¢) = x ty
2 a2 + b2 a2 + bz
-(xb+ya)c + (-xa+yb)va’+b?-c?

a2+b2

R (x(x-x,) + y(y-y ) (x Y1y, ) * R, (-x(y=y, ) #y(x-x)) VRE P14 - [rxr |2

RiIr - 1,2

L 2 7
Ry re(rerg ) (xoy-xy,) -.Rl(xoy-xyo)\/Ri Ir=ro|© = {rxr |

R’|r - v |2
il ~o

| -re(r-ry) - \/Rf|1-30|2 - Jrxr, |2
= (Xo.y - X.YO) 2
| Rr-r|
) ~0
(6% 4 4) -ac+bVa?+b2-c? -bc -aVa?+b?-c?
rcos(6_+¢) = x -y
2 az + bz - a2 + b2
(-xa+yb)c + (xb+ya)VaZ+b?-c?
a® + b2
R (-x(y-y,) +y(x-x)) (x,y-xy,) + R, (x(x-x, )+y(y-y,)) ‘/Rf Ir-ro 12 - e, |

2
R1|f - 20'2

'—|r xr|2 + re(r-r )\/Ezir—r |2 - |rxr |2
= 5 (69)
R r - r |
1~ ~0

(68) -
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If we express rsin(e:-+¢) and rcos(e:-+¢) as

rsin(o+¢) = (x,y - xyo)—i:—g——z—
Rlli'f,ol
rcos(e:-+¢) - B-RS 5
R |r-r |
1 ~ No

where A, B, and ‘S” are defined in equation (66), then the second fraction of

equation (63) becomes

' 2 . ’
R} r51n(e:-+¢)[R1*-rCOS(¢4'6:)]

2 2 2
S(e:)/élln-ﬁol - Jrxr, ]

Rf[R1 rsin(83+¢) + rsin(e:+¢) rcos(¢+eZ)]

S(e’;).\/Rf lr-r, 2 - [ |2

R? Rl(xoy-xyo)-———ll:£§~§ *{x,y-xy)
R, |r-r . R, |r-r
1 1er | 11071,

- ~

A-S~ B - AS”
‘ 2 2
[© Ryfr-ry|

S(e;) s

Rf(xoy-xyo)[Ri Ir-r |2(A-57) +(A-57)(B - AS‘)]
*K\er p2 4
5(62)5 Rllr,_,‘:ol 7

12 A-R|r-r,|? 5" +AB - S°B - A%S” + As”?]

i}
|

2
(Xoy—xyo ) [R1 |L"£o

* -
2)S IE-IO

S(e

| 2 . 2 2 2yt
(xoyfx%)[Rf|£7£O| A+AB+AS"2- (R|r-r |2 + B + A )s]

- 7
S(6;)5" |ror |

(equation continued)



(x,y - xy )[257% - (S7? + A%)S"]
*ye - 4
S(63)S” fr-r.|

Ly

(xoy-xyo) S°[25° -S"% - A?]

Py i
5(6,)" Ir-r, |

-(x,y - xs'p)(S‘-l\)2
s(ey) |r-r,l*

If we substitute S(e:) from equation (59) into the above equation, we get

. ‘ *
R, rsin(e, +¢)[R, + rcos(e, +¢)]
S(83)VRE | r=r |2 - |rxr |2

(s7- MZ |r-r |2

—(x,y - xy,) -
2 2 2 2 '
{\/Rll:-rovl - el * re(rer ) Jeer 18

(x,y - xy,) As==ATE o (xgy - xyy)
Ir-r |2 4s==m)* lg-golz

(70)

" From equation (70) we see that the second term in equation (63) is positive only
if (xoy-xyo).< 0. Therefore'e: is in the interval (-¢,m-¢) only if
(xp¥ - xyy) < 0. | |

'Compaking equations (67) and (70), we . see that condftions for both
ef and ej being in the interval (-¢,m-¢) are mutually eXc]usive. Therefore
using the results from equations (67) and (70) we can express the adjoint
transform of a projected point source for the fah beam geometry given in

equation (63) as

4
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(x,y - xy,) A .
_I—T if (xoyv-xyo) >0
-r
+ ~’\Jo
p(rsd) = ¢
-(x,y - xy,) _ -
— if (xy-xy,) <0
[r-r |

