
'· 

) 

Submitted to Nuclear Physics B 
u.t-.. 3;2... I 
LBL-6189 & 
Preprint 

FADDEEV-POPOV PROCEDURE AND GRIBOV COPIES 

For Reference 
M. B. Halpern and J. Koplik 

Not to be taken from this room September 12, 1977 

OCT 17 1977 

UBRI'RY AND 
pOCUME:'-'TS SEC710N 

Prepared for the U. S. Energy Research and 
Development Administration under Contract W-7405-ENG-48 



DISCLAIMER 

This document was prepared as an account of work sponsored by the United States 
Government. While this document is believed to contain correct information, neither the 
United States Government nor any agency thereof, nor the Regents of the University of 
California, nor any of their employees, makes any warranty, express or implied, or 
assumes any legal responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not 
infringe privately owned rights. Reference herein to any specific commercial product, 
process, or service by its trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof, or the Regents of the University of 
California. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof or the Regents of the 
University of California. 



* 

t 

LBL-6189 
-1-

* FADDEEV-POPOV PROCEDURE AND GRIBOV COPIES 

M. B. Halpern 

University of California and Lawrence Berkeley Laboratory 
Berkeley, California 94720 

and 

J. Koplikt 

Institute for Advanced Study 
Princeton, N. J. 08540 

September 12, 1977 

ABSTRACT 

In simple examples, we find that gauges with 

Gribov copying are valid gauges. One need only compute 

the Faddeev-Popov determinant ~ exactly and procede. 

~ provides the correct measure for the copies. A cut-

off procedure keeping only the first copy is seen to work 

as well. In quantum chromodynamics, we point out a class 

of gauges, the field-strength gauges, for which ~ is 

easily computed. 
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I. INTRODUCTION 

In gauge theories of a generic variable A, one is interested 

in evaluating the generating functional 

z [J] 

7(_-1 

'rlj c/.JA e -s [A) e -JG{ A) 

J"'A e-s[A] 

( 1.1) 

where G(A) is a gauge-invariant function of A. Because of the 

gauge-invariance (A+ AA, s[AAJ = s[A]), the numerator and denom­

inator contain an identical, multiplicative, infinity (J.IJ'A), which 

cancels in Z[J]. In order to define a perturbation expansion, and 

to have a canonical formulation, however, it is a universal practice 

to "gauge-fix" the numerator and denominator via the procedure of 

1 Faddeev and Popov 

Their procedure is to choose a gauge condition f(A) 0, 

and resolve unity via 

If ~. the Faddeev-Popov determinant, exists (see below) it 

is gauge-invariant. Inserting this unity into numerator and 

( 1.2) 

denominator of Z[J], 
I A 

and changing variables A ~ A , we factor 

out the J o<9 A (top and bottom), to reach the explicitly finite· 

form 

. Z[J] -S -JG e e ( l.J) 
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Here ~ continues to normalize- z(oJ = 1. 

Since one intends using !'J{ A) "on-gauge-shell", that is 

next to c5 [f(A)], one often computes instead the "gauge-shell" 

detenninant lJ. 
0

, 

1 

If both exist, !J. and !J. will agree when f (A) = 0. 
0 

( 1.4) 

Recently Gribov2 has emphasized that there may, in general, 

be more solutions than A= 0 to f(AA)- f(A) = 0. That is, 

there may be non-trivial gauge transformations A connecting config-

urations in the gauge f(A) = 0. If a set of configurations Ai' 

all satisf'ying f'( Ai) 0, can be gauged into one another, we shall 

refer to the set {Ai} as "Gribov copies." 

It is our viewpoint in this paper that the existence of the 

copying phenomenon (for certain gauges) does not necessarily 

invalidate the gauge. At least in the action formalism,(*) and at 

least in our simple examples, one need only compute [J., !J.
0 

exactly 

and precede; the detenninant merely provides the correct measure 

for the copies. It can, in realistic models, be extremely difficult 

to compute [J., or ~ exactly, and Gribov has also proposed a 

truncation procedure, keeping only the first (A= 0) copy's contri­

bution to ~· In some examples we will see that this is also a via­

ble procedure. It is important to notice however that the copying 

phenomenon is highly model-and gauge-dependent: we do not know if 

-r*J When lJ. = 0, one no longer has an obviously well-defined canon­

ical formalism. 3 
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any of our examples resemble the situation in, say, the Landau 

gauge of quantum chromodynamics (QCD). 

