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ABSTRACT 

The t < 0 multiperipheral Formalism of Ciafaloni, DeTar, 

Misheloff, Mueller, Muzinich and Yesian i s reviewed, extended, and 

applied to the ordered S-matrix whose rine amplitudes comprise the 

zeroth level of the topological expansion. Toller M-fmction 

notation i s used throughout. The bootstrap and cylinder problems 

are formulated in terms of a well-defined h e l i c i t y pole propagator; 

a definition of the complete twisted Reggeon loop, which appears 

in the one-twist t e n of the cylinder, i s given as a he l ic i ty pole 

expansion. Some consideration i s given to the following subjects: 

diagonalization, naturality, threshold behavior, Segge cuts, and 

complex he . i c i t y . 



(J) INTRODUCTION 

During the year 1969-1970, after a period of vigorous activity 

in the field of multiperipheral dynamics, Ciafaloni, DeTar, Misheloff, 

Mueller, Muzinich and Yesian presented, in five heavily overlapping 

papers, the exact kinematic analysis of the multiperipheral model. 

These papers were, in our opinion, extremely complicated in part due 

to the nature of the subject, and in part due to the fact that they 

incorporated mathematical ideas which were simultaneously being 

invented by the mathematicians, notably Mukunda. Possibly, the 

relative obscurity of these papers has discouraged people from 

attempting an exact multiperipheral calculation, leading the* instead 

to rely upon the approximate Mellin analysis and thereby to relinquish 

the capability of handling the true angular momentum which is central 

to Regge physics. 

Since the invention of ehe S-matrix topological expansion in 

1973-74 by Veneziano, there has been some renewed interest in multi-

peripheral calculations, ;n particular as they pertain to planar 

amplitudes. In a recent review. Chew and Rosenzweig have partially 

reformulated these planar ideas in terms of the so-called Ordered 

S-hatrix, the connected parts of which are called ring functions. 

Although the concept of ordered ring amplitudes has not yet been 

convincingly extended to the baryonic sector, it seems likely that 

efforts now in progress will soon succeed. 

In this paper we have attempted to review, elaborate upon, and 

consolidate the ideas of Ciafaloni et al, and to adapt these ideas to 

the ordered S-matrix framework. 
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A reader familiar with the above-mentioned multiperipheral papers 

would find, upon comparison of our descriptions with theirs, many 

differences in presentation, some of which we now enumerate. First 

of all, we feel we have greatly simplified the group-theoretic aspect 

of the multiperipheral analysis by identifying, as the agent which 

performs the diagonal!zation of the multiperipheral equations, an 

almost trivial addition theorem involving the same Legendre Q.-type 

functions which appear in the Froissart-Grihov projection of Regge 

theory. These Legendre functions are generalized in that they carry 

complex helicity indices whose role we continually stress. The 

reader is referred to Ref. 9 for an extensive discussion of this 

group theoretic business, 

Another difference one will notice is our attempt to isolate 

and identify an object called the helicity pole propagator which 

connects cluster discontinuities along the multiperipheral chain. 

Strangely enough* this propagator owes its existence to a factorization 

condition which resu.'ts from the same Legendre addition theorem 

mentioned above. 

Obviously spin is an important concept in a multiperipheral 

analysis which purports to compute Regge trajectories. He have 

attempted to include spin in full generality (i.e., on external 

particles as well as internal poles) by making use of the Toller 

M-function formalism- To our knowledge, no one has written unitarity 

equations in this formalism which seems so well suited to the presen­

tation of multiperipher.il kinematics. 

Interlaced with the discussion on the following pages one will 

find a sort of running commentary on parity and naturality, leading 

to a naturality diagonalization of the planar bootstrap which is, 

http://multiperipher.il
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we fee l , an improvement on the orifinal discussion by Ciafaloni and 

Yesian. 

Generally speaking, the ewct kinematic analysis allows one to 

think about things which simply do not ex is t in the rapidity framework 

which more or l ess ignores he l i c i ty . We have extracted the threshold 

behavior of the ring functions and have made a start at examining the 

nonsense 2eros which are presumed to remove Regge cuts. 

In Section (5) we describe in a rather different manner than 

that of Refs. 2 and 4 the construction of the standard frames of the 

aultiperipheral ladder. By continuing the ladder kinematics to the 

center-of-atass cross channel, we show In Appendix (E) how the peculiar 

boost parameters which link tf*e standard frames are the continuations 

of variables familiar frpm center-of-mass kinematics. 

The "planar" bootstrap and cylinder problems are both set up — 

the cylinder in more detail because i t lacks the counting problem —but 

no detailed calculation i s attempted because we are stymied by a problem 

involving the correct method of shifting the he l ic i ty contour. We 

have isolated this problem in the last section of the paper; i t must 

be solved before the machinery described herein can be put to work. 

Nevertheless, we do obtain an exact formal expression for the 

complete twisted Beggeon loop k(t) which controls the cylinder shifts 

of the planar trajectories in the phenomenology of Oiew and Rosenzweig. 

For a detailed outline of the paper we refer to the Table of 

Contents preceding this Introduction. In general, the f irs t eight 

sections describe the multiperipheral construction, Section (9) gives 

the angular momentum diagonalization, and Sections (10) and (II) apply 

the analysis to the bootstrap and cylinder problems. 



(2) MULTI-REGGE PRODUCTIOS AMPLITUDES 

To motivate the specif ic form we use for the mul t i -par t ic le 

production amplitudes, we appeal to the notion of a pa r t i c l e pole in 

the S-matrix. Figure 1 shows a pa r t i c l e pole t e rn known to be present 

in the £-point function (repeated indices are impl ic i t ly summed), 

(a . a , , a . , a . ) 
7 3 * S 

(2.1) 

This pole has a residue which factcr izes into two pieces , each piece 

being a 4-point function normalized in the same way as the or iginal 

6-point function. 

Each x in Fig. 1 marks a pa r t i cu la r standard r e s t frame for the 

p a r t i c l e on whose l ine the x appears. {When the pole i s reggeized 

below, some x ' s wist denote spacelike res t frames.) The notation i s 

approximately that of Tol ler : the s . are the spins of various 

p a r t i c l e s , is. are h e l i c i t i e s (component of spin along the z-axis in 

the standard frame marked by an * ) . The same symbols s, and m. are 

also used to denote cer ta in Mandelstam invar iants and masses of 

p a r t i c l e s ; the usage should be c lear from the context. The meaning 

of a dot under a h e l i c i t y index i s explained in Appendix (8). 

The a. appearing in Eq. (2.1) and Fig- 1 a re , for each p a r t i c l e , 

the parameters of a (possibly complex) torentz transformation which 

connects the pa r t i c l e standard r e s t frame to an arbi t rary , - l ab" frame 

as indicated in the f igure. The variable g appearing in [J ,(g) 
• 7 m 7 

denotes the rotat ion g = a^ ' a , : the siandard D-fun^ion fsee 

Appendix (A)J i s generated by covariation from the H-function on 
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the left according to the simple rule given in f-q. (B,3). s 7 is 

the spin of the particle pole, and m1,m'1 are the helicities of that 

particle in two different reference frames. 

It is perhaps worth noting that, although they carry spin and 

helicity indices, the H-functions appearing in Eq. [2.1) are Lorentt 

scalars, unlike the nomentui space M-functions of Stapp and Taylor. 

Secondly, we have been careful to properly order the particles 

consistently around the connected parts so that all our equations 

apply equally well to the ordered amplitudes (ring functions) in the 

ordered S-natrix framework associated with the topological expansion. 

The factor "(s7 - «1 + " 1 " in f2.11 is of course the actual 

pole; the numerical constant c is discussed below in Section (4), 

and can be arranged to equal unity. 

Equation (2..1) is, for the pole t e n , an exact statement, tie 

now assume that this particle pole is in fact one of nany poles which 

occur on a Regge trajectory a . The contribution of a 7 to the 6-point 

function shown in Fig. 1 should be given by the above expression with 

s continued to a ? and with the various g.nup arguments and invariants 

continued so that the equation is in a useful Regge region. Accounting 

for signature, the usual Regge machinery may be implemented to give 

Regge theory for n-point functions with n>A is much more complicated 
than we make it sound.' 7 , 3 Rigorously,3** both the physical and 
ordered S-matrix n-point functions must be decomposed into a sum of 
"spectral components" by means of an (n - 3)-variable dispersion 
relation (Bargraann-Weil)• Each spectral term contains only Steinnann-
allowed multiple discontinuities, a fact which implies the existence 
of a Lehmann ellipse of convergence for each z^ variable in an 
appropriate physical cross channel (hexagraph). As a result, the 
infinite angular momentum and helicity sums are convergent at least 
somewhere, and this allows the Sommerfeld-Watson continuations to be 
defined. So, rigorously one does a Regge analysis on each spectral 
component and then adds the results, or one sticks with a single 
component and diagonalizes unitarity onto the spectral components. 
We feel that the form of our results will be the same in either the 
rigorous Re^ge theory or Ref. 38, or the naive Regge theory presetted 
in Section (2). 



the following result (see Fig. 2): 

i ,n 1..m e
 , ,m 7m 1in %m 5 m 7mj in^n^m 

where we have suppressed the a. arguments, and where 

[factor!* , = e ™ e ca'ir 

! sinn (a + m) 
C2.3) 

The variables g * ($, z*cos9 , $'"; which appear in Fig. 1 are now 

0(2,1) variables (#, z = cosh£, <t'). The signature of Reggeon ct7 i s 

T (a spin-'a pa r t i c l e has posi t ive s ignature) , and e =0 or h depending 

on whether a 7 i» a boson or fermion t ra jec tory . Using Eq. (A.8) one 

•ay show by taking a , •* B ? tha t the Regge form (2.2) duplicates the 

pa r t i c l e pole term of Eq. (2 .1 ) . 

The f inal s tep in obtaining the Regge form we shal l use i s to 

perform a "Handelstam t r i c k " operation which causes the f i r s t -k ind 

functions in [ factor] , to be replaced by second-kind functions 

which have simpler asymptotic behavior. Performing th is operation 

we find 

[ f a c t o r ] ^ , = Y C ^ ' t r i * (2-4) 

where 

-ca* tann ( o - « ) , (2.6) 

L 2 sinn (a - e) J 



The function e 7 (z) , defined in Eq. [A.10), has the expected 

Regge behavior z a for large z, £ i s a standard signature factor, and 

Y contains the leftover factors. In particular, Y contains o* and 

therefore has dimensions E~ . In Eq. (2.1) these dimensions are 

generated by the pole itr-slf. Realizing that the n-point Toller 

H-function has dimensions E ~ , 

correctness of (2.1) or (2 .2) . 

The Regge residues appearing in (2.2) are three-particle/one-

Reggeon amplitudes normalized in the correct way so as to become 

physical four-particle amplitudes when the Reggeon is taken to the 

appropriate value of mass and spin (and signature, i f M is not an 

ordered amplitude). Since the physical he l ic i ty amplitudes must 

vanish when the he l i c i ty i s out of range (has a nonsense value), 

the residues must contain factors to knock out the unphysical poles, 

since this ghost-kill ing function i s not being performed by [ factor] , 

For example, one might take* 

^,s,s„s 5 _ 5 V j ' ' 7 « £ 
"•T- ,»%»S " , M j " [ n a ^ l ^ m ^ r C c . , * ! - . , ) ] ' 1 

(2.8) 

So far we have considered the Reggeization of a single-pole 

term in unitarity. Had we started with the appropriate multiple pole 

term, we could have obtained a multiple Regge residue or four-Reggeon 

amplitude which, weTC a l l Reggeons continued to particle points, 

would be normalized so as to yield a physical four-particle hel ic i ty 

amplitude. We feel that this i s a useful way to normalize Regge 

"in the sense-nonsense region, additional square-root zeros are 
provided by the d-functions. See, for example, Fig. 8e of Ref. 9. 
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residues, and is ultimately necessary if one atzeapts a complete 

bootstrap of, say, the triple-Regge vertex. He shall mention this 

later in Section (10) (but will not attewpt such a '.ootstrap). 

Although threr>-particle scattering amplitudes have no place in 

a stable-particle 5-matrix theory, unstable particles Bay be called 

upon to give meaning to the following equations. Figure 3 shows a 

particle pole term in the 4-point function. In analogy to (2.1) 

we write 

U S 1 S 2 S 3 S « . 
M m

1

B

3

m 3 m / a , ' a 3 ' a , , a ' ' 1 = 

s s s r c t - » ( s n s s S 

Reggeization in the same way as before yields t h i s expression For the 

Regge pole term shown in Fig. 4 : 

Again, the Regge residues (pieces of the factorizing residue of the 

Regge pole in the Froissart-Gribov projection) appearing in En. (2.10) 

are normalized so t h a t , as a s •* s , these two-particle/one-Reggeon 

amplitudes approach the standard th ree -pa r t i c l e Toller H-functions 

appearing in Eq. (2 .9) . The h e l i c i t y nonsense-zero s t ruc tu re of 

these standardized "Regge couplings" i s presumably similar to (2.8) 
4-n above. Notice from the rule E that these Regge couplings have the 

dimensions of energy. 

By reggeizing a double pole un i t a r i t y term, one may obtain the 

following Regge contribution for the two-to-three production amplitude 

shown in Fig. 5: 
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a 6 s h a 7 

The object fl i s the two-Reggeon/one-particle amplitude which 

continues to the Toller 3-point Function when ct6 •+ s 6 and a 7 •* s ? . 

/"gain, th i s "double Regge vertex" has dimensions of energy, as does 

th-: t r i p l e Regge vertex which we have not shown. These ver t ices differ 

consjjerably from the phenomenological Regge couplings (dimensionless) 

and triple-Regge couplings (GeV~ ) . 

The form of the general aulti-Regge production amplitude should 

be c lear from Eq. (2.11). Each Reggeon gets a bracketed "propagator" 

factor with linking h e l i c i t y SISBS on both s ides . All ver t ices are 

standard Toller 3-point functions continued in the appropriate way. 

•fe conclude th i s section by observing tha t , in the ordered 

S-matrix framework where the M-functions in (2.11) are replaced by 

ordered ring amplitudes, the multi-Regge-pole expansion should be, 

in the peripheral region, a very good approximation since there are 

(presumably) no Regge cuts in the ring functions. The theoret ical 

accuracy of (2.11), when summed on a 6 and a 7 , is thus limited only by 

p e r i p h e r a l l y and tht convergence ra te of the Regge asymptotic s e r i e s , 

i . e . , dual i ty . 



(3) THE VERTEX: HELICITY AND PARITY CONDITIONS 

We have been writing the triple vertex in t..e form CL _ _ (a„a-,a,) 

to stress the fact that the vertex is like any other n-point Toller 

M-function. As we now show, however, this notation is extrenely 

redundant. Using the freedoa allowed by the Toller invariance condi­

tion [see Eq.(B.3)], one can choose to superpose the external "lab" 

reference fraae —with respect to which the various a. are defined, 

as in Fig. 1 — onto one of the standard reference franes associated 

with the vertex. Since the vertex standard frames are connected by 

certain z-boosts o , a , and q which are functions only of the 

invariants entering the vertex [see Eq. (5.1)], one «ay conclude that 

n (a.,a 2 >a s) is itself a function only of these invariants. This 

situation is illustrated in Fig. 6a where we have placed the reference 

fraae onto the standard frsae of particle 3 to get n f e . q - 1 ^ " 1 ) , 

where e is the identity transformation. 

1. Heliclty Conservation 

Consider now this series of operations in which * represents 

the 2 rotation R_C*): 

' I,.,.,***' •»"•• 0-'* ) 

-im,A -in,* -in,* u , -i -l. 

