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and Department of Materials Science and Mineral Engineering, 
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ABSTRACT 

The flux density of sodium chloride vapor which escapes through a 

circular orifice in a plate that fits flush against the exit face of a 

porous alumina barrier is shown to increase by a factor of 100 when the 

orifice diameter is increased from 0.04 em to 1.0 em. A model which 

treats the porous disk and the orifice as two barriers separated by a 

chamber that has no significant radial flux density gradient gives 

qualitative agreement with the experimental variation of flux density 

with orifice diameter and is of sufficient generality to yield the 

Whitman-Motzfeld equation for effusion cells as a special case. A model 

which assumes that a radial flux density gradient exists in a 20 ~m 

high chamber between the porous barrier and the disk gives quantitative 

agreement with the experiments. 
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I. INTRODUCTION 

It has usually been assumed that when a mixture of gases in the 

Knudsen flow regime passes through a porous barrier, the relative partial 

pressures P. and P. of any two molecules i and j in the exit gas will be 
l. J 

related to their partial pressures P.
0 

and P. 0 in the incident gas by 
l. J 

~ 0 0) ( ~1/2 P . /P . = P. /P . M. /M. 
l.J l. J Jl. 

(1) 

where M. and M. are the molecular weights of i and j. But Mohazzabi and 
l. J 

1 2 Searcy recently showed ' , that under favorable circumstances gases can 

undergo much larger composition changes when passed through porous bar-

riers than predicted by Equation (1). In particular, they showed that 

the ratio of monomers to dimers for sodium chloride vapor could be in-

creased by more than a factor of 100 by passage through a porous alumina 

barrier and that the monomer/dimer ratio for both sodium chloride and 

lithium fluoride. vapors were increased by similar amounts by passage 

3 through a bed of nickel powder. 

The changes in monomer/dimer ratios result from reactions on the 

surfaces of the porous barrier. It appeared of interest to extend the use 

of porous barrierscoupled with line-of-sight mass spectrometry to investi-

gate the heterogeneous catalysis of gas phase reactions such as,for 

To improve thermal energy transport to the barrier and to reduce 

the background gas pressure in the spectrometer it would be desirable 

to fit against the exit face of a porous barrier disk a close-fitting metal 

lid pierced by a hole of diameter considerably smaller than that of the 

. . 
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porous disk. Because flow through the parts of the porous disk that are 

nominally masked by the lid might contribute significantly to the exit 

flux, we have investigated the variation of sodium chloride flux 

through an alumina barrier of fixed porosity, thickness, and diameter 

as a function of the area of orifice in a molybdenum effusion cell 

which has its lid fit flush against the alumina disk. 

Our experiments indicate that the effective area of the alumina 

barrier was considerably larger than that exposed by the orifice. To 

explain the data we have developed two models of somewhat different 

complexity. The more detailed model predicts results which are in good 

agreement with the experimental data. The simpler model predicts fluxes 

that agree only qualitatively with experiments with a close fitting lid, 

but is more general. When assumptions of this model are warranted, 

it should be quite accurate. The generality of this model is illustrated 

by using it to derive the Whitman-Motzfeld( 4 •5 ) equation. 
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II. EXPERIMENTAL 

The experimental set-up was only slightly modified from that of 

2 Mohazzabi and Searcy. Figure 1 depicts schematically the Knudsen cell 

which served as a source of sodium chloride vapor. The interior diameter 

of the cell was approximately 1 em. Orifice diameters of 0.960, 0.472, 

0.292, 0.106, 0.061 and 0.043 em. were used and duplicate runs were made 

with each orifice except that of 0.292 em diameter. The porous barrier 

was an alumina disk, 0.2 mm thick, cut from a rod which had been hot 

pressed to a porosity of about 54 percent. Examination by means of a 

scanning electron microscope showed the alumina to consist of platelets 

about one micron thick, with pores ranging from 0.2 to 5 microns in 

diameter. 

For all the runs the cell containing the NaCt sample was heated in 

an Atlas CH4 mass spectrometer to 1137(±3)°K. Although the ion currents 

of NaCt+ and Na2ct+, corresponding to the monomer and dimer respectively, 

were monitored, the quantity of NaCt which escaped from the cell was 

determined from the weight loss measurements. 

In Fig. 2 the results of the measurements are plotted as flux 

2 densities, given as moles of NaCt per second per em , versus the orifice 

diameters in em. Except for the 0.292 em orifice, the open circles are 

the mean of two determinations with the range indicated by the vertical 

lines. 

