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I. INTRODUCTION 

Directional solidification is both a useful means of controlling 

microstructures of materials in basic investigations and a potentially 

inportant industrial process for manufacture of in~si tu cornposi tes. 

Applications of directional solidification tedmiques to eutectic allays 

have been concentrated mainly in the class of eutectic allays in "lNhich 

both phases have lo;..v entropies of fu,sion surn as P~Snu Sn~CdI Sn~Zn and 

Al-Zn (1) resulting in lamellar or rod~like morphologies. 

A second class of eutectic alloys that in mich only one phase 

has a lo;..v entropy of fusion .g. P~Biu Sn~Bi). Among these alloys 

the Al ~Si eutectic "lNhich has a long history as the basis for industrial 

casting a~loys (2). The phase diagram the Al~Si system is sho;,.vn in 

Fig. 1. As is characteristic of alloys in this class u when the alloy is 

rich in the lo;..v entropy phase (Al) u the high entropy phase (Si) solidifies 

as primary crystals 

The purpose of this work has been to dete:rmine the effect of 

directional solidification on the yield strength of Al-Si eutectic and 

relate the yield to the various microstructures present. 

II. BACKGROUND 

Suppression of independent gro;..vth prirnary Si crystals is Cine of 

the prerequisites a well~aligned in-situ ca:nposite. The follo;..ving 

relationship (3) the oondi tions needed: 

roc -K) 
G/R :.. s 0 

UK 
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where: m "'" liquidus terrprrature gradient 

KO "" Cs/Cl "" distribution coefficient 

C "" carposi tion of solid phase s 

C
l 

;;; a::lltpOSition of liquid phase 

2 

D "" diffusion coefficient in liquid a"1ead 
of solid/liquid interface 

Published infor:mation on the effect of variations in growth rate 

and terrperature gradient on this metal~non~metal eutectic identified 

three irrportant regions (Fig. 2). 

Region A: 'lhe wry high G/R ratio in this region produces large, inter

OClru1ected, faceted 5i crystals with a high incidence of {lll} g:rowth 

t::wins. 'lhese c:rystals project into the liquid ahead of the essentially 

planar and isothe.rmal Al growth frent (3). 

~ion B: In this region the silicon crystals assumed a variety of 

shapes and shared a nearly perfect [lOOJ fiber texture. As has been 

reported in other directional solidification experiments (4) I the 

ferred texture did not ,,.-,'''IE,',,UU for the first few centimeters of the ingot. 

'lhe 5i crystals grew in fonn of high asl:JeC::t ratio rods with side 

branching out radially. 'lhese plates have been ClCIrpared (3) 

to the seconda:ry branches of dendrites I and W'eXe two fo~ (Fig. 3); 

thin smooth {100} plates I or corrugated {Ill} plates withal ternate 

sheets having (111) and (Ill) orientatians. 'Ihroughout this region there 

"instability bands ui (3) I rich in silicon and lying nOImC'd to the growth 

direction. 'lhe 5i rich bands \\len:! interspersed with Al bands which 
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have Si contents much lower than that of the eutectic c::arrposition. 

Region C: With an increase in R to greater than ca. 1.0 011/h the 

d1aracteristic texture of Region B is no longer found; Si crystals are 

smaller in size and spaced closer together. An increase in the density 

{II]} Si growth btvins was reported by Day and Hellawell (3) in this 

region. The microstructures characteristic of region corresponded 

:more closely to those found for typical cast alloys. 

The aluminum phase in Regions A, B, and C shews no orientation 

relationship to the growth direction or to the silicon phase. 

Previous Work: The previous investigation of the tensile properties of 

directionally solidified Al~Si eutectic, by Steen and Hellawell (5) u was 

concerned only with Region C (growth rates fran 3.6 011/h to 2880 011/h 

through terrperature gradients fran 1100 clem to 230
0 clem) using thin 

(4.5 rrrn dial long (25 rrrn) solidification ingots. These authors concluded 

that cracks propagated along the faces of Si "flakes". There was no 

atta,pt at yield strength measurements at various grcMtth rates. 

This author I s work measured tensile properties of alloys solidified 

at both the higher gra!Jth rates previously studied, and also at growth 

rates below the transition point bebtveen the morphologies found in 

Region B and Region C. The intention of these tensile measurements was 

to relate trends in the tensile strength of the alloy to the rnicrostru~ 

ture effects resulting fran directional solidification. 