, ^iifm,.,,..,) » (a,,a,,a,) . (3.11 
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In line 1 the reference frame is identified with the rest frame of 

particle 1, as already noted. In line 2 the 4>'s are Bade to appear 

via the invariance condition of Eq. (B.2). In line 3 these rotations 

are commuted through the z boosts q~ = B f-qj and o~ , and then in 

line 4 the $*s are separately covariated to the right according to 

Eq. (B.3). Comparison of the last line with the first then shows that 

•i * "2 * »3 * ° • (3.2) 

i.e., helicity is conserved at the vertex.* 

One does not find such a condition for the higher n-point 

functions because the rotation f does not commute through all the 

a. no Batter how they are chosen. 

2. Parity Invariance 

If parity is an invariance of the theory, we may use an argument 

similar to that of Section 3.1 to state parity invariance in terms of 

the vertex. Since the parity operation, which Toller calls s , is 

an element of the little group H + of the 4-vectcr (*,0,0,0), the rotational 

covariance conditions [shown in Eq. (B.3)] may be extended to read, e.g., 

(3.3) 

where 1! is the intrinsic parity of particle 3. Since the operation s 

fails to commute through the z boosts [see Eq. (7.6)], it is more 

convenient to use Toller's parity operator s' defined by 

s* » R (TT)S (3.4) 

*Rut *ee Section 3.-? for qualifications on thi- rind subsequent 
equations of this section. 



for which the covariance condition on particle 2 reads, according 

to Eqs. (3.3) and (A.8), 

t s 3-»j"J 

1 7 3 B j l j i - l j 1 2 3 

Operator s ' brings out the in t r in s i c par i ty and negates the he l i c i t y 

of the affected p a r t i c l e . Since s ' does coa=ute with the z boosts, 

one may repeat the arguaent (3.1) to find t h i s vertex pa r i ty condition: 

' (3.6) 

As a corollary to Eq. (3.6) one has e i the r 

7T ^.(-1) J = 1 , or M 0 0 0 U,.»,,a,) = 0 . (3.7) 

For example, i f s = s 2 = 0 then a l l three h e l i c i t i e s mist vanish and 

one concludes from the above that the vertex vanishes i f JJJJIJJIJ f 
S 3 

(-1) , as one^rould expect froa a sore conventional angular momentum 

arguaent. 

3. Parity with Reggeons 

Another convenient property of the parity operator s' is that 

s', unlike s, belongs also to the little group H of the spacelike 

rest vector (o.o.o,*), as does R (•). Therefore, if one or wore of 

the particles at a vertex is replaced by a Reggeon —which May be 

spacelike so that H is the appropriate little group — one shall find 

that the helicity and parity conditions still exist. The helicity 

conservation condition of Eq. (3.2) is unchanged, except as noted 

below. The Reggeon parity covariance condition is 

H

5 l S 3 a 3 T " i T O 3 l M

S 1 S 2 « 1 



+ 1TTS; 
(Jj = IK e (3.9) 

with s. a physical point on a., and H. the intrinsic parity of that 
physical point. 

The quantity O- appearing in (3.9) is what we shall call the 
Reggeon naturality, and is a constant along an ordered Regge trajectory. 
Another way to say this is that the exchange degenerate partners which 
together compjsc an oraered (planar) Regge trajectory have the sane 
naturality o even though the intrinsic parity n. and spin parity 

si"ei (-!} alternate at the physical points. One sees that, as a, •* s3, 

Eq. (3.8) reproduces (3.5). 
For fernions, the physical point parities n. and naturalities 

o. are, according to Eq. (3.9), out of phase by 90°. In the M-function 
formalism one can prove froa crossing and TCP that 

njlrr = (-1) S l . (3.10) 

A purist, allowing for the possible existence of self-conjugate 
fennions, would have to accept imaginary parities for those fennions. 
As emphasized by Stapp the most reasonable convention is to give 
all fennions imaginary intrinsic parities. (Toller too uses this 
convention. ) In this case, naturality a = ±1 for fennions as well 
as bosons. 

We leave to the reader a comparison of Eq. (3.9) with the more 
common definition of nafcrality 

Dj - P.C-l)' 1 ' (3.11) 

where in t r in s i c pari ty P. = ±1 for both bosons and fermions, and 

e. = 0 for hosons and one-half for fermions. Certainly for bosons, 
l ' 

n, = a.. 



Once Eq. (3.8) has been established, the argument of Eq. (3.1) 

may be applied to give a parity condition for the single Regge vertex 

shown in Pig. 6b: 

" l"z"3 'o,.»*.»,) = H.„;_. ^ ( v , . " , ) "<",", ' ' - • i > - » 2 « - " i ' ' ( 3 . 1 2 ) 

K(-D JK(-D J L°a

 e J • 
This says, e . g . , tha t two pions cannot couple to an n t ra jectory , 

even though such a coupling i s allowed by G-parity. 

For the two-Reggon/one-particle vertex a condition similar to 

Eq. (3.12) resu l t s (see Fig. 6c) : 

Maia*s', * T - i m , i i r - i T r V|r v n , i 
P l i m 2 - j

( a . * ^ ' a

)

) = L°i e J L ° 2

e . J L V - D 3 J 
a, a 2 s 3 

* M - « - • - • C3 1 , a 2 , a 3 3 . (3.13) 

The triple-Regge vertex is more complicated because one cannot 

always link the three standard frames with z-boosts. In pa r t i cu la r , 

when & ( t . . t 2 , t a ) i s negative, the three frames are connected by 

y-rotations (see Fig. 16). Conveniently, the par i ty operator s ' 

also comnutes with y- ro ta t ions ; the par i ty argument then goes through 

to yield 

a, a, a 3 

so that negating the Reggeon helicities is equivalent, foT & > 0 , 

to multiplying by the product of the Reggeon naturalities, since 

the helicities cancel by Eq. (3.2). However, since y- and ^-rotations 
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do not commit e, the hel ic i ty condition of Eq. (3.2) i s broken for 

t^e spacelike triple-Regge vertex, A<C. 

4. Caveat.., and »he VCTLCX V 

We mist now add two important qualifications to the preceding 

equations of this section. As written, they apply to Toller 3-point 

H-functions with al l particles and Reggeons being in the in i t ia l 

"state" and with a l l spinor indices of the undotted upper type (see 

Appendix B). 

To be consistent, certain part ic les and Reggeons *yst be put 

into the final "state" of each vertex. We choose to let this convention 

be determined by the direction of the arrows in , say, Fig. 15. Mienever 

a particle or Reggeon is in the final state, the relevant bracketed 

factor in Eqs. (3 .5 )^(3 .8 ) and (3.12) - (3.14) Mist be coaplex-

conjugated. 

Secondly, we must face the fact that inevitably some of the 

he l i c i ty indices we are dealing with are of the undotted lower type. 

These indices. Barked underneath by dots "-s in Eq. (2 .1) , are necessarily 

lower in order ZM preserve the spinor covariance of the equations. 

When sn amplitude with a lower undotted he l i c i ty index i s covariated 

as in EQ. [B.3), the D function mist be replaced by D*. The net 

result i s that h e l i c i t i e s in Eq. (3.2) corresponding to lowered 

indices wil l enter with minus signs. However, the parity conditions 

are the same, regardless of wh'-her indices are upper or lower. 

The vertices in which we are mainly interested have the forai 

of the central vertex of Eq. (2.11). In the notation of Appendix B 

and with the conventions nade above (and, as always, maintaining the 

cyclic ring ordering) we write this vertex as 



PL, - M . '(»,: »: .aj = V . ' " . (5. 
Tn'm ra m' 1 fc u m ^ n . 

The he l ic i ty and pari tv conditions for th i s vertex art- then found 

from hqs. (2.2) and (3.13) and the abo"c convent ions' 

V t = k e M n f-l) o ? e ' V V ' -

r3.17) 

Once again i t shoi'M be stressed that th is vertex V has the 

standard normalization of a Toller M-fur.ction, has dimensions of 

energy, and {in addition to the labels shown) i s a function only of 

the invariants entering the vertex. 

(4) THE UNITARITV PRODUCT 

a r t i c l e s carry spin, the u 

for the raomentun-space H-functions are completely characterized by 

19 the usual bubble diagrams together with a set of "Olivr 's ru l e s , " 

internal l ine = -2iric 6 (p - a ) 

independent loop = d*p/(-2iricf) 

pole = c / (s - m2 * U) 

One needs also the relat ion between the H-function bubbles and the 

raw connected pa r t s : 

fSc> = {-2flicf) 6*(ext) H ( * } 

<S*> = (-2flicH* 5*(ext) M f - ) 

In these re la t ions , the constant f determines the normalization of 

the s ingle-par t ic le s t a t e s , 



< r , ~ ' p', TI ' ' = JE f 6 " (p - p ' ) <5 , , 

,iiu! c give* the pole residue, as in Eq. (2.1). .Authors naturally 

differ in the i r conventions, e .g . , 

FLOP:'9 c= 1 f •' (Zir)3 

Stapp: 1 " c = i f = (2*1 3 

Tay lo r : 1 3 c = -1 f = 1/2 . 

We favor the convention of TLOP, but shall always gwe resul ts in 

terras of c and f. 

Once a un i ta r i ty equation is expressed in terms of the Stapp-

Taylor H-functions ^ . . . . ( P j , p 2 . . . . ) , i t may be converted to Toller 

M-functions via the inverse of Eq. (C.4). Details of th i s conversion 

process with a t tent ion paid to the spinor indices will be given 

elsewhere. 

Before tackling the general multiperipheral uni ta r i ty product, 

we f i r s t i l l u s t r a t e the fonn uni tar i ty takes in terms of the Toller 

M-functions by writing down e las t i c uni ta r i ty as sketched in Fig. 7. 

The formula is 

TT d i s c M A A fa, ,a,,a_,&J 

= -cfn I dn,[M ( a , , a t a , a . , a j l * 
J y 2 *• mm m m l 3' * 6 • 5 J 

* d .fX.) d .CX.) H_ , ,fa, ,a , ,a* aj) , 
m m ' ' * ' m * m ™ m 5 m 5 m 6 

f4.1) 

where 
d p 6*fp 2 -ra 2 ) d"*p 6*(p -ro 6) 



As usual, we are maintaining the ring function ordering conventions. 
The dots over the iBj and m^ indices on the left side of Eq. (4.1) are 
necessary to maintain the spinor covariance. The rotation functions 
aiise in the same way as the D(g) in Eq. (2.1), namely, from the 
Toller covariance condition show in Eq. (B.3). We are anticipating 
a system of standard reference frames to be reviewed shortly in which 
it will turn out that these rotations will be pure y-rotations, X., 

4 whose presence was first noticed by Misheloff. At t = 0 the rotations 
all vanish, but for t < 0 they do not vanish and are determined up to 
a sign by the peripheral invariants t. [see Section (5)]. 

From Eq. (4.1) it should be clear how the general n-body unitarity 
product appears. Each intermediate particle gets a Hisheloff rotation, 
and the helicity indices are summed over systematically. The n-body 
phase space is 

do,, . s'tBt) 7TI f — - ) f-2' 

where, as in Eq. (B-1), p. = t(a.Jp'.. Sometimes it is useful to 
visualize each produced particle as a cluster of variable mass and 
spin, in which case Eq. (4.2) can be adjusted by replacing 
6" (p. -m.) •+ 6 (p. - s.)ds- and adding spin sums £ s.. 

We are now ready to insert into the general n-body unitarity 
product a model for the production amplitudes, namely, the multi-
Regge production amplitudes developed in Section 2, which we now 
write as 

s a W ! . . . s „ s b - .v , r E-.-» ,-[ 
3 ro . 2 rn b a'o i L. i i J (-1.^) 

v ° i s i a ! r p- a2-' ] w a " S n 5 b 
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This amplitude is shown in Fig. 8; the V's are the standard vertices 

described in Section (3), and we are now using «»r,p as helicity 

labels. 

It is perhaps useful to observe that the bracketed factors in 

Eq. (4.3) have three sources of phase when a is real: 

i) the aziiKithal phase expl-it*^ • r^J)) froa E(g.); 

ii) the phase flij* * fro* the e-functions at z >1 

arising fro* the kinematic spin cuts (h?lf angle factors) 

in the amplitude; 

iii) the Regge phase of the signature factor %. . 

Of these three phases, only the Regge phase will be incorporated into 

the helicity pole propagator to be defined below. 

Suppressing the Toller m. arguments, we row state the n-body 

•ultiperipheral unitarity product as 

•E(4^[»a:::s:]--' 
where each M-function on the right has a form as in Eq. (4.5), and 

where dO is given by Eq. (4.2). In (4.4) the only variables not 

sunned over are those with subscripts a and b. The spins and 

helicities appearing in (4.4) are labeled in Fig. 9 which shows the 

n-body unitarity product with the multi-Regge amplitudes inserted. 

Our notational plan is always to use primed variables for the upper 

side of the ladder and unprimed for the lower side. The reader is 

again cautioned about our multiple usage of the symbols s. (spin, 

invariants'}, p. (nomentun, helicity), and m. (helicity, mass). 
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The next step in the program is to actually insert the production 

amplitudes of Eq. (4.3) into [4.4) and make some sense out of the 

resultant expression. We wish to show that Regge poles in the upper 

and lower amplitudes are converted into helicity poles in the central 

kinematic level, and that it is these helicity poles which determine 

the Reggeon loop which lits at the heart of all bootstrap and cylinder 

calculations. Before we do this, however, we must mate some comments 

about the frames in the various kinematic levels. 

(5) FRAMES 

The study of the reference frames associated with the multi-

peripheral ladder is at best a tedious and unpleasant business. 

Me propose only to outline the development of these frames and to 

provide a few interpretations where useful. The ends of the multi-

peripheral ladder, where the frames are slightly different, will be 

coitpletely ignored. Usually in multiperipheral analysis the end-rungs 

(or at least one end-rung) are amputated, the physics is done, and 

then Inter the end-rungs are reattached (see Appendix F); Regge 

physics does not require the end*rungs an:? this is our justification 

for ignoring them. 

In the description which follows we have for no particular 

reason adopted the notation of Ciafaloni, DeTar and Misheloft rather 

than that of Mueller and Muzinich. 

1. The Vertex 

The frame analysis begins with the simple vertex shown in 

Fig. 10, where two spacelike momenta k_ and k, meet a future timelike 

momentum p.. Frame c is a rest frame of p. in which the 3-momentum 



kj = Vj points in The posit ive z direction. Ohviously, frame c is 

only defined up to .1 ; -rotat ion, a fact we shall make use of la ter . 

Frame h fj> is obtained from frame c hy a ;-boost v fo" 1) which 

brine.* k { f k p > to spacelike rcsr fk. = (0,0,0, ^ - t . ) ] . Clearly, 

frames h and d are linked hy the 7-hoost q = v *0 . From momentum 

conservation it is easy to compute tbesp boosts in rem* of the 

invariant? * , . * , and s : 

s h ^ = ( s . - t ^ t , ) / ^ v 0 7 . (5.1) 

chq ( = ( s ( - t ( - t ; ) / 2\A\~ V ^ 7 • 

The variable q may be interpreted as sensing the mass s flowing 

up the cluster p . By computing (k -k.) in frame h, one finds that 

q is positive hecausp p is future timctike. 

The frames h,c,d defined above are the usual BCP frames 

associated with a production vertex. 

2. The Rung 

We now combine two vertices to make one multiperipheral rung, 

shown in Fig. 11. The triad of frames (b.c.d) just discussed appears 

on the lower vertex, and a new triad (b'.c'.d1) appears on the upper 

vertex. The primed boosts connecting the upper frames are given by 

Eq- (5.J) with t { +t!. 