The 0.960 em orifice exposed essentially the entire cross-section of 

the cell, so the flux density measured with this orifice was used to 

calculate the transmission coefficient of the disk, denoted by f = J/J , 
0 

where J is the exit flux density of sodium chloride monomers plus twice 
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the flux density of dimers and J is the corresponding sum of incident 
0 

flux densities. 
-7 -2 -1 The weight loss data give 5.51 x 10 moles em sec. 

for J at 1137°K, and J is calculated from the equilibrium vapor pres
o 

6 -4 -2 -1 sure to be 3.09 x 10 moles em sec. From these values f is found 

to be 1.78 x 10-3 . 

-5 For the 0.043 em orifice the escape flux density, 5.65 x 10 moles 

em - 2 sec -l, is a hundred times greater than that for the 0.960 em ori-

fice, so the area of the alumina disk involved must have been at least 

that much greater than the area exposed by the orifice. Probably the 

entire disk contributed to some extent. 

III. THEORETICAL 

In the temperature range of interest, NaC~ vapor at the saturation 

pressure contains approximately equal quantities of monomer and dimer, 

with the monomer fraction increasing as the pressure is decreased. For 

a mixture, the total vapor flux striking a unit area of wall or orifice 

would then be given by the expression, 

1 
J = 

(2TIRT)l/ 2 
1 (p + 21/2 p ) 

(2TIM RT)l/2 m d , 
m 

where the subscripts m and d refer to monomer and dimer respectively, 

J is the flux density, P is the pressure, M the molecular weight and R 

the gas constant. This expression is valid whether the monomer and dimer 

are in equilibrium or not. If they are in equilibrium, as is known to 

be true for NaCl monomers and dimers with alumina barriers,2 the _expression 

can also be given as, 
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where K is the equilibrium constant for the reaction, 

For convenience we will define a quantity Q, 

+ 21/2p 
d' Q = p 

m 
(2) 

which can be regarded as a kind of effective pressure, Than, 

J = ----"'Q---~ 
2rrMRT l/ 2 • 

Here and in following expressions the subscripts have been dropped and 

all quantities will be understood to refer to the monomer unless otherwise 

indicated. 

MODEL I 

An impedance to gas flow can be· represented formally as a devic~ 

with an entrance opening of area aA and an exit opening of area aB. This 

device has the property that, of the molecules which come in the entrance, 

a fraction f
1 

will eventually emerge at the exit and the rest will eventu

ally re-emerge at the entrance. Similarly, of the molecules which enter 

the device at the exit opening, a fraction f 2 will emerge at the entrance 

and the rest will re-emerge at the exit. 

Figure 3a shows such an impedance schematically, where z
1 

and z2 are 

the fluxes in moles/sec entering openings A and B, and z
3 

and z
4 

are the 

fluxes leaving these openings. ·At steady state, the net flux Z .from left 

to right is given by 

(3) 

If the pressure and therefore the flux density is the same on both sides 

of the impedance, Z must be zero. That is, if z1 /aA = z 2/~, then 

Z = f 1z1 - f 2z2 = f 1z2aA/aB - f 2z2 = (f1aA/aB - f2)/z2 = 0, 
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which means, f
1

aA = f 2aB = a, where a is a conductance with the 

dimensions of area. Equation (3) can then be rewritten in terms of a, 

This result can easily be extended to two impedances in series as 

shown in Fig. 3b. By analogy with the previous case, Z, the net flux 

from left to right passing through both impedances, can be related to 

the various flux densities J
1

, J 2 , J
4 

and J
5

: 

These equations can be solved for Z in terms of J
1 

and J
5

, the flux 

densities at entrance and exit, respectively: 

z 
Jl-JS 

A further generalization ton impedances in series gives, 

J -J 
z = 0 t 

n n 
(4) 

l: 1/a. - l: 1/a. 
i=l 1 j=2 J 

where J is the flux density entering at the entrance, J is the flux 
0 t 

density entering the sequence of impedances at the exit, and a. is the 
J 

cross-sectional area of the junction between impedances j-1 and j. 

Were it not for the sum l: 1/a. in the denominator, this expression 
J 

would be exactly analogous to that for the flow of electrical current 

through a series of resistors. This additional term arises from what 

Dushman calls end effects. 7 Each of the ai contains implicitly a 

correction for an end effect, but when these impedances are connected 

" . ..; 
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in series all but the first of these corrections become unnecessary and 

must be subtracted out. 

The generality of Eq. (4) can be illustrated by deriving the Whitman

Motzfeld equation< 4 •
5

) from it as a special case. A typical Knudsen 

cell with sample can be regarded as three impedances in series. Using 

8 
the notation of Paule and Margrave these are, the sample surface of area 

A and transmission coefficient a , the cell body proper also of cross
v 

sectional area A and with a transmission coefficient equal to the Clausing 

factor WA, and the orifice of area B and Clausing factor WB. The incident 

flux density J is that corresponding to the equilibrium pressure P 
o eq 

p 
J = eg 

o (27TMRT)l/2 . 

