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The t <0 multiperipheral formalism of Ciafalorni, DeTar,
Misheloff, Mueller, Muzinich and Yesian is reviewed, extended, and
applied to the ordered S-matrix whose rinec amplitudes comprise the
zeroth level of the topological expsnsion. Toller N-fumction
notation is used throughout. The bootstrap and cylinder probleas
are formulated in terms of a well-defined helicity pole propagator;
a definition of the complete twisted Reggeon loop, which sppears
in the one-twist term of the cylinder, is given as a helicity pole
expansion. Some considerstion {s given <o the following subjrcts:
diagonalization, naturslity, threshold behavior, Regge cuts, and

complex heiicity.



(i) INTRODUCTION

During the year 1969-1970, after a period of vigorous activity
inthe field of multiperipheral dynamics, Ciafaloni, DeTar, Misheloff,
Mueller, Muzinich and Yesian presented, in five heavily cverlapping
papers, the exact kinematic analysis of the multiperipheral nader. 15
These papers were, in our opinion, extremely complicated in part due
to the nature of the snhject, and in part due to the fact that they
incorporated mathematical ideas which were simultaneously being
invented by the mathematicians, notably Mukunda.6 Possibly, the
relative obscurity of these papers has discouraged people from
attempting an exact multiperipheral calculation, leading them instead
to rely upon the approxirste Mellin analysis and thereby to relinguish
the capability of handling the true angular momentum which is central
to Regge physics.

Since the invention of the S-matrix topological expansion in
1973-74 by Veneziano, there has been some remewed interest in multi-
peripheral calculations, in particular as they pertain to planar
amplitudes. In a recent x-evie\d,7 Chew and Rosenzweig have partially
reformulated these planar ideas in terms of the so-called Ordered
S-Matrix, the commected parts of which are called ring functions.
Although the concept of ordered Ting amplitudes hss not yet been
convincingly extended to the baryonic sector, it seems likely that
efforts now in progress will soon suc:l:eed.a

In this paper we have attempted to review, elaborate upon, and
consolidate the ideas of Ciafaloni et al, and to adapt these ideas to

the ordered S-matrix framework.
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A reader familiar with the above-mentioned multiperipheral papers
would find, upon comparison of our descriptions with theirs, many
differences in presentation, some of which we mow enumerate. First
of all, we feel we have greatly simplified the group-theoretic aspect
of the wultfiperipheral analysis by identifying, as the agent which
performs the diagonalization of the multiperipheral equations, an
almost trivial addition theorem involving the same Legendre qi-type
functions which appear in the Froissart-Gribov projection of Regge
theory. These Legendre functions are generalized in that they carry
complex helicity indices whose role we continually stress. The
reader is referred to Ref. 9 for an extensive discussion of this
group theoretic husiness.

Another difference one will notice is our attempt to isolate
and identify an object called the helicity pole propagator which
connects cluster discontinuities along the miltiperipheral chain.
Strangely enough, vhis propagator owes its existence to a factorization
condition which results from the same Legendre addition theorem
mentioned above.

Obviously spin is an important concept in a multiperipheral
analysis which purports to compute Regge trajectories. We have
attempted to include spin in full generality (i.e., on external
particles as well as internal poles) by maxing use of the Toller
M-function foimalism. To our knowledge, no vne has written unitarity
equations in this formalism which seems sc well suited to the presen-
tation of multiperipheral kinematics. ’

Interlaced with the discussion on the following pages one will
find a sort of running commentary on parity and raturality, leading

to a naturality diagonalization of the planar buotstrap which is,


http://multiperipher.il

~4-

we feel, an improvement on the original discussion by Cisfaloni and
Yesimm.

Generally speaking, the exact kinematic analysis ailows one to
think about things which simply do not exist in the rapidity framework
which more or less ignores helicity. We have extracted the threshold
behavior of the ring functions and have made a start at examining the
ronsense z2eros which are presused to remave Regge cuts.

In Section (5) we describe in a rather different manner than
that of Refs. 2 and 4 the construction of the standard frames of the
multiperipheral ladder. By continuing the ladder kinematics to the
center-of-mass cross charmel, we show in Appendix (E) how the peculiar
boost parameters which link the standard frames are the continuations
of variables familiar from center-of-mass kinematics.

The "planar” bootstrap and cylinder problems are both set up —
the cylinder in more detail because it lacks the counting problem — but
no detailed calculation is actempted because we are stymied by a problem
involving the carrect method of shifting the helicity contour. We
have isolated this problem in the last section of the paper; it must
be solved before the machinery described herein can be put to work.

Nevertheless, we do obtain an exact formal expression for the
complete twisted Reggeon loop k(t) which controls the cylinder shifts
of the planar trajectories in the phenomenology of Chew and Rosenz-eig.m

For a detailed outlire of the paper we refer to the Table of
Cortents preceding this Introduction. In general, the first eight
sections describe the multiperipheral construction, Section (8} gives
the angular momentum diagonalization, and Sections (10) and (11} apply

the analysis to the bootsitap and cylinder problems.
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(2) MULTI-REGGE PRODUCTION AMPLITUDES

To motivate the specific form we use for the multi-particle
production amplitudes, we appeal to the notion of a particle pole in
the S-matrix. Figure 1 shows a particle pole term known to be present

in the {-point functian (repeated indices are implicitly summed),

(a,.3;.3,,3,,35.3;) £

nlnzn,m,‘nsns
Sy
<Dy us (2 \
Mo mmm (87035:8,08,) L M, poare (3,03,025030) -
7 3 4 S 51'.7‘15 1 2+7 &

(2.1
This pole has a residue which factcrizes into two pieces, each piece
being a 4.point function normalized in the same way as the original
6-point function.

Each x in Fig. ) marks a particula- standard rest frame for the
particle on whose line the x appears. (MWhen the pole is reggeized
below, some x's wist denote spacelike rest frames.) The notation is
approximately that of Tol ler:u the s; are the spins of various
particles, m, are helicities (compoment of spin along the z-axis in
the standard frame marked by an x). The same symbols 55 and m; are
also used ro denote certuin Mandelstam invariants and masses of
particles; the usage should be clear from the context. The meaning
of a dot wnder a helicity index is explained in Appendix (B).

The ay appearing in Eq. (2.1) and Fig. 1 are, for each particle,
the parameters of a (possibly complex) Lorentz transformation which
connects the particle standard rest frame to an arbitrary “lab" frame

z s : 57
as indicated in the figure. The variable g appearing in D' -.(g)
™7

denotes the rotation g = a.,la; ; the siandard D-fum-*ion [see

Appendix (A)]J is generated by covariation from the M-function on
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the left according to the simple rule given in Eq. {8.3). s, is
the spin of the particle pole, and m,.m) are the helicities of that
particle in two different reference frames.

It is perhaps worth noting that, although they carry spin and
helicity indices, the M-functions appearing in Eq. (2.1) are Lorentz
scalars, unlike the momentum space M-functions of Stappu and Tay}m-.u
Secondly, we have been careful to properly order the particles
cansistently around the connected parts so that all our equations
apply equally well to the ordered amplitudes (ring functions) in the

ordered S-matrix framework associated with the topolagical expansion.7

The factor (s, - -27 + ir)_l in {2.1) is of course the actual

pole; the numerical constant c is discussed below in Section (4},
and can be arranged to equal unity.

Equatic: (2.1) is, for the pole term, an exact statement. We
now assume that this particle pole is in fact one of many poles which
occur on a Regge tTajectory @,. The contribution of o, to the 6-point
function shown in Fig. 1 should be given by the above expression with
s, continued to a, and with the various g.oup arguments and invariants
continued so that the equation is in a useful Regge region. Accounting

for signature, the usual Regge nachinery' may be implementcd to give

“Regge theory for n-point fgnctinns with n> 4 1s much more complicated
than we make 1t sound.3’s3 Ri.gorvausly,38 both the physical and
ardered S-matrix n-point functions must be decomposed into a sum of
“spectral components" by means of an (n- 3)~variable diaspersion
relation (Bargmann-Well). Each spectral term contains only Steinmann~
allowed multiple discontinuities, a fact which implies the existence
of a Lehmann ellipse of convergence for each zj varisble in an
appropriate physical cross channel (hexagraph). As a result, the
infinite angular momentum and hellcity sums are convergent at least
somewhere, and this allows the Sommerfeld-Watson cantinuations to be
defined. So, rigorously one does a Regge analysis on cach spectral
component and then adds the resylts, or one sticks with a eingle
component and diagonalizes unitarity onto the spectral componenta.

We feel that the form of our results will be the same in either the
rigorous Regse theory or Ref. 38, or the nalve Regge theory preseuced
in Section (2}.
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the following result (see Fig. 2):

@7545,S5 S)5,8,5¢

Ms,..s‘ : M

T,
LTS W m,m My [Fac:or]M1“; lmzl.n;ms 4 2.9
where we have suppressed the a; arguments, and where
[factor]:, - i, ¢ catw
a m+e a
d (-2) + 7(-1) a_,(z)
L L . 2.3

2 sinm (a+m)

The variables g = ($, z=cosO, ¢*') which appear in Fig. 1 are now
0(2,1) variables (¢, z=coshf, ¢'}. The signature of Reggeon a, is
7, (a spin-l particle has positive signature), and €,=0 or L depending
on whether a, i> a boson or fermion trajectory. lsing Eq. (A.8) one
may show by taking a, + s, that the Regge form (2.2) duplicates the
particle pole term of Eq. (2.1).

‘The finai step in obtaining the Regge form we shall use is to

perform & "Mandelstam trick” operationu

which causes the first-kind
functions in [factor]-, to be replaced by second-kind functions

which have simpler asymptotic behavior. Performing this operation

we find

[factor]::. =Yg E,':Il(g) . (2.9)
vhere

E:;l(g) = i e:Il(z) onime’ (2.5)

Y = -ca'tanm(a-¢) N (2.6}
and

emimta-e)
£ - [-mm : @.n



The function e::l(z) » defined in Eq. (A.10), has the expected
Regge behavior 2% for large z, € is a standard signature factor, and
Y contains the leftover factors. In particular, y contains a' and
therefore has dimensions E-z. In Eq. (2.1) these dimensions are
generated by the pole it-¢1f. Realizing that the n-point Toller
M-function has dimensions E"n, one may verify the dimensional
correctness of (2.1} or (2.2).

The Regge residues appearing in (2.2) are three-particle/one-
Reggeon smplitudes normalized in the correct way so as to become
physical four-particle amplitudes when the Reggeon is taken to the
appropriate value of mass and spin (and signature, if M is not an
ordered amplitude). Since the physical helicity amplitudes must
vanish when the helicity is out of range (has a nonsense value),
the residues must contain factors to knock out the umphysical poles,
since this ghost-killing function is not being performed by !f-ctor]_,.
For example, one might take®

s 7 :

H:is!siSS - )i - M
Ll TN [F(a,+ 1+m,)T(a,+ 1-n)]"

(2.8)
So far we have considered the Reggeization of a single-pole
term in unitarity. Had we started with the appropriate multiple pole
term, we could have obtained 2 multiple Regge residue or four-Reggeon
amplitude which, werc all Reggeons continued to particle points,
would be normalized so as to yield a physical four-particle helicity

amplitude. We feel that this is a useful way to normalize Regge

“In the sense-nonsense reglon, addirional square-root zeros are
provided by the d-functions. See, for example, Fig. 8e of Ref. 9.
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residues, and is ulrimately necessary if one attempts a complete
bootstrap of, say, the triple-Regge vertex. We shall mention this
later in Section (10) (but will not attewpt such a ‘.sotstrap).
Although threr-particle Scattering amplitudes have no place in
a stable-particle 3-matrix theory, unstable particles may be called
upon to give weaning to the following equations. Figure 3 shows a

particle pole term in the 4-point function. In analogy to (2.1)

we Write
$,5,5,5
172737, -
(a,,a,,a,,a) =
lmzmamu 1 2 3 .
S, 5.5, S 5.5
573 '-( 17278 v
M a ,a_,a.) (a,,a,,a]) - (2.9)
LTI [t Whar Mt }
-S-QIE [S -1-2!5

Reggeization in the same way as before yields this expression for the
Regge pole term shown in Fig. 4:

S ..S a,s,s ~as-1 5,5,Q.
1 » . 5735 ] 13295
= - |v.E { - {2.10
y- -1y um [ s=s E-s.'s g)] Hl‘lz!; )

Again, the Regge residues (pieces of the factorizing residue of the
Regge pole in the Froissart-Gribov projection) appearing in Ea. (2.10)
are normalized so that, as o, ~ Sg» these two-particle/one-Reggeon
amplitudes approach the standard three-particle Toller M-functions
appearing in Eq. (2.9). The helicity nonsense-zero structure of
these standardized "Regge couplings™ is presumably similar to. (2.8)
above. Notice from the rule E"'n that these Regge couplings have the
dimensions of energy.

By reggeizing a double pole wmitarity term, one may obtain the
following Regge contribution for the t<o-to-three production amplitude

shown in Fig. 5:
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. 575,03, -Og-1
; Mm:,m:m: [YeEs Etrsm; (gs)]

TS0y ~a,-1 3,55,
MI.Ir',la._m [71£7 Em’;_', (g7)] Mq:.',m:ml . 2.1

1

3¢Sy
The objecrt M is the two-Reggeon/one-particle amplitude which

continues to the Toller 3-point function when a, + s, and a, + 5.
Again, this “double Regge vertex" has dimensions of energy, as does
th: triple Regge vertex which we have not shown. These vertices differ
considerably from the phenomenological Regge couplings (dimensionless)
and triple-Regge couplings (GeV-z).

The form of the general multi-Regge production amplitude should
be clear from Eq. (2.11). Each Reggeon gets a bracketed “propagator"
factor with linking helicity stms on both sides. All vertices are
standard Toller 3-point functions continued in the appropriate way.

We conclude this sectivii by observing that, in the ordered
S-matrix framework where the M-functions in (2.11) are replaced by
ordered ring amplitndes, the multi-Regge-pole expansion should be,
in the peripheral region, a very good approximation since there are
{presumably) no Regge cuts in the ring functions. The theoretical
accuracy of {2.11), when summed on a, and a,, is thus limited only by
peripherality and the convergence rate of the Regge asymptotic series,

i.e., duality.
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(3) THE VERTEX: HELICITY AND PARITY CONDITIONS

We have been writing the triple vertex in t.e form M.lnzn,(a,,az.a,)
to stress the fact that the vertex is like any other n-point Toller
M-function. As we now show, however, this notation is extremely
redundant. Using the freedom allawed by the Toller invariance condi-
tion [see Eq. (B.3)], one can choose to superpose the external "lab"
reference frame — with respect to which the various a; are defined,
as in Fig. 1 — onto one of the standard reference frames associated
with the vertex. Since the vertex standard frames are connected by
certain z-boosts G,, 0,, and q which are functions only of the
invariants entering the vertex [see Eq. (5.1)}, one may conclude that
H- an (nl,l,,a!) is itself a function only of these invariants. This
si;u:t;un is illustrated in Fig. 6a where we have placed the reference

frame onto the standard frame of particle ! to get H‘ (e,q-',o;').
)

L
Elat
where e is the identity transformation.

1. Helicity Conservation
Consider now this series of operations in which ¢ represents

the z rotation R (4):

H-.-z-. (3,,3,,3,)

=1 =1
LN O R

=M (¢e, 87", 407}

lllle!

-1 =1
H_‘_z_!(ea. q7'e, o'e)
e Ime impd -imgd Hm‘mzm’(e. 97 o)

gmid(m emem,] Hmlmzm’(al'al'BJ) . (3.1)
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Tn line 1 the reference frame is identified with the rest frame of
particle 1, as already noted. 1In line 2 the 4's are made to appear
via the invariance condition of Eq. {B.2). In line 3 these rotations
are commuted through the z boosts q-l = Bz(-q) and 0;’, and then in
line 4 the ¢'s are separately covariated to the right according to

Eq. (B.3). Comparison of the last line with the first then shows that
= smtm = 0 (3.2)
i.e., helicity is conserved at the vertex.”
One dees not find such a condition for the higher n-point

functions because the rotation ¢ does not comeute through all the

3; no matter how they are chosen.