The properties of lJ. and lJ. 
0 

tell us much about the gauge 

choice. We summarize what can be seen in our examples below. 

Properties of lJ. and !J.
0 

1. The computation of !J.(A) is equivalent to finding the gauge 

transformation that brings the configuration A into one (or 1110re) 

configurations in the chosen gauge. 

2. If lJ. = oo, even on a sub-manifold, the gauge cannot be reached 

for configurations in that sub-manifold. 

J. The computation of !J.
0 

is a search for gauge transformations 

which return a configuration to the chosen gauge, starting from 

that gauge. !J.
0 

will exist even when lJ. = oo on a sub-manifold. 

4. If there is a sub-manifold of_ "continuous" copies (copies 

connected to each other by infinitesimal gauge transformations), 

then lJ. = 0 on that sub-manifold. "Discrete" Gribov copies (sep­o 

arated by fin! te gauge-transformations) will not in general show up 

as lJ. = 0: lJ. = 0 is not necessary for (discrete) copies. 
0 -o 

5. We also have examples in which (a) lJ. = !J.
0 

= 0 identically, 

but there are no copies; instead the gauge cannot be reached from 

arbitrary configurations. (b) lJ. = 0 on a sub-manifold, yet 
0 

there are no copies: lJ. = 0 is neither necessary nor sufficient 

for copies. 

' l(j 
< 
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II. AN ABEUAN MODEL 

We define a simple model with an Abelian gauge invariance as 

z 
( 2.1) 

Here xi are ordinary variables (for simplicity, we will discuss 

the model only for i = 1, 2, J), and di are a set of fixed 

numbers ( "deri vati vee" on the finite lattice). The field-strengths 

Fij are invariant under the position-dependent translation 

X + X + d ~( x) - - ( 2.2) 

where ~(!} is the gauge function. Z is then (multiplicatively) 

infinite, and we.may gauge-fix. We list a number of simple gauge 

choices and remarks. 

(1) Axial gauges: fi • 1 = 0. 
A 

Here n is a fixed direction. The gauge condition specif.ies 

a surface, here a plane. These gauges can have no copies: if you 

leave the plane n • x = 0 in the ±d direction, you will never 

reach another gauge surface. We compute 

t.-1 ·[ d~ ~(~ . x + .n • d~) +t. I~ . ~I 

=J= 
( 2.3) 

t.-1 d~ 6(~ • d~) +t. I~ . ~I 0 0 
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The unique root ~ 
A A -1 

= - n • :K:( n • ~) of the first ~-function 

states that the gauge is uniquely reached (by this ~) from 

arbitrary configuration ~. The unique root ~ = 0 of the second 

~-function shows that there are no Gribov copies. 

Note that, varying n until ~ • ~ = 0, we reach t. = 0; 
A 

when n • ~ = O, it is clear geometrically that points off the 

plane cannot be gauged onto it. This is an example then that t. = 0 

does not always imply copies (instead this gauge is not accessible 

for arbitrary configurations). 

(2) Landau gauge: d • x 0. 

This gauge surface is also a plane, this time perpendicular 

to d. It is clear geometrically that this gauge is accessible 

from arbitrary configurations and without copies. One easily computes 

t. = r:, = I d21. 
0 -

(J) A gauge with copies: 6(sin (ez)] • 

Here z = x
3 

and e may be the gauge coupling. The gauge 

surface is an infinite series of planes at 

z 
n 

mr 
e (all n) 

Copies are obvious in this gauge; pick a point say in the 

plane and translate <it along ±d until it hits 

points are the (discrete) copies of the original point. 