Frames e and c' are both rest frames of p and must Therefore 

be connected by some rotation g = R.f* )RvCX,)Rj(<(,
1) • We now use up 

the :-rot at ion degree oT freedom in defining each vorten frame triad 

to set <t = y = 0 so that the frames c and c 1 are linked hy a pure 
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y-rotation X r. This is the Misheloff rotation mentioned in Section 

(4). In Appendix E we interpret this variable as a cross channel 

(t •*•">) Fegge variable z - cos(X); an expression for cos(X) will be 

Riven below. 

The six frames shown in Fig. II are now interlocked, and all 

3-momenta are confined to the x-z plane. 

Next, four new frames a,a',e,e' are added as shown in Fig. 12. 

For example, frame a is obtained from frame b by an x-boost h,. 

This boost of course does nothing to momentum \ \ = (0,0,0,v^t^), 

but is chosen so that k^ is x-z like; i.e., the boost h clears 

out the eneTgy component of k'* K Boost h' is chosen similarly so 

that k' a ' is x-z like. These statements may be summarized as follows: 
i 

Ic f a l * (0,0,0.*) k ( a > 1 = (0,*,0,») 

.(a) .fa') C S - 2 ) 

*, ~ (0,*.0,») k j v a J = (0,0,0.*) . 

It should be clear from Eq. (5.2) and the lack of y-boosts in 

the problem (so far) that frames a and a* are connected by a y-

TOtation, which we label $ l l % - From the fact that t = (kx + k\) 

one quickly shows this rotation to be given in magnitude by 

cos6 l l t = (tt * t \ - t) / 2 - y ^ N^tT" . (5.3) 

Then, from the loop equation on the left side of Fig. 12, 

x, = v;(hj)"1 e u , h 1 V j , (5.4) 

one finds the magnitude of the Hisheloff rotation 

cosX, = (cos6 ut - shvjshv ) / chvJchVj . (5.5) 

Reordering the same loop equation one may then compute the hoosts 

h, and h': 
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ch hj = ch vJsinXj / sinQjj, , 
(5.6J 

ch hj = ch VjSinX, / sin6, 1 ( 

He have now described the fraaes a and a', and the new 

transformations h , h and 6 ,. In exact analogy one defines the 

frames e and e' and transformations f_, f* and 8 ,. Equations 

similar to those above are then obtained by comparing Eq. (5.4) to 

the right-side loop equation X, = (o')~ f' B22, f"1 o" . 

3. The Central Level Frames 

To the set of ten frames so far defined with respect to this 

one multiperipheral rung, two final frames f and g are now added, 

as shown in Fig. 13. We shall refer to frames like a,b,d,e as being 

lower level frames, those like a'.b'.d'.e* as being uppeT level, and 

f and g as being frames in the central level. These central level 

fraaes are in fact brick wall systems (tots) or Breit frames, tic 

define a bws frame for the system [k.,k!) to be any frame in whic 

*i* ^i = °» * h e r e *i represents the first three components of the 

4-vector k.. We shall refer to such (t,x,y) objects as vereore 

to distin uish them from the normal 3-vectors (x.y.z) like *-.. 

Since kj • kj = 0 in a bws fra«e, the overall momentum transfer 

Q a jc. +k! is at spaceiike rest, Q = (0,0,0,^/^t_). In Appendix E 

we perform a complex Lorentz transformation which converts bws frames 

to cms frames in which k. • k.' = 0 and Q = (vT" . 0,0,0). 

Now, frame f in Fig. 13 is that particular bws frame in which 

versor k poinrs in the positive x direction, and versor k 2 is t-x 

like. Similarly, franc g is defined to put versor k ; in the positive 

x direction and to nnkc V t-x like. These two frames f and g are 



thus linked by an x-boost \> whose magnitude we shall compute in a 

moment. 

In 

z-components and versor magnitudes are the same, jus t as in a l l cms 

frames the energy components and vector magnitudes are the sane. 

We find 

( k i ) 2 = 0<[) 2 - Ck-)2 - (k [ ) 2 

= A ( t i f t ! , t ) / 4 { - t ) = -k 2 , (S.7) 

k i = (-t - t. * tJ)/2-^t = z. , (S.8) 

(k[)z = (-t - t! * t.)/2VCt = 2 ' . (5.9) 

Because our interest is United to the interior runs of the t < 0 

•ultiperipheral chain where the kinematics requires A(t,t.,t') < 0, 

*»e have defined -k£ as above. When the symbol K. appears below as a 

scalar, it refers to this versor magnitude (-k^)" and should not be 

confused with the 4-vector k-. 

We wish to stress the similarity of Eqs. (5.7) through (5.9) 

to the normal cms kinematics. If k. and k! were future timelike 

4-vectors with masses (t.) and (t.) % then in any cms frame where 

Q = (V't". 0.0,0), t >0, one would have 

O ^ ) 2 - A(tiftJ,t)/4t . (S.10) 

E i s ( t * l i " t l ) / 2 ^ r • cs.m 
E! - (t • t! - t.) / 2 V T , (S.U) 

so that the versor magnitude k. iy the analytic continuation of the 

cross-channel cms momentum. 



Sometimes the variables :. *nd ;! shown above are written in 

>i(-tr - w. 

w-tr 
(5.1$) 

1 \ 2v^r / 

The variables k. and w. are useful replacements for the Regge mass 

variables t . and t ! . 

i t - (kf • «?) - w.( - t )* 

lit - (kt •. » , ) . w . ( - t P 

(5.15) 

In particular, 

dk.dw. = ~ -i—= r 
1 ' ^ [-Mt.t..t;)l,» 

(5.16) 

Applying the above definitions to frame f of Fig. 13 we have 

k j f ) » (O.kj.O.z,) 

k;<f> . «o.- k,.o.,;> k ; ( f ! 

k' f > " ( k
2

s h V k,chv,,o, z,) 

(-kjShv,. -kjCh\>,,0, »,) . 
(5.17) 

Comparison of k̂  to k* then shows these frames to be linked by 

a very simple y-rotation Q1: 

sine, = k 5 /V-tj 

(0,k,.0.2,) 

cos8, * tj /v-t 
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Thus, the new frames f and g are interlocked with the previous 

ten frames to give a total of twelve frames associated with this 

single rung of the wultiperipheral ladder. Computing p* = (k2 - kj) 

in fraae f we find that the boost V is given by 

chvt = (k* • k* • p\)/2kJkt , (5.19) 

where 

and all symbols on the right of Eq. (5.19) refer to versor ragnitudes. 

Kith t and all t. fixed, v, measures the mass s of the particle 

or cluster pt; in this sense the variable v is similar to the BCP 

variables q and q appearing in Fig. 11. 

The complete set of twelve frames associated with the rung p 

is shown in Fig. 1 4 . " 

4. Many Rungs 

He are now ready to juxtapose two rungs of the multiperipheral 

ladder, as shown in Fig. IS. In this figure one sees that the twelve-

frame systems associated with each rung are linked by a very important 

y-boost called £ 2- This variable measures the separation of the two 

rungs in a quantity which would be called the gap rapidity in a one-

dimensional model. Notice that the same variable £ appears in the 

upper, lower, and central levels. The frames on the central level are 

linked to the upper and lower levels by y-retations like 0 of Fig. 13-

These rotations are given by the formulas one would guess looking at 

Eq. (5.18) above, e.g., 

sin8^ = kj /v^tj" , cos0j = z*2/yfT^ . (S.21) 
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The only transformations not shown in Fig. IS are *fce y-rotations 

l ike 8 , appearing in Fig. 14. Obviously 9 , = 8 + 8' . 

life now aake some m a r k s concerning the frames of Fig. 15. 

F i r s t of a l l , »ost of the f r a e s on the lower 'evel are the usual BCP 

frawes referred to e a r l i e r . Since the tranforaation labeled g connects 

two frames in which k 2 i s a t spacelike Test, g *»ist be an 0(2,1) 

transformation. In BCP t h i s g 2 i s written as 

*2 ' W W W • 
This form, known as the discrete-basis parawetrization, goes all the 

way back to Bargwann, but we have put a twiddle over the x-boost 

parameter in order not to confuse that variable with our y-boost 

variable %3* The axiauthal rotations u 2 and Vj are conjugate to the 

Reggeon helicities in the sense discussed back in Section (2), and are 

connected with the so-called Toller angles >a. = p. * v . Variable 

C 2 is the Regge variable, i.e. t z = cosh(5 2) , and is conjugate to 

the angular nonentum associated with the link k }, which is to say, 

a3 (see Fig. 8). 

Although the sane BCP 0(2,1) transformation g appears in Fig. 15, 

it is parametrised differently, namely, 

«» = w y^ w • 
the so-called continuous-basis parawetrization of 0(2,1). As already 

noted, the same variable K2 appears also in g s * the 0(2,!} transforma­

tion appropriate to the upper production amplituoe of Fig. IS. 

Prior to leaving this section on frames, we wish to add one 

more observation concerning the Frames connected with the single rung 

shown in Figs. 13 and 1-t. tf one were to imagine the multiperipheral 
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ladder on the right as generating a Reggcon in the central level, one 

might draw the figure Shown in Fig. 16. where «c have redrawn the 

frames a,a' and f, and their connecting y-rotations. We just want 

to remark that these three Fraires are the usual standard frames one 

associates with the triple Regge vertex in the configuration £ < Q , 

and the thetas are the standard y-rotations. A similar remark applies 

to the frame triad, g,e,e*. 

We are now ready to convert the Regge poles of the upper and 

lower amplitudes into helicity poles in the central level. 

(6) THE HELICITY POLE EXPANSION 

Consider once again Fig. IS. In order to activate the next 

technical maneuver, we anticipate a diagonalization procedure which 

will be explained in Section (9). The fraaes on the central level of 

Fig. 15 are linked by alternating x-boosts v. and y-boosts C-• It will 

turn out that these fra*es and variables are the relevnt ones for the 

diagonalized [or even undiagonalized) consideration of the multi-

peripheral ladder, the reason being that these are the bws frames 

in which the overall 4-nKMientun Q is at spacelike rest. He will 

show that certain groupings of the u and £ variables form convenient 

0(2,1) transformations. For example, the combination 

is an 0(2,1) transformation in the continuous-basis mentioned earlier 

which in a certain sense surrounds the cluster p 2 in the central level 

of Fig. 15. In the diagonalization process it will be shown that the 

variable u ; is conjugate to angular momentum j in the central level. 



while the boosts £ and E are conjugate to complex helicity variables 

X and X . lielicity poles in the complex helicity plane X will 

correspond to powers of e'^' since these variables are Fourier 

conjugates. It is for this reason that we shall now expand the upper 

and lower Regge propagator functions E~ a~ (g) and E a (g") into 

powers of e f^'. These functions appear in Fig. 1?, which represents 

a portion of the multiperipheral chain, i.e., a portion of the unitarity 

product of Eq. (4,4) with the model amplitudes of (4.3). 

We shall refer tc the form e' ' a as a helicity-pole term in the 

same way one speaks of z as a Regge pole term, with the understanding 

that the actual pole occurs in the plane of the conjugate variable, 

be it helicity or angular momentum. Also, the square-bracketed 

expressions in Tig. 17 uiU be called Reggeon propagators. 

In Appendix C we give a derivation of the following (convergent} 

helicity-pole expansion of the lower propagator E»function: 

-a.-l nu-r, -

K2=± n 2=0 
(6.1) 

a Iclca,-.!,) a 

Recall that g = (f 2,^ ;.h 2), and that f and h 2 are x-boost parameters 

fixed by the t. [see Eq (5.6)]. The quantity [a -n J is the helicity 

. of the Reggeon whose spin is a 2. When a ; takes some general non-

integral value, the Region helicity takes the values a , o^-I, 

a -2 in an infinite sequence. Were a to approach a physical 

value s (which docs r.ot happen in the multipeTipheral region of course), 

we would expect this sequence to truncate at helicity equal to -s^. 

This truncation is affected bv the interaction of the functions F 
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appearing in Bq. (6.1) with the helicity nonsense-zeros present in 

the standard Toller vertices discussed in Section (3), the V of 

Fig. 17. These functions F are given in Eq. (C.5). The new index 

*j appearing in Eq. (6.1) will be connected with parity in Section (7). 

Basically, tc2 - sign(£2)-

The important point to be made about Eq. (6.1) is that each 

helicity tem faatavizee* It is not obvious that an expression like 

(6.1) had to exist. A similar situation is encountered in a much more 

complicated nathenatical environiient with the Regge pole expansion of 

a single Toller/Lorentz pole. Regge poles there are the factorizing 

daughters of « Toller pole, and helicity poles here are the factorizing 

daughters of a Regge pole. 

The fact that each helicity pole factor!zes is the fact which 

allocs us to Mosentariiy define a helicity pole propagator. This 

concept will greatly reduce the bulge of conp:exity with which we 

are now confronted. Had the helicitv poles not factorized, we would 

be in real trouble. 

(then all the Reggeon propagators ( ... } in the unitarity 

product of Fig. 17 are helicity-pole expanded according to Eq. (6.1), 

certain factors way be grouped to the vertices, leaving a very siaple 

helicity pole propagator. The new rung with these regrouped factors 

is shown in Fig. 18, and the helicity pole propagator is shown in 

Fig. 19 and has the form 

(6.2) 

The power to which e 2 is raised in Eq. (6.2) is the sum of the 

helicities of the Rcggeons in the (2,2') channel. Notice that each 

of the helicities is in general a complex number, whereas the Reggeon 



h e l i c i t i e s discussed in Section (2) were always integers or half-

in tegers . H»e ret-son i s that here the Reggeon n e l i c i t i e s are eigen­

values of the (non~Merwitian) y-boost generator K which is generating 

the boosts 8y(£>. In Appendix E i t i s shown t h a t , when the s t ructure 

oc Fig- 15 i s continued to the t > 0 c«s via a conplex Lorentz 

transformation, the generator JC2 i s turned into a normal rotat ion 

generator and the h e l i c i t i e s becone the noma! (discrete valued) 

h e l i c i t i e s aentioned in Section (2) . The variable ^ beccaes a 

rota t ion (f = i £ 2 ) which again weasures the sum of the h e l i c i t i e s 

in the (2,2*) channel, naaely t » s *-ia£i 

The other important point to be made abou' the hel ic i ty-pole 

propagator i s that it s t i l l contains th£ physical (planar) poles in 

the signature Factor H e no»inators, e . g . , 

-iTT(aa - e 2 ) 

2sinw(a, - «,) 
U.7) 

These poles generate the noraal thresholds in tfie cross channel when 

t i s continued to t » u . 

Turning now to the rung or kernel of Fig. 18, the he l i c i ty 

summations r 1 , r ' P j . p j . and » 2 , « J can be performed since they are 

now detached fro« the rest of the chain by helicity-independent 

(in t h i s sense) he l ic i ty-pole propagators. We might f i r s t sum over 

the upper and lower (discrete) h e l i c i t i e s to go from Fig. 18 to 

Fig. 20a, renoraalizing for the f i r s t time our standard ver t ices V. 

The new vertex V i s given by 

E - r , d j f-b,) 

V ' • F„ 
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(Group-theoretica 1ly, th is correspond? t o a conversion fron the 

d iscre te to the continuous he l i c i t y bas i s . ) 

Finally, we sura over the Misheloff rotat ion h e l i c i t i e s p ,p 

to go from Fig. 20a to fig- 20b, which shows the final kernel 

KCo^iij . t , ; a | , n ; , t j ; t ^ . n . , . ^ ; a j . n j . t j ; x , , * 3 ; s ( , t ) 

s l s 

p,.p; = - s , l l 

This kernel is a function of the four Reggeon spins a., helicities 

°i~ni» a n d masses t.. Due to the kappa indices appearing in Eq. [6.1), 

the kernel is also a function of the kappa label on each side. This 

particular kernel is a single particle kernel and thus depends on the 

spin s ( of that single particle. We could just as well have defined 

p (the produced object) to be a cluster, in which case, as noted 

earlier, Eq. (6.4) should be suaned over s . 