If parity is an invariance of the theory, we may use an argusent
similar to that of Section 3.1 to state parity invariance in terms of
the vertex. Since the parity operation, which Tculler15 calls s, is
an element of the little group H _ of the 4-vectcr (#,0,0,0), the rotarional

covariance conditions [5hown in Eq. {B.3)] may be extended to read, e.g.,

N 5,1,
m,m,-)(a,.az.a,s) = Ma D';':(s) = om, H-,nln,(al“’i'a!)'

LAY
(3.3)
where T, is the intrinsic parity of particle 3. Since the operation s
fails to commute through the 2 bousts [see Eq. (7.6)], it is more

convenient to use Toller's parity operator s' defined by

st o= Ry(ﬂ')s (3.4)

*Rut <ce Section 3.4 for qualifications on thiz and subsequent
cquations of this section.
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for which the covariance cordition on particle 2 reads, according
to Eqs. (3.3) and (A.8),
53‘“3]
Mm,m,m!(a,.a,.a,s') = [n,(-n M

mm, .-m!(ax »3,,3;) . (3.5)

Operator s' brings out the intrinsi: parity and negates the helicity
of the affected particle. Since s' doeg comoute with the z boosts,

one may repeat the argument {3.1) to find this vertex parity condition:

H H 3 ( si-m;
m!mzm)(al,az,a!) = ‘nl._.:,_-!(al.az,a!) l];\l'[i(-l)
- (3.6}
As a corollary to Eq. {3.6) one has either
.Fr 55 $15,5,
o l'[i(-l) =1, or Hooo (2,,3;,3,) = 0. (3.7)

For example, if $,=5,=0 then all three helicities must vanish and
one concludes from the above that the vertex vanishes if W TN, #

s
-1) 3, as one_would expect from 2 more conventicnal angular momentum

argument.

3. Parity with Reggeons

Another convenient property of the parity operator s' is that
s', unlike s, belongs also to the little greup H_ of the spacelike
Test vecror (0,0,0,*)}, as does Rz(t). Therefore, if one or more of
the particles at a vertex is replaced by a Reggeon — which may be
spacelike so that H_ is the appropriate little group — one shall find

o

that the helicity and parity conditions still exist. The helicity
conservation condition of Eq. (3.2} is unchanged, except as noted
below. The Reggeon parity covariance condition is

S, 5,0 ~imm 5,5,0
T - [ a] 1520y
mlmim,(al'aZ’als') a, e H.‘-I'_-!(I,.az,ngl (3.8)
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where

g; = Hi e (3.9}
with s; a physical point on . and Hi the intrinsic parity of that
physical point.

The quantity 0; appearing in (3.9) is what we shall call the
Reggeon naturality, and is a constant along an ordered Regge trajectory.
Another way to say this is that the exchange degenerate partrers which
together compuse an ordered {planar) Regge trajectory have the same
naturality Ui‘ even though the intrinsic parity ﬂi and spin parity
(-l)si-!i alternate at the physical points. One sees that, as a, > s,
Eq. (3.8) reproduces (3.5).

For fermions, the physical point parities “i and naturalities
o, are, according to Eq. (3.9}, out of phase by 80°. In the M-function
formalism one can pmve16 from crossing and TCP that
i

s
UL SRS

i (3.10)
A purist, allowing for the possible existence of self-conjugate
fermions, would have to accept imaginary parities for those fermions.
As emphasized by Stapp!7 the most reasonable convention is to give
all fermions imaginary intrinsic parities. (Toller too uses this
convention.“) In this case, paturality o = :1 for fermions as well
as bosons.

We leave to the reader a comparison of Eq. (3.9) with the more

common definition of naturality

-€;

Si-6
n; = RN ) (3.11)

where intrinsic parity Pi = *] for both bosons and fermions, and

0 for hosons and one-half for fermions. (Certainly for bosons,
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Once Eq. (3.8) has been established, the argument of Eq. (3.1)
may be applied to give a parity condition for the single Regge vertex
shown in Fig. 6b:

S.5.a 5, S, a
MR L. - 1 72 %
mlnzng( 1°%2° 3) M..l,_mz,.ma(al’az’a:) (3.12)

A [ [

This says, e.g., that two pions cannot couple to an n trajectory,
even though such a coupling is allowed by G-parity.
For the two-Reggon/one-particle vertex a condition similai- to

Eq. (3.12) results (see Fig. 6¢):

0,08, -im 1 -i'lm2 S,-my
llzns(al 23503y} = [al € ]Laz €. ] n.-1 ]
a a, s
| Y P B 3.13
R IRl T 203y ( }

The triple-Regge vertex is more complicated because one cannot
always link the three standard frames with z-boosts. In particular,
when A(t’,tz,t,) is negative, the three frames are connected by
y-l‘otat’.iuns18 (see Fig. 16). Conveniently, the parity operator s'

also commutes with y-rotations; the parity argument then goes through

to yield
a,a,n -imn -imm, -itm
17270 _ 1 2 3
Hm mm. (a,,3,,8,) = [al € ] [az € ] [a! € ]
MM
@, @, @
* H_m‘_mz_m!(a,.a,.a,) . (3.14)

so that negating the Reggeon helicities is equivalent, for A>0,
to multiplying by the product of the Reggeon naturalities, since

the helicities cancel by Eq. {3.2}. However, since y- and :-rotations
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do not commute, the helicity condition of Eq. (3.2) is broken for

the spacelike triple-Regge vertex, A<C.

4. Caveais, and the Yeiiex V

We wust now add two important qualifications to the preceding
equations of this section. As written, they apply to Toller 3-point
M-functions with all particles and Reggeons being in the initial
"state" gnd with all spinor indices of the umdotted upper type (see
Appendix B).

To be tonsistent, certain particles andt Reggeons must be put
into the final “"state" of each vertex. We choose to let this convention
be determinsd by the direction of the arrows in, say, Fig. 15. Mhenever
a particle or Reggeon is in the final state, the relevant bracketed
factor in Eqs. (3.5)+(3.8) and (3.12) = (3.14) must be complex-
conjugated.

Secondly, we must face the fact that inevitably some of the
hellicity indices we are dealing vith are of the undotted lower type.
These indices, marked underneath by dots ~s in Eq. (2.1), are necessarily
lower in crder iy preserve the spinor covariance of the equations.

When gn amplitude with a lawer undotted helicity index is covariated
as in Eq. (B.3), the D function wust be teplaced by D*. The net
result is that helicities in Eq. (3.2) corresponding to lowered
indices will enter with minus signs. However, the parity conditions
are the same, regardless of wk- .her indices are upper or lower.

The vertices in which we sre mainly interested have the form
of the central vertex of Eq. (2.11). In the notation of Appendix B
and with the conventions made above (and, &s ~lways, maintaining the

cyclic ring ordering) we write this vertex as



= M Ta,ralagy o2 VLT . (3.15)
€

The helicity and paritv conditions for this vertex are then found

from kgs. {2.2) and (3.13) and the abowe conventions:

m,o-m +m = 0 , (3.16)
it e . .
o5&, [ -117!:5] f 5.-B, [ -ime.] w.s.q,
Vm;mhm’ = Joge [H.(-l) o, e V_m;_mk_m’.
(3.17)

Once again it shov'd be stressed that this vertex V has the
standard normalization of a Toller M-function, has dimensions of
energy, and {in addition to the labels shown) is a function only of

the invariants entering the vertex.

(4) THE UNITARITY PRODUCT
Even when all particles carry spjn,‘3 the unitarity equations
for the momentum-space M-functions are completely charactecized by

the usual bubble diagramslg together with a set af *"0live's rules "

internal line = -2mic 6‘(];2 -2

independent loop = d~p/(-21licf)

pole = c/(s-nze ie) .

One needs also the relation between the M-function bubbles and the

raw connected parts:

) = (-2mich) §(exty u*?

+

6 = (-2nieH)” § (ext) wul-)

In these relations, the constant f determines the normalization of

the single-particle states,



= .‘i’.fe'(p-p’lsm B

.m
and ¢ gives the pele residue, as n Eq. (2.1}. Authors naturally

differ in their conventions, c.g.,

£ror:'? c=1 f= ()’
.

Stapp: '~ c=i f=em®

'\'ew\or:]:s c=-1 f=1/2

We favar the convention of ELOP, but shall always give results in
terms of ¢ and f.

Once a unitarity equation is expressed in terms of the Stapp-
Taylar M-functions Mm]. - (p‘ WPpe - .), it may be converted to Toller
M-functions via the inverse of Eq. (B.4). Details of this conversion
process with attention paid to the spinor indices wili be given
elsewhere. 1%

Before tackling the general multiperipheral unitarity product,
we first illustrate the forw unitarity takes in terms of the Tolier
M-functions by writing down elastic unitarity as sketched in Fig. 7.

The formula is

= -cfnf dQZ[Mm’mhmsms(a,,a“as,aﬁﬂ

Ss 56 . )
G O i (O mlme;m;“"l'ar“s"’s) .

(a.1)

N v 2 2 « e, 2 2
dp, & (p,-n) dp, & (p, -m)
3 3

dQ, =
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As usual, we are maintaining the ring finction ordering conventions.7
The dots over the w, and m_ indices on the left side af Eq. (4.1) are
necessary to maintain the spinor covariance. The rotation functions
azise in the same way as the D{g) in Eq. (2.1}, namely, from the
Toller covariance condition show 1in Eq. (B.3). We are anticipating
a system of standard reference frames to be reviewed shortly in which
it will turn out that these rotations will be pure y-rotations, )(i,
whose presence was first noticed by Misheloff.4 At t =0 the rotrations
all vanish, but for t <0 they do not vanish and are determined up to
a sign by the peripherai invariants t {see Section (5)].

From Eq. (4.1) it should be clear how the general n-body unitarity
product appears. Each intermediate particle gets a Misheloff rotation,
and the helicity indices are summed over Systematically. The n-body

phase space is

dpi6(p

n.)
a, = 3 (m)’ﬂ' ———f~—) (.2)

where, as in Eq. (B.1), p; = L(a., i‘ Sometimes it is useful to
visualize each produced particle as a cluster of variable mass and
spin, in which case Eq. (4.2) can be adjusted by replacing
6‘(p; -n;) - 6'(p: - si)dsi and adding spin sums Zsi.

We aTe now ready to insert into the general n-body unitarity
product 2 model for the production amplitudes, namely, the multi-

Regge production amplitudes developed in Section 2, which we now

write as

$2505,53-+ -SnSh Sa50%, ~a,-1

D FPy- <Pty Vmopm *EEmr(g)

MaPgF 2Py - <Py, 'aPo™; “.3
a, s,a. -1 Q) Sn S|
171%2 n>b
Vr m. [YEEmr(gz] v DMy,
1Py TnPnmy
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This amplitude is shown in Fig. 8; the V's are the standard vertices
described in Section (3), and we are now using m,r,p as helicity
labels.
It is pzrhaps useful to observe that the tracketed factors in
Eq. (4.3) have three sources of phase when a is real:
1) the aziwuthal phase exp[-l(-iti + ri‘;)] froa E(gi);
3i) the phase (20)5 ™ from the e-functions at z>1
arising from the kinematic spin cuts (half angle factors)
in the swplitude;
§ii) the Regge phase of the signature factor Ei'
Of these three phases, only the Regge phase will be incorporated into
thz helicity pole propagator to ve defined below.

Suppressing the Toller &; arguments, we now state the n-body

multiperipheral unitarity product as
$1,5a5a50 SiS .. .5,5,54
) Y b~ a*a>b [ b n 170
dis = ~cfx § 4Q ° *
T e H‘\a“a‘;ﬁ; < j % SPn---PiPoRy

no7s; Sg3g5, ¢+ Sn3p
= T (e, (xi))[H_“” ] RS

i=1 \ PiPy aPoP- - Priy

where each M-function on the right has s form as in Eq. (4.3), and
where dQn is given by Eq. (4.2). In (4.4) the only vuriables not
summed over are those with subscripts a and b. The spins and
helicities appearing in (4.4) are labeled in Fig. 9 which shows the
n-body unitarity product with the multi-Regge amplitudes inserted.
Our notational plan is always to use primed variables for the upper
side of the ladder and unprimed for the lower side. The reader is
again cautioned about our multiple usage of the symbols S5 (spin,

invariants), P; {(mopentium, helicity), and mg (helicity, mass).
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The next step in the program is ro actually insert the production
amplitudes of Eq. (4.3) into (4.4) and make some sense out of the
resultant exprescion. We wish to show that Regge poles in the upper
and lower amplitudes are converted into helicity poles in the central
kinematic level, and that it is these helicity poles which determine
the Reggeon loop which lies at the heart of all bootstrap and cylinder
calculations. Before we do this, however, we must make some comments

about the frames in the various kinematic levels.

(5} FRAMES

The study of the reference frames associated with the multi-
peripheral ladder is ar best a tedious and unpleasant business.
¥We propose only to outline the developsent of these frames and to
provide a few interpretations where useful. The ends of the mulri-
peripheral ladder, where the frames are slightly different, will be
completely ignored. Usually in multiperipheral analysis the end-runys
{or at least one end-rung) are amputated, the physics is done, and
then later the end-Tunps are Teattached {see Appendixn F); Repge
physics does not require the end-rungs and this is our justification
for ignoring them.

In the description which follows we have for no particular
reaton adopted the notation of Ciafsloni, DeTar and Mis.l'te]cnl"fJ vather

than that of Mueller and Mxllnit:h.z

1. The Vertex
The frame analysis begins with the simple vertex shown in
Fig. 10, where two spacelike momenta ll and lz acet a future timelike

womentum p,.  Frame ¢ is a rest frame of Py in which the 3-momentum



i
M

¥, = ¥k, peant< in the pasitive 2z dircction. Ohvicusly, frame ¢ is
only defined up to a z-rotation, a fact we shall make use of later.
Frane b [d) is ohtained from Frame ¢ by a :-hoost v, (0}') which
bringe '-l (kz) to spacelike resr ”i = (n,n'n,\/-ti 1. Clearly,
frames h and d are linrked by the 7-boast G, = Vv, *0,. From momentum

conservation it is casy to compute thess hoosts in terms of the

invariants tl,tz and LN

shv = (s et -t/ 2ds) /oy N
<h:17 = (1|~r‘~!,)/2\/s| \/-17 N (5.1}
chg = (s -t -t/ 2V VT

The variable q, may be interpreted as sensing the mass2 s flowing

up the cluster P, By computing (k, - k,J in frame b, one finds that
q, is positive hecause r is future timelike.
20

The frames b,c,d defined above are the usual BCP frames

associated with a production vertex.

2. The fung

We now comhine rwo vertices to make one multiperipheral rung,
shown in Fig. 11. The triad of frames (h,c,d} just discussed appears
on the lower vertex, and a new triad (h',c’,d') appears on the upper
vertex. The primed hoosts connecting the upper frames are given by
Eq- (5.1) with t; +1 .

Frames ¢ and ¢' arc both rest frames of [ and myst therefore
he connected by some rotation g = RZ[QI)R!’(X‘]RZN;). We now use up

the z-rotation degree o” freedom in defining each verrex frame triad

to set ¢, -Q;:ﬂ so that the frames ¢ and ¢' are linked hy a pure
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y-rotation X,. This is the Misheloff rotation mentioned in Section
{4). In Appendix E we interpret this variable as a cross chanmel
(t + =) Regge variable z = cos(X); an expression for cos(X) will be
given below.

The six frames shown in Fig. Il are now interlocked, and all
3-momenta are confined to the x-z plane.

Next, four ncw frames a,a',e,e’ are added as shown in Fig. 12.
For example, frame a is obtained from frame b by an x-boost h,.