( 2.4) 

z = 0 

These 



We compute 

The roots 

A 
n 

mr 
e 
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( 2. 5) 

- z) ( 2.6) 

tell us that there are an infinite number of ways to get into the 

gauge from an arb! trary configuration ~ (by these A's). This 

is the copying phenomenon. Each copy contributes one unit of 

-1 -1 
!ed

3
! to 6 , so 

+co 

N I: 
-co 

The same result is obtained for 6
0

, the roots 

o-function being the gauge maps from copy to copy. 

( 2.8) 

of the appropriate 

In this gauge, the copies have forced 6 = 0 identically, 

and it is somewhat academic whether tha gauge is leg! timate. The 

structure ( S = t F il iJ ) 

Z = dx dy dz o( sin( ez)) -~ e f !ed31 -S 
( 2.9) 

can easily be defined as follows. We truncate the z integration 

somewhere between the nth and n + 1st copies, say by inserting 

-8-

S((n + !)2 ~- z2 ), and keep only the first 2n + 1 roots in 

e ( 1 the computation of 6 thus 6 f\1 c 2n + 1 r I ed
3
.1 ). Then for every n, 

0 0 

it is clear on inspection that Z agrees with the axial gauge 

(o(z)). As n + ""• this defines the original gauge. If we stay at 

n = 0 (keeping only the first copy), this is Gribov's truncation. 3 

Either prescription is valid. 

This gauge is also the limit of the following "smoothed" 

gauge. 

(4) A gauge with copies and 6 t 0 

Consider the gauge choice o(eSizl sin (ez)] with Se > 0. 

The copy geometry is the same as the previous gauge. We compute 

now 

6 
0 

. ( 2.10) 

n=-oo 

6 is finite. Discrete Gribov copies do not necessarily show up 

as 6 = 0. Again the truncation procedure works: keep only the first 

copy's contribution to 6 (6 % rd31 ), and truncate with 
; 0 0 

8 b -z~ • Then only the first zero of the sin contributes 

and we are in agreement with the axial gauge. 

(5) A gauge with more copies at higher coupling. 

Consider the gauge choice o[sin ( 2nez 
2

) 
1 + z 

where 

z = x3, d3 t 0, and e is to be identified with a coupling constant. 
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Note that f(z) ~ 2z(l + z2 )-l is an odd function with max-

imum (minimum) value +1(-1). Consider the equation f( z) = !!. ' e 

which locates the gauge surfaces (or f(z + d
3

A) = ~ which gives the 

gauge transformations into the gauge). For I e I < 1, the only solution 

is w1 th n = 0. sin ( 1ref( z) ) vanishes only at z = 0; the gauge 

has no copies and is equivalent to the axial gauge (6(z)). 

For lei = 1, there are solutions for n = 0, ± 1; the gauge 

surfaces are three planes, and there are three copies (for every point). 

For 1 < lei < 2, there are five copieslpoint (still from n = 0, ±1). 

I I 4k i Gribov2 In general for k < e < k + 1, there are + 1 copes. 

argues that similar behaviour appears in the Coulomb gauge choice for 

QCD. 

( 6) A gauge with copies, and t:. = 0 on a sub-manifold 

Consider the gauge 

6( ry) 6(x) + 6(y) 

lY I lxl 
( 2.11) 

This choice forces pairs of copies: Start at, say, x = 0 and 

translate along ± ~ until you hit y = 0. These points are each 

others Gribov copies. We compute explicitly (there are two roots 

for A), 

( 2.12) 
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The overlap of t:. = 0 and xy = 0 is the z-axis. The z-axis 

is where Gribov copies approach infinitesimally close to one 

another. Infinitesimally close copies show up.as t:. = 0. (This 

is easy to prove in general). All the other (discrete) copies do 

not show as t:. = 0. 

We compute 

( 2.13) 

There are two roots and we obtain !:.
0 

= I~ • ~ 1. Clearly the gauge 

has pairs of copies; start at a point on the spherical gauge surface 

and translate along ±d until you reach the surface again. In gen­

eral, as above, the copies do not show up as !:.
0 

= 0. However, as 

above, the overlap of t:. = 0 and the sphere is the circle along 
0 

which the copies have approached each other infinitesimally. 