The expression XY =Xy, represents the z-component of the vector cross product
' r,xr, therefore we can express p:(r,¢) as

pr(r,0) = v | | | (71)

leyx 1l
lr-r,

4.3 Adjoint Transform of a Point Source Projection Function for

Parallel Beam Geometry

The adjoint transform of a point source projection function given by
equation (15) for parallel beam geometry is equivalent to the result obtained
for the fan beam. If we substitute equation (15) into the expression for

the adjoint transform given by equation (36) we have

P:(F,¢) =./- S(rsin(e” +¢) - r,sin(¢, +67))[rsin(6” +¢)[do~ ; (72)

~Again, in order to evaluate the integral we need to determine the zeros of
f(6”) = rsin(6”+¢) - rosin(¢o-+e’)

which are ef and_e: such that

o ' r,sine, - rsing Yo - ¥
STnGl = = —_—
Iry - rl Ir, - rl
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N rcos¢ - r cos¢, X=X,
cosf’ = = —
1
x -l - xl
‘and
N rsing - r,sing, y-Y,
sing = = —
2
]:0 ':I lr.o -.EI
r Ccos¢ - .rcos¢ X =X
cosez = % g = 2
lry - r ry -l

The derivative of f with respect to 6° evaluated at ef and e: gixes

‘df(e’)- : l

e a— = r - Y‘I
. d0” . | aenn* A% ~0 ~
"e _81,92

Therefore equation (72) can be expressed as

v
p:(r,¢) - ./D lrsine” cosd + rsing coss”| [5(9'-ef)-fa(e'-e:)]de’ _
0 I, - xl |

Since the roots are 180° out of phase the adjoint transform can be expressed

* | |
. yX, = Xy
) = o T Ml
'E‘Eo|

Using the expression ryXr = ¥X, - Xy,, we can express the adjoint transform
" as

lr xr]

— ~o

pi(rg) = T . - (73)
lr-r,l |

* Therefore the adjoint transform of a point source projection function for the

parallel beam geometry given in equation (73) is identical to the result given

in equation (71)'f0r the fan beam geometry.
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4.4 The Back-Projection of a Fan Beam Point Source

Projection Function

We have already seen the definition of the fan beam back-projection
operator given in equation (41). Notice that the adjoint operator given in
equation (34) gives a weighted integral of the projection function p;(g*,e)
whereas the fan beam back-projection operator defined as

2w :
b _(r,¢) = ;/. p(£%,6) do | (41)

0 .
where £* is given by equation (28), is an unweighted integral of the projection
function. If we substitute the equation for the fan beam point source
projection function given in eqdation (14) into equation (41), then

- 2m '
b(r.¢) = .’, §(R sin E*/R_ - rosin(¢o-¥e-g*/R2))de
' 0

The back-projection function can be rewritten as

| 2" s(o - e) - 8(e-6)) | |
b_(r, .f. + do (74)
A, e
0=9

where ef and 6: satisfy equations (48)-(51) and |dg(e)/de|6=e* and |dg(e)/de|e=e*
. . ) : 1 2
are given by equations (60) and (61). Substituting these equations into

equation (74) and integrating over 6 gives

2 2
\/Rzlr-r |© - Jrxr | = re(r-r )
‘Jﬁ2|~ r,1¢ = lrxr 12 Jr-r |
2 2
\[Rzlr—r | = |rxr [ + re(r-r )
. r-r
2 2 2 ~ ~
\/Rllztzol = |rxe 1% Ir-r |
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4.5 The Back-Projection of a Parallel Beam Point Source

Projection Function

The equation for the parallel beam back-projection operator is given

in equation (39),
v

b_(r,¢) = f p_(rsin(¢+67),8") do” . | (3»9)H
0

Substituting the equation for the parallel beam point source projection

function given in equation (15) into equation (39) gives
. T .
b_(r,¢) = f 8(rsin(¢+67) - r sin(¢, +067)) do~
0