The net flux Z is related to :the measured pressure P by a similar expression: 
m 

p 

z = (27TMR;)l/2 WBB. 

Since the material is vaporizing into a vacuum Jt is zero. Substituting 

these values in Eq. (4) gives the relation, 

p 
m W B = 

(2nMRT) 1/ 2 B 

p 
eg 

(2nMRT) 1/ 2 

which can be rearranged to give, 

8 
The Whitman-Motzfeld equation as derived by Paule and Margrave reduces 

to this same equation because it has been shown that the transmission 

coefficient for condensation on the sample surface, a ,must be identical 
c 

to that for vaporization at any specified temperature and pressure. 9 
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In order to apply this model to the present experiments, the system 

under study is considered to consist of two regions divided by the porous 

alumina disk as shown schematically in Fig. 4. The sample space of the 

cell comprises one region, and the second region consists of the narrow 

space between the top of the porous disk and the lid. The disk representa 

an impedance with conductance fdA' where fd is its transmission coefficient 

and A the cross-sectional area of the cell and disk. In series with this 

impedance is the impedance of the orifice with a conductance equal to the 

product of its area a and Clausing correction W . Since the cell is in a 
a 

vacuum the flux density Jt of Eq. (4) is zero, and J
0 

is defined by means 

of the relation 

Qe J = __ __::::-:--:--

0 (2rrMRT) l/ 2 

where Q is the value of Q in equilibrium with the condensed NaCl. 
e 

Equation (4) may be written in terms of these quantities to give the 

following: 

z = 
J 

0 
FZ 

0 

In this equation Z is equal to AJ , and F denotes the overall 
0 0 

transmission coefficient of the porous disk plus the orifice: If we 

define f
0

, the transmission coefficient of the orifice, as being equal 

to W a/ A, then 
a 
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In these expressions it is not necessary to distinguish between 

2 
monomer and dimer because, as Mohazzabi and Searcy have shown, 

the amount of material transported by molecular flow is independent of 

the particular species involved. 

For the conditions of the experiments this model predicts the flux 

densities shown in Fig. 2 as a dashed line. Over most of the range the 

predicted values lie considerably above those obtained experimentally, 

but the behavior is qualitatively correct and seems to indicate that the 

rise in flux densities for small orifices is due to the presence of a 

gap or space between the lid containing the orifice and the porous alumina 

disk. The major point of difference between the model and the actual 

experiment is that the former assumes no flux gradient in the radial 

direction, whereas in actuality the space between the lid and porous disk 

is so small that some sort of flux gradient must exist. The considera-

tion of this gradient led to the second model. 

MODEL II 

When a flux gradient is assumed to exist in the radial direction, 

the analysis of the fluxes in the upper region must be done differently. 

The portion of the alumina disk exposed by the orifice has the flux 

fJ0 coming through from the lower region, where f is again the transmission 

coefficient of the disk. The portion of the upper region between the lid 

and the alumina disk has, in addition to this incoming flux, a downward 

flux through the disk and a radial flux. Both of these are functions of 

the radius, and so it is convenient to consider the fluxes for an annular 

portion of the region bounded by the radii r and r + dr and by the lid 

above and the disk below. Then the flux entering from below is equal to 
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2rrrdrfJ
0

, and the flux escaping through the disk is equal to 2rrrdrfJ(r), 

where 

J(r) - Q(r) 
- (2rrMRT) 1/ 2 • 

The quantity Q was defined in Eq. (2) and is here a function of the 

radius as indicated. Only the radial flux remains to be considered. 

According to Clausing7 , molecular flow of a gas through a channel 

between two plates is described by the relation, 

Z = KJ ab 
0 

Z is the transmitted flux, J the incident flux density, a and b are the 

width and height, respectively, of the channel and K is the Clausing 

factor for the channel. For channels with a >> t >> b (t being the length) , 

the value of K approaches b/t ln(t/b). The expression then becomes, 

z = Q 
t 

tn (t/b) __ P_--,-
(2rrMRT)112 

ab Y ab p 
L t 

where y = b tn(t/b), L = (2rrMRT) 112 , and J is expressed in terms of the 
0 

pressure and other parameters. If P/~ is approximated by the gradient of 

the pressure, this equation becomes essentially an expression of Fick's 

law with the diffusion coefficient equal to Y/L. 

In the present case Q replaces P and~ becomes 2rrr or 2rr(r + dr). 