Before concluding this section we wish to make a few additional 

remarks about the critical helicity-pole expansion formula (6.1), 

This formula, or something close to it, has been derived by other 
2 4 workers as only an asymptotic expansion. We wish to emphasize 

that (6.1) as derived in Appendix C is an exact and very convergent 

equality b.'-sed on an elementary addition theorem of the second-kind 

tegendre functions. In other approaches, the step in the argument 

represented by (6.1) has been to some extent obscured by complicated 

group theoretic arguments. For example, (6.1) can be interpreted in 

terras of 0(2,1') mixed-basis matrix elements in the continuous series, 

in which case the discrete index K has a certain mathematical meaning. 

Alternatively, Eq. (6.1) can be related to the 0;2,1) analytically 



continued Clebsch-Gordon coefficients which couple angulaT momenta 

between the upper, lower, and central kinematic levels in Fig. 15, 

These approaches are no doubt correct , but introduce 50 much complica­

tion that one cannot u ' 1 for sure whether or not a formula is correct 

without expending much ef for t . Our approach has been to consolidate 
9 

th is group theory into a few easily verifiable addition theorems 

which are then used to derive various r e su l t s , 

(?) NftTURALITY CONDITION FOR THE KERNEl 

In Section H) i t was shown tha t , af ter accounting for the 

correct Toller M-function notation for the vertex 

»i ' j«k 
\ ? i » j 

( a k : aj .a^) , (7.1) 

the statement of par i ty invariance for the vertex in Fig. 18 is 

. . " i S l " ! 2 r , * 5 i - P l • 2 m i 
V r p » " f " i ( ' n ' I V - 1 ' 1 ' V " 1 ' ' 

" 1 " | " 2 

where o. is the Beggeois naturality of F.q. (3.9) and 1! the intrinsic 
parity of the produced particle. 

Insertion of the parity condition (7.2} into the definition 
(6.3) of the renoimalized vertex V then yields 

When this result is in turn substituted into the definition (6.4) 
of the kernel K, one finds 

KtKj.tfj) s 0xa\ *jn\ Kf-Kw-if2) (7.4) 
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* 
which i s the desired naturality condition for the kernel. 

We »ay now interpret Eq. (7.4) as saying: a parity transformation 

on the kernel i s equivalent to Multiplication by the product of the 

naturalit ies of the four attached Reggeons. To see why a parity 

transformation negates K and K 2 we refer to Fig. 21 which shows a 

segment of the •ultiperipheral chain with i t s central level boost K-

the figure also shows the SUM chain segaent in a parity-inverted 

world where the two frames are connected by soae boost £ ' . These 

inverted-world frames are connected to their non-inverted-world 

counterparts by Toller's parity transformation s' defined in Eq. (3 .4) . 

Since 

( s ' ) ' J ByCOs- - B y ( - 0 ., (7.5) 

one concludes that £* • -£. This is what is leant by saying that 
parity negates all the £-boosts in the chain, and therefore the 
Kt » signCq). 

Equation (7.5) is one entry in the following table which shows 
how the parity operators s and 5* affect the signs of rotation and 
boost parameters: 

"* V »* »* V »i 

* * * - - - (7.6) 
s' _ • . • - + 

Notice that of all the variables listed in Fig. 15 and relating to the 
multiperipheral chain, only the y-boosts E,, are negated by parity s'. 

*This condition is derived in Ref- 5, Eq. (2,8), for the production 
of spinless particles only; see also Eqs. (2.7) and (2.10) of that 
paper for a Toller angle discussion, and Eq. (2.16) which relates 
to our comments at the end of Section (6). 
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If there were z-rotacioos somewhere, these would a lso be negated by 

s*. as the table shows, and th i s fact has a bearing on the Toller 

angle which we mention her*: as a digression. 

In the usual BCP analysis of the production amplitude shown, 

e . g . , in Fig- 8, one uses for the 0{2,1) transformations g the 

d iscre te basis parameters R J O O B J C O R ^ C V ) , which we mentioned at 

the end of Section (5 ) . and in terms of which the lower Reggeon 

propagator ftxiction may be wri t ten 

If the asymptotic l imit of th i s E function is taken fsee Eqs. (A.IS) 

and (A-I6}| to get (ch£) times hel ic i ty- fac tor ix ing factors , and i f 

these factors and the azimuthal exponentials are absorbed into 

renomalized ve r t i ce s 6 and the h e l i c i t y saas done, one obtains fur 

the production amplitudes the form 

. . . B p (v, .U,) (ch$,)°* e p ( V 2 . M , ) ( c h ? , ) 0 ' . . . , (7.8) 

where the p. are the h e l i c i t i e s of the produced p a r t i c l e s . Then from 

Eq. (7 .2) , the pa r i ty condition for these renormalized vertices 6 

may be shown to be s imilar t o Eq. (7 .5 ) , 

% ( v , . P 2 ) = oo n r - J ) S l " P l 8 (-V . -« , ) - (7.9) 

In the case of spinless produced particles, the vertex 8 is a function 

only of the Toller angle u, * v »u and Eq. (7.9) becomes 

SfWj) - O'JOJ n i P'-w ) - (7.10) 

Final ly, s l igh t ly ronon»ali;ing the ver t ices once again, we ond up 

with the asymptotic or phcnosenological multi-lw^ge amplitude for the 

production of spinlc^s par t ic les along the chain 



... 8(W,I(SJ) : BfUjllSj) ' ... (7.11) 

Multiplying two such anplitudes together to pet Ihe unitarity product, 

one would identify the kernel as 

K^.wJ) = [B(w,)l [Bfoi;)!* , (7.12) 

and this kernel would then have a naturality condition 

Kfw^wJ) • o^J 0,0* K(~ut.-o>;i (7.151 

This condition is, however, just a special case of Eq. f7. di which 

was derived without any approximations- Therefore, a parity transfor­

mation can be regarded either as negating the C- variables in the 

exact, kinematic scheme, or as negating the Toller angles in the 

asynptotic production of spinless particles. 

(8) THE MULTIPEBIPHERAL CHAIN A W PHASE SPACE 

In Section (6) the helicity-pole propagator P. and kernel X.. 

were defined. Figure 22 shows how these quantities alternate to 

compose the multiperipheral chain 

The figure ilso shows the central level fra»es with their connecting 

boosts. The v variables measure the "rapidity width" of the kernels 

{clusters or single particles), whereas the £ boosts aeasure the 

rapidity width of the helicity-pole propagators. Since these 

alternating boosts are not collinear (v. * B x and £. - B y ) , the notion 

of additive rapidities arises only in the extreme relativistic limit 

where 



chv 

becomes 

thui ch\)? «• shO( shv? ch^ ; 

(8.3) 

The •sums which arc implicit in the chain fK.l) will be discussed 

in a moment. 

First, something must be said about the phase space. F.ach 

particle or cluster (here K wi 11 he regarded as a cluster) gets a 

momentum phase-space factor d p., where p. is the momentum flowing 

up the cluster K. . Replacing d p. with d k., where k. is the 

4-momcntum of the lower Reggeon of the system fi,i'), and simply 

evaluating this 4-momcntum in one of the central level frames a few 

removed from the frames nearest p., one may express d k. i;i terms of 

the group variables appearing in Fig. 22. Recalling the meaning of 

the central level frames, we have, e.g., 

t(d) 

t(c) 

(0,k3,0.23) 

fk shv .k chv ,0,z 

k' D ) = (kjShVjCh^. kjchv,, kjShVjShC,, z 5) . (8.4) 

where k (the vcrsor magnitude) and z 3 were defined in Eqs. (5.7) and 

(5.13). from the last ] ine of Eq. (8.4) we find tha* 

d \ = M ' ^ N S = |k^dk 3d^ 2 d(chv J )]dz 3 

= 2*k2dk dw • — - • d(chv 1 , (8.5) 
3 3 3 L Zir 3 J 

where 2 has been replaced by the w3 of Eq. (5-14). The portion 

dk.dw3 of the phase space is the so-called transverse integration 

because it can be expressed in terms nf d p , where p s is the 



transverse momentum of the cluster 3 whose parallel momentum component 

p is related to the standard rapidity variable. In terms of the 

invariants t and t' one can show, as in Eq. (5.16), that 

1 d t 3 d * I 
dk dw, * i- — . (8.6) 

2 V-ACt(t,,t;) 

The second factor in the last line of Eq. (8.S) shows the 0(2,1) 

equivalent of the dfl * d$ d(cos9) one finds in cms kinematics, e.g.. 

elastic unitarity. The fact that d£ 2 d(chva)/2n = dg*2 is a piece 

of the 0(2,1) invariant Measure (in continuous-basis parameters) is 

what allows the exact diagonalization of the nultiperipheral chain 

onto central level angular Boaentua, as is done in the next section. 

to the aultiperipheral phase space will recognize the expression in 

Eq. (8.6) as a portion of the asymptotic forn of the quasi-cms phase 

space of two clusters. 

s [J V-Au.vtJ) J"" ^ A ^ ^ - T M * ^ l i '. \ , , I- r 8 - 7 } 

where (Sj) and (s 2K are the Basses flowing up the two adjacent 

clusters. In order to compare Eq. (8.5) with (8.7) we write, 

shifting to the left one rung, 

d£, d(chv )d(chu ) 9 ( v - v - v ) 
d < . = ^ T ' d f c h V * C • < 8 - 8 ' 

1 2 T r i r tKchv .chOj . chv^p 

where k(x,y,z) = x2 * y2 * z2 • Zxyz - 1. IF it were true that v » v ) t v 2 

throughout the ent i re phase space, one could approximate 

kfchv, chv , chv ) == (chv) 



Then fron formulas like Eq. (S.19), 

s, *kj*kj + (w, -w a) 

one finds that 

ds,ds 
J*' 2-^s 

and then 

A*V * 
dJijdWjdSjdSj dfc;d.;ds,ds, r^ dt ;dt; I ds,ds ; 

which is the CGL approximation 18.7). Since the approximation 

s » Sj ,Sj is not particularly valid except in special cases like 

double diffractive dissociation, one would expect a wore .-/-curate 

result to be obtained in any related calculation (like the cylinder) 

by using the exact phase space. Naturally, an exact angular moaentwt 

diagonalizatlon only works if this correct group phase space is 

retained. 

He now consider the sums implicit in (8.1) and Fig, 22. For 

each segment or propagator of the nultiperipheral chain there is a 

SUB of the form (e.g.. For segaent 2,2*) 

/ « .? • 

? -' fa, E £ £ ( 8 - 9 > 
<:=- dj.aj n.,n'.,=0 



/d*2 = -- f d*2 f dk2 • k] , fs. loj 

with f being the normalization factor of Section (4). For each 

fixed value of t 2 and t^ [see Eq. (5.IS)I and the discrete index <z, 

and for each pair of tteggeons O »a*, we SUB over ail of the helicity 

poles labeled by n^n^, these being the helicity daughters of the 

Reggeons, Next, we sua over all possible upper and lower Reggeon 

combinations. Finally, we so* over K2 and do the transverse 

integration. The group integrations dg*. will be removed in the 

next section. 

(9) THE DIAGONAUZATION OF ANGULAR MOMENTUM 

To avoid confusing the mathematics with the physics, we briefly 

discuss our diagonalizstion procedure; a fuller explanation may be 
9 

found elsewhere. 

Consider the following mathematical relation among four functions 

A, B, C, and D, each ft function of three variables: 

AU.v.e') - J - ^ J d C c h v ^ r ^ J d t c h v ^ B a ^ v ^ O C ^ . V j . O ) 
— 1 — I 
* Dttj.V,,^,} (9.1) 

Schematically, this equation is represented in Fig. 23. If the 

variables are in the reage -•» < £, < «• and 0 < v, < «, we may 

interpret the functions A, B, C,D as being defined on a certain 

sector of the group $U(1,1) ** 0(2,1), and we write the same equation 

in group theoretic notation as follows: 

A(g) » / d « i / « i / ^ , «Cg " M,t,) B«i> C « * ) D{8,> • ( 9 2 ) 



where g = f ^ . v . O . i. = (5 . v . 0 ) . e t c . The variables g 3 = 

(£ , v 3 , s ' ) in Eq. (9,1) >re functions of the other variables according 

to the SU(1,1) group mult ipl icat ion g 3 a g ' ^ ' g - In Eq. (9.2) th i s 

fa<& i=- is.ide itiore expl ic i t hy use of an invariant delta function. 

Equation (9.1) or (9.2) can be diagonalized exactly by project­

ing the functions onto the continuous-basis representation functions 

of SO( l . l ) . These fu?.-tions a re the second-kind generalized legendre 

functions ff:iv,(z) discussed br ief ly in Appendix A and at great length 

in Refs. 9 and 23. The diagonalization of (9.1) is given by 

(9.3) Aj , „ f j i f f i : »\t> DJ. , 

where 

,Cg) A(R) , C9.4) 

and the projection of C is tistu that of B; D l ike that of A. 

The invariant measures are 

dg = § | d [ chv ) ^ , (9.6) 

d£, 
d * i = - 2 T d < c h V » * 9 - 7 > 

and the funrtion (3(g) i s defined as 

SSJM,(g) = e '" C 0JM,Uhv) e ' U C , (9.8) 

with #(z) given in Eq. (A.2). 

In the diagonalized equation (9.3), each group integration has 

been replaced by a helicity contour integration running up the 



imaginary helicity axis. The source of this contour is the second-

kind addition theorem which, for convenience, we compare to the 

first-kind addition theorem: 

(9-10) 

The familiar he l i c i ty SUB of the f i r s t -k ind theorem {P functions 

are essen t ia l ly the rota t ion D functions) appears as a he l i c i ty 

integration in the second-kind formula. In Ref. 9, Eq. (9.10) i s 

derived from (9,9) and in terpreted group-theoret ical ly. 

Jftien a l l the functions appearing in Eq. (9.1) are independent 

of the £. var iables , the diagonajized equation simplif ies somewhat, 

a J = b J c J d J , (9.11) 

where 

(9-12) a 
More generally this is not the case and the helicity contours 

appearing in Eq. (9.3) are shifted sideways to pick up helicity pole 

contributions of the integrand. The X are the copplex helicity 

variables to which we referred earlier. 

In the particular mathematical example considered above, we 

diagonalized a chair, of three functions 8, C, D. Hopefully it is 

clear that a chain of any length may be similarly diagonalized. 

Each projected function contains the diagonal angular momentum 

projection label j along with two helicity labels which are system­

atically tied to neighboring helicities by the "summations" J"d*-
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We are, by the way, referring to j as angular aoaentua because, 

in the Regge language, Eq. (9.4) is a true Foissart-Gribov project5"", 

so that j is the analytic continuation of the true angular aoaentua. 

In Eq. (F.5) we she* hox to recover a function A(g) froa its 

(10) TIC PLANAR BOOTSTRAP 

1. Fora of the Integral Equation 

The basic multiperipheral chain was illustrated in Fig. 22, and 

we shall now be aore specific. The contribution froa three particles 

or clusters to the 4-Reggeon ring discontinuity is given by 

(5)*14t£.v.e'j = JJ f<«,f«, W ' W W W V 
2,3 J J 

(10.1) 

wheic the notations P, S, d£ and 2 were defined in Eqs. (6.2), {6 4), 

(9.7). and (8.9). Since (10.1) is of the for* (9.1), the diagon-

ali2ation may be read fto» (9.3) to be 

^ j u ^ 1 ' 4 1 * E J i-J"Tr V n Kux ( I* 2 ) Px ( 2 ) , £*x. ( a ' 3> 

* Px.t5)Kj,u,(3,4)Pu,C4) , (I0.2J 

*Ne have t r i ed very hard to keep track of the normali2ati.in of ampli­
tudes, but . a l a s , have lost the b a t t l e . S t r i c t ly speaking, if A is 
a discont inui ty, equations like (.0.1) should contain the overall 
factor - e f t shown in Eq. (4 .4) , 2n/f for each d£, and an extra 1/f 
because S a f e s t ) rcnoves yne d**ft̂ . However, as we mention in 
Section 10.8, and phow in Fig. 29. A i-= not Tol ler-normaj i2ed, 
50 we omit the-?? o v c n l ! factors . Thcr. is always a AMPS Hon of 
how many ^ ' s and 2*s appear in the phase spacf d<t* of the planar 
bootstrap or Lq. ( I ! . - J ) , and *.e have therefore lp.it track of these 
factors . 

http://lp.it


KJX(1,2) « f d(clw) ^ j l c h v l K 1 2 (v) . (10.3? 