III. :EXPERIMENTAL 

Master ingots of the eutectic ccmposi tion were prepared fran 99.999 

peroent purity aluminum silicon. Solidification boats were fabricated 
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Flat tensile test sf:l8clioens W'ere fabricated fran the directionally 

solidified ingots as sf:l8cified by ASTMFE8-69 (Standard Methods of Tension 

Testing of l'1etallic IVI",·r'01"', ). 'ilie long axis of the ~sile sf:l8cinen 

was parallel to the growth direction (longitudinal direction). Rectangular 

(subsize) sf:l8cirrrens were with a final thickness of approximately 

0.165 an (gage lengthu width I 6. 25nm). 'iliese sf:l8clioens were tested 

on an Instron two screw machine I using a constant cross-head rate 

of 0.1 cnvhr. A non~averaging exterlSometer was attached to each sf:l8cimen 

to record the strain versus load. 'ilie yield strength values were then 

found using a O. 2% off~set method as described in AS'IM~E8~69. 

After tensile testing f the fracture faces W'ere examined using a 

JOEL J:;M-U3 Scanning Electron microscope. X~ray Transmission Laue photo-

graphs were taken sf:l8cirnens thinned to approximately 0.031 an using 

Nt filtered CUK radiation at 40 KV u and 20 mao Specimen to photographic 

plate distance was 4 an and the exposure tiroe averaged 60 .minutes. 

IV. 

Microstructures ~ microstxuctures obtained in this work are shown 

in Figs. 6a~6h. There are two significant features of these photcmic:t:'O"-

graphs. At growtll rates than about 1 cnvhr (the higher growth 

rate regiIre) both t11e longitudinal (6a and 6c) and the transverse (6b 

and 6d) micrographs show a similar arrangement of high~aspect ratiD Si 

crystals (the dark randcmly arranged within t11e At 

growth rates less than 1 (the lc::J<Ner growth rate the rni c:t:'O"-

structure present .;;)u,Jvv ...... c,< a marked difference between the transverse 

(Figs. 6f and 6h) and • 6e and 6g) micrographs. 'iliese 
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latter photanicrographs suggest a cx:m1pOSite~like structure composed of 

Si "rods" (with radial plates) u aligned parallel to ti1e growth direction 

wi thin a matrix of aluminum. 

Examples of a seoond type of microstructure found in the lower 

g:roNth rate region are illustrated in Fig. 7. The dark! bands F 

cx:m1pOSed of massive Si crystals u are prominent at both of the growth 

rates shONn. These bands are of irregular length; arId there a 

decrease in the spacing between bands with an increase in the growth rate 

from 0.097 cruVh to 0.25 cm/h. between Fig. and 7d (both 

at the sarre magnification) clearly shows this decrease in spacing with 

growth rate! though the limited of growth rates sampled restricts 

a more quantati ve analysis. At the growth rate of 0.25 cm/h the Si 

depleted bands (vvhi te bands) are quite regular and extend across me 

entire width of me specirrren. 

Fig. 8. In the 

JJE:>J)ye rings for both me 

rate 

and Al 

Laue photographs are shCl'iA7l1 in 

mere are spotty 

(Figs. 8a and 8b). The Debye 
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testing; a data could not be d,etermLned. 
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ten limes on and an average was A summary of 

the results is Data He11awell (3) 

plotted in 

. 13. Only a data 

for a different teJITlPEcora }1oVilever u the data 

strongly suggest A "" constant 
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Further analysis of the nature of the yielding in the higher growth-rate 

region is supplied by carrparing Equation 3 to the :much studied Hall-Petch 

relationship; relating the yield stress to grain size: 

where 

-1/2 o ;;;;:; 0* + KL 

o = Yield or Rupture Stress 

0* "" Internal Stress 

K = Hal1-Petch Slope 

L "'" Grain Size of Interfiber Spacing j A. 

(4 ) 

Although the mechanisn'ls governing this relationship are not clear (4) j 

the application of F.quat~ion 4 to tvvo phase materials has been found valid 

when the difference in the modulus of elasticity of the two phases is 

great (9 v 10) and when there a good bond at the interface betw'een the 

two phases (11). 