The net radial diffusion flux entering the annular region of interest 

is then, 

~ r(r + dr) lQ. (r + dr) - r aQ(r)J = 
L r ar ar 
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The equation for the loss (or gain) of matter in the annular region is 

then, 

dn = ~ (E_q + r ~) dr - 2nrdrf .Q.L + 2nrdrf QLe • 
dt L ()r ()r2 

dn 
At steady state, dt = 0, and so, 

yb(~ + r :))- rfQ + rfQe • 0 (5) 

By making the substitutions, R = 1- Q/Qe' s = r( b~) 112 , equation 5 is 

transformed to Bessel's equation of zero order: 

The general solution to this equation has the form, 

where I
0

(s) and K
0

(s) are modified Bessel functions of order zero, and 

A and B must be determined by the boundary conditions. These are that 

the gradient of Q is zero at the outer edge of the lid and that Q is 

equal to fQ at the edge of the orifice. 
e 

Stated mathematically, the 

conditions are, 

fQ . 
e 

In these expressions R
2 

is the diameter of the lid and is constant for 

all orifices, and R
1 

is the.radius of the orifice. In terms of the 

transformed variables these equations become, 

dR(s 2)= o· R(s ) = 1-f, 
dS ' 1 

1/2 = R1 (f/by), etc. where s1 and s 2 correspond to R
1 

and R
2

, i.e. s
1 



-12-

From these conditions A and B are found to have the following forms: 

These relations involve the modified Bessel functions of order one, r
1

(s 2) 

and K
1

(s2). The quantity~ is the determinant, -[I0 (s
1

)K
1

(s 2) + 

Il(s2)Ko<sl)J. 

It is now possible to evaluate R(s) and consequently Q(r). However, 

the quantity of interest is the gradient of Q at R
1

, since this gradient 

determines the diffusion flux escaping from under the lid to augment the 

flux passing directly through the portion of the disk exposed by the 

orifice: 

- Q e 

The diffusion flux is then equal to 

As indicated above, this flux is added to the flux which comes directly 

through the disk to give the total flux Z: 

z 
21TRl 1/2 dR(Sl) 2 fQe 

=-Q (fby) ds + 1TR1 1· L e 

Dividing this quantity by the area of the orifice gives the apparent 

flux density: 

Z fQe 2 1/2 dR(Sl) 
J = -- = - + - Q (fby) . ds 

1TR
1

2 L LR1 e 

With the exception of the spacing b between the porous barrier and 

the lid, all the parameters in this equation have already been assigned 

values. Forb a value of 2 x 10-3 em. was chosen because it was 
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reasonable and gave a good fit to the experimental data. In Fig. 2 the 

flux density calculated from Eq. (6) is plotted against the orifice 

diame.ter as the solid line. In view of the good agreement with the 

experimental values it seems likely that the measured variation of flux 

density with orifice size is due to the augmentation of the direct flux 

by the flux which comes through the part of the porous disk covered by 

the lid and then diffuses between the lid and disk to the orifice area. 

2 Mohazzabi and Searcy noted that their values of transmission 

constants, defined as a = hJ/J , where h is barrier thickness, increased 
- 0 

somewhat with barrier thickness. They suggested that a leakage error is 

responsible for the increase. We can apply Eq. (6) to test whether 

contributions to the measured flux of nominally masked portions of the 

porous barriers used by Mohazzabi and Searcy may have been responsible 

for the increase of a with h. They used an orifice of 0.38 em. diameter 

in an effusion cell of 1.64 em. diameter. If a 20~m gap between their 

alumina barrier and lid is assumed, the transmission constants corrected 

by Eq. (6) are 0.67 times the uncorrected value for their 0.389mm thick 

barrier and 0.59 times for their 0.838mm thick barrier, or 4.6 x 10-3mm 

-3 -3 
and 5.5 x 10 mm calculated for the NaC£ measurements and 6.0 x 10 mm 

for both orifices when zinc is the vapor transported. Leakage through 

the nominally masked portion of their barrier does appear to be the 

source of the observed variation of a with h because these corrected 

values are nearly independent of h. 
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FIGURES 

{l 
v 

1. Cross sectional drawing of the effusion cell and porous disk. 

2. Variation of flux density of sodium chloride vapor with diameter of 

an orifice fitted against a porous alumina disk of 10 mm diameter. 

Points are experimental. The curves are calculated from two theoreti-

cal models. 

3. Schematic diagrams flow through impedences (see text). 

4. Schematic drawing of a cell and barrier assembly which is interpreted 

in terms of model I, which is appropriate if radial flux density 

gradients are negligible. 
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