This boost of course does nothing to momentum k(,b) = (0.0.D,J-t,),

1(a)

but is chosen so that k‘

is x~z like; i.e,, the boost h clears
out the energy component of k;a’). Boost h: is chosen similarly so

that kfa.) is x-z like. These statements may be summarized as follows:

k@ - (0,000 K2 - om0
-2)

B@ . 0% K@ o (0,00,

It should be clear from Eq. (5.2) and the lack of y-boosts in
the problem (so far) that frames a and a' are connected by a y-
rTotation, which we label 8

y10- From the fact that t = (k + k;_\z

one quickly shows this rotation to be given in magnitude by

cos8,,, = (t =+ t: -0/, VL (5.3)

Then, from the loop equation on the left side of Fig. 12,

-1
X, = ;DT 8 v, (5.4)

one finds the magnitude of the Misheloff rotation
cosX, = (cos8,,+ - shv;shv])/chv;chvl . (5.5)
Reordering the same lgop equation one may then compute the hoosts

v,
h, and h :
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.

- tes N
ch h‘ = ch v‘sxnxil sxnen.

(5.6)
chh, = ch v,sinX, /sin@,,

We have now described the frames a and a’, and the new
transformations h., h; and 9”.. In exact analogy one defines the
frames ¢ and e' and transformations f_, f; and 9, .,. Equations
similar to those above are then obtained by comparing Eq. (5.4) to

-1 -1
' g

. R . RTOS I
the right-side loop equation X, = (oz) £, 0, : 9, -

3. The Central tevel Frames

To the set of ten frames so far def.ned with respect to this
one multiperipheral rung, two final frames f and g are now added,
as shown in Fig. 13. We shall refer to frames like a,b,d,e as being
lower level frames, those like a',b’,d*,e' as being upper level, and
f and g as being frames in the central level. These central level
frames are in fact brick wall systems (bws} or Breit frames. Ne
define a bws frame for the system (ki,k;) to be any frame in whic..
ky 'f.i = 0, where k; represents the first three components of the
4-vector k;. We shall vefer to such (t,x,y) objects as ueraarau
to distin uish them from the nomal 3-vectors (x,y,z) like ;:i’
Since kiok; = 0 in a bws frame, the overall momentum transfer
Q= k; -rk; is at spaceiike rest, Q = (0,0,0,4/=t ). In Appendix E
we perfora a complex Lorentz transformation which converts bws frames
10 ems frames in which &, +K} = 0 and Q@ = (V¥ ,0,0,0}.

Now, frame f in Fig. 13 is that particular bws frame in which
versor k, points in the positive x direction, and versor k, is t-x
like. Similarly, frame g is defined to pur versor k, in the positive

x direction and to make k, t-x like. These two frames f and g are
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thus linked by ar x-hoost v, whose magnitude we shall compute in a
moment.

In all bws frames for the system of momenta (ki.k;) the
z-components and versor magnitudes are the same, just as in all cms

frames the energy components and vector magnitudes are the same.

We find
op? = abh? - (k’i‘)z - ah?
= ArLtLO/AeD 2 K .7
2 ) = =
ki = (-t - t; t5) 12Vt = z5 s (5.8)
"o v, = 0
(k)" = (-t - tyoety) /24/t = z5 - (5.9)

Because our interest is limited to the interior nuns of the t<0
multiperipheral chain where the kinematics requires A(t,ti,t;) <0,
we have defined -k§ as above. When the symbol x; appears below as a
scalar, it refers to this versor magnitude (-k%)” and should not be
confused with the 4-vector k;.

We wish to stress the similarity of Eqs. (5.7) through (5.9)
to the normal cms kinematics. If ki and k; were future timelike
4-vectors with masses (ti)" and (t;)", then in any ems frame where

Q= (vt,0,0,0), t >0, one would have

CA LI Y (SRR S PR . (5.10)
B, o= (vt - t;)/z\/:— . (5.11)
E; = (ter)-ry/VE (5.12)

so that the versor magnitude ki is the analytic continuation of the

cross-channe]l cms momentum.
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Sometimes the variahles B and :'i shown abave are written in

this way:
2 = K(en)¥ - i .
z; R ‘s{d)" - i 5.13)
where
¥ = (-t-!—;i) . (5.14}
VA

The variables ki and LA are useful replacements for the Regge massz

variables t, and t}.

- 2 2y b
ti = %t - (ki + ui) ui(~t)
(5.15)
. 2, 2 i
to= Et- Ok e W) s v (0T
In particular,
dt dt}
dkdw, = 1 —ii . (5.16)
* 2 f-aee e)f

Applying the above definitions to frame f of Fig. 13 we have

D L o0z KD = she,, ket 0,2,)
K o e,x0,2) G = Ckgshuy, ke, 0,0])
{5.17)

Comparison of kff) to kia) then shouws these frames to he linked by

a very simple y-rotation 9,:

W - o KO < o0
(5.18}
- sine‘ = kx/‘/‘t; cos8, = z,,/\/-t -
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Thus, the new frames f and g are interlocked with the previous

ten frames to give a total of twelve frames associated with this

single rung of the multiperipheral ladder. Computing p: = (ilz - ki)z
o &3
in frame f we find that the boost v, 15 given by
vy, = e ke /k, (5.19)
where
plom s ey - (s.20)

and all symbols on the right of Eq. (5.19) refer to versor ragnitudes.
With t and ail t; Fixed, v, measures the vlass2 s, of the particle
or cluster p,; in this sense the variable v, is similar to the BCP
variables a, and q: appearing in Fig. 11,

The complete set of twelves frames asscciated with the rung P,

is shown in Fig. 14.” 7

4. Many Rumps

We are now ready to juxtcpose two rungs of the multiperipheral
ladder, as shown in Fig. 15. In this figure one sees that the twelve-
frame systems associated with each rung are linked by a very important
y-boost called Ez. This variable measures the separation of the two
rungs in a quantity which would be called the gap rapidity in a one-
dimensional model. Notice that the same variable £, appears in the
upper, lower, and central levels. The frames on the central level are
linked to the upper and lower levels by y-rcrations like 8, of Fig.13.
These rotctions are given by the formulas one would guess looking at

Eq. (5.18) ahove, e.g.,

sind, = k, /vty cosB, = z3//-t; . (5.21)
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The only transformations not shown in Fig. 15 are “he y-rotations
like 8, , appearing in Fig. I4. Obviously 8,0 =06+ 6; .
Ne now make some remarks concerning the frames of Fig. 1S.
First of all, most of the frmmes on the lower ‘evel are the usual BCP
frames referred to earlier. Since the trauformation Iaheled g, connects

two frames in which kz is at spacelike rest, g, must be an 0(2,1)

transformation. In BCP this £, is written as
.
g, = R w) X(EI)Rz(vi) .

This form, known as the discrete-basis parametrizatior, goes all the
way back to Bargmanm, but we have put a twiddle over the x-hoost
parameter in order mot to confuse that variable with our y-boost
variable £,. The azimuthal rotations v, and v, are conjugate to the
Reggeon helicities in the sense discussed back in Section {2), and are
connected with the so-called Joller angles wo=wy e “iol' VYariable
E: is the Regge variable, i.e., z = :osh(E:), and is conjugate to
the angular mementum associated with the link k’, which is to say,
@, (see Fig. A].

Although the same BCP 0{2,1) transformation ¢, appears in Fig. 15,

it is parametrized differently, namely,
g, = BIF) B (L) B (h)

the so-called contil\uous—hasis6 parametrization of 0(2,1). As already
noted, the same variable Ez appears also in g;‘ the 02,1} transforma-
tion appropriate te the wpper production amplituce of Fig. IS.

frior to leaving this section on frames, we wish to add one
more observation concerning the frames conpected with the single rung

shown in Figs. 13 and 14. If one were to imapine the multiperipheral
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ladder on the right as generating a Reggcon in the central level, one
might draw the figure shown in Fig. 16, where we have redrawn the
frames a,a' and f, and their connecting y-rotations. We just want
to remark that these three frames are the usual standard frames cne
associates with the triple Regge vertexm in the configuration 2<0,
and the thetas are the standard y-rotations, A similar remark applics
to the frame triad, g,e,e’.

We are now ready to convert the Regge poles of the upper and

lower amplitudes into helicity poles in the central level.

(6) THE HELICITY POLE EXPANSION

Consider once again Fig. 15. In order to wotivate the next
tecknical maneuver, we anticipate a diagonalization procedure which
will be explained in Section (9). The frames on the central level of
Fig. 15 are linked by alternating x-boosts Vi and y-boosts Ei' Tt will
turn out that these frames and variables are the relevint ones for the
diagonalized (or even undiagonalized) consideration of the multi-
peripheral ladder, the reason being that these are the bws frames
in which the overall 4-momentum Q is at spacelike rest. We will
show that certain groupings of the v and £ variables form convenient

0(2,1) transformations, For example, the combination
BY(EI)BI(“!)B’,(E,)

is an 0(2,1) transformarion in the continuous-basis mentioned earlier
which in a certain sense surrounds the cluster p, in the central level
of Fig. 15. 1In the diagonalization process it will be shown that the

variable v, is conjugate to angular momentum j in the central level,



while the boosts Ez and £, are conjugate to camplex helicity variables
xz and XJ‘ flelicity poles in the complex helicity plane X will
correspond to powers of clil since these variables are Fourier
conjugates. It is for this reason that we shall now expand the upper
and lower Regge propagator functions E-u'l(g) and E>u"l(g') into
powers of elglv These functions appear in Fig. 17, which represents

a portion of the multiperipheral chain, i.c., a portion of the unitarity
product of Eq. (4.4) with the model amplitudes of (4.3).

We shall refer tc the form c[EIu as a helicity-pole term in the
same way one speaks of 2 as a Regge poie term, with the understanding
that the actual pole occurs in the plane of the conjugate variable,
be it helicity or angular momentum. Also, the square-bracketed
expressions in Fig. 17 will be called Reggeon propagators.

In Appendix C we give a derivation of the following {convergent)}
helicity-pole expansion of the lower propagator E-function:

-Q, -

E,” £,) SRSt Eze(-ca)
K= n2
(6.1)
a LA TCHELYS RS
n. ,xzmz(fz) € Fnz,nczt:('hz)

Recall that g, = (fz,Ez,hz), and that fz and h2 are x-boost parameters
fixed hy the t, [see Eq (5.6)]. The quantity [az -n,} is the helicity
.of the Regpeon whose spin is a,. When a, takes some general non-
integral value, the Regpeon helicity takes the values a,, “z"'

uz—Z, .-+. in an infinite sequence. Were a, to approach a physical
value s, (which does r:ut happen in the multiperipheral region of course},
we would expect this sequence to truncate at helicity equal to “Sye

This truncation is affected by the interaction of the functions F
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appearing in Eq. {6.1) with the helicity nonsense-zeros present in

the standard Toller vertices discussed in Section (3), the V of

Fig. 17. These functions F are given in Eq. (C.5). The new index

K, appearing in Eq. (6.1) will be connected with parity in Section (7).
Basically, K, = sign(Ez).

The important point to be made about Eq. (6.1) is that each
helicity term factorizes. It 1S not obvious that an expression like
(6.1} had to exist. A similar situation is encountered in a much more
complicated mathematical environment with the Regge pole expansion of
a single Toller/Lorentz pale. Regge poles there are che factorizing
daughters of u Toller pole, and helicity poles here are the factorizing
daughters of a Regge pole.

The fact that each helicity pole factorizes is the fact which
21Iows us to womentarily define a helicity pole propapgator. This
concept will greatly reduce the buige of complexity with which we
are now confronted. Had the helicity poles not factorized, we would
be in real trouble.

When all the Reggeon propagators ([ ... | in the umitarity
product of Fig. 17 are helicity-pole expanded according to Eq. (6.1),
certain factors may be grouped to the vertices, leaving a very sisple
helicity pole propagator. The new mung with these regrouped factors
is shown in Fig. 18, and the helicity pole propagator is showm in
Fig. 19 and has the form

ny BN
b6~ YT EE Bk e!E,H(cl,vﬂ,) « (a;-n;)]
{6.2)
The power to which 2152’ is raised in Eq. (6.2) is the sum of the
helicities of the Reggeons in the (2,2') channel. Notice that eaci

of the helircities is in general a complex number, whereas the Repgern



-32-

helicities discussed in Section (2) were always integers or half-
integers. The rerson is that here the Reggeon nelicitiesz are eigen-
values of the (non-Hermitian) y-boost generator l(z wvhich is generating
the boosts ny(E}_ In Appendix E it is shown that, when the structure
of Fig. 15 is continued to the t >0 cms via a complex Lorentz
transformation, the generator K, is turmed into a normal rotation
generator and the helicities become the normal (discrete valued)
helicities mentioned in Section (2). The variable E, becomes a
rotation (*z = iEz) which again measures the sum of the helicities
in the (2,2') channel, namely, o, »m;.
The other important point to be made abou' the helicity-pole
propagator is that it stil} contains the physical (planar) poles in

the signature factor denominators, e.g.,
-xw(uz - Ez)
e + T

& = 2 . @.n
Zsix-rn(u2 - sz)

These poles generate the normal thresholds in tie cross channel when
t is continued to t3>u.

Turning now to the rung or kernel of Fig. 18, the helicity
summations rl,r;, p‘.p;, and =, ,n; can be performed since they are
now detached from the resr of the chain by helicity-independent
(in this sense) helicity-pole propagators. We might first sum over
the upper and lower (discrete) helicities to go from Fig. 18 to
Fig. 20a, renormalizing for the first time our standard vertices V.
The new vertex v is given by

- Ty %
Vpl(o,.nl:n,.n,:tx.-:,;sll B E (i1 F""K’,.xl-hx)

a, 5,4, Q. m. -~
Ve Fp I Y Y . 6.3,
PPy By
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(Group-theoretica'ly, this corresponds to a conversion from the
discrete to the continuous helicity basis.)
T . PR +
Finally, we sum over the Misheloff rotation helicities PP,

to go From Fig. 20a to Fig. 20b, which shows the fimal kernet

PO I T D R .
K(@ 0t @,n; 005 @005 @, n,,t,0 %, K5 5, 1)

i
i ~ & 51 e .
E 2 1" dprp 00 1 = Ky - G0
PPy = -5

This kernel is a function of the four Reggeon spins LA helicities
a;-ng, and masses L Due to the kappa indices appearing in Eq. (6.1),
the kemnel is also a function of the kappa label on each side. This
particular kernel is a single particle kernel and thus depends on the
spin s, of that single particle. We could just as well have defined
P, {the produced object) to be a cluster, in which case, as noted
earlier, Eq. (6.4) should be summed over 5,

Before concluding this section we wish to make a few additional
temarks about the critical helicity-pole expansion Formula (6.1).
This formula, or something close to it, has been derived by other
m:n-kersz'4 as only an asymptotic expansion. We wish to emphasize
that {6.1) as derived in Appendix C is an exact and very convergent
equality based on an elementary addition theorem of the second-kind
legendre functions. In other approaches, the step in the argument
Tepresented by (6.1} has been to some extent obscured by complicated
group theoretic arguments. For example, (6.1) can be interpreted in
terms of 0(2,1) mixed-basis matrix elements in the continuous series,
in which case the discrete index x has a certain mathematical meaning.

Alternatively, Eq. (6.1) can be related to the ({2,1} analytically



continued Clebsch-Gordon coefficients which cuuple angular momenta
between the upper, lower, and central kinematic levels in Fig. 15.
These approaches are no doubt correct, but introduce sa much complica-
tion that one cannot tu'l for sure whether or not a formula is correct
without expending much effort. Our approach has been to consolidate
this group theory into 2 few easily verifiable addition thearemsg

which are then used to derive various results,

{7} NATURALITY CONDITION FOR THE KERNEL

In Section (3) it was shown that, after accounting for the
correct Toller M-function notation for the vertex
35 %K

'“i'“j’“k = H»klpimj{ak: ai'aj) * 7.0

the statement of parity invariance for the vertex in Fig. 18 is

05,0, ) 2r, = Si"Py ® . 2m,

T, © IS0 TGN 1o t-n
o, s, q (2.2)
TPy

where o) is the Reggcon naturality of Eq. (3.9) and M, the intrinsic
parity of the preduced particle.
Insertion of the parity condition (7.2) intu the definition

(6.3} of the renormalized vertex ‘7 then yields

EFLS

?P‘(.c,,-c,) = 5,0, T(-1) Vp () 7.9

When this result is in rurn substituted into the definition (6.4)

of the kernel X, one finds

R, N .
K(k,.x,) = 5,0] 6,0, K(-k ,-%,) (7.9)
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which is the desired naturality condition for the kemer.”