( 3 ) ^ M « n ' 4 ) = P u ° } ( 3 ) A i u ' C l * 4 ) p u ' ( 4 1 • C 1 0 ' S ) 

Eq. (10.2) may be re-expressed as 

/ i* I in V 
2,3 "I *1 

(I,2)PX(2)ICJX, ?,3)Px,(3)Kj[,^,(5,4} 

CIO.6) 

which is schematized in Fig. 24. 

In the usual way one nay write an integral equation for the 

complete 4-Reggeon ring discontinuity which will be olved by a sum 

of tertts of the form (10,1). This integral equation reads 

A l 3 Ce,V,S') = P ] ( O K 1 3 ( « ) P 3 ( C ) + £ | d^jPjt^pKj ( V ] ) A 2 3 ( C 2 , V 2 , C ; ) 

(10.7) 

which may once again be diagonalized by inspection tr give, together 

with the definition (10.S). 

ASu' ( 1- 5 ) = Kiu' ( 1' 3 ) * £ / ! ? K ? a < ^ V 2 ) A i . ' ( : ' 3 ) ' (10'8) 

which is represented by Fig. 25. The problem of obt.* nillg the 

4-particle discontinuity fro» the 4-Reggeon solution »>f (10.8) is 

illustrated in Pig. 26 and discussed in Appendix F. 

Near a Regge pole, the projected ring discontinaty A factories 

(see Fig. 27): 



* J B . ( 1 . S M * ^ - H — J - J H . (10.9) 

Taking the residue of the pole on both sides of (10.fi) then yields 

the vertex bootstrap 

0S<1:«1 - E | § K;x(I,2)Px(2,C»(2;a) , (10.10) 

as shown in Fij, 28. The normalization of the triple-Reggie couplings 

G is described in Section 10.S below. 

2. The Projected Bciici ty-Poie Propagator P. 

Th° hel ic i ty-pole propagator was defined in Eq. (6.2) to be 

P.(£) = 2* HCnerOe^ expthj le l l r (10.11) 

where 

H(i) s (27t)"! M-lJJ) * (^ej) . H0.12) 

h 4 = (a. - I K ) • (aj - n ! ) . (10.13) 

According to (10.4), the projected propagator takes the font 

P x<i) = HfiJ/C*^ - h.) , (10.14) 

where we now see the actual h e l i t i t y pole at \ = <^=-

In the ordered S~»atrix, Regjje t ra jec tor ies must occur in 

strongly exchange degenerate pa i r s . When the upper and lo'«er signature 

factors are summed over signature taking into account the sxchange 

degeneracy, one finds for the regular (untwisted) propagatur P, 

E exn{-iif[(a- - *=) - (*\ - < | ) 3 | 
S . q , ! l- ? _ / / ' . (10.15) 

, T ; sinu(a - t.) 5inTi(a. - *.) 

http://10.fi
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For the twisted propagator *P used later in the cylinder discussion, 

1 MI * £, (WT&> 

3. The Projected Kernel and Its threshold Behavior 

In the kernel, shown schematically in Fig. 18, there are seven 

quantities each of which depends on the kernel mass &x and therefore 

on the variable v, of Eq. (5.19), so that computation of tho projected 

kerael (10.3) , 

K J J / M ) - J d(chv) ^ ( c h v ) K 1 2 (v) , (10.3) 

in terms of the standardized vertex V is an unpleasant numerical task 

which we shall not attempt. This task i s , however, a necessary 

aspect of the functional bootstrap to be Mentioned below. 

Lacking an analytic expression for K », we search for any 

potentially useful information buried in formula (10.3). One such 

piece of information i s the threshold behavior which we now extract. 

Since K* (1,2) i s a Froissart-Gribov projection, we are reminded 

that i t should be possible to find i t s threshold behavior in the usual 

way. First , however, one must identify the threshold behavior of the 

wnprojected kernel. 

In expanded notation one has 

fc12(v) * K ^ V V V V v ) * K l 2 ( k i ' V k

2 * V v ) ' 

where k is the versor magnitude (continued cms momenta} of the 

channel (i,i'). 
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k. » C-Aft f t . . tJ)/ t /2(-t) , s . 

and 

- i * ( t j - t ^ / Z C - t ) 1 * 

We shall define "threshold behavior in the f i , i ' ) channel" to be *ny 

approach to the kinematic boundary A ( t , t . , t ! ) * 0 as a^sn. e . g . , in 

Fig. 40, so tha t at the (1 ,1 'J threshold k 4 -*0. (Variables t» t . , 

t ! here are negative.) 

To de t endne , then, the behavior of K., as k r or k a vanishes, 

we ex?«ine ttw functional} and ktnesat ic s t ructures of K as shown in 

Figs. IS and 14. As demonstrated in Appendix B, as kj •*0„ one has 

chthj) •*• const x (k j )* 1 ch( f 2 ] * const , 

but when k a-*Q the s i tua t ion i s reversed 

ch(h,3 "* const chCf^) •* const * O O - 1 . 

In Eq. CC.5) the function FC-h^), which appears as part of the kernel 

in Fig. 18, i s given roughly as 

Since - i sh(h,) * * as k ^ O , one finds f i t * the large t 

behavior z a of q - ** - 1 !!) that uv 

k, - 0 - F V h , ) - (kj) 

Similarly, 
a 3 - r 

k 2 -* 0 - F (*f 2) - (k 2 ) 

Collecting s imilar factors From the upper vertex V of Fig, IS, one 

may conclude that 



-(cij + a j -(a., + a2) 
K \ 2 i V ) = ( k i ] ( k 2 } K 1 2 ( v ) " (10-1?) 

where K* is a reduced amplitude, real on the uncut portion of the 

real t ax is . 

The threshold behavior of the projected kernel K .̂ may now be 

found from the Froissart-Cribov projection (10.3) . Equation (5.19) 

which expresses ch(w,) in terms of sl shows that 

chv, - s , / 2 k 1 k z 

as either k t or k 2 - 0. Therefore, using once again the large z 

behavior of 0jL( 2) ~" *" J" a n A remembering that the integration in 

Eq. (10.3) actually begins above i = 1 at the lowest production 

threshold of the kernel, we pick up the usual extra factor (k,k 2) J, 

so that the cowplrte threshold behavior of the projected kernel is 

given by 

j-(aj*a;) j-{a3*ap j 
KJX(I,23 = (k,) ik2) « V ( 1 , 2 ) - ( 1 0- i 8 ) 

When this kernel is continued to the physical cross channel 

t > 0 and the four Reggeons taken to their physical points, we 

regain the usual threshoJd behavior given, e.g., by Jackson and 

L,(.in) l a(ain) 00 (k,) 

where L,(»in) = J - S.(*iax) and S.(max) * s. + s!. 

In deriving this threshold condition we have ignored parity which 
causes the distinction between threshold and pseudothreshold and 
which may raise some i.(»in] by one unit. 
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Since the above analysis used only the kinematic structure 

of Fig. 18 , one may conclude that this threshold behavior is equally 

applicable to the single-particle or clustcrized kernels as well as 

to the full amplitude. 

4. The Naturality Diagonalination 

In Section (7) it was shown that in a parity-conserving theory 

the kernel K.-fu) has the parity condition 

K( * , , K 3 ) • Oja; a2o'2 Kf-Kj.-Kj) , (10.19) 

where the o. are the na tu ra i i t i e s — as defined in Eq. (3.9) — of the 

Reggeons attached to the kernel . The property (10,19) passes inaed-

ia t e ly to the projected kernel K-*. via (10.3). 

At th i s juncture i t i s convenient t o convert a l l f ro issar t 

projections l ike K3, of (10.3) to lower-case projections kK 

defined by 

1 

where q is sii»ply related t o Q as in Eq. (A. 13). The reason for 

th i s change is that q has a s i sp ler hel ici ty-aegat ion syiwetry 

than Q, .". symmetry which of course i s carr ied over in to J r . , 

* * f l f 2 ) * k3 ( 1 , 2 ) 
\l\ ' -U.-A 

Combining (10.19) through (10.21) we find 

One may now study the effect of th i s sywnetry on the ring 



discontinuity components. Converting the * 'A equation to lower­

case projections »s in Eq, (10.20), cne finds 

where the <z sun has been removed fro* £ 2 and explicitly displayed, 

and where 

Hj[ = T(j*l+X) rCj*l-X) . (30.24) 

Froa the syapetry of (10.22), and the obvious fact [see Eq, 

(10.14)j tha t 

PXlK7) " P - > ( - * : } • (10.25) 

one aiay eas i ly show fro* (1Q.23) — using the synatetry of the X 

contour —that the sywuetry of (10.22} propagates into ^a, 

and similarly into a l l ' a and the full a. The persistence of 

t h i s sym»etry weans that a l l our projected equations can be diagon-

alized in the 2*2 space of the fcappa indices; t h i s i s the na tura l i ty 

diagonali£ation discussed by Ciafaloni and Yesian. 

We now perform t h i s diagonslization on the following proto­

type equation 

K 2 ^ 

where p is any function, and a.b.c are any functions having the 

symmetry of Eq. (10.26). Define 

) 
(10.27) 
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and similarly for b and c, and notice that 

- • - , , «. j " " 1 3 

Tak ing y •* >c £u, X •* K ? X , U ' •* PC S U' i n Eq. ( 1 0 . 2 7 ) y i e l d s 

v , • E |Hd v. p t x ) v , cio-50) 

since H3 « i P . In terws of the projections of defini te natural i ty* 

a ° = _ J _ [ a ^ . 00^-,̂  3 + ] # (10.31J 

Eq. (10.30) lakes the diagonal for» 

b° p(%) c° . (10.32) 

Thus, the naturality diagonal.zation of (10.27) is given by 

JfM 

J", = J £ HJ b'f p(X) cf, Mi* I X* X "yX ^ v ' Xli' ( 10 .33 ) 

In t e r m s o f u p p e r - c a s e p r o j e c t i o n s l i k e ( 1 0 . 3 ) , Eq, ( 1 0 . 2 7 ) 

becomes 

' F o r a d i s c u s s i o n o f why o i s i d e n t i f i e d w i t h n a t i i r a l i t y , t h e 
reader i s r e f e r r e d t o page -I3S, e q u a t i o n (0 .>91 of t h e t e x t b o o k 
of M a r t i n and Spec imen . Rr*\ 3T. 



and its naturality diagonalization is given by 

.3°, = f ^ . B

j ? p i : uu' Jf 1 W u> 

with projections of the form 

C - ~ [<,<•••> •«.»; Hfrr^i *-. ..•'->! ro * i * u) .j 

(10.37) 

Now, since (10.8) is of the for« (10.35), the na tu ra l i ty -

diagonal bootstrap equation can be read frop (10.53), 

a J " , (1 .3 ) • k J " , ( l , 3 ) 
ft -Cl' ' 

i1 k J O { 

« "<2> j ° ,2 31 

and 

H(2) • (2U)"1 f 7 ' Eq. (10.15) 

HJ - rcj • i •>) r o « i - i ) 

/ d * 7 = Eq. (8.10) 

—— | a J , ( 1 , . ; 2,*) • ana' J , 0 . - ; 2 , . ) . „.C1.2) 

tlO.40) 

where ± refers to the < values, and s i a i l a r l y for \?°.. 

Left-shifting the he l i c i ty contour as suggested in Eq. (12.12) 

yields th i s final fora for the planar bootstrap equation: 

c » - « • C' ( i - 3 '* 2 Z)/ d *= H ( 2 ' H i ! " i ih ; 
(1,2) a£" , , ( 2 , 3 ) . 

(10.41) 
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where k is a projection onto q of (A.20). All that remains is the 

transverse integration d$ } and the sum over all upper and lower loop 

Reggeons and their associated helicity pole daughters. With u =h 

and M* = hj, f-q- (10.41) is a matrix (lattice) equation in the space 

of the helicity indices. 

In passing, we note that the apparent Regge cuts in (10.41) 

due to pales of H^ should be cancelled by the nonsense zeros of 

the product k a . 

5. The Bootstrap Problem 

Equation (10.41) states the integral equation which is the 

planar bootstrap for the four-Reggeon -ing discontinuity- Assuming 

the existence of a family of Regge trajectories {a.}, and given a 

knowledge of the standard vertex V... , one can in principle compute 

the single-particle kernel K and its projection K J,. Since the 

propagator is trivially known as in Eq, ^.10.14), one can then 

search for solutions A of the integral equation. The existence of 

a solution depends functionally on the Reggeon set {a.} and the form 

of the vertex V. 

The residue of the bootstrap equation at any Regge pole j =a, 

where a«(a.}, yields the vertex bootstrap (10,10) which is perhaps 

•ore interesting than the original equation because it contains only 

one unknown function VCtj.tj.t,), given the Reggeon set {a.}. 

We return to the vertex bootstrap in a moment. 

First we must note a certain inconvenient property of the 

functions A of Eq. (10.8) and the vertex G of (10.9). A side effect 

of doing the helicity pole expansion is that these functions are not 
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norMlized in the sense of the standard Toller H-functi©n discussed 

in Section (2). Figures 29 and 30 show schematically how A and G 

are related to the normalized ring amplitudes (ordered M-functions). 

The functions F and F' are like the F's appearing in Fig. IS and 

Eq. (C.5). As noted earlier, the approximate role of these functions 

is to convert the Reggeon helicity from the discrete values n, r, 

p, ... as in Fig. 18 to the complex values (a-n). 

Accounting for these normalization factors, we now rewrite the 

vertex bootstrap in the extremely schematic form of Fig. 31 which 

shows the bootstrap as a nonlinear functional integral equation of 

the 3-point ring amplitude and the Reggeon set Co,}. In principle, 

this equation should allow the computation of the ordered triple-

Regge vertex as a function of all three arguments. To our knowledge, 

this calculation has never been done. 

6. Counting 

Approximate bootstrap calculations usinj a very small leading 

Reggeon set {a.} have often indicated that the single-particle kernel, 

with experimentally determined couplings, does not have the strength 

necessary to elevate the generated output trajectories to their 

experimentally observed intercepts. Assuming that this result is 

not an artifact of the approximations made, one must conclude that 

the peripherality and/er the Regge-expansion convergence assumptions 

which go into the multiperipheral model are simply not viable for 

single-particle production, and one turns instead to cluster production. 

One replaces the single-particle kernel with a cluster of United 

itaximum width, but sufficiently broad so as to approximately 
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Regge-factorize, even though there is no Regge pole in such a kernel. 

This is the concept of the dotted Reggeon, and the program of Fig. 

31 is then replaced with that of Fig. 32 which, when the left 

coupling is boldly cancelled on both sides, gives the frwms equation 

" 1 = gNg " of Ref. 25, where N =» N (flavor). 

In going to the •ulti-particie kernel, however, one encounters 

certain counting problems which invalidate the diagonalization 

procedure which led to the staple equation (10.8). The necessary 

alterations involve pre-convoluting the claster/kernel with a 

propagator on one side. * To avoid this counting proble** we 

have chosen to concentrate instead on the cylinder calculation where 

there is no counting difficulty. 