We can express b_(r,$) as

| T 8(e”-67) §(6”-0%)
b_(r,¢) = + de”
0 ldf 6”) df(6”)
407 lg-=g* 8" lg-=p

where ef and e: are the roots of
f(6) = rsin(¢+6”) - rosin(¢0-+e’)
given in Section 4.4 and

df(6”)
de~

= [ry - r
67=0%,0% ~ o~

Since ef and ej are 180° out of phase, then the resu]t for the back-projection

of a point source projection function is

b_(r,¢) =
lr-r |

The back-projection result for the parallel beam geometry differ from the

result for a fan beam geometry only in a factor of 2.
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| 5.0 DISCUSSION

The adjbfnt and back-projection operators for_ﬁhe fan beam and parallel
beam geometries are summarized in Fig. 6. These opefators'are members of a
c1as§ of operators which give the superposition of the projection line
integrals wéighted by a particular kernel which for the simple back-projection
is equal togfhe identity function. The back-projeétion operatof for the
parallel beam;geometry requires the summation of Tine integrals err a range
| of 180° whereas the fan beam back-projection operatorvkequires the summation
of line integrals over a range of 360°. Therefore,;tﬁe fan beam geometry
requires a doub]e sampling of projection data which is ref]ected in the
2/lr r | response for the back- -projection of a po1nt source projection
function as Qpposed to a 1/|£-—£0| response for the parallel beam back-
projection operator. | N

The results of the fan beam back-projection operation for various
point source orientations and rotations of 180° and 360° are shown in Fig. 7.
The projectioh data represent a sampling at 1° increments. The middle column
of figures are iméges of the back-projection mu]tipl{ed by lﬁ'ﬁol which has
uniform gray oh]y if the back-projection is proportioné] to 1/[r-r |. The
back—projectidn‘operation for a rotation of 360° is‘approximate1y propor-
tional to T/lr-rol, but due to the digitalization, the ‘image of |[r-r |-B(r,¢)
represénts a 10% variation between the maximum and minimum values. The
contrast for thevcase of 360° rotation has been turned up to illustrate

th1s variation. -

| The resu]ts ‘shown in Fig. 7 for a 180° samp]1ng can be expressed

explicitly as



PARALLEL BEAM

p(&,6) =‘fff (x,y)8€-xsin8-ycos 8) dxdy
TR2

m ' 4 / ’
prlr,¢) =[) nlrsin(¢+6"),8)rsin(¢p+8)|d6

blr,¢) "f p(rsm(¢+9) 6) d¢’

FAN BEAM

pk.0)= fff(x,y)S(R|S|n§/R2 xsin{8-¢/R5)- ycos(Gf/Rz) dxdy
TRZ
. 76 R2 0€78) rsin(p+6) [Ri+rcos ($+8) ] d8
p<(r1¢) =f 2 2 3/2
&3 [r +R{+2R, rcqs(¢+9)]

where £ = R, tar’ [ rsinig+6) ]

Ry +rcos(¢+8)
2m * '
b<(r,¢s)=j(;' nle"8) d8

For a point source at the point (ry, )

p(€.0)=8(&- rySin { bt )

Figure 6.

p(&,8)= 3(Rysin §/R2-rosin($yt0 -&/Rz))

Bir,¢) = L'ox"l
£ ~xo]?
bdr,¢)= II‘!o‘I

XBL768-9234

Expressions for the projection, adjoint and back-projection

operations for the fan beam and parallel beam geometry and the results
for a point source with coordinates (r0,¢o)

_VV—'
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POINT SOURCE RESPONSE AS A FUNCTION OF POSITION

Fan beam \/

orientation X\j/

Rotated 180°

Back-Projection  Back-Projection- |t-f| Reconstruction

XBB 760-9638

Figure 7. Comparison of the point source response as a function
of position and rotation angle. The fan beam vertex coordinates
are R, =80 and R, = 120,