8inre the modulu.s of elasticity of 8i is approximately three times 

that of All The high =' .. 'C"_, Si crystals act as a strong reinforcing 

phase. As seen in Fig. 9 v there considerable yielding at an almost 

constant stress before fracture 9 showing the strengthening effect of the 

randomly spaced 8i In the scanni .. ng micrographs (Fig. 11) of 

the fracture fares lit can be clearly seen that the fracture vIas pre-

dominantly along 8i cleavage 

Li and Olou (10) have discussed at length the flow stress-grain 

size relationship. 'Ihe Hall-Petch relati.onship is obtained for a variety 

of models. They point-aut that "Yielding to take place when stress 

concentration reaches the strength of the grain boundary." In our work 
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there are two separate phases. 'lhe applicability the Ha.ll~Petch 

relationship in this case is also by Li Chou (10). Here 

yielding in aluminum starts before the stress reaches the stress 

of the Si phase. 'Ihus Q although tlle takes place in the silioon 

phase Q the Hall~Petch relationship applicable to the yielding in 

al urninum. 

Lc:Jv.Jer Growth Rate Region: An ini tial for work was the 

possible effects of the structures the growth rate 

region on the yield strength. But u with the corribination of the large Si 

crystals surrounded by a matrix of a]lllOst pure Al! the yielding is 

dominated by the stress ooncentraticns wi thin the Si ~rich bands. 

The irregularly shaped crystals premctturely cleave resulting in a 

yield strength approaching that of cdurninum. The nature of the 

yielding in this region not allow a quantitative analysis of the 

strength of the aligned rrrn{.>rn L"'''.4L'_JLt 
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v. CCNCliJSION: 

Directional solidification of the eutectic Al~Si alloy D over a range 

of grDNth rates, was carried out; tensile specimens fabricated u and 

longitudinal yield strengths measured. The yield strengths for growth 

rates greater than ca. 1.0 an/hr were dependent upon the spacings of the 

Si particles I' following a Hall~Petch type relationship. The yield 

strengths of alloys solidified at rates lCl'lNer than ca. 1. 0 cm/hr were 

dominated by preferential yielding within Si~rich bands lying normal to 

the growth direction. Possible carrposite strengthening due to aligned 

Si microstructures in this growth regime was not realized due to this 

preferential yielding. 
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FIGURE CAPTIOOS 

Fig. 1. Phase diagram of alumin~silicanu Ref. 15. 

Fig. 2. TeInperature gradient (G) and growth rate (R) of test allays. 

Fig. 3. Idealized drawing of 5i crystal! in lower growth region v shONing 

crystallogT~y of side plates and groNth direction, Ref. 3. 

Fig. 4. Carbon chilling block and solidification boat. 

Fig. 5. Directional solidification apparatus 0 

Fig. 6a. Photcrnicrography of longitudinal section (R "" 0.1 cm/hr) 

(magnification 100x). 

Fig. 6b. Photanicrograph of transverse section (R:= 0.1 cm/hr) 

(magnification 100x). 

Fig. 6c. Photcrnicrogr~ of longitudinal section (R::; 0.97 cm/hr) 

(magnification 100x) 0 

Fig. 6d. Photanicrograph of transverse section (R:= 0.97 cm/hr) 

(magnification 100x) 0 

Fig. 6e. Photanicrograph of longitudinal section (R:= 4.6 cm,/hr) 

(magnification 10OX). 

Fig. 6f. Photcrnicrograph transverse section (R:= 4.6 cm/hr) 

(magnification 10OX). 

Fig. 6g. Photomicrograph longi tudinal section (R "" • 0 cm/hr) 

(magnification 10OX). 

Fig. 6h. Photomicrograph of transverse section (R "'" .0 crrVhr) 

(magnification 100x). 

Fig. 7a. Photomicrograph of instabilit.y bands lying normal to growth 

direction (R "" 0.1 cm/hr). 

Fig. 7b. Photanicrograph showing Si W~ .. ~ ~ . rthin· tab' lity 
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Fig. rate 

Fig. banding. 

Fig. Sa. Laue 

Fig. Sb. Laue Debye Rings 

(R "" 2.4 

Fig. Sc. Laue "" O~ 

Fig. 00. Laue (R "" o. atVhr) . 

Fig. 9. curves alloys. 

Fig. 10. 

Fig. lla. SEM "" 4.6 300x. 

lib. SEM - .0 300x. 

Fig. llc. SEM "" 0.1 300x. 

SEM "'" O. 

12. texture {lll} 

and growth rate. 
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Fig. 3 XBL 763-754 
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