We may now interpret Eq. (7.4) as saying: a parity transformation
on the kernel is equivalent to multiplication by the preduct of the
naturalities of the four attached Reggeons. To see why a parity
transformation nepates L and K, e refer to Fig. 21 which shows a
seguent of the multiperipheral chain with its central level hoost E.
The figure also shows the same chain segment in a parity-inverted
world where the two frames are connected by some boost E'. These
inverted-world frames are connected to their non-inverted-world
counterparts by Toller's parity transformation s' defined in Eq. (3.4).
Since

CO M WP W B (7.5)

one concludes that £' = -E. This is what is aeant by saying that
pavity negates all the £-boosts in the chain, and therefore the
K. Sim(ﬁi)-

Equation (7.5} is one entry in the €sllowing Table which shows
how the parity operators s and s' affect the signs of rotation and

boost parameters:

(7.6

Notice that of all the variables listed in Fig. 15 and relating to the

multiperipheral chain, only the y-boosts E; are megated by parity s'.

*This condition is derived in Ref. 5, Eq. (2.8), for the production
of spinless particles only; see also Fqs. (2.7) and (2.10) of that
paper for a Toller angie discussion, and Eq. (2.16) which relates
to our comments at the end of Scetion (6).
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Tf there were z-rotations somewhere, these would also be negated by
57, as the table shows, and this fact has a bearing on the Toller
angie which we mention herc as a digression,

In the usual BCP analysis of the production amplitude shown,
e.g., in Fig. 8, one uses for the 0(2,1) transformations g the
discrete basis paruweters R, (w8 (E)R (v}, which we mentioned at
the end of Section (5), and in terms of which the lower Reggeon

propagator function may be written
-a-1 _ -imp -a-1 >, -irv
Ear (8) = € ey (chE) e . 7.7

If the asymptotic limit of this E functien is taken {see Eqs. (A.1IS}
and {A.15}} to get (chE)u times helicity-factorizing factors, and if
these factors and the azimuthal exponentials are absorbed into

renormalized vertices B and the helicity sums done, one obtains Zur

the production asplitudes the form
~ -~
BPI(V,.U,) (chE,) BPZ(VI,U,) (chE ) 7 ..., {7.8)

where the p, are the helicities of the produced particles, Then fram
Eq. {7.2), the parity condition for these renormalized vertices §
may be shown to be similar to Eq. (7.3),

= 5o, B s 7.9
B B = To, RO p (Vi) 0.9

In the case of spinless produced particles, the vertex 8 is a function
only of the Toller angle w, = v, oen, and Eq. (7.9} becomes
B(ml) = 9,9, ]'!l P'-u‘) . (7.16)

Finally, slightly renormalizing the vertices once again, we end up
with the asymptetic or phenozenological multi-Rizpe amplitude for the

production of spiniess particies along the chain
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oo Blw,i(sy) Blw (s} 7 ... {7.11)

Multiplying two such amplitudes together to get the unitarity product,

one would identify the kermel as
-~ , ~ ~ . .
Kluw, .wl) = [Blw,} [B(ml)] . (7.12)
and this kernel would then have a naturality condition
s 1 - | = . <
Kw,w) = 00 6,0, K(w,-wl . (7.13)

This condition is, however, just a special case of Fq. {7.4) which
was derived without any approximations. Therefore, a parity transfor-
mation can be regarded either as negating the Ci variables in the
exact, kinematic scheme, or as negating the Toller angles in the

asymptotic production of spinless particles,

{8) THE MULTIPERIPHERAL CHAIN AND PHASE SPACE

Tn Section {6} the helicity-pole propagator Pi and kerncl Ki.
were defined. Figure 22 shows how these guantities alternate to

compose the multiperiphera) chain
s KR (E K, (VP LEDK (V) ... (8.1}

The figure 1lso shows the central level frames with their connecting

boosts. The v variabies measure the “rapidity width” cf the kernels
{clusters or single particles), whereas the E boosts measure the
rapidity width of the helicity-pole propagators. Since thesec
alternating boosts are not collinear (\ri = Bx and Ei = By]. the notion
of additive rapidities arises only in the exircme relativistic limit

where
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chv = chy chy, o sho, shy, chf, 8.2)
hecomes
Vos v, g ey, . (8.3)
The sums which are implicit in the chain (R.1) will be discussed
in a moment.

First, something must be said about the phase space. Fach
particle or cluster (here K will he regarded as a cluster) gets a
momentum phase-space factor d"pi, where P; is the momentum flowing
up the cluster Ki,'nl' Replacing d"‘:vi with d"ki, where ki is the
4-momentum of the lewer Reggeon of the system (i,i'), and simply
evaluating this 4-momentum in one of the central tevel frames a few
rcmoved from the frames nearest P;+ One may uxpress d‘ki in terms of

the group variables appearing in Fig. 22. Recalling thke m¢aning of

the central level frames, we bave, c.g.,

dy |

LN = k02,

WY ok shy, .k chy,,0,2.)

3y 3 2T 227 % *

kP ok shu,che,, kychy,, k,shu,shE,, z,),  (8.4)
3 3 2 2 3 4 3 2 20 Tl -

where k‘ (the versor magnitude) and z, were defined in Eqs. (5.7) and

(5.13). From the last line of Eq. (B.4) we find thast

* ) _ 2
4k, o= [dky Mz, = [Kdk dE, d(chv,)]dz,
a8
= 2 - 2.
= Zwkld\(:::lw3 [2" d(ch\)z)] . {8.%)

where EN bas been replaced by the w, of Eq. (5.14). The portion
dk,du, of the rhase space is the so-called transversc integration

. 2t t
hecause it can he expressed in terms of d I where p is the
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transversc momentum of the cluster 3 whose parallei momentum component
p‘ is related to the standard rapidity variable. In terms of the
invariants t, and t; one can show, as in Eq. (5.16), that
ot
axdw, = % e MO (8.6)
- (t,t,,t;)

The second factor in the last line of Eq. (8.5) shows the 0(2,1)
equivalent of the d? = d d(cos®) one finds in cms kinematics, e.g.,
elastic unitarity. The fact that dEz d(chv,)/Zw =dg, isa piece
of the 0(2,1) invariant measure (in continuous-basis parameters) is
what allows the exact diagonalization of the multiperipheral chain
onto central level angular momentum, as is done ir the next section.

The reader familiar with the Chew-Goldberger-Low approxinationzz
to the multiperipheral phase space will recognize the expression in
Eq. (8.6) as a portion of the asymptotic form of the quasi-cms phase
space of two clusters,

ds,ds, 1 de dt)

N Ll L]
dpdp, §(P-p,-p,) > 5 ., 8.7
v v |7 vy

where (sl)!’ and (sz)!’ are the masses flowing up the two adjacent
clusters. In order to compare Eq. (8.5) with {8.7) we write,

shifting to the left one rung,

ae 4(chv,}d(chv,}8(v -V, -v,)

- B iew
= 5T (chv,) ., (8.8)

' 1’[‘i(l:h\r,<:hv‘,ch\vz)]‘l

where k(x,y,z} = x’+y?+2%.2xyz - 1. If it were true that v>>v v,

throughout the entire phase space, one could approximate

k(chv, chvl, :hvz) = (c:h\v)Z
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Then from formulas like Eq. (5-19),

h sl‘ki"k:'l"l"z)z
C \Jl - ————— N
2k _k
T2
one finds that
ds ds
a, ~ 1952 ,
1 ZHst
2
and then
'
oy = dk,dw,ds, ds, . [1_ de_dt} ] ds ds,
2 s )2 VAt e .t s
-8(t,t,.t])

which is the CGL approximation (8.7). Since the approximation
s >> 5, ,s, is not particularly valid except in special cases like
double diffractive dissociation, one would expect a2 more i~curate
result to be obtained in any related calculation (like the cylinder)
by using the exact phase space. Naturally, an exact angular momentum
diagonalization only works if this correct group phase space is
retained.

We now consider the sums implicit in (8.1) and Fig, 22. For
each segment or propagator of the multiperipheral chain there is a

sum of the form (e.g., for segeent 2,2")

[ag,g .

where

g = [d% Z E' i (8.9)
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fd@z dw fdk (8.10)
(N

with f being the normalization factor of Seciion (4). For each

m[';
§—p

fixed value of t, and t; (see Eq. (5.15)] and the discrete index x,
and for each pair of Reggeons a?,u;. we sum over ail of the helicity
poles labeled by nz,n;, these being the helicity daughters of the
Reggeons. Next, we sum over all possible upper and lower Reggeon
combinations. Finally, we sum over L and do *he transverse
integration. The group integrations dgi will be removed in the

next section.
e

(9) THE DIAGONALIZATION OF ANGULAR MOMENTUM

To avoid confusing the mathcmatics with the physics, we briefly
discuss our diagonalization procedure; a fuller explanation may be
found E{seuhere.g

Consider the following mathematical relation among four functions

A, B, C, and D, each a function of three variables:

' -"5: - Fa, F

AEV.E") -f ol LICTN -z-;-fd(cnv,) B(E,,v,,0) C(£,,v,.0)
= 1 - 1

x D{Ey,vy,5y) . (9.1)

Schematically, this equation is represented in Fig. 23. If the
variables are in the reage -» < El <= gnd 0K vy <=, we may
interpret the functions A, 8,C, D as being defined on s certsin
sector of the group 5U(1,1} ~ 0(2,1), and we write the same equation

in group theoretic notation as follows: -

a - fa, [dg, [dz, 8z - £,4,,) B(£) €, D)) . (9.2)
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where g = (F,v,E"), £, = (§,,v,,0), etc.  The variables g, =
(1;3,\:‘,:;) in Eq. (9.1) rre functions of the other variables according
to the SU(1,1) group multiplication g, = g;lg;'g. In Eq. (9.2) this
fact is wade more explicit Ly use of sn invariant deita function.
Equation (9.1) or (9.2) can be diagonalized exactly by project-
ing the functions onto the continuous-basis representation functions
of SU(1.1}. These fun<tions are the second-kind generalized Legendre
functions ﬂiv(z) discussed briefly in Appendia A and at great length

in Refs. 9 and 23. The diagonalization of (9.1) is given by
J - dx [- LS BN j
o —Il—"‘[ w G DJA'u' ’ (-3

My - fdx 2, () AR) . (9.4)

where

J
B

f ae, ol (8 Bg) .5

and the projection of C is liie that of B; D like that of A.

The invariant measures are

_ dg’
dg = 5 d(chv) F= , (9.6)
dag
4, = ZW‘ d(chv,) R 3.7

and the function @(g) is defined as

5 I L) ~u'g’
Quu,(g) = e Quu,(chv) e N (9.8)

with @(z) given in Eq. (A.2).
In the diagonalized equation (9.3), each group integration has

been replaced by a helicity contour integration running up the
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imaginary helicity axis. The source of this contour is the secend-
kind addition theorem whick. for convenience, we compare to the

first-kind addition theorem:

P (ge,) = 7‘ J ey Py 9.9)

8,88 = Ii,,— 2y 2,2 - (0.10)

The familiar helicity sum of the first-kind theorem (P functions
are essentially the rotation 0 functians} appears as a helicity
integration in the second-kind forwula. [n Ref. 9, Eq. (9.10) is
derived from (9.9) and interpreted group-theoretically.

When a1l the Functions appearing in Eq. (9.1) are independent

of the Ei variables, the diagonalized equation simplifies somevhat,

P RS B s 9.11)
where
°
£ = %fd(chv) Q(chv) FOv) - (9.12)

More generaily this is not the case and the helicity contours
appearing in Eq. (9.3) are shifted sideways to pick up helicity pole
contributions of the integrand. The A are the complex helicity
variables to which we referred earlier.

In the particular mathematical example considered above, we
diagonalized a chair of three functions B, C, D. Hopefully it is
clear that a chain of any length may be similarly diagonalized.

Each projected function contains the diagonal angular momentum
projection label j along with two helicity labels which are system-

aticaliy tied to ncighboring helicities by the “summations™ J'dl_
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¥e are, by the way, referring to j as angular momentum because,
in the Regge language, Eq. (9.4) is a true Foissart-Gribov projectinn
so that j is the apalytic continuation of the true angular womentum.
Tn Eq. (F.5) we show how to recover a fumction :(g) from its

projections Pw._ i.e., we give tke inversion of formula (9.4).

(10) THE PLANAR BOUTSTRAP

1. Form of the Integral Equation
The basic multiperipheral chain was illustrated in Fig. 22, and
we shall now be more specific. The contribution from three particles

or clusters to the 4-Reggeon ring discontinuity is given by'
3
¢ )““14(5-"-5'7 = 223 fdl;fdlz O UPIER LA P TN
x PJ(Es)Ku(V,)ﬂ(E;) » (10.1)

whe,2 the notations P, K, d¢ and T were defined in Eqs. (6.2}, (6 ),
(9.7}, and (8.9). Since (10.1) is of the form {9.1), the diagon-

alization may be vead from (9.3} to be

o

P

[€2)é] N ax fax j ']
[N CIOEED —,j;; P, (DKL (LR (D)8, (2,9)

x PG BP0, 10.2)

where

*We have tried very hard to keep track of the normalization of ampli-
tudes, but. alas, have lost the battle. Strictly speaking, if A is
a discontinuity. equations like (iQ.1) should contain the overall
factor — cft shown in Eq. (4.4}, /€ for cach df, and an extra i/f
becayse 5(‘”((-“) repoves ene d‘ki. However, as we mention in
Section ID.8, and show in Fig. 29, A i< not Toller-normalized,

so we omit thesc ovemil! factors. Ther. is always a question of
how many *'s and 2*s appear in the phase space d¢ of the planar
bootstrap or 3. (1!.23}, and we have thercforc 'ost track of these
factors.
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kfﬂ(l,z) = Zd(chv) Qﬂx(chv) K,tv) . (0.3

P - f‘%% NG, < (10.0)
Therefore, defining ‘3’2ﬁu, by

(S)Kiu.(l.d) = P (Slniu.(l,A) PL L ()

Eq. {10.2) may be rc-expressed as
G o = T B & b, 290,000,,6.0
2.3 (10.6)
which is schematized in Fig. 24.
In the usual way one may write an integral equ:tion for the
complete 4-Reggeon ring discontinuity which will be olved by a sum

of terms of the form (10.1). This integral eguation reads

e » = . g 1
RsEVED) = PU(EIK ()P L(E") + )3‘,] a8 P E DK, (v)IA,5(E, ;.6

(10.7)
which may once again be diagonalized by inspection tc give, together
with the definition (10.5},

3 - ¢ L] 3o
A (L3 = K5 .);I T LQDR@A 3 L (10.8)

which is represented by Fig. 25. The problem of obt: ning the
4-particle discontinuity from the 4-Reggeon solution of (10.8) is
1llustrated in Fig. 26 and discussed in Appendix F.

Near a Regge pole, the projected ring discontin:ity A factorizes

(see Fig. 27):
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o a .
" Gu(\,u) Gu,(:’:.u)

b 3 z
A (L) P —2 . (10.9)

Taking the residuc of the pole on hoth sides of (10.8] then yvields

the vertox hootstrap

. _ d\ .a s PPN
G (la) = giﬁ K {1218, (236, (i), (10.10)

as shown in Fi, 28. The nommalization of the triple-Regge couplings

G is described in Section 10.5 below.