(11) THE CYLINDER 

The ordered or planar bootstrap discussed in the preceding 

section consis ts of sewing together two ordered amplitudes (zero 

handles, one boundary) in an ordered manner so as to obtain the 

discontinuity of another ordered amplitude. By sewing together 

ordered amplitudes (h=0, b=l) with a cer tain well-defined disorder , 

one nay construct the cylinder comment (h=0, h=2) of the physical 

4-point function. Figure 33 shows parts of th i s cylinder cowponfc/it 

in several different notations- Figure 33a depic ts , in quark dlagraa 

notat ion, a pa r t i cu la r contribution o the two-twist-pair piece 

C ' of the cylinder resul t ing fro» the un i ta r i ty product of two 

9-point ordered amplitudes. Figure 33b shows the complete C**" , 

but the figure only has oeaninR in terns of discont inui t ies after 



the upper and lewer fieggc expansions have been inserted. These are 

shown in Fig. 33c which is now drawn in the ring notation, rinally. 

Figs. 33d and 33e display th^ topological meaning of the twists in 

the absence of quark notation. To conform with the kinematic 

diagrams like Fig. 15, we shall continue to use the notation of 

Fig. 33c. 

The full cylinder is defined as the sun of all its twist-pair 

components, 

c = £ ; c ( n } . (n.n 
• = i 

When the C component shown in Fig. 35c is diagonalized ot.to 

angular momentum j, charge conjugation T» and natuTality a, one 

obtains the triple pole coniiguration shown in Fig. 34 (when the 

simplest assumptions are made for the j and flavor dependence of 

tno various elements, and when only the leading helicity pole of the 

lejding Reggeon pair is kept in each Reggeon loop) 

where 

k = k(t) = k(j,t) = / d$l» gft.tj.tj) 2 * (other factors) 

(11.3) 

In the phenomenology of Chew and Rosenzweig the cylinder-

shifts of the f, f', u, and $ trajectories are simple functions of 

k, which is sometimes approximated by setting j = a- Roughly, the 

We are relieving T from its tradition duty of representing signature 
since signature seems to play such a small role in the ordered 
S-matrix, and also because there ar.- already too many C's floating 
around in Section (11). 
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shifted f = pomeron has the intercept [in SU(l)] 

ctp(G) = a(0) * Ma,01 . (11.4) 

*e wish to discuss the technique used to arrive at the 

expression (11.3) for k and to suggest how k might more accurately 

be calculated as a helicity-pole expansion. After first diagonalizing 

the charge conjugation, we review a one-dimensional cylinder calcu­

lation and then proceed to the three-dimensional helicity pole 

analysis. 

1. Diagons tsat ion of the Charge Conjugation 

Since the cylinder terras C carry zsro additive quantum 

numbers, it is desirable to diagonalize the charge conjugation in 

addition to the natural icy so that cylinder poles can be identified 

with physical particles. This procedure is very simple, as we now 

show. 

The ordered ring discontinuities carry orientation indices 

which have been suppressed throughput this papsr. One night Write 

( 1,0"t |A|2,oa > where o\ = ±1 depending on whether the ordered channel 

i lies in the clockwise or counterclockwise Hilbert space. As a 

2*2 matrix in this orientation space, A is diagonal with equal 

diagonal elements, ( l,o |A[2,o?) ' A { f l a • Changing to the charge-

conjugation basis |l,T> = [|ltCj=*> + Tj!,c =->]/</2~, one finds that 

< l.Tj |A|2,T 2> = U t T , so there is no need for A itself to carry 

a T label. 

tn contrast, the twisted Roggeon propagator P always connects 

states of opposite oriental ion, < 1,o,|*P|2,a2) * 6 _ 0
 XP. In the 

T basis P is again diagonal but the elements have opposite sign, so 
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*P fust carry a trivial T label, 

( I . T I ^ U A ' ) - * T T . V *here V - T*P . (11.5) 

Therefore, the only effect of charge conjugation diagonaliza-
tion is to add a T label to the C*"' and to replace *P •• T*P every­
where. 

By comparison, the untwisted Reggeon propafator P which appears 
in the planar bootstrap does not mix orientations, so all contribu­
tions A ^ to the ring discontinuity k are diagonal with equal 
diagonal elements in the orientation space and therefore also in 
the T basis* assuming the special case of zero additive quantum 
numbers along the chain. 

2. The Cylinder in Rapidity 
For comparison with the kinematically accurate (though still 

physically slippery) cylinder calculation presented in the next 
sections, we review here a **typical** rapidity analysis of the cylinder. 
For simplicity, only one flavor is asswed instead of the three flavors 
(with 1 « 2 jt 3 symmetry breaking) used by Chew and Rosenzweig. 

In terms of the usual rapidity or Chew-Pignotti variables, 
and with the CGL phase-space approximation discussed earlier in 
Section {**), one writes in the energy plane the one-twist term of 
the cylinder as follows (see Fig. 3S): 

y y y 
mCT(t*,y,t*> - / ^ J d g / d x , SCy-x^g-x,) 

* / d*a ACi?.VtJ) X p T (fi.t*) A(t*.vt;) . 
{11.6) 
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with d* 2 as given in Eq. (S-1G). Here, A is the absorptive p»rt of 

a four-Reggeon ring amplitude of rapidity width x. , and X P T is the 

twisted (no cosine) Reggeon propagator of gap width g to be given 

below, Tne label T indicates that the equation has been diagonslized 

in the charge conjugation, t = SI. 

tncnvporating the Neveu-Schwarz shift a •* a - 1, we normalize 

our trjple-Regge couplings in the usual way, 

R(t*,s,t*) i g i g 2 r(l-ti)(~s)a (11.7) 

A(tf.s,t*) = ^ g i g j ( + s )<* , ( n . S ) 

and take for the Mellin-projected ring discontinuity a for" exhibiting 

synvetric nonsense xeros, 

Cn.9) 

The presence of nonsense^zeros in a Mellin projection is equivalent 

to the absence of fixed-poles in the Froissart-Cribov projection; 

we want such fixed-poles to be absent because we assume there to be 

no fixed powers in the r ing anplitude R(t* s . t j ) . 

The assumption of the f i r s t nansense-zero in a MelUn projection 

corresponds t o the absence of a constant t e rn on the right-hand side 

of a FXSfL over A( t~ , s , t * ) . 8y atreapt ing to respect the analyt ic 

s t ruc ture of aiuIti-Regge awplitudes, several authors'" have used 

somewhat controversial asytwetric FMSR to argue tha t , in effect , the 

amplitude shown in Eq. (11.9) should have a nonsense-^ero on one 

side or the other (depending on which external overlapping invariant 

i s held f ixed), but not on both s ides ; i . e . . that the form of (11. „ 
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should be asymmetric. We feel , howf.-cr. that t vt- fcur-Reg^con 

amplitude should be to f t / r igh t svmsetric. even i f asymmetric N'nt 

i s used in i t s generation, and th i s is our motivation for the form 

(11.9) , though we have no rigorous argument to support th i s conjecture. 

One of the physical weaknesses of the cylinder calculation is 

that small changes in the smooth { i . e . , non^singular) j-dependence 

of the projected planar amplitude, such as nonsense zeros, can cause 

violent changes in the output pomeron locat ion, so no calculation 

can be trusted unt i l the low-energy/sBooth-j behavior of the planar 

amplitude has been determined from the planar bootstrap. Hopefully, 

such behavior might be computed from the he l i c i ty pole formalism. 

Meanwhile, we shall use the form (H-9) only as a prototype and 

continue our calculat ion.* 

The twisted Reggeon propagator appearing in (11.6) i s 

V ( g , t p = TH(t*) exp(ga c ) . (11.10) 

In Mellin projection th i s becomes 

C l l . l l ) 

H t t p - r ( l - a 2 ) r u - a ' ) , (11.12) 

which may be compared to (10.12) with (10.16). 

Now, the C^ * equation (11.6) may be trivially Mellin diagon-

alized to yield 

(1V(t;.j.t*) >/'•!*, A(t*.j.t*)r^^-JA(t*,j.t{). (ii.m 

Low energy data are, of course, helpful on this point. 



::e t h e e x p r e s s i o n ! 11.'.»• wc f ind 

k ( j ) = j j / « , g{ H(tp 1-j (H.15) 

By employing symmetric nonsense zeros in (11.9), we have removed the 

Regge-cut generating factor of the propagator (11.11), and have added 

another factor (j - a c ) in the numerator; k(j) is j-dependent. 

From the diagonalizeJ integral equation for the full cylinder. 

( 0 C r ( l . j . 3 ) + / d * , A( l . j .2) V ( j , 2 ) C T (2 . j ,3) , 

' (11.16) 

summing the geometric series the first tera of which is 

14), one finds that 

r«x) [ B i V" - a c l \ 0 - o ) ( j - a - i » f j ) ) [ g 3 \ a - a C j / / J -C (l.j.3) 

(11.17) 
which shows the pomeron (T = +) at the solution of 

j = a«k(j) (11.18) 

Finally, adding C to Che planar ter* A extinguishes the unshifted 

pole in the manner of Rcf. 10, 

Al l . j .3 ) • C ' O . j . l ) = FTo! [ g ' U - OcVj j - (a * Tk) \*>\a - o c

3 JJ' 

(11.19) 
and the symmetric nonsense zeros appear also in the cylindrically 

corrected amplitude. 
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3. The One-Twist Cylinder Tern as a Heticity Pole Expansion 

The typical multi-cluster contribution ' ̂ A{£,v,£*> to the 

four-Reggeon ring discontinuity was given in (10.1) and illustrated 

in Fig. 22. The sum of all such terms defines the complete four-

Reggeon ring discontinuity in the "energy plane." Of necessity, the 

object A contains the propagators on both ends of the multiperipheral 

ladder. It is important to realize that A contains these end-

propagators in aonooluHon, so that, unlike the kernel, A(£,v,£*> 

cannot be written in the for* 

A u(£.V,e') . P t(£) A l 2(v) P 2(£') 

Only after diagonaiization can the end-propagators be removed as in 

(10.S). For this reason, it is difficult to write cylinder terms -

in particular C^ — in the energy plane, but very easy to write 

these terns in projection, as we now show. 

Let us define an extremely condensed notation so that, for 

example, Eq. (10.I) or its diagonaliz&tion (30.2) both read: 

^ 3*A - PKPKPKP 

Similarly, the planar bootstrap reads 

A = PKP * PKA [energy plane, see (10-7)] , 
(11.20) 

A • K • KPA Ij-plane, see (10.8)1 

In this notation, the C ' cylinder term may be written in the 

energy plane as 

C* 1* = AKPXKA • PKPXKA + AKP^KP • PKPXKP , (11.21) 

where P x is the twisted helicity pole propagator (see below). The 



diagonalization of ( I t .21) i s , in our condensed notat ion, again 

(11.21). Once (11.21) has been diagonalized, we may use (10.S) to 

expose the propagators so that 

C ( , ) = P{%Pl * K] P,[KPA + K]P (j-plane). (11.22) 

Insert ing the planar bootstrap (11.20) twice yields 

C f U = PAPXAP ( j -plane) . (11.23) 

t o get 

C ( U = AP̂ A ( j -plane) , 

which, in full j -p iane nota t ion , reads 

'C^fl.3) = Z j [ # Ajx0,2> \(21 Aju.(2.3) • 01.24) 

This equation, i l l u s t r a t ed in Fig. 36, gives the projected one-twist 

cylinder term in terms of the projected ring discontinuity A which 

solves the bootstrap (10.8).* Froa (10.14), 

where H(2) i s given by (10.12) with the signature-factor product 

replaced t h i s time ay (10,16). 

Adding the na tura l i ty and charge conjugation labels [see 

Sections (10.4) and (11 .1) ] , l t l .24) becomes 

)C<1-" • E ^ H ^ ^ ' - ' f ^ C ' 



or, in terms of the lowcr-..-ase projection' 1 of H'V-PI, 

(11.2?1 
with HJ = H i * l * MT(j * 1 - M-

4. Angular Moment tin vs -_He_l i c_i ty 

We pause to make a few observation 1; about F.q. (11.2"')- F i r s t . 

it should be clear that the "Reggeon propagator" H I . 2M is not 

d i rec t ly related to the angular wonier-tun j . :n contrast tc the 

feeling one gets from the rapidity approxim.it ion. That i-*, the 

leading hel ic i ty-pole propagator hzx the fom 1/P - h ; ) , n-yt 

I / l j - a ) as in Eq. (11.IS). As emphasized in Appendix E, the 

variable C which measures the energy dependence of the object we 

loosely cal l a Reggeon propagator i s the analytic continuation of an 

aiimuthal Euler angle, not a central Etfler angle li'ne § of f4>,8.$'). 

Therefore, the correct ly projected propagator is a function of the 

variable conjugate to that continued a;i«uth t , namely, the continued 

he i i c i ty *, and not the angular ao*entu» j - The rapidity formalism 

with i t s to l l inea r boosts is incapable of disti*iv lish.ne angular 

•omentum frow h e i i c i t y , and projects everything •> ito a bybridi:ed 

Meliin projection index "J". One feels zhat asymptotically - i . e . , 

near s ingula r i t i es in the projection indei - t h i s hybridization is 

acceptable- Even so, i t seeas unlikely that the !ow~energy behavior 

of a pU:4 r discontinuity could be determined froa a planar bootstrap 

which uses such an approximation, and the same goes for the cylinder. 

For example, i t i s just th i s d is t inc t ion between j and the variable 

* (which is forced to the value h, = a * 1} which g i /es r i se to the 

threshold factor appearing in Eq. (11.58) below. 

http://approxim.it


The ..-plane for Sq. fli.^" 1) is i.hown in Fig. 57. As j is 

varied, the hel ic i ty contour i * repeatedly pinched between the he l ic i ty 

pole H t * = h, ar.d the poles of TCj *- i - XI. fiach pinch generates a 

pole in ) which is in turn converted to ;i RC^RC cut hy the transverse 

integration d } , . The<e i-piafie poles are, of course, expl ic i t when 

the he l ic i ty contour in (11.27) is left-shifted as per (12.12) to 

(21 r t i • i • h . ) r i j • I - h , t 

Keeping only the (fatting hel ic t ty poles of the leading Regjjeons 

to that 

h_ ' a * 5 ; ~ a £ * 1 ( U . « ) 

ar.d set t ing y = u* - n, (11.28) hecomes 

( ° c o o T ( ' - ' ' = if<i*3lMi2)} ro * a c ^ n ro -a^) 

which may he compared to the rapidity result (11.13), 

( U C J 7 U . 3 > = rjdt, iH(2)] (j - a C ; ) " 1 • a j n . 2 J a j ( 2 , 3 ) . (11.31) 

Whereas (11.31) shows only the first RcRRe cut. (11,30) exhibits 

the complete i.,mily of Regge cuts associated with the Reg$eon pair 



lack fixed poles at the nonsense points, the lower case a-* , have 

nonsense zeros. We presume, then, that these amplitudes in fact have 

a string of nonsense zeros which cancel all the gaiMta function poles 

and thereby eliminate all Regge cuts from the cylinder, just as we 

contrived to do in the rapidity Model. More significantly, the same 

mechanism should remove Regge cuts from the planar bootstrap-

Unfortunately, we have been unable to pursue this question due to a 

technical difficulty which we discuss in Section (12). 

6. The Complete Twisted Reggeon hoop 

Since the A's appearing in (11.26) are the projections of ring 

discontinuities, their j~plane singularity structure contains, hope­

fully, only Regge poles. We then write as an asymptotic series. 

(11.32) 

where the G are triple-Rtgge couplings, 

GJ°(i;a) = GJ 0(a.,a; ; t . , t : : o.t) . 

whose normalization was discussed in Section {10.S) and shown in 

Fig. 30. Near a particular Regge-pole, Eq. (11.32) reduces to the 

form (10.9) given earlier, but in general we wish to maintain the 

j-dependence in The triple-Regge couplings, as discussed below. 