Rotated 360°




2
\Ihzlr-r [ = ]rxr | =re(r-r)
1 i e e I % if 0% (-7,0)
-1 | VR?|ror, 2 - [rxr |2
2
R |r-r | = Jrxr |© + re(r-r,)
blf(r,d)) = ! . (1 ol ~ ~ ~ 0 if 9:&‘(-'”,0)
» 2 2
r-r,| \[Rf|r-r0| = |rxr |
2 if 67 and
|r,_£0| 6% e(-m,0)
0 otherwise (76)

/
where ef and 6: satisfy equations (48)-(51). Equation (76) follows immedi-
ately from equation (74) where the Timits of integration are taken to be from
0 to -m instead of from 0 to 2m. A similar result was given by Peters [3]
for the impulse response of the fan beam layergram. For a centrally

positioned source (r0==0) we see from equations (48) and (50)

sin ef = X
Ir]

. ox =y
S1in 92 = —
Ir]

Therefore for points in the lower half of the plane ejé(-n,O) and equation

(76) reduces to

r] BI(r.¢) = 1 -2

For points in the upper half of the plane e:é(-n,o) and equation (76)

reduces to



i

Therefore for a centrally positioned point source the upper and lower planes
show a contrast about the abscissa as the result of the discontinuity at y=0.
Figures 8 and 9 give a comparison of the results from filtering the

parallel beam and fan beam back-projection for two simulation phantoms.
Artifacts are generated when the fan beam back-projection operation is
integrated only over 180°. For an 1nf1nite number of projections, the
method of filtering the back-projection for parallel beam geometry can be

expressed as

f(r,¢) = S\”é] {IR] Fpib_(r,0)}}

and for the fan beam geometry as
1 ce-1
f(r.o) = 7 Fy {IRI FHib (r0)}}

However, the Parzen filter (Fig. 10) was used instead of the ramp filter in
order to eliminate the ringing which occurs with a sharp cut-off. Other
filters such as the Hamming, Hann, and Butterworth have been studied and
give results comparable to that of the Parzen filter. Of these filters,
the Hann filter appears to give the best results.

Three key points are derived from the analysis presented:

1. There exists a fan beam back-projection operator which
gives a result equal to 2/|E-£0| for a point source
projection function.

2. This operator involves the integration of projection
data taken over 360° and not just 180° which is sufficient

for a parallel beam geometry.



Original Parallel 28 Proj.64° Fan Beam 28 Proj. 64° Fan Beam 56 Proj. 6 4°
XBB 763=2175

Figure 8. Comparison of results from filtering the back-projection
for parallel beam and fan beam geometries.
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Original Parallel 90 Proj. 2° Fan Beam 90 Proj. 2°

Fan Beam 180 Proj. 2°
XBB 762=1243

Figure 9. Comparison of results from filtering the back-projection
for parallel beam and fan beam geometries.
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Filter magnitude

Parzen

Simple ramp

TN
\\\
O 16 32
Frequency

Figure 10.

Plot in frequency space of the Simple Ramp and Parzen filters.

XBL7611-9463
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3. The adjoint transform of the point source projection
function for both the parallel beam and fan beam geometry
cannot be represented as a function with the form
| h(x-x",y-y~*).

Points'1. and 3. imply that only the back-projection operation gives an
image which can be represented as a convolution ahd.thus applicable for
the filter of the back-projection approach to transverse section reconstruc-
tion. A digadvantage of using this appfoach over other fan'beam reconstruc-
tion methods which first filter and then back-project, is that a matrix |
which is four times the size of the reconstructed image is requiréd so that
the convolution result of one period does not overlap the convolution result
of the succeeding period when implementing the fast Fourier transform
[19, Chapter 7]1. This method may be faster; however, we have not yet
compared it with other methods.

The results using the filter of the back-projection approach to
reconstructing fan beam data hints at a general approach to reconstructing
projection data generated from nonparallel beamé such as curved rays.

It is required that a back-projection 6perator exists which gives a point
source response which is either proportional to 1/|£-—£0| or is a function
which depends only on the radial distance from the point source. It is
also conceivable that there are back-projection operators for three-dimen-
sional geometries such as the cone beam which give a back-projection image
that can be deconvolved using the filter of the back-projection approach

to reconstruction.
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