2. The Projected Helicity-Pole Propagator P

A—
Th= helicity-pole propagator was defined in Eq. (6.2) to be

Pi(E) = m H(i)8lEx,) cxp{hilgll, (10.11)
where

wi) = amte 0 - gED (10.12)

hy = (m-my) e (E;-n;) . (18.13)

According to {18.4), the projectad propagator takes the form
Py(iy = MUY/ () - h) P {(10.14)

where we now see the actua) helicity pole at A = Kihi‘
In the ordered S-matrix, Regge rrajecrories must occur in
strongly exchange degenerate pairs. When the upper and lowsr signature
factors are summed over signature taking into account the 2xchange
degeneracy, one finds for the regular (untwisted) propagator P,
~ L epfeiriieg - ) - @ - 1)
g5 — 12.5;‘-3 - LI LI . (10.15)

: NI
sinm I sinm(a. - €,
i1 (a; - ) sinm(a; 3
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For the twisted propagater *p used later in the cylinder discussion,

= ‘e 1
D PLARIOIANE -10.16)

R N ~1 l
sinf(a, ~ €.} sinm(a, - €.
TiTi b (ul 'l) (ul l)

3. The Projected Kernel and Its Threshold Behavior

In the kemnel, shown schematically in Fig. 18, there are sevén
quantities each of which depends on the kernel wass s, and therefore

on the variable v, of Eq. (5.19), so that computation of the projected
kernel (10.3),

i 3 j
KA -j; d(chv) Q:x(chv) LI (O B (10.3)

in terms of the standardized vertex V is an unpleasant numerical task
which we shall not attempt. This task is, however, s necessary
aspect of the functional bootstrap to be wentioned below.

Lacking an analytic expression for lix, we search for any
potentially useful information buried in formula (10.3). One such
piece of information is the threshold behavior which we now extract.

Singe KZA“'Z) is a Froissart-Gribov projection, we are reminded
that it should be possible to find its threshold behavior in the wsuval
way. Flrst, however, one must identify the threshold behavior of the
wnprojected kernej.

In expanded notation one has
f r
Ky () = Kottt v) = K0k s kw5 v),

where kl is the versor maghitude {continued cms momenta} of the

channel (i,i'),
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PIRN ORI} PR TR LI
and

LI (:i-:;)/Z(-:)“ .
Ne shall define “threshold behavior in the (i,i') charnel® to be any
approach to the kinematic boundary A(t,ti,t;) = § as shoam, e.g., in
Fig. 40, so that at the (1,1') threshold k, +0. (Variables t, ti'
t; here are negative.)

To determine, then, the behavior of KIZ as k; or k, vanishes,

we exrmine the functional and kinematic structures of K as shown in

Figs. 18 and 14. As deaonstrated in Appendix D, as %, +@, one has
ch(h,) + const x (",)'l ch{f,) *+ const ,

but when k, +0 the situation is reversed

ch(h,) = const ch(,) + const x (k,)“.

In Eq. (C.5) the function F(-hl). which appears as part of the kernel
in Fig. 18, is given roughly as

a, -a,-1
(-ish hy) .

. 1

“x"‘xft(-h" b q“x"‘t"xrx
Since -1 sh{h,) +* as k,+0, one finds from the large :
behavior 2% of q':‘;x(x) that

k -t ~%
Lt e R ~ ()

Similarly,
‘2

a, -
ky 0 =F (+£,) ~ (k)

Callecting similar factors from the upprr vertex Vaf Fig, 18, one

may conclude that
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@ ea)  -lmgea))

K‘z(\)] = (L!) (kl) Ku(\:) N (10.17)
where K' is a reduced amplitude, Teal on the uncut portion of the
real t axis.

The threshold behavior of the projected kernel Kﬂl may now be
found from the Froissart-Gribov projection (I0.3}. Equation (5.19}

which expresses ch(\:l) in terms of s, shows that
chy, =+ s5,/%kk,

as either k, or k, - 0. Therefore, wsing once again the large :z
behavior of Qﬂv(z) -~ z'j" and remenmbering that the integration in
Eq. (10.3) actually begins above :1=1 at the lowest production
threshold of the kernel, we pick up the usual extra factor (k,kz)j.
so that the complete threshold behavior of the projected kernetl is
given by

9 ) j-(my+ay) SRICHT S

AL = Gy x,) (X, (L. (10.18)

When this kernel is continued to the physical cross channel
t>0 and the four Reggeons taken to their physical points, we
regain the usual threshold behavior given, e.g., by Jackson and
Hite,2?
L, (min) L, (win)
(k,)

N ®) .

where L, (win) = J -5, (max) and S; (maxj = sios;.'

“In deriving this threshold condition we have ignored parity which
causes the distinction between threshold and pscudothreshold and
which may raise some i(min) by one unit.
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Since the ahove analysis used only the kinematic structure
of Fig. 18, one may conclude that this threshold behavior is equally
applicahle to the single-particle or clusterized kernels as well as

to the full amplitude.

4. The Naturality Diagonalization

In Section (7) it was shown that in a parity~conserving theory

the kernel Klz(\:) has the parity condition
K(x,,k,) = u‘a; uzc; K(-%,.-6,) (10,19)

where the g5 are the naturalities — as defined in Eq. (3.9) — of the
Reggeons attached to the kemel. The property (!0..‘191 passes immed-
iately to the projected kermel Kfﬂ via (10.3).

At this juncture it is convenient to convert !;ll Froissart
projections like Ki)‘ of (10.3) to iower-case projecticns kfy)«

defined by

0,2 z [t Palew) X0 (10.20)
1

where q is simply related to §) as im Eq. (A.13}. The reason for
this change is that q has a sinpler helicity-negation symmetry

than @, ~» symmctry which of course is carried over into l-Lx,
j 3
k 1,2 = k& 1,2 . 10.21
=kl (10.21)
Combining (10.19) through {10,2!) we find

kﬂxlr,.rz) = 0,0 0,07 K

LAl o.22)

One may now study the cffect of this symmetry on the ring
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discontinuity components. Converting the (nA equation to lower-

case projections as in Eq. (10.20), one finds

(z),ﬁu,(z,s) . ; 21%‘? w xfﬂ(x,n Py (2) k{u,(z,s), (10.25)
L7

vhere the x, sum has been removed from I, and explicitly displayed,

and where

u{ = TE+1+A) TG*1-2) . (10.24)

From the symmetry of (10.22), and the cbvious fact [see Eq.
(10,14} ] that

P)‘[Kz) = P_x(dtz) » {10.25}

one may easily show from (10.23) — using the syzmetr) of the A

contour — that the symmetry of (10.22) propagates into (2)3,

(Z)j WD) = au acr' @y, 3u__u.(-xl,-r’) R (10.25)

and similarly into all (")a and the full a. The persistence of
this symmetry means that all our projected eéquations can be diagon-
alized in the 2x2 space of the kappa indices; this 15 the naturality
diagonalization discussed by Ciafaloni and Yesian.5

We now perform this diagonslization on the following proto-
type equation

al ek = )’— # o), 0,0 pec,hy o Lo,

| LT R R ] 1) S R Atz )(10 27)

where p is any function, and a,b,c are any functions having the

symmetry of Eq. (10.26). Oefine

J
arlu'(]u,(zl,r)) {ip.28)
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and similariy for b and ©, and notice that
' .

= @0, 0,0, 2

-x,

“Kis ¥1%s3

Taking p =+ x,u, A~ x,A, p' +x,u in Eq. (10.27) yields

]m f’h <, Kk, Py :KZ(’

{10.29}

(10.30)

since "id = HJA' In terms of the projections of definite naturality'

a’ = = (a,, »o00,0{ a1 N (10.31)
Eq. (10.30} rakes the diagonal form

a A g a

a¥ = I i W b7 p(h) ¢ . (10.32)
Thus, the naturality diagemalization of (19.27) is given by

Ja R di ja

AR H{ g eN cm, (10.53)
where

Joo i J ;) R

e T OTF 3y (+,4) + 00,0, A 3 I (10,343

In terms of upper-case projections like (10.3}, Eq. (10.27)

becomes

o %08 Z} 28 (50,0 pig, M) oLk, Ky

“For a discussion of why g is identified with naturality, the

{10.35)

reader is referred to page 338, equation (9.59) of the textbook

of Martin and Spearman, Ref. 32,
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and its naturality diagonalization is given by

jo [ dr gic jo
A = ] = Bpr G (10.386)

with projections of the form

R

fTITLE

I e eagq FGTYew) 5
[Auu'( )9S TR A-u,u‘( ' )]'

(10.37)
Now, since (10.8) is of the form (10.35}, the maturality-

diagonal bootstrap equation can be read from (10.33),

jo .t a e
an Ly = We 0.3 z fd°’I L )

a0}
n,n;
H(2) jo
e N CIE B (10.38)
where
= -1 kad
H(2) M7 YT, * Eq. (10.15)
H o= TGeted) TG+1-1) (10.39)
f“; = Eg. (8.10)
and
jo .t 3o, ] .
aln (L = [‘uu-“' P20 somoy Al (s 200

(10,40}
where * refers to the ¥ values, and similarly for kag,.
Left-shifting the helicity contour as suggested in Eq. (12.12}

yields this final form for the planar bootstrap equation:

jo - Jo 2: j 1io 439
auu.(i.S) kw.ll.s) + 2 [de,u(z) th kuhz(l,z) “h,u'(z'”'
a,a,

BT (10.41)



where k is a projection onto a of (A.20). All that remains is the
transverse integration dé, and the sum over all upper and lower loop
Reggeons and their associated helicity pole daughters. With w=h,
and u' =h,, Fq. (10.91) is a matrix {iattice) equation in the space
of the helicity indices.

In passing, we note that the apparent Regge cuts in (10.41}

due to poles of H::] should be cancelled by the nonsense zevos of
2

the product ka.

S. The Bootstrap Prohlem

Equation (10.41) states the integral equation which s the
planar bootstrap for the four-Reggeon -ing discontinuity. Assuming
the existence of 3 family of Regge trajectories {ui). and given a
knowledge of the standard vertex vijk' one can in principle compute

the single-particle kemmel K and its projection )(IJ-| Since the

N
propagator is trivially known as in Eq. (10.14), one can then

search for solutions A of the integral egnation. The existence of
a solution depsnds functionally on the Reggeon set {ui} and the form
of the vertex V.

The residue of the bootstrap equation at any Regge pole j=a,
where ut{uil, yields the vertex hootstrap {10.10) which is perhaps
more interesting than the original equation hecause it contains only
one unknown function V(t,.t,,t,), given the Reggeon set {ui].

We return to the vertex bootstrap in a moment.

First we must note a cervtain inconvenient property of the

functions A of Eq. (10.8) and the vertex G of (10.9). A side effect

of doing the helicity pole expansion is that these functions are not
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normalized in the sense of the standard Toller M-fumction discussed
in Section (2). Figures 29 and 30 show schematically how A and G
are related to the normalized ring amplitudes (ordered M-functions).
The functions F and F* are 1ike the F's appesring in Fig. 18 and

Eq. (C.5). As noted earlier, the approximate role of these functions
is to convert the Reggeon helicity from the discrete values m, T,

P, ..- as in Fig. 18 to the complex values (a-n),

Accounting for these normalization factors, we now rewrite the
vertex bootstrap in the extremely schematic form of Fig. 31 which
shows the bootstrap as a nonlinesr functional integral equation of
the 3-point ring amplitude and the Reggeon set (ui}. In principle,
this equation should allow the computation of the ordered triple-
Regge vertex as a function of all three arguments. To our knowledge,

this calculation has never been done.

6. Counting

Approximate bootstrap calculstions using a very small leading
Reggeon set {ai) have often indicsted that the single-particle kernel,
with experimentaily determined couplings, does not have the strength
necessary toc elevate the generated output trajectories to their
experimentally observed fintercepts. Assuming thst this result is
not an artifact of the approximations made, one wust conclude that
the peripherality and/cr the Regge-expansion convergence assumptions
which go into the multiperipheral model are simply not viable for
single-particle production, and one turns instesd to cluster production.
Une replaces the single-particle kernel with a cluster of limited

maximum width, but sufficiently broad so as to approximately
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Regge-factorize, even though there is no Regge pole in such a kernel,
This is the concept of the dotted Reggeon, and the program of Fig.

31 is then replaced with that of Fig. 32 which, when the left
coupling is boldly cancelied on both sides, gives the frmous equation
" 1 = gNg " of Ref. 25, where N2 N (flavor).

In going to the smlti-particle kernel, however, one encounters
certain counting problems which invalidate the diagonalization
procedure which led to the simple ejuation (10.8). The necessary
alterations invelve pre-convoluting the cluster/kerne} with a

., 26,27
propagator on one side.

To avoid this counting problem, we
have chosen to concentrate instead on the cylinder calculation where

there is no counting difficulry.

(11) THE CYLINDER

The ordered or planar bootstrap discussed in the preceding
section consists of sewing together two ordered awplitudes (zero
handles, one boundary) in an ordered manner so as to abtain the
discontinuity of another ordered amplitude. By sewing together
ordered amplitudes (h=0, b=1) with a certain well-defined disorder,
one may construct the cylinder cosponent (h=0, b=2) of the physical
4-point function. Figure 33 shows parts of this cylinder component
in several different notaticmns. Figure 33a depicts, in quark diagram
notation, a particular contribution (2 the two-twist-pair piece
C(Z) of the cylinder resulting from the unitarity product of two
9-point ordered amplitudes. Fipure 13b shows the compl-te C(z).

hut the figure only has weaning in terms of discontinuities after



the upper and lower Regge expansions have been inserted. These are
shown in Fig. 33c which is now drawn in the ring notation. Tinally,
Figs. 33d and 33e display the topological meaning of the twists in
the absence of quark notation. To conform with the kinematic
diagrams like Fig. 15, we shall continue to use the notation of
Fig. 33c.

The full cylinder is defined as the sum of all its twist-pair

components,
-
c-y cm (ar.n
=1

When the C(Z) component shown in Fig. 33c is diagonalized onto
angular momentws j, charge ronjugation” T, and naturality o, one
obtains the triple pole contiguration shown in Fig. 34 (when the
simplest assumptions are made for the j and flavor dependence of
thd various elements, and when only the leading helicity pole of the

leading Reggeon pair is kept in each Reggeon loop)

€35 2 i 1 1
C ey g Oy g oy . (11.2}

where

k = k{t) = k(j,t} =fd‘l-g([,tx_t;)z x {other factors].
(11.3)
In the phenomenology of Chew and Rosenzueigm the cylinder-
shifts of the f, £, w, and ¢ trajectories are simple functions of

k, which is sometimes approximated by setting j =a. Roughly, the

“We are relieving T from its tradition duty of representing signature
since signature seems to play such a small role in the ordered
S-matrix, and aiso because there ar: already too many C's floating
around in Section (11).
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shifted f = pomeron has the intercept [in SU(1)]

2p(0) = aff) « kin,0) . (11.4)

We wish tn discuss the technique used to arrive at the
expression (11.3) for k and to suggest how k might more accurately
be calculated as a helicity-pole expansion. Afrer first diagonalizing
the charge conjugation, we review a one-dimensional cylinder calcu-
lation and then proceed to the three-dimensional helicity pole

analysis.

1. Diagons :zation of the Charge Conjugation
(n)

Since the cylinder temms C carry zsro additive quantum
numbers, it is desirable to diagonalize the charge conjugation in
agdicion to t);c naturality so that cytinder poles can bc identified
with physical particles. This procedure is very simple, as we now
show.

The ordered ring discontinuities carry oriemtation indices
which have been suppressed throughout this papzr. One might write
(l_clli\lz,cz) where c; = £1 depending on whether the ordered channel
i lies in the clockwise or counterclockwise Hilbert space.7 As a
2%2? matrix in this orientation space, & is diagonal with equal
diagonal elements, (1,0,|A[2,0,) = A 50‘ ,0,~ Changing to the charge-
conjugation basis [1,7} = [{1,0,=¢Y+1[1,0,-)1/4/Z, one finds that
(],T"AIZ.TZ) = A 6,".,1, 50 there is no need for A itself to carry
a 1 label.

In contrast, the twisted Reggeon propagator *p always connects

x

states of opposite orientation, ¢ l,allxl"lz,az) ® 50 .g, P In the
4 2

T basis P is again diagonai but the ciements have opposite sign, So
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*p mst carry a trivial T label,

(S W1l AEX DL S where BT . . (1LL8)
R

Therefore, the only effect of charge conjugation disgonaliza-
tion is to add a T label to the C™ and o replace *P + TP every-
where.