Since GJ(l;<x) couples two Reggeons (aj.Qt*) to a third Reggeon a, 

it is clear that the coupling vanishes if o has the wrong naturality, 

so we now drop the naturality label, keeping in mind that (11.32) 

represents a sum only over trajectories of the proper naturality. 



Inserting the pure Regge pole expansion (11.32) twice into 

(11.26), wc find for the projected one-twist cylinder ten> 

a,a' 

• t o : | « H , 2 ) [ G i u -' ^ e j u s a - l ] . 
Vria)r(a') 2 . 

(11.34) 
When the helicity contour is shifted to the left as suggested in 

Section (12), the resultant k is 

k L ' ( t ' - ** T.nm rn(2:a)l/, t=(2;»'))i • 

In our Regge pole expansion (11.32) for the ordered four-

Reggeon discontinuity A ..(1,2), we have exhibited the triple-Regge 

couplings as being j-dependent, just as in the rapidity version (H.9). 

Usually Regge couplings are presuned to be independent of j, e.g.. 

\K<J) U -a) 
so we wish to comment on this point. The Regge expansion given in 

(11.32) is supposed to be a reasonable approximation to the exact 

partial wave amplitude A ,(1,2). However, we know from (10.181 that 

when k • 0 o: k, « 0 fk. are the continued ens momenta, see Eq. (5.")). 

the partial wave amplitude A".(1.2) must exhibit the characteristic 

threshold behavior, 

[A(l.:>]\ * (k tl" C l (k 7)' C ? [A'(1.2)]^. (Il.» 



Therefore, in order that the ( f ini te! Rcgge cup.insioii 111.32) be 

accurate, we must sssuac that The couplings also t-nhihu ihis threshold 

behavior. 

J J " a c _ 1 i 
[C(*;aj] » a , ) 2 tc'l2;a)} 

X 2 >i 
HI,17) 

We might then ignore the j-dependence of the residua! coupling C . 

In particular, we have already noted that G' should have no fixed 

poles in j. 

Therefore, a aodei frr the corplete twisted Reggcan loop k 

accounting for this threshold behavior and lack of fixed poles is 

* tG'(2;a)3? [c'C^a')!* , (11.38) 
h ? h 2 

where we have used d$ 2 = (2n/f) k dkdw as given in Eq. (6.10), and 

where H(2) is Eq. (10.12) with (10.16). In the past, expressions 

for k have not shown this threshold behavior because the projected 

triple-Reggc coupling has been identxiied with the j-independent dual 

coupling 

shown in Fig. 38. There, the loop is cross-hatched to indicate that 

it is a conplete twisted Reggeon loop incorporating the effects of all 

the helicity poles of all Reggeon pairs. 
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Ke may now compare this precise Reggeon loop to its approximation 

in the rapidity model as given in Eq. (11,IS). First, since we have 

includes more than ne Regge pole in our approximation to A-*, the k 

of (11.38) is a matrix m the space of the Reggeon set (a.), whereas 

(11.15) shows only the leading diagonal element of this matrix. 

Secondly, the usual numerator gamma functions of (11.12) which contain 

the physical poles of the propagator, now appear as sines in the 

denoainstor of the factor H12), with the job of ghost removal now 

i-.cunbant upon the -ouplings G in the sense of Eq, (2.8). We have 

retained the *z, e'z factors in H(2) to allow for fermions on the top 

and/or bottom of the Reggeon loop. For example, the upper and lower 

Seggeons must both be baryons in the contribution to the cylinder 

which mixes regular mesons with baryonium states. (see Fig. 39). 

Finally, the k appearing in (£1.1$) contains only the leading pair 

of Reggeons (a2,ctj). and only the leading helicity pole corresponding 

to that pair, i.e., n 2 = n* = 0. 

7- The Full JE-liRder 

So far we have discussed the zero and one-loop contributions to 

the full cylinder, Eqs. (11.32) and (11.33), which we now rewrite in 

an abbreviated notation 

C ( 0 )(1.3) = g(l) i Pj g(S) i 

C(l)(1.3) » g d ^ P. K ^ g U ^ . 

where now PL = (j -a.)" 1 and K.. a TkQ a . To compute the full 
cylinder including the planar part, 

CO.3) = £ C{n)(1.3) 
n=0 



we remove the external couplings on the ends to make aatrices of the 

C* n', and we replace the Pj with diagonal matrices 

Then C is « geometric matrix scries which one sums to get 

. .1 tcofV'^K)],. 
cc(i.3>] - rp*PKP*-L, - o - K ] . . - n — ^ • 

1 3 1 J ij det(P ' -K) 

The locations of the poles of the full cylinder are then determined by 

det D(j,t) - 0 (11.59) 

where 
CoO'.t)].. - (j-a^t))^ - rkj.(t) , (n.40) 

with k.. as given in Eq. (11.34). In practice, one can restrict to 

a small number of leading planar trajectories and include symmetry 

breaking- If the matrix space is crudely limited to one dimension, 

Eq. (11.40) shows that k recovers its simple significance as the 

shift between the pomeron and planar Reggeon in the one-flavor model, 

as in Eq. (11.18). 

(12) FIXED POLES, NONSENSE 2ER0S, AND 
THE HELICITY CONTOUR PROBLEM 

Whereas the diagonalization procedure described in Section (9) 

is straightforward, the problem of shifting the helicity contour in 

the diagonalized equation is still, we feel, an unresolved question 

Rather than bury this discussion in the cylinder calculation above, 

"*e thought it best to expose the problem clearly in the hope that 

someone will solve it. and to show the drastic assumption we male in 

the end- The problem describee here in effect hlocks the completion 
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of the helicity pole expansion prograa. 

Consider a simpler version of Eq. (9.1), 

Mg) - fH,*UJ C(g,) . (12.1) 
or its disgonalization 

V J i» P* »»• (12.2) 

(12.4) 

with projections as given in Eqs. (9.J) and (9.5), which we now 

write as 

1 

and s i« i l a r lv for .V , , out for B , we hav? 

1 

The functions <jĵ  . C = 1 • liVt? the regular Q . ( ; ] , have poles in j 

and therefore ( i t turns out) in 1 and u ' , ar.d th is certainly suggests 

that the projections l ike c\ , of tq, (12.31 night also have these 

"fixed po les , " although this is not necessarily the c a s e Neverthe­

less , i t is useful to convert fro» the functions SJ-' , to the q̂ J of 

Tq. (A.13) which are analytic in j , X, u' and have no :eros , at least 

for Re( j > - - 1 . He fining new, lower-case protections as in Section 

J in* 



we can say that i f C, . has no "fixed po les , " then c: , roust have 

zeros (nonsense -.eros), since c is the residue of the pole in C. 

(In th is sense, c is closer to the Hellin projection than C.) 

In terms of the lower-case project ions . ( ! - . - ) becomes 

%Ul - J iir H X *uX C Xu' 

where H^ = r ( j • 1 * k)T{j * 1 - M. As > - s i - , H-J * exp(-Tr| X!) , 

providing the excellent apparent convergence for the he l ic i ty inte­

grat ion. One pays a price tc get th i s exponential damping, however; 

H? has pole:, gain* off in both real d i rec t ions in the X-plane (see 

Fig. 37). Suppose tr i s anaiytic in X and c? , has a sliaple pole a t , 

say, A = h * - l * i . One vould l ike to sey t h a t , when- the contour i s shifted 

to the l e f t , t h i s poJe makes 8 contribution to ,J J , . However, the poles 

of H{ also sake contr ibut ions, and t o sake Batters worse, the poles of 

c j , at \ = h can p-nch rr-» contour against a l l the poles of r ( j + 1 - X) 

cans 

unwanted in the cylinder or p la . a r boots t rap , we would l ike to claim 

.hat the poles of r { j * 1 - XJ are cancelled by nontense zeros in the 

projections like c: , , which is to say, the Froissart-Grihov projection 

Ci , has no fixed poles. This sounds reasonahle if Ĉ  , is the 

projection of an ordered (planar) amplitude where fixed poles must 

be absent so thai the ftegge cut discontinuity formulas give zero 

discont inui ty, c i rcu lar ly speaking. 

Granting that the product JJ3 cj ' has full nonsense zeros to 

cancel the pole? of F(j • 1 - X) and remove Regge cuts , ore must s t i l l 

consider the problem of shif t ing the contour. It must be impossible 

to shift to the right because then one gets â  , = 0, certainly not 



desirable. Shifting to the left yields a contribution from the pole 

at X = h, hut still there are all the poles of I"(j*l*X). The conjec­

tured form of the helicity nonsense zeros of Eq. (2.8) suggests that 

the -eros in the I1 -plane should be symmetric and therefore the poles 

of H j + l + X) are also killed (although the dX convergence is now 

jeopardi;ed by the removal of Hj). 

Now, presumahly, the integrand of Eq. (12.8) is analytic in A 

except for the pole at X=h (the "helicity pole") and we would like 

to say: shift the contour *o the left pick up the helicity pole 

contribution, and hope the contour integration vanishes as it is 

shifted off to Re(X) = -«. 

However, in the C 

found that, aside from the helicity pole, the integrand was syiroietric 

in X. so *hat if we disallow a shift to the rigi:t, we must also 

disallow a shift to the left. 

rhe situation is analogous to the problem of the Soranerfeld 

Watson representation which is resolved by the "Mandlestam trick" of 

replacing the poorly behaved functions P J with j-decaying functions 

like Q.. In Ref. 3 it is suggested that a similar procedure be applied 

in the present context. Presumably the projections z{ , are badly 

le a . are badly 

in Appendix A, one can decompose 

q| . • q| . • q\ - < 1 2- 9> 
MAu' ^Xv -X.-u 

^ , ...... ....... ..nly on the right, those of rfj*l-X). and is 

well behaved 35 Re(X) * -<=, as can be shown hy applying Watson's Lemma 

to the integral representation, Pq. (A.18). Pefining projections U 

and c in the obvious way, (12.8) becomes 



•JHHitSix^.p.-xlK'^..,,.]-'"- 10) 

Now, sadly, one does not really know the large A behavior of the 
various projections because, looking at (12.7): (a) infinite range 
integrations can change asymptotic behavior; and (b) C. f(v) also 

depends on \ via the Fourier projection (12.6). 
At this point one throws up one's hands and makes a guess. Of 

the four terms on the right side of (12.10), the fourth term may be 
harmlessly shifted off to the right where the projections £ . and 

X ii* n a v c a t * e a 5 t power decay. The two cross terms either 
cancel, or nay also be shifted off to the right, also yielding no 
contribution to a^ .. The first term must be shifted to the left, 
in the direction that $K and « , are at worst power behaved. 
This term picks up the helicity pole at X = h, giving the final result 

<v ' a Hh"»ih B «t S h«-3 • ( 1 2 I 1 ) 

or , in terns of the or iginal equation, 

*jw = 2 »Ml , - , t e S t £ h, 1 . ] • 02.12) 

In this paper, we have aade the assumption that (12.2) can be 
replaced with (12.11) or (12.12) in the following locations: (10.41), 
(11.28), (11.30), (11.35), ind (11.38). 



APPENDIX A 
SOMF. USEFUL FUNCTIONS 

References 9 and 25 describe at length the properties of the 

generalized Legendre functions P J and H* . Here we reproduce only 

their definitions and basic sy^etry properties: 

^») • (¥) (¥) v ,„ , . . .„ 2' • 
(A.l) 

i / — t \ W l , * U ) / z I V - ' - 1 

. F ( ^ l m , j* t»v ; 2j»2; lb) 
r ( Z j * 2 ) 

• ' ' - v . - , i, - p - j - i 

< - C5 ^ 
uv *vi 

ri . r»»iM)ru*i-v) ,, ., 
cuv ' rtjvi-uiHj.i^T • ( A " 

All variables are general coaplex numbers. Sometimes we make use of 

the following combination: 

«j„.(g) - <,.«.».«•) - «" u £ «j u .<^"" , , , £ ; ' • <*-5' 

The usual rotat ion d-functions * are given by [ t for Imf:) < o] 



F(j+l+n', -j+m'; «*-m»l; sin 2 •*-) 

rem- -*• i) 

When j.m.m' are all integers or half-integers, one has 

di,-«' (- z ) * <-*» d^.U) , 

As usual, the conplete rotation-group matrix element is given by 

D i » , ( , ) * D^.W.B.* 1) - e" 1"* a^,C6) e""1"'*' . (A.9) 

The accompanying second-kind e-functions are defined by 

with 

The d and e functions have these he l i c i ty symmetries; 

c - i» - - « L - «i . . • «?. 
(A.12) 

Soneti**s it is convenient to use still another version of the 

second-kind function. 

This q-function has the advantages of being analytic in j, u, v, and 



having very simple symmetries: 

The asymptotic behavior is given by 

,'!". qi» ( 2' = fef^TT • (A-15) 

and the relation between q and e is 

°L-M - ^""' K>^ *LM • <*-i6> 

where H-L, - H ' H J , , and Hj, = r(j*l*u)r(j*l-u). An integral 
ran mm JJ 

34 representation for q is given by 

HJ qj A(chv) = Hf da f(a) (A. 17) 

where 

f(cO = e ^ (chv * s h v c h a ) - J - 1 [ " e a * t h ( v / 2 ) 1 . 
[l + eath{v/2)J 

Since q^. is analytic in u, and has no identical zeros, the function 

on the left-hand side of Eq. (A. 17) has poles going off in both 

directions in the y-plane. By decomposing the integral into two 

parts, it is possible to produce a function which has poles only 

on the right, 
°f 

n' q^tchu) ; h I do. f (a) , (A. 18) 

and is well behaved as Re(u) -* -«. Comparing (A.18) with (A.17), we 

find 



q may be shown to be a two-variable hypergeonetric function 

Hl ^ A ( c h u ) = H r«*»-M) (ch J ) (sh f ) 

F^a .B .B ' .v ; - t h j , - c t h ^ ) 

where 

Y * a + 1 * j + 2 - u , 

8 = j + i * A . (A.20) 

6' » j + I - A 

The poles Mentioned above are now evident. Our Functions q and q 

appear in Ref. 3 as d-functions [no connection to Eq. (A.6) above]: 

(A.21) 



APPENDIX B 

TOLLER M-RJNCFIONS 

He p r e s e n t h e r e t h e d e f i n i t i o n and so»e b a s i c p r o p e r t i e s of t h e 

T o l l e r M~func t ions u s e d i n S e c t i o n ( 2 ) . Our c o n v e n t i o n s d i f f e r some­

what from T o l l e r ' s atnd w i l l b e p r e s e n t e d i n d e t a i l e l s e w h e r e . 

As n o t e d e a r l i e r , t h e H - f u n c t i o n fo rma l i sm a p p l i e s e q u a l l y w e l l t o 

t h e p h y s i c a l o r o r d e r e d S - w a t r i * c o n n e c t e d p a r t s . 

A T o l l e r H - f u n c t i o n r e p r e s e n t i n g a 2 - t o - 3 a m p l i t u d e way be 

d e f i n e d a s f o l l o w s : 

( l . a ( ; 2 , a 2 : 3 , 3 , ; 4 , a % ; S , a 5 ) A 6 ( e s t ) ™ I " J " S * s . 

• ( ' 

(B-n 

Cp, $|U f(* 5) •Cp/|U tC* k) ® LPjVca,)] 

S c [u(a 1 )ip I

1 )«0(a 1 )fp 2 ')V 

6 * { e x t ) - 6 * ( p , * p 2 - p , - p w ~ p 5 ) 

p . = L ( a . ) p . 

p , = ( • . , 0 , 0 , 0 ) , 

and the constant A H -2nicf is discussed at the start of Section (4). 

The LCa.) are the 4x4 Lorentz Kitrices which act on 4-vectors, whereas 

the U(a.) are unitary operators which represent the elements (0,a.) 

of the Poincare group in the single-particle Hilbert space. The 

states | ) and | ] are defined and discussed in Ref, 13; basically 

they are linear combinations of the usual I > states which are 

designed to transform as undotted and dotted spinor representations 

of the Lorent;: group. In fq. (B.l) all helicity (spinor) indices are 
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of the undotted upper (contravariant') type. Generally there are four 

kinds of spinor indices: x , x , x , and x. , which can be raised 

(G acts on the left) or lowered [G acts on the right) by an anti­

symmetric metric spinor 

C , = G - ' = G... = c""' = d* (-n) . ma' •* •• 

where s is the spin of the particle involved. Except on a few 

occasions we use only the x* and x index types. However, in order 

to allow room for explicit spin labels like s , we have adopted the 

following notation: 

*l Sl SS S* SS = J! "2*3 BS 

That is, upper indices are written as lower, and lower indices are 

also written as lower, but with a dot underneath, this dot saving no 

relation to the dots of x and x. • 

The only properties of the Toller M-functions stated here are 

the invariance and covariance conditions. Other properties such as 

crossing, TCP, Reggization, etc. will be discussed elsewhere. 

The statement of Lorentz invariance in terns of Toller M-functions 

is very simple: 

CB-2) 

This invariance condition, immediately evident from the definition 

(B.1) since the operators U(a) are unitary, states that a TOIICT H-

function transforms as a Lorentz scalar. The equation is the sane 

for all types of spinor indices as long as both sides match. 

In addition to the above overall invariance condition, the 



Toller M-functions have a covariance condition on each particle, e.g., 

2-J "»,n J»,»> s(a,,a !,a ],a,,a 5) D_*. (8) CB.J) 
m'-s 
* h 

where g is any rotation. The covariance conditions are also obvious 

froa Eq. (0.1). given that the rest states |p™) transform in the same 

way under rotations as the usual lp,m> states, while the states ]p*] 

transform as D . 

Toller extends his covariance condition to include parity, 

rotations and parity coxprising the complete little group H^ of a 

rest 4-vector. This matter is discussed further in Section (3). 

To verify the counting of variables, one finds for the general 

n-point Toller amplitude: 

nx6 each a. * 6 variables 
-nx 3 covariances 
-6 invariance 
-4 6*{ext) 

Finally, the Toller M-functions are related to the momentum-
13 12 space M-functions (spinorial amplitudes) of Taylor (Stapp ) by 

VL _ . - - (i|la.,i,,a.1a) 
5 

. T T (O.S;) 
1 2 3 W 5 1=] I 1 
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where D 1 ' J arc certain spinor representation functions * ' of 

SL(2,C), and p s = Ltq^pj. 

Toller has shown that the n-point function M (a...) is 

analytic in [SL(2,C) *SL(2,C)] n * [complex Lorentz groupj", the only 

singularities being reflections via p. = L(a.)p, of the positive-a 

Landau singularities which are the only singularities in the p, of 

the Stapp M-fimctions (e.g., normal thresholds, poles, triangles); 

kinematic singularities and constraints are not present. However, 

when the M (a,...) are confined to certain surfaces within 

[SL(2,C) ] n , as by using the standard frames of Section (5), these 

kinematic singularities reappeai. This is obvious when one realizes, 

e.g., that the Toller 4-point function, when written as 3 function of 

ge0(3), is an ordinary helicity amplitude. 



APPENDIX C 

THE HELICITY POLE EXPANSION FORMULA 

In Ref. 9 we have d e r i v e d a c e r t a i n " a l t e r n a t i v e " second-kind 

g e n e r a l i z e d - L e g e n d r e a d d i t i o n theorew and have proved i t s convergence . 

Th i s formula . Eq. ( 2 . 1 1 ) o f Ref . 9 , when conver ted fron t h e fj t o the 

q f u n c t i o n s o f Eq, ( A . 1 3 ) , becomes 

{ ^ ^ ' . " i - " . ' • c=.n 
The relation between variables (£,!.$ ) and Uj.a.Sj) is given by 
Eqs. (2.8) and (2,9) of Ref. 9. tfe now make the following set of 
changes on Eq. (C.l): 

£ - -in V -* - iv 

2 ( -• ishf ~2 
- -ishh 

V » - • v' * - T 

o » c «-) » n»l 

; - cb? . 

Taking j * -j-1 in the equation which results frow these changes 
leads to 

e- i" 1 ,q-^- I(ehOe- i r W = . 2 ^ ^ r ( - 2 j . „ ) 

(C.3) 

which converges when Re(£l > P. However, from the discussion in 
Appendix T of Rcf. 9 ir can he <ho*m that £ * -£ i 5 compensated in 
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Eq. (C.3) by (u,v) - (-u,~v). After caking these changes in (C.3), 

one may then take {m,r) •* (-ss,-r) to get art equation identical to (C.3) 

except that m,r and K are replaced by their negatives on the right 

side, and this new equation converges for Re{4> < 0. Both equations 

can be written simultaneously by introducing an index *:, 

ic*+ n = 0 

(C.4) 

now valid for . < » < £ < « . As the Jast s tep , the q function on the 

lef t side of (C.4) i s replaced with i t s e-function equivalent [see 

Eq. (A. 16)1 so m a t , upon defining 

r2rc-zj •»)(-»)" IL-
(f) 5 : = q . J „ ' _ [ i s h n . (C.S) ] <&!« 

Eq. (C.4) becomes 

- i : I ™ ' " « 1 5 1 0 " " F U < - " > • <"> 
n=0 

Setting j = a, then putting a subscript "2" on all variables yields 

the result quoted in Eq. (6-1)-

Froa Eqs. (2,8),(2.9) of Ref, 9 and (C.2) above, the relation 

between the BCP (Bargwann) variables (u.C.v) and the Fig. 15 variables 

(f,£,h) may be found: 

ch£ * shf shh * chf chh ch£ , (C.7) 



•iu r [shh chf • shf chh ch; • ichh shO 
sh£ 

and an expression for e 1 given by h ~ f in Eq. CC.8). 



APPENDIX D 
THRESHOLD KINEMATICS 

In Section (S) we studied the left- and right-side loop equations 

of Fig. 14 in order to compute the Misheloff rotation. Here we examine 

instead the lower loop equation of Fig. 14, namely 

Analysis of (D.l) in the wanner of Appendix E of Ref. 9 shows that 

shVj 
chf, * sinQ, — r — , 

2 ' shq, 

shv. 

(5.18) 

where, as found in Section (S), 

sine ( - k ) sine ( -
(V 

sin0 2 - k= 

shqi - 2(-t 1)Vt !)' J 

shv j -
2k,k, 

Therefore, as k * 0, 

chf, • (p.**,) 
2C-t,)'5 sh H lk, 

const. 

chb1 = * : • * const chb1 = 
2(-t 2)' 1 shq.k, 

const 
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and as k ; * 0, 

chf 2 = 1 = const. * kj 

chh. = — * const. 
Ishq^-tj)-^ 

These last fou~ equations are used in Section (10) to find the 

threshold behavior of the kernel. 



ATFBCDIX E 
THH CROSS-OIASVPt CO\TlSUATW\ 

In order to carry the kinewitic structure of Fig. IS ''rom the 

mult ipenpheral region to the physics! crass channel where t > 0, one 

must analyt ica l ly continue in the ttandelstara invariant? to appropriate 

new values and perform a coaplex Lorent; transformation. Our main 

purpose in describing i H s procedure is to show that the peculiar group 

variables appearing in Fig. 15 are sinply continuations of the familiar 

variable^ tine would use to describe the lar^e-t Hcggr Jimir. 

Consider, instead of Fig. 15, the single ladder rung shown in 

arc d 

Q = ( k , * * ; ) = ( k 3 * v ; i . t = Q ! 

P, - a , - k , ) = (*;-*;> • s i = K • 

Our goal is to start in the wultiperipheral region of the Reggeon 

process 1 + 2 •* l' + 2* , where 

A(t ,t. ,t.) = negative 

p = future t i ne i i ^e 

trentral level = bws frames 

and wind op in the cross channel physical region for 2 * 2' •* 1 * 1 ' , 

vhc IT 
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Q,fe.,k! = future timclifce 

A C t . t ^ t ! ) » posi t ive 

p * spacelike 

central level = cms frames 

Bws (cms) means brick wall system fcenter of mass system}. 

The f i r s t step is to continue a l l the t ' s . Figure 40 shows a 

"movie" of th is continuation, and Tnhle 1 describe* the movie. 

Including t r ami t ? one tnay conclude that 

(E.n 
(-o's - ut)'5 

The branch point detours were chosen in the same way for all variables. 

What effect do these changes have on the equations of Section (5)? 

First of all, F.qs. (5-1) become 

shv, - (5, + tj - t ^ / Z C - s ^ t t , ) " * 

sha 7 = { s 1 * t 2 - t l ) / 2 ( - $ i ) l > ( t 2 ) i 

which are now the correct BCP boost formulas for a 2-timclike/1-space-

lifce vertex. 

More intr res t inpjy, Tqs. (5,3) and (5.5) become 



co S e 2 2 , = c t - t 2 - t ; ) / 2 ( t 2 ) I ( t ; ) s 

cos9 2 2, = sho s shoj + cho 2 cho 2 cosx, • 

But now cos(9 ,) >1 which implies cos(X,) > 1, so we define 

cos6 2 2, = cosh n 2 2, 

cosX, = cosh£( 

to get 

chn 2 z, .= Ct - 1 2 -1 2) / 2(t2ys(t'z)h 

chn , = sho 2 she J + cha 2 cho 2 chf;, 

Fro* these expressions one recognizes that n 2 2 , = -i9 J 2t i s t h e u s u a l 

rapidity boost parameter connecting the rest frames of the (now) 

incident particles k 2 and k 2, and that £ t = -iX, is the Regge variable 

of the 0(2,1) link (U,.5,>^j) on the now spacelike line p (recall 

that M 1.v 1 were set to zero). 

To complete the above description, we now construct a figure like 

Fig. 14 in which the parameters n . = ~i6 2 2, and £, = -iXj appear 

explicitly as frame-connecting boosts. The frames in this new figure 

(which we do not draw) form a sort of shadow cabinet for the frames of 

Fig. 14 in exactly the sense of Fig. 21, except that the s* of 

Fig. 21 is now replaced by this complex Lorentz transformation 

The operator T, given in the 4-vector space as 

0 0 
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tunis tinelike vectors into spacelike and vice versa so that, e.g., 

k (in one of its spacelikc rest francs) 

k, « (O.o.o, VttJ) - (O.o.o.i vTJ) 
becomes 

Tkj = (v'77.0,0,0) 5 k~ 

where k ; is the vector appearing in the new figure. 

According to the rales of Eq. (E. 1), the bws versor magnitudes 

k. of Eq. (5.7) become 

UCt.t x')t 
K . - V — . 

1 2(t)* 

which are now the initial and final channel cms vector nagnitudes. 

The z i of Eq. (5.13) is now imaginary 

i(t-t -t[) 

as desired, since k ; in one of i t s bws frames 

k, =• (O.kj.O.ij) • (0,k 2 ,(>,iF,) 

becomes 

k" ' Tk 2 = (Ej .kj .0.0) 

which is the normal form of a standard cm? 4-vector, except k 3 points 

in the x-direction instead of the :-direction tsee Eqs. (5.10) fhrzugh 

(5.12)1. 

Our imaginary now figure can be completed very simply by examining 

the action of T on the I.orent: generators (see Appendix \ of Ref. 91; 



- * - i Jy 
*y 
K, 

50 that . r.p. , 

-ie ,,.ry -»6 .(-i*^? 

lending credence to the above remarks concerning the variables 6 and X. 

Finally, consider the central level boost parameters £. and v. 

whiLh w'̂ re so important for the diagonaljration of Section (9). 

According to (E.2), the combination 

BytC,) B x(v,) 6y(Cj) 

which surrounds the cluster p in Fig. 15, becomes in the new 

picture 

M * , ) RytB,) R xt*j) . 

where 

*, - U , B J = -iu, * 3 = iZ3 CE.5) 

are the Luler angles which cha rae te r i i e t h i s rung in the physical cross 

channel (B, is the scat ter ing angle, k l - k J = cos(B,)) , except t ha t , as 

already noted, the aiimuthal ro ta t ions happen to cone out being 

x-rotations instead of ^ - ro ta t ions . 

he conclude Mth a short coww-nt about he l i c i ty . Equations (E..1) 

show that the central level £. boosts of F I R . 15 are the continuations 
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(to the imaginary axis) of the cross channel azimuth?! rotations of 

the process 2 * 2' •* 1*1'. Therefore, the variable conjugate to £ , 

namely v , is the* analytic continuation of the variable conjugate to 

$ , which happens to be the channel helicity m = sij * itj. This justifies 

our characterisation of the li or X variablss as complex helicities. 



APPENDIX F 
REATTACIMENT OF THE END-MINGS 

How does one obtain from the solution of Eq. (10.8) the physical 

discontinuity for particles rather than Reggeons? One way is to 

continue the Reggeon discontinuity A in the masses, spins, and heli-

cities to the desired physical points. Unfortunately, the 4-Reggeon 

discontinuity A appearing in Eq. (10.8) is not a standardized Toller 

M-function (see Fig. 29), so that one may conclude only that the 

continuation of A will be proportional to the physical amplitude. 

An alternative and more conventional way to obtain the physical 

amplitude is to add the "end-rungs" back onto the multiperipheral 

ladder. As this involves the special end-rung kinematic configuia-

tions which we have omitted from Section (5), we simply state the 

answer with a few comments. In the energy plane, the end-rungs are 

reattached according to 

W 8' • r/"*i/d<2 W ^ i ^ n ' V V V W V V V ' 
1.2-̂  J 

(F.I) 
A is the sum of all contributions of the form [10.1), K .(n,) is the 

associated with the (a,a') channel, i.e.. 

Variable $t senses the channel helicity m * m* m' of the two-particle 

system (a^*). The variables n. appearing in fF.1) are like the v. 

appearing in (10.I), but not quite because the end-rungs are always 

in a mixed~basis c 

into z = i sh(n). 



The Jiagonalized version of (F.l) is 

1,2 "1 *n 

* % * ( 2 5 K p , « ( 2 ' b ) P » ' ( b ) ( F " 5 ) 

where 
2w 

V a > - (% °~m Pa«> ' 5 . . . a . . I • <f-4> 

In nig. 26 we schematize the procedure for reattaching the end-

rungs to get the physical amplitude. Once one has solved the integral 

equation (10.8) for AJ" and computes the T* , as in {¥.3), the 

absorptive part T , { s , t ) in the energy plane may be found fro* the 

usual inversion of the Jacob-Nick expansion. However, one may return 

d i rec t ly t o the energy plane without reat taching the end-rungs by 

neans of an expansion formula which is in effect the inverse of the 

projection (9 .4) : 

IF. 5) 

W 
sinn{2j'i 

initlj - u")simr(j • p) 

The contours in (F.5) run up ver t i ca l ly to the right of a l l s ingulari­

t i e s of the integrand However, the j contour C contains, in 

addition to t h i s v e r t i c i l pie-;e, irlocVwise loops around the integers 

and h;U f-integers to the left of the ver t ica l component. Formula (F.5) 
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can be derived from a co^Ie teness re la t ion [q defined in Eq. (A.13)] 

6(x-y) = • i / a jC2 j* l ) c scTr (? j ) q ^ - ^ qj^Cy) 

(x.y > 1) (F.7) 

which in turn can be derived by the techniques of Ref. 9, Appendix G.l. 

Final ly, i t should be noted that the projection (9.4) i s precisely 

the continuation of the usual