Unfortunately, this gauge cannot be reached from all con­

figurations. This is obvious geometrically: For simplicity imagine 

that d is in the z-direction. Then any point outside the cylinder 

x2 + y2 = n2 cannot be gauge-transformed to the surface of the 

sphere. Formally 

(2.14) 
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For points outside the cylinder the argument of the a-function 

never vanishes and ~ = 00 • ~ = oo on a manifold heralds inaccessi-

bility of the gauge for that manifold. In general this will not 

show in ~ • T.his gauge surface can be included in legitimate (and 

copy-filled) gauges such as o[sin(x2 - n2 )). 

( 8) 't Hooft-Veltman gauge: 2 
d • x + ex + y = 0. 

The gauge surface is a distorted sphere, and has the 

same problem as the Nambu gauge above. We compute ~ 
0 

+ e~ • ~~ (whose zeroes locate the infinitesimally close copies), 

but ~ = oo for large lxl. The gauge is inaccessible from arbitrary 

configurations. 

What is curious about this gauge is that it can be reached 

in a perturbation expansion in e i. e., a (non-convergent) 

expansion about the Landau gauge. 

We have not explored this further, but the phenomenon brings 

to mind the notion of gauge-space breaking up into inequivalent 

"gauge-balls". Consider a gauge, such as this one, that is not 

reachable from, say, the axial gauge. B,y gauge-change of variables 

we can easily surround this gauge by its own equivalent "ball of 

gauges", the entire ball inequivalent to the "axial-ball". What 

would then be the criteria for such aninequivalent gauge-ball 

to be a theory in its own right? (a canonical formulation? a per­

turbation theory which agrees with the axial gauge?) 

Remarks 

In general in this model, we have seen that gauges with 

copies are valid. ~0 = 0 locates the continuous copies, and, 

more generally, ~ provides the correct measure for the copies: 

In all our examples, all copies of a given configuration map onto 

a single configuration in (say) the axial gauge. 

I, 
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III. NON-ABELIAN MODEL WITH CONTINUOUS COPIES 

Consider the simple model 

s J dt {(~2 + ~2 + € ~ • ~)} . 

J dt{J ~2 + K ~2 + L ~ • B} 

where ~ is fixed so that z(o,o,o) = 1. The action S has 

a non-Abelian gauge-invariance 

( a,b 1,2,3) 

( J,l) 

( J.2) 

(and similarl.Jr for ~). Here 0 is an orthogonal matrix. Thus 

the numerator (and denominator) of Z has a multiplicative infinity 

of the form ( J d fl )N = ( 41f )N where dfl is the integration over the 

group volume and N is the number of points on the time grid. In 

this siuiple case, we could do perturbation theory (say in €) with-

out gauge-fixing, but we choose to gauge-fix anyway. 

We will choose our gauge geometricall.Jr. First, at every 

point in time, rotate ~(t) onto the positive x-axis in color 

space. Then make rotations around the x-axis until B( t) has no 

z-component, and positive y-component. The gauge-choice is then 

-14-

The gauge is obviously accessible from arbitrary configurations, so 
.t ... 

we will compute only !1
0

• The full f1 is 

= J..crn 6 [o2b~] 6[o3cAc] 6[o3d Bd] 

8 e[oleAe} e[ 02rBr] 

but, using the gauge-condition, we have 

f1~l = J ofYil 6[o21~] 6[o31~] 6[o31B1 + o32B2 ] 

e e[oll~} e[o21Bl + o22B2] • 

If ~ and B2 are not zero, the roots of the 6-functions 

specify Oab = 6ab and, thus, 

( 3.4) 

( 3.5) 

( J.6) 

At ~ or B
2 

equals zero, we will define ~0 
of ( 3. 6). We must compute then 

as the limit 

ZF(J,K,L) = 1'(Fj b~hs1tfJ'B2 6(~) 6(B2 )~2 B2 

8 exp{-Jdt(~ + B~ + B~ + E~B1 )J 

9 exp{-J dt( J~ + K(Bi + B;) + ~B1 )} 

( 3. 7) 
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where ?z.F normalizes ZF(O,O,O) 1. We shall do so after 

a brief discussion of the copies. 