By comparison, the untwisted Reggeon propagator P which appears
;n the planar bootsttsp does not mix orientations, so all contribu-
tions A(“) to the ring discontinuity A are disgonal with equal
diagonal elements in the orientation space and therefore also in
the T basis, sssuming the special case of zero additive quantum

nuabers along the chain.

2. The Cylinder in Rapidity

For comparison with the kinesatically accurate {though still
physically slippery) cylinder calculation presented in the next
sections, we review here a “typicsl” rapidity analysis of the cylinder.
For simplicity, only one flavor is assumecd instead of the three fiavors
(with 1«24 3 symmetry breaking) used by Chew and Rosenz'ei;.m

In terms of the usuval rapidity or Che\v-l’ig:-uattiz8 varisbles,
and with the CGL phase-space spproximation discussed earlier in
Section (f), one writes in the energy plane the cne-twist term of

the cylinder as follows (see Fig., 35):

Y Y y
S5 P5C JUNNE 3
C(t],y,t)) = dx,jdg dx, S(y -x, ~g~x,)
{ (] ‘{ * ! b

£ *. * x
xf a6, AGT,x 2 P (g,t]) Ay, th)

{11.6)
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with ‘Ma as given in Eq. (8.10). Here, A is the absorptive part of
a four-Reggeon ting amplitude of rapidity width x5 and *P" is the
twisted (no cosine) Reggeon propagator of gap width g to be given
below. ‘ine label T indicates that the equation has been diagonslized
in the charge conjugation, © = 21.

Incorporating the Neveu-Schwarz shift o + o - ), we normalize

our triple-Regge couplings in the usual way,

Rit).s.t}) = g, TO-a)(-5)° (11.7)
Aclist)) - gy gE, 09, (1.8

and take for the Mellin-projected ring discontinuity a form exhibiting

symmsetric nonsense zeros,

s ) - j - =,
AT * oy [x,(;—_{:%:-)] j—h[g,(ﬂ—;—usf)] .
(11.9)
The presence of nonsense-zeros in a Meilin projection is equivalent
to the absence of fixed-poles in the Froissart-Gribov projection;
we want such fixed-poles to be absent because we assume there to be
no fixed powers in the ring amplitude R[tf,s.tg).

The assumption of the first nonsense-zerc in a Mellin projection
corresponds to the gbsence of a constant term on the right-hand side
of 3 FMSR over A(tf,s,tf). By atrempting to respect the analytic
structure of multi-Regge amplitudes, several authorseg have used
somewhat controversial asymmetric FMSR to argue that, in effect, the
amplitude shown in Eq. (11.9) should have a nonsense-:erg on one
side or the other {dcpending on which external overlapping invariant

is held fixed). but not on both sides: 1.c., that the form of (I1. ,
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should be asymmetric. We feel, however, that the four-Reggeon
amplitude should be left/right symmertic. even if asvmmetric XOC
is used in its generation, and this is our motivation for the form
{11.9), though we have no rigorous argument to support this conjecture.
One of the physical weaknesses of the cylinder calculation is
that small changes in the smooth {i.e., non-singular) j-dependence
of the projected planar amplitude, such as noasense zeros, can cause
violent changes in the output pomeron location,Jn 50 no calcnlation
can be trusted unti)] the low-energy/smooth-j behavior of the planar
amplitude has been determined from the planar hootstrap. topefully,
such behavior might be computed from the helicity pole formalism.
Meanwhile, we shall use the form {(11.9) only as a prototype and
continue our calculation.”

The twisted Reggeon propagator appearing in (11.6) is

. ~
*PT(g,t)) = TH(E) explga, ) . (11.10)
2
In Mellin projection this becomes
~ s
TH(L))
X T, L 2
P(j.ty) = Te, (1.1
2
with
et + -
Hit)) = T(-a,) T(A-0)) , (11.12)

which may be compared to (10.12} with (10.16).
Now, the C'1) equation (11.6) may be trivially Mellin diagon-

alized to yield

Mt 5,6 ] dp, Attt .t )[‘"'2’ ]A(ti.j.ti). (113
2

*Low energy data are, oY course, helpful on this point.
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Inscerting the expression 11,9 we find

- i~ K1) P-og
(SRR S o m (J acl) [~ (- L,)
(.t = - — ) ——= e, | — (11,14
i B T{o) [g] u-u‘.x G _a)z 3 a-ac )

with

(-0 )

k() = r‘(':T) ]d¢2 I ﬁ(:f) (11.15)

2
(@a-a.)
2
By emploving symmetric nonsense zevos in (11.9), we have removed the
Regge-cut generating factor of the propagater (11.11), and have added
another factor (j ~0¢ ) in the numerator; k(j) is j-dependent.
2
From the diagonali:zed integral equation for the full cylinder,
~T 5 1 N - T, . T .
g, = Bty +[dw, A(1,3,2) *7(5,2) €7(2.5,3),
(11.16)
or by simply summing the geometric series the first term of which is

given by (11.14), one finds that

T . . _m j-ac Tk (i) (j-aca)
C3 g [gx (a—ac‘ )] G-o(j -a- k) |8 a-a. /f
'

{11.17)

which shows the pomeron (T1=+) at the solution of
j o= a+k(}) . (11.18)

Finally, adding C to the planar tere A extinguishes the unshifted

pole in the manner of Ref. 10,

j-ac 1 j-ae

. T 3 n 1 k]

AlLGL3) ¢ €LY = gy [gl(u-% )] j - (@*1K) g’(a-uc ) :
1 3

(11.19}
and the symmetric nonsense zeros appear al<o in the cylindrically

corrected amplitude.
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3. The One-Twist Cylinder Term as a Helicity Pole Expansion

The typical wmulti-cluster contribution (S)Z(E,v,z'} to the
four-Reggeon ring discontinuity was given in (10.1) and illustrated
in Fig. 22. The sum of all such terms defines the complete four-
Reggeon ring discontinuity in the "energy plane.” Of necessity, the
object A contains the propagators on both ends of the multiperipheral
ladder. It is imporzant to realize that A contains these end-
propagators in convolution, so that, unlike the kemmet, A(L,v,E')

ormot be written in the form
KEMET) = Pi(E) A () Py(ETY .

Only after diagonalization can the end-propagators be removed as in
{10.5). For this reason, it is difficult to write cylinder terms —
in particular C(l) — in the energy plane, but very easy to write
these terms in projection, as we now shaw.

Let us define an extremely condensed notation so that, for

example, Eq. [(10.1} or its diagonalization (1D.2) bath read:

X = prexexr

Similarly, the planar bootstrap reads

X = PXP + PXA {energy plane, see (10.7)} ,
(11,20)
A = K+ KPA {j-plane, ser (10.8)] .
1)

In this notaticn, the C cylinder term may be writren in the

energy plane as

) R
€)= Rkp KR + PKPXR + AKPLKP + PRP.KP . (11.21)

where P, is the twisted helicity pole propagator (see below). The
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diagonalization of (11.21) is, in aur condensed notation, again
(311.21). Once (11.21} has been diagonalized, we may use {10.5) to

expose the propagators so that

T - pLark « x] P {RPA » KIP  (j-plane). (11.22)

Inserting the planar bootstrap (11.20) twice yields
oy 5 2
P4 = PAPAP (j-plane). (11.23)

Finally, in analogy to (10.5), we define C(” in teras of c(l)
ta get

¢ - oapa (j-plane),

which, in full j-plane notation, reads
“)C"Ju-“'” - EI‘:: An 2 o AL@n . e
3

This equation, illustrated in Fig. 36, gives the projected one-twist
cylinder term in tems of the projected ring discontinuity A which

solves the bootstrap (10.8).° From (10.14),

NI —-Qh— . (11.25)

where H(2} is given by (10.12) with the signature-factor product
teplaced this tiee oy (I0.16).
Adding the naturality and charge conjugation labels [see

Sections (10.4) and (11.1}}, (l1.14) becomes

1
( )C’m(l 3 ):y—u(‘w [‘“"’"’]Ax (2.3}, (11.26)

(n

"Notice that Fq. {11.21) doce not say € = KP, K.
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or, in terms of the lower-cas<e projecrions of (11.20),

T3 3 Lf—”"‘ W alin.n - alles
(11.2>y
with M) = T« leMI(j+1-2).
4. Angujar Momentum vs. Helicity
¥e pause to make a few ohservations about Eq. (11.2™). First,

it should be clear that the “Reggeon propagator” {11.253} i< not
directly related to the angular womertum 1. in contrast to the
feeling one gets from the rapidity approximatinn. That ix, the
teading helicity-pole propagator has the form 1/(}-h.), nut

V4 - &) as in Eq. {11.13). As emphasized in Appendix E, the
variable £ which measures the energy dependence of the object we
loosely call a Reggeon propagator is the analytic continuation of an
azimuthal Euler angle, not a central Euler angie like B of (6,0.8).
Therefore, the correctiy projected propagator is a function of the
variable conjugate to that continued azimuth £, namely, the continued

heiicity A, and not the angular womentum j. The rapidity formalism

with its collinear boosts is incapable of distine.ish.ng angular
momentum from helicity, and projects evervthing vsro a hybridized
Mellin projection index “J*. One feeis that asymptatically - i.e..
near singularities in the projection index — this hybridization is
acceptable. Even 50, it seems unlikely that the low.energy behavior
of a plu.ar discontinuity could be determined from a planar bootstrap
which uses such an approximation, and the same poes for the cylinder.
For example, it is just this distinction between j and the variable
A {which is forced to the value h, = ucz~1) which gives rise to the
threshold factor appearing in Eq. (11.38) below.
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The s-piane for tq. (11.27) is shown in Fig. 37, As j is
varied, the helicity contour is repeatedly pinched between the helicity
poie at } =h, ard the poles of F(j «i-2). FRach pinch generates a
pole in 3 which 1% tn tore coaverted to a Regpe cut by the transverse
integration dy,. These i-plane poles are, of course, explicit when

the helicity contour in (11.27) is lefr-shifted as per [12.12) 10

qive
(8%} TS L. .
AT T dd, 2V Ty« leh) Fisl-h,)
u:n;
nl“'}
. ala +ig
auhzil..‘l ah,u'(z’n . {11.28)

Keeping only the leading helicity poles of the icading Regreons

&0 that
b= q].&z T e vt (11.29)
2
ard setting y = y' = 9, (11.28) hecomes
M3ty 50 < v fas (M) Moo, + 1) TG -0, )
oo ' 7 A ¢,
31° 2% 11.30
~al o P e (11,309

whizh may he compared to the rapidity result (11.13),

1

L AITIE S r/do, @] G-a ) e . ansy

Whereas [11,31) shows only the first Regge cut, (11,30) exhibits
the complete f.mity of Regge cuts associated with the Reggeon pait

uz.u;. Recall, however, that if the upper-case projections Ai’lu‘



-67-

lack fixed poles at the nonsense points, the lower case afm. have
nonsensc zeros. We presume, then, that these amplitudes in fact have
a string of nonsense zeros which cancel all the gamma function poiles
and thercby eliminate all Regge cuts from the cylinder, just as we
contrived to do in the rapidity model. More significantly, the same
mechanisn should remove Regge cuts from the planar bootstrap.
Unfortunately, we have been unable to pursue this question due to a

technical difficvlty which we discuss in Section (12].

6. The Complete Twisted Reggeon Loop

Since the A's appearing in (11.26) are the projections of ring
discontinuities, their j-plane singularity structure contains, hope-

fully, onty Regge poles. We then write as an asymptotic series,

-3 [/%Gzo(l:u)] [fr_(—'%ci"(z;u)] .

J a2
gy S G-®

(11.32}

where the G are triple-Regge couplings,

30 i.ay = 6I9 T, ',
Gu (i;a) = Gu (ui,ui, ti,ti. a,t)

whose normalization was discussed in Section (10.5) and shown in
Fig. 30. Near a particular Regge-pole, Eq. (11.32) reduces to thc
form (10.9) given earlier, but in general we wish to waintain the
j-dependence in the triple-Regge couplings, as discussed below.

Since Gj (1;a} cauples twa Reggeons (a, .u;) to a third Reggeon o,
it is clear that the coupling vanishes if a has the wrong naturality,
5o we now drop the naturatity label, keeping in mind that (11.32)

represents a sum only over trajectories of the proper naturality.
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Inserting the pure Regge pole expansion (11.32) twice into

(11.26), we find for the projected one-twist cylinier term

Wi - T/ o] e ke

a,a’

x [,/n%.)- Gi,(};u')] ) (11.33)

S 0}

where
Wow s —2 7 | £uy [cj(: 2 ez ].
a Trey zJ4 ™ A “hy A ]

(11.34)
When the helicity contour is shifted to the left as suggested in

Section (12), the resvitant k is

W - 2 Tue Eewl) Eeen]
VT vy 2
TTie) 2 (11.35)
In our Regge pole expansion (11.32) for the ordered four-
Reggeon discontinuity A“‘“(I,Z), we have exhibited the triple-Regge
couplings as being j-dependent, just as in the rapidity version (11.9).

Usually Regge couplings are presuned to be independent of j, e.g.,

Ya%

A (i) G-

50 we wish 1o comment on this peint. The Regge expa.-sion given in

{11.32) is supposed to be a r ble approximation to the exact
partial wave amplitude -\3‘(1,2). However, we know from (10.18) that
when kx *0ork, +0 [ki are the continued c¢ms momenta, see Eq. (5.7)],
the partinal wave amplitude Aljﬂ{l.l) wost exhibit the characteristic
threshold behavior,

i i-op,-1 Jrog st j N
[.\(l__)]L\ I (x,) [a (1.2)]‘“. (11,30}
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Therefore, in order that the (fimite) Regge eapansion (11.32) be
accurate, we must assume that the couplings also exhibit this threshold
behavior,

1o -1 ,
[G(E;u)]; S L [ (2;a)]i . (11.37,

We might then ignore the j-dependence of the residual coupling G'.
In particular, we have already noted that G' should have no fixed
poles in j.

Therefore, a modei fcr the complete twisted Reggeon loop k

accounting for this threstold behavior and lack of fixed poies 1s

J-a.
o) = Z fdufdk(l) € he2)
o [Flu)l‘(u )1 Z

aza; n,ny
20 I pae . aqd

< [E'2w) [6'2:e")] . (11.38)
h! hl

where we have used dwz = (2n/f) k!dkd- as given in Eq. (B.10}, and
where H(2) is Eq. (10.12) with {10.16). In the past, expressions
for k have not shown this threshold behavior because the projected
triple-Regge coupiing has been identified with the j-independent dual
coupling
o _ Ma+l)
8(!,[2_[2) = lr(a—_a—c-z—)

The complete twisted Reggeon loop and its relation to C(l) are
shown in Fig. 38. There, the loop is cross-hatched to indicate that
it is a complete twisted Reggeon loop incorporating rhe effects of all

the helicity poles of all Reggeon pairs.
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We muy now compare this precise Reggeon loop to its approximation
in the rapidity modet as given in Eq. {11.15). First, since we have
includes more than 'ne Regge pole in our approximation to Aj. the k
of (11.38) is a matrix in the space of the Reggeon set {ui). whereas
{11.15) shows only the lcading diagona)l element of this matrix.
Secondly, the usual numerator gamma functions of {11.12) which contain
the physical poles of the propagator, now appear as sines in the
denominator of the factor H{2}, with the job of ghost removal now
is.cumbant upon the -ouplings G in the sense of Eq. {2.8). We have
retained tha tz.e; factors in H{2) to allow for fermions on the top
and/or bottom of the Reggeon loop. For example, the upper and lower
Reggeons must both be baryons in the contribution to the cylinder
which mixes regular mesons with baryonium states,“ (see Fig. 39).
Finally, the k appearing in (11.15} contains only the leading pair
of Reggeons (az,u;). and only the leading helicity pole corresponding

in s e
to that paijr, i.c., n,=n, = o,

7. The Full inder
So far we have discussed the zero and one-lpop contributions to
the full cylinder, Egs. (11.32) and (11.33), which we now rewrite in

an abbreviated notation
(03 =
L) = g Py g(3);

Mam = e, Py KR,

[PPR |
where now P; = 6] “i) and Kij a “aiaj' To compute the full

cylinder including the planar part,

tn =3 c®a,n

n=0
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we remove the external couplings on the ends to make matrices of the

c("), and we replace the P, with diaganal matrices

. ~1
Plj " 6” Pk = ﬂi’(J-ﬂ.i)

Then C is a geometric matrix scries which one sums to get
- 1 .1 [cufT(P'lo K)}i.
[€(1,3)]., = [Pepkps .. ] = [p7 K] = -___I—J.
R i 1j derrl -y
The locations of the poles of the full cylinder are then determined by
det D(j,t) = 0 {11.39}
where

o0l - (5 -0, ()8 ‘lej(t) . {11.40)

with kij as given in Eq. (11.34). In practice, one can restrict to
a smal] number of leading planar trajectories and include symmetry
breaking. If the matrix space is crudely )imited to one dimension,
Eq. {11.40) shows that k recovers its simple significance as the
shift between the pomeron and planar Reggeon in the one-flavor model,

as in Eq. (11.18).

(12) FIXED POLES, NONSENSE 2EROS, AND
THE HELICITY CONTOUR FROBLEM

vhereas the diagonalization procedure described in Section (9)
is straightforward, the problem of shifting the helicity contour in
the diagonalized equation is stiil, we feel, an unresolved question
Rather than bury this discussion in the cylinder calculation above,
we thought it best to expose the prablem clearly in the hope that
someone will solve it, and to show the drastic assumption we male 1n

the end. The problem described here in cffect blocks the camplction
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of the helicity pole expansion program.

Consider a simpler version of Eq. (9.1),

A(E) = fdf, B(4,) Clg,) . (12.1)

or its disgonalization

S (L
A -j}; B Coye N (12.2)

with projections as given in Eqs. (9.4) and (9.5}, which we now

write as
-
e = fdz .0 O (2 = chv) (12.3)
1
fd ®
- PR S
Ty () = fg—ﬁ e zf"zi'; e ergvEn (12.4)
and similarly for Aiu,, out for B{.l we have
oL S e
LA /d‘ L, B.(v) (12.5)
1
) = f‘f_f— v (12.6)

The functions Q‘lu_(:]. lixe the regular QJ(:]. have poles in j
and therefore (it turns out) im A and u', ard this certainly suggests
that the projections like E?\u' of Eq. (12.3) might also have these
*fixed pojes,” aithough this is not necessarily the case. Neverthe.
less, it is useful to convert from the functions Q':u‘ to the q{u, of
Fq. {A.13) which are analytic in j, X, u* and have no :zeros, at least
for Re(j} « -1. Defining now, lower-case prorections as in Section

1M

et . [E R
v

u

] A
S G _’]‘d» qlu,{_t 3



we can say that if Ciu, has no "fired poles,” them :-]‘u

, Tust have
zeros (nonsense zeros), since ¢ 1is the residue of the pele in C.
(In this sense, c 1s closer to the Mellin projection tham C.0

In terms of the lower-case projections, {12.2) becomes

where Hi = T(H+1+AT(G+1-0). A= ) = tim, H'; -~ cxp(-n|l}),
providiig the excellent apparent convergence fe¢r the helicity inte-
gration. One pays a price tc get this exponential damping, however:

H]A has poles gaing off in both real directions in the X-plane (see
Fig. 37). Suppose U':‘X is anmajytic in X and ciu' has a simple pole at,
say, A=h=-1+¢4. One would like to sey that, wher the contour is shifted

to the left, this pole makes a contribution to "1J.m" However, the poles

of Hi also make contributions, and to make matrers worse, the poles of

ci“, at “=h can pinck rhe contour agairst all the poles of T(j+1-21)
3

causing a
3 wut

10 have poles in j ("Regge cuts"). Since Regge cuts are
unwanted in the cylinder or pla.ar bootstrap, we would like to claim

.hat the pole= of T{i+ 1 -1jare cancelled by nonsense zeros in the

projections like =

e which is to say, the Froissart-Grihov projection

C{u, has no fixed poles. This sounds reasonahle if C{u‘ is the
projection of an vrdered (planar) ammlitude where fixed poles must
be ahsent so thai the Reggpe cut discantinnity formulas give zero
discontinuity, circularly speaking.

Granting that the product Uix ciu' has full nonsensc zeros to
cancel the poler of T'(j+1-1) and remove Regge cuts, ore must still
consider the problem of shifting the contour. It must be impossible

to shift to the right because then one gets a’)

o, = 0, ccrtainly not
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desirahle. Shifting to the left yields a contribution from the pole
at A=h, but still there are all the poles of T{j+1+)). The conjec-
tured form of the helicity nonsense zcros of Eq. (2.8} suggests that
the zeros in the ’-planc should he symmetric and therefore the poles
of T(j+1+}} are also killed (although the dA convergence is now
jeopardized by the removal of H'xi).

Now, presumahly, the integrand of Eq. (12.8) is amalytic in A
except for the pole at A=h (the "helicity pole”) and we would like
to say: shift thc contour <o the left pick up the helicity pole

contrihution, and hope the contour integration vanishes as it is

ted off to Re{}) = -e=,
However, in the C”) cylinder calculaticn of Section (11) we
found that, aside from the helicity pele, the integrand was symmetric
in A, so *hat if we disallow a shift to the right, we must also
disallow a shift to the left.

The situation is analogous to the problem of the Sommerfeld
Watson representation which is resolved hy the “Mandlestam trick" of
replacing the poorly behaved functions pJ with j-decaying functions
like Qj' In Ref. 3 it is suggested that a similar procedure be applied
in the present context. Presumably the projections ciu, are badly
behaved as Re(A) + t® becavse the q{u' are badly behaved. As shown
in Appendix A, one can decomposc

. "
ol

W qiu' M VY (12.9)

where i‘;u, has peles only on the right, thase of T(j*1-1), and is
well behaved as Re(A) = -, as can be shown hy applying Watson's Lemma
to the integral representation, Fq. (A.1R). Pefining projections B

and ¢ in the obvious way, (12.8) hecomes
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] O LS I ] 9] ]
YT B Y ["ux * ”-u,—x] [“xu' * C-X,-u']‘ (12.10

Now, sadly, ane does not really know the large A behavior of the
various projections because, looking at (12.7): (a) infinite range
integrations can change asymptotic behavior; and (b) Cm,(v) also
depends on A via the Fourier projection (12.6).

At this point one throws up one's hands and makes a guess. Of
the four terms on the right side of (12.10), the fourth term may be
harmlessly shifted off to the right where the projections ifu,—l and
Eil,-u' have at least power decay. The two cross terms either
cancel, or may also be shifted off to the right, also yielding no
contribution to ‘ij" The first term must be shifted to the left,
in the direction that ﬁi‘ A and eiu. are at worst poweT behaved.

This term picks up the helicity pole at A=h, giving the final result

i .3 2
e = B Res [T ], (12.11)

or, in terms of the original equation,
j - i . i
My = 2By - Res [chu,] . (12.12)

In this paper, we have made the assumption that (12.2) can be
repiaced with (12.11) or (12.12) in the following locations: (10.41),

(11.28), (11.30), (11.35), and (11.38).
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APPENDIX A
SOMF. USEFBL FUNCTIONS

Refercnces 9 and 23 describe at length the properties of the
generalized Legendre functions wa and #w' Here we reproduce only

their definitions and basic symmetry properties:

(z_,)‘:(\'—ul (z.l)l:lwu) F(j'h\h ~j+vi v-usl; !;—z)
T 7. ’

Py -
w Tiv-us1)
(A.1)
i JIRTL IO PR B8
g = % TGaenrTGery (E =Y
2
F{j+len, jolsvg 2je2; ey
N ( T z) (A.2)
F(2j+2)
S S | . pi-t
Puv p»\'.-u ’ l>Juv Puv ’
] (A.3)
% S {
q, -, ., . q{,\, .

wvhere
5 Tlielaa)T(j+1-v)
S T TGRTITGSTaY) : (A.4)

All variables are general complex mumbers. Sometimes we make use of

the following cowbination:

O.@ = deven - gl em M as

>
The wsual rotation d-Fun:tionsS‘ are given by [+ for Im({z) 2 0]

i ™™ @ el (s
L PO S (R S A €O I (A.6)

oT
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N P 1 n'-m m'em
d:nn'(e) = (Gé,m) (+sin -g—) (cos %)

F(jolau'. -jem'; mlemel; sin’ %)

.7
Tm'-m+1)
When j,m,m' are all integers or half-integers, one has
e 5
CEAY G B ) LY G B
f jomt (A.8)
dor (8=M) = (-1) 6...‘.

As usual, the complete rotation-group matrix element is given by

0.0 = dwae - ™ @ ML @

The sccompanying second-kind e-ﬁmctions33 are defined by

dm - e @ e . (.10)
with

o - thwiv o ™ @ oMY @I

The & and e functions have these helicity sysmetries:

STl A

-m,-m" *
; (A.12)
a-m' J
-1 e,-. " fatm T !an,-"

Sometimes it is convenient to use still another version of the

second-kind functionm,

Sy - .i"'“u) A.13)
q_w T +1leniTge1-v -~ . .

This q-function has the advantages of being analytic in j, u, v, and



[ = Ry T Ty T Wy (A.14)
The asymptotic behavior is given by
N i _-j-1
. 2 27
lim gl {2) = = .15
Jim gt HeXEE (#.15)
and the relation between q and e is

da@ = ™ pd 1

qu. @ , (A.16)

where nim, = “:\H;‘n' , and H{I = T(j+1+p)T(j+1-u). An integral

representation for q is given by:"4

os o

3 o) -

H) ap(chv) = !’.{ da f(a) (A.17)
where

. a A
fl@) = ™ (chy + shychayl] e tIROV/D) |
1+ e%th{v/2)

Since qfu is analytic in U, and has no idemtical zeros, the function

on the left-hand side of Eq. (A.17) has poles going off in both
directions in the u-plane. By decomposing the integral into two
parts, it is possible to produce a function which has poles only

on the right,

9,
i ey o
Hv qu/\(c v} = kfdu £(a) . (A.18)

and is well bebaved as Re(M) » -o. Comparing (A.18) with (A.17), we
find

IS | od
apy = an - (A.19)
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Letting e " ap in (A.18) and using Batenan'sss formula §5.8,2(5)1,

a may be shown to be a two.variable hypergeometric function
j o vy® oo oy ®
l‘l“| qul(':hv) = 4 T(jel-p) (ch 5) (sh —2—)
Fa8,80y; ~th 3, wctn 3)

T

where
Y = a+l = j+2-yu,
B = jels+ f (A. 20}
B = jel-2 .

The poles mentioned above are now evident. Our functions q and E

appear in Ref. 3 as d-functions [no connection to Eq. (A.6) above]:

q‘]ml - ”d:m' ,

7

(4.21)

Jai . o3
Hu Uy 'ndw, .
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APPENDIX B
TOLLER M-FUNCTTIONS

We present here the definition and some basic properties of the
Toller M-functions used in Sectiom (2). Our conventions differ some-
what from Toller'su and will be presented in detail e]seuhere.lﬁ
As noted earlier, the M-function formalism applies equally well to
the physical or ordered S-matrix connected p:rts.7

A Toller M-function representing a Z-to-3 asplitude may be

defined as follows:

ﬁ‘:'z‘)'.‘s

(1a;: 2.a,: 33,5 4.3 5,a,) A 8 (ext)
LIS o4 .
s ([p, e e, v ey o6, v a)

S

B, L}
u(a,)1?, J@ua,) ;s,‘)). .1
where

s'ext) = &°(p, P, -p,-p P .

b
[

LXCT0 )N

o
e
"

(n,,0,0,0)

and the comstant A = -2wicf is discussed at the start of Section (4).
The L(ai) are the 4x4 Lorentz matrices which act on 4-vectors, whereas
the U(ai) are unitary operitors which represent the elements (D.ai)

of the Poincare group in the single-particle Hilbert space. The
states | ) and | ] are defined and discussed in Ref. 13; basically
they are linear combinations of the usual | ) states which are
designed to transform as undotted and dotted spinor representations

of the Lorentz group. In Fq. {B.1) all helicity (spinor) indices arc
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of the undotted upper (contravariant) type. Generally there are four
kinds of spinor indices: x". Xpe x", and Xz s which can be raised
{G acts on the left) or lowered (G acts on the right) by an anti-

symmetric metric spinor

s
- i s . m

where s is the spin of the particle involved. Except on a few
occasions we use only the x- and xy index types. However, in order

to allow room for explicit spin labels like s , we have adopted the

following notation:

m $)5,555.55 i‘- m,
= H .
Sl LN "R 1 ™

That ls, upper indices are written as lower, and lower indices are
also written as lower, but with a dot underneath, this dot aaving no
relation to the dots of xi and x5

The only properties of the Toller M-functiors stated here are
the invariance and covariance conditions. Other properties such as
crossing, TCP, Reggization, etc. will be discussed elsewhere.m

The statement of Lorent2 invariance in terms of Toller M-functions

is very simple:

H‘."z':"s"s(u" 2a,,2a,,8a,,a,) = H‘.'z‘:‘a‘s(.“az""'“a’)'

(8.2)
This invariance condition, immediately evident from the definition
(B.1) since the operators U(a) are unitary, states that a Toller M-
function transforms as a Lorent: scalar. The equation is the same
for all types of spinor indices as long as both sides match.

In addition to the above overall invariance condition, the



Toller M-functions have a covariance condition on each particle, e.g.,

IR m, (a,,az.a,.a.,g.a )
1727

E Fo,n,0,20m 5 (3,3;,35,8,,35) D i, (8.3

-'=-s
.

where g is any rotation. The covariance conditions are also obvious
from Eq. (B.1), given that the rest states l'ii") transform in the same
way under rotations as the usual ];,n) states, while the states ]}3‘]
transform as D”,

Toller extends his covariance condition to include parity,
Totations and parity comprising the complete little group H, of a
rest 4.vector. This matter is discussed further in Section (3).

To verify the counting of variables, one finds for the general

n-point Toller amplitude:

nxgs each a; e 6 variables
-nx3 covariances
-6 invariance
-4 &* (ext)
3n-10 .

Finally, the Toller M-functions are related to the momentum-

space M-functions (spinorial amplitudes) of Tayloru (Stnpplz) by

(a,.a,,a,,8,,a,)
Hﬂ\";-]'h. 2*83 8,

(o, )
H.,,,_,,,,,,,_.(p PPy P, »P)’”D ! . (.9
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where D(o"i) are certain spinor representation functionsls'm of
SL(2,C), and p; = L(qi);i.