In this model, all Gribov copies are continuous and can 

be located from a
0 

= 0. What are the copies when ~ = 0? Consider 

It is easy to see that when ~ 

' -1 (~ = 0) as long as o31 o32 

( 3.8) 

= 0, OV is of the same form 

-1 -B2B1 : ~ = 0 corresponds to 

a two-parameter family of rotated Gribov copies. The family of 

rotations leaves 1~1 invariant, and so, of course, is a symmetry 

of the action. 

This family of copies contributes an apparently indetermimte. 

term to the functional integral: a (double) zero (from the measure, 

Ai>, times an infinity (number of copies i. e., volume of the 

th subgroup of rotations to the N power), times the exponential of 

the action for a given member of the copy set. This is in fact 

the general form expected for continuous copies. 

Fortunately the functional integrals (3.1) and (3.7) are 

easy to do explicitly on the grid. There we face N decoupled 

three-dimensional integrals. The result is finite on the grid for 

sufficiently small £, J, K, 1: 

-16-

( 3.9) 

It is particularly clear on the grid that the "copy-space" (say 

A
1 

= 0) is contributing nothing. Even though all B
1

, B
2 

is 

contributing, ~ = 0 is a set of measure zero. Indeed, we could 

have neglected the copy space entirely and still gotten the same 

answer. 

We are not certain that Gribov copies are always so harmless. 

On the basis of this model however, and those of Section II, we · 

can repeat that copies do not necessarily invalidate a gauge. Indeed, 

the most reasonable hypothesis continues to be: if Z is well 

defined in any gauge, it will be well defined in a copy-gauge, a 

providing the correct measure for the copies. 

A final remark illustrated by this model is that a
0 

= 0 is 

not sufficient for Gribov copies. To wit, 

The form 

(~ ~~ 
v = : :) 

ao 0 when B = 0 2 . 

is preserved by 0 a rotation about the 1 direction; yet under 

this rotation ~ ~ ~, B1 ~ B1 and there are no copies. 

;· ' i 
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IV. EXACT 6'S IN QCD 

To make our points above cleanly, we needed to be able to 

compute the Faddeev-Popov determinants in closed form. In QCD, be-

yond the axial gauges, we know of no such cases in the literature • 

There is however a large class of (ghost) gauges in QCD 

for which the determinants are easily computed. These are the 

"field-strength" gauges, wherein gauge conditions are on the field-

strengths instead of the potentials. As an example, we will discuss 

the so-called "upper-triangular" gauge. 5 

In 0( 3) QCD, consider the color electric field 

E~ (a= 1,2,3 is color, i = 1,2,3 is space]. In matrix notation 

(E)ai ;;; E:, the gauge rotation is E + OE, with 0 an orthogonal 

matrix. Following the gauge~choice (and discussion) of Section III, 

we choose the upper-triangular gauge 5 

E 

and E11 ~ 0, E22 ~ 0. Following Section III, we compute 

+ 6 
0 

(4.1) 

(4.2) 
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It is easy to see also (as in Section III) that there is a two­

parameter set of (rotated) Gribov copies for ~very. confiiuration with 

E11 = 0; there is also a one-parameter (now non-trivial) set of 

copies for each configuration with E22 = 0. 

We have not been able to prove that the copies are again 

' of measure zero (as in Section III) or harmless (as in Section II). 

The field-strength formulation of QCD5•6 may be helpful in this 

investigation. 

Also of note about the field-strength gauges i~ the fact 

that they ~be reached in perturbation theory. By the same 

token, they have no obvious perturbation expansion. The reason is 

simple: in perturbation theory one is expanding about an Abelian 

invariance, and such transformations will not rotate the field-

strengths. Such gauges deserve further investigation. 
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