Toller has shown that the n-point function M, (a s
analytic in [5L(2,0) xSL(Z,C)]" ~ [complex Lorentz grcup]". the only
singularities being reflections via P; = L(ai);i of the positive-a
Landau singularities which are the only singularities in the Py of
the Stapp M-functions (e.g., nommal thresholds, poles, triangles);
kinematic singularities and constraints are not present. However,
when the M-_”(a,...) are confined to certain surfaces within
[SL(Z,C)Z]n, as by using the standard frames of Section (5), these
kinematic singularities reappear. This is obvious when one realizes,
e.g., that the Toller 4-point function, when written as a function of

ge0(3), is an ordinary helicity amplitude.
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APPENDIX C
THE HELICITY POLE EXPANSION FORMULA

In Ref. 9 we have derived a cecrtain "alternative" second-kind
generalized-lLegendre addition theorem and have proved its convergence.
This formula, Eq. (2.11) of Ref. 9, when converted from the § to the

q functions of Eq. (A.13), becomes

o uE J (21 e _ZZ (-1 ema
m-j=1

T(jelem) .
" R ) ) - €

The relatijon hetween variables (£,:.£') and (z,.a,2,) is given by
Eqs. (2.8) and (2.9) of Ref. 9. We now make the following set of

changes on Eq. (C.1):

£+ -ip g+ -iv
2+ ishf L, * ~ishh
U+ o-m o -7 c.2)
a + £ m-j =+ nel
z - .:hE

Taking j + -j~1 in the equation which results from these changes

leads to

= n
i I-lpEyenitY -ZZL‘"‘_{_r(.zj-n)

(C.3)

. E(J n) -

lishf) 4] J (Aishh) .

which converges when Re{f) > 0. Howcver, from the discussion in

Appendix L oof Ref. @ it can he shown that £ =+ -E is compensated in



Eg. (C.3) by (u,v) = (-u,-v). After making these changes in (C.3),
one may then take {m,r} +~ {-m,-r) to get an equation identical to {C.3}
except that m,r and £ are replaced by their negatives on the right
side, and this new equation converges for Re{f} < 0. Both equations
<an be written simultaneously by introducing an index x,

P A ST RS 3y G(KE)E ” r(-2j +n)

prrd

15 (5-n) -3-1
x e q (1shf) q] g (-ishh} ,
(C.4)
now valid for -« < £ <=, As the Jast step, the 3 function on the

left side of (C.4) is replaced with its e-function equivalent [sec

Eq. (A.16)] so :nat, upon defining

; [ore-z - me-n™ w1yt
#) el s[ ~ ] % 31 alishe) L (C.5)
Eq. (C.4) becomes
iy = el - =TT owen)
x i rﬂ'n(n felG-m F;‘;,‘r(—h) . (c.6)

Setting j =a, then putting a subscript '

“ on all variables yields
the result quoted in Eq. (6.1}.

From Eqs. (2.8),(2.9) of Ref. 9 and (C.2) above, the relation
betwecn the BCP (Bargmann) variables (u,E,v) and the Fig. 15 variahles

{f,r,h) may be found:

chE = shf shh + chf chh chf ©.m
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v [shh chf + shf chh chf + ichh shEl , (c.8)

shE

and an expression for eV given by h~f in Eq. (C.8).
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APPENDIX D
THRESHOLD KINEMATICS
In Section {S) we studied the left- and right-side loop equations

of Fig. 14 in order to compute the Misheloff rotation. Here we examine

instead the lower loop .equation of Fig, 14, namely

~1
8;'v,8, = hgq,f, . .1)

Analysis of (D.1) in the manner of Appendix E of Ref. 9 shows that

shv,
chf, = sinalﬁq— R
l
. shv,
chh, = sim, shy, *
1
where, as found in Section (5),
sing = k' (5.18)
V)
sinf, = e (5.21)
2 % .
(-t,)
[A(sl,t,.:z)]H
shql = ___"—!'__ (5.1)
2(-t,)?(~t,)
fACK?,-k2p2 Y
shy, = ————— | (5.19)
2K,k
Therefore, as k2 -0,
2
(p; +K3)
Chfz = S const.
20t )7 shy,k,
2 2
(p,*+ k)
chh, = L2 = const, x k;l .

—
2(-t )" sha .k,



and as kz -0,

2 .2
P, +k,) -
chf, = —————g— = const. xk,
ZShql(-tl)‘lz

1

1+l

- = const.
l’shql (-tzl ‘kl

These last four equations are used in Section (10) to find the

threshold behavior of the kernel.



APPENDIX E
THE CROSS-CHANYFT CONTINHATION

In order to carry the kipematic structure of Fig. 15 “rom the
muitiperipheral region to the physical cross channel where t >0, one
must analytically continue in the Mandelstam invariants to appropriate
new values and perform a complex Lorent: transformation. Our main
purpose in describing ttis procedure is to show that the peculiar group
variables appearing in Fig. 15 are sirmply continuations of the familiar
varigbles< ane would usc to describe the large-t Regge timir.

Constder, instead of Fig. 15, the single ladder rung shown in

Fig. 14. The invariants ti,t;,t and s, are defined by

£ ox (&]) o= (k7
. 2 )l
t,o= (k) t, = {k)
] ' 2
Q= (k,+k) = (k,+k)) t=Q
Py o= G,k = R L, s, =)

Our goal! is to start in the multiperipheral region of the Reggeon
process 1+2 + 1'+2', where

Q.k k= spacelike
A((.ti.(;) = negative
p, = fulure timeiike
central level = bws frames

and wind up in the cross channel physical region for J+2° + 1+ 1Y,

wheyr
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Q.k,, k. = future timelike
A(t‘ti’t;) = positive

p = spacelike

central levei = cms frames

Bws (cms) means brick wall system (center of mass system].

The fiTst step is to continue all the t's. Figure 40 shows a
“movie” of this continuation, and Tahle | describes the movie.
Including t, and t; onc may conciude that

L Y,
- I s
-t 1(ti)
W FPIEY
(S AR N
(E.1)

(LI

s

,
[ e R L

The branch point detours were chosen in the same way for all varviables.
What cffect do these changes have on the cquations of Secticen {57

First of all, Fqs. (5.1) become
ki %
shvl = (slol‘-tz)lz(-sl) (t‘)
8 t
sho, = (s, +t,-t.)/2(-5.)%(t,)
See V't
chg, = {tx'tz‘sx)'lﬂ‘l) (t,)

which are now the correct BCP boost formulas for a 2-timelike/1-space-
like vertex.

Morc intcrestingly, Tqs. (5.3) and (5.5} become
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- Y720 e

cosB,,, = {t-t,-t,)/2(t,)°(¢)

cosd,,, = sho, shu; + cho, cho) cosk,

But now cos(ou,) >1 which implies cos(Xl) >1, so we define

cos,,, = coshn,,,
cosX, = coshEl
to get
: t
oy, = (8-t -e) /20805 ))"
chn, . = sho, sha, + cho, choj chg,

From these expressions one recognizes that n,,, = -i8,,, is the usual
rapidity boost parameter comnecting the rest frames of the (now)
incident particles k, and k;, and that E‘ = -iX, is the Regge variable
of the 0(2,1) link (ul,El,\Jl) on the now spacelike line P, (recali
that u,,v, were set to zero).

To complete the above description, we now construct a figure like
Fig. 14 in which the parameters Ny = -18,,, and El = -iX, appear
explicitly as frame-comnecting boosts. The frames in this new figure
(which we do not draw) form a sort of shadow cabinet for the frames of

Fig. 14 in exactly the sense of Fig. 21, except that the s' of

Fig. 21 is now replaced by this complex Lorentz transformation

T o= B ]) .

The operator T, given in the 4-vector space as

o 0 0 -i

o 1 o
T=1lo o 1t of -

i 0 o o



-92-

turns timelike vectors into spacclike and vice versa so that, e.g.,

k: {in one of its spacelike rest frames)

k, = (0,0,0,v-r;) = (0,0,0.iVt))
becomes

™, = (V5,000 = k,

t

where k: is the vector appearing in the new figure.
According to the rules of Eq. (E.1), the bws versor magnitudes
ki of Eq. (5.7} become
%!
1
[A(t.ti.li)_

2(t)

which are now the initial and final charne! oms vector magnitudes.

The z; of Eq. (5.13) is now imaginary

it ‘ti -ti]
2(e)

as desited, since k, in one of its bws frames

K, = (0.k,.0.2,) = (0.k,.00F)
becomes

K, = Tk, = (E, k000

which is the normal form of a standard cms 4-vector, except ':a points
in the x-direction instecad of the z-direction [sce Eqs. (5.10) rhrzugh
(5.12}1.

Our imaginary new figure can be complered very simply by examining

the action of T on the lorent: generators (see Appendix \ of Ref. 9%:



'
-]
”
{

K TGT
Jy —
gy —_
J. —_—
- 2
Xy . (F.2)
Ky —
K, —_
so that. v.g.,
-i6,, dy .ie”.{-,xxy
a)'(();:,) = e - e = B,(-18,,,) = B,(n,,.} ,

lending credence to the above remarks concerning the variables 8 and X.
Finally, consider the central leve! boost parameters F‘i and \»i

whith were so important for the diagonalj:zation of Section (9).
According to (E.2), the combination

By(i,) B (v,) 8,(5,)
which surromnds the cluster p, in Fig. 15, hecomes in the new
picture

Ry(8,) R, (8)) R, (&) .
where

o, = it 8, = -iv, 8, = it, (E.3)

2

are the Luler angles which characterize this runp in the physical cross
channel (8, is the scattering anple, i‘-;, = cos(B,)), except that, as
already noted, the azimuthal rotatjors happen to come out being
x-rotations instead of :-rotations.

4e conclude with a short comment abhout helicity, Equations {E.3)

show thar the central level E,i hoosts of Fig. 1% are the continuations
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{to the imaginary axis} of the cross channel azimutha! rorations of
the process 2+ 2' = 1+1', Therefore, the variabie conjugate to £
namely u,, is the analytic continuation of the varisble conjugate to
[RS8 which happens to be the channel helicity m=m, ~n;. This justifies

R : : s oaas 36
our characterization of the u or X variables as complex helicities.
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APPESDIX F
REATTACIMENT OF THE END-RUNGS

How does one obtain from the solution of Eq. (10.8) the physical
discontinuity for particles rather than Reggeons? One way is to
continue the Reggeon discontinuity A in the masses, spins, and heli-
cities to the desired physical points. Unfortunately, the J-Reggeon
discontinuity A appearing in Eq. (10.8} is not a standardized Toller
M-function (see Fig. 29), so that one may conclude only that the
continuation of A will be proportional to the physical amplitude.

An alternative and more conventional way to obtain the physical
amplitude is to add the ‘'end-rungs" back onto the multiperipheral
ladder. As this involves the special end-rung kinematic configuia-
tions which we have omitted from Section (5), we simply state the
answer with a few comments, In the energy plane, the end-rungs are

reattached according to

Tab‘:g) = zfdll fd‘Z Pawx)xalml)XIZ(EZ'vz’EQJKZb(ns]wa;]

1,2 .0
A is the sup of all contributions of the form (10.1), K, (n,) is the
left erd-tung, and Pa[¢:) is the cnnvezizonal helicity propagator
associated with the (a,a') channel, i.e.,

: '

P (4] = e-wl(na‘-a) . (F.2)
Variahle @‘ senses the channel helicity m = m *m; of the two-particle
system {a,a'}. The variables ny appearing in (F.1) are like the vi
appearing in (10.1}), burt not quite because the end-rungs are always
in a mixed-basis cmnﬁgur.‘ninn9 which causes 2 =ch{v) to be txisted

into 2 = i sh(nj}.
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The diagonalized version of (F.1) is

INCRSEED D -3 I L TN BRVENG WA

1n
= e, (z)xi,_(z.n)r_, () (F.3)

where
n

P () =/‘2“_" o-iné P#) = 5_._.._; . (F.4)

In Fig. 26 we schematize the prucedure for reattaching the end-
rungs to get the physical amplitude. Once one has solved the integral
equation (10.8) for ﬁim, and cowputes the Tj-, as in (F.3), the
absorptive part T_. {s,t) in the energy plane may be found from the
usual inversion of the Jacob-Nick expansion. However, one may return
directly to the encrgy plane without reattaching the end-rungs by
means of an expansion formula which is in effect the inverse of the

projection (9.4):

I CRR L I‘!j"’“‘fﬂﬁl&

< [sh, T @i e (Ria), aur, @]

tF.5)
where

sinm(2j}
sinn(j -~ p*)sinn(j » u)

s) (F.6)
uu'

The contours in (F.S} run up verticaily to the right of all singulari-
ties of the integrand However, the 3 contour C contains, in
addition 1o this vertical picre, clockwise loops around the intepers

and hylf-iategers to the left of the vertical componeat. Formuia (F.5)
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can be derived from a complcieness relation {q defined in Eq. (A.13)]
= +i fdi(2i iy 31
§(x-y) = 01{d; {2j « Nesen(2j) LS qw(y)

(x,y > 1) (F.7)
which in turn can be derived by the techniques of Ref. 9, Appendix G.1.
Finally, it should be noted that the projection (9.4) is precisely
the continuation of the usual Regge theory Froissart-Gribov projectior
to imaginary and in general complex helicities. Formula {F.S5) is (the
discontinuity of) the Mandelstam-Sommerfeld-Watson transform, the

discrete-helicity version of which was used to get Eq. (2.2) with (2.4).
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A particle pele term contained in the 6-point function.

Fig. 1.
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A Repge pele contribution to the 6-point function.

Fig. 2.
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A particle pole term contained in the 4-point function.

Fig. 3.
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A Regge pole contribution to the 4-point Ffunction.
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Fig. 4.
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A Jouble-Regge contribution to the 5-point function,

Fig. 5.
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The standard Totler vertex in no-Regge, single-Regge,

and double-Regge configurations
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Fig. 7. Elastic unitarity; X; is the Misheloff raotation for

particle 6.
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Fig, 8. Multi-Regge production amplitude,
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Fig. 9. Spin and helicity labeling for multiperipheral unitarity
product. Upper variables are primed versions of lower

variables.
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Fig. 10, The BCP frame trind for a production vertex.
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Fig. 11. Two vertices combined to make one rung.
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Fig. 12. Four new frames added to the ,mng.
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Fig. 15. Multiperipheral ladder formed by combining rungs of Fig. 14. Rungs are separated by

y-boosts Ei‘ Legend indicates meaning of labeled parameters. XBL 775-2246
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Standard frames for triple-Regge vertex in its

spacelike configuration, A(t,tl,t;) < 0.
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Fig. 17.
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Functional structure of the multiperipheral ladder, after

Mandelstam trick.
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kernels. This is the kernel Ko
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The helicity-pole propagator.
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Fig. 20. The kernel.
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Dotted figure shows segment of multiperipheral ladu r
In that world, frames st wn

Fig. 21.
in parity-inverted world.
are connected by £' = -£.
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The 3-particle or 3-cluster contribution to the

Fig. 22.
4-Reggeon amplitude.
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Fig. 23. Functions B, C, D are convoluted to give function A.
The variables on the bottom line are conjupate to the
boost rarameters as shown. The diagonal variable j is

angular momentum, variables u and X are helicities.
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Fig. 24. The 3-particle/cluster contribution to the 4-Reggeon
amplitude, in both energy-plane and j-plane.
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Fig. 25.
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The reattachment of the end-rungs (sec Appendix F)
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Fig. 26.
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Fig. 27.

The Regge-pole expansion of the unnormalized
XBL 779-23112

4-Reggeon ring discontinuity.
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The vertex bootstrap.

Fig. 28.
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Relation between discontinuity A and the Toller-
The

Fig., 29.
normalized 4-Reggeon ring discontinuity.
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R-notation is that of Ref. 7
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Relation between the cut vertex G and the Toller-
XBL 779-2319
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Fig. 30.
normalized ring function R.
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Highly schematic bootstrap for the
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Fig. 31.

=

3-Reggeon ordered amplitude.
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Vertex bootstrap with "dotted Reggeon" replacing

Fig. 32.
the single produced particle of Fig. 31.
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Fig. 34. The diagonalized twn twist-pair cylinder term near j=a.
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thn cylinder term in the rapidity model.
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Fig. 35.
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Fig. 36. The C(l) cylinder term with exact kinematics.
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Fig. 37.

XBL 7792315
The complex helicity plane for Eq. (11.26) or (11.27).
If helicity pole h is in the right half-plane, contour
should be deformed to the right. The other poles may
or may not be present depending on nonsensz zeros.
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38. C(]) may be expressed as o douhle Reppe sum involving
the complete twisted Reggeon loop k. The cross-hatch
indicates that the loop has been summed over all

helicity poles of all possible Reggeon pairs.

-

9

Fig. 39. Quark line structure of twisted Reggeon loop coupling meson
to baryonium. Since loop Reggeons are fermions, €-factors

in propagator are set to one-half. XB1 779-2324
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Fig. 40. Five frames of a movie showing the kinematic continuation of

a segment of the multiperipheral ladder from the multiperipheral
region A where t <0 to the cross channel physical region D where
t >0. Heavy line is equation A(t,tl,t;) = 0, Frames of movie are
described in Table 1 (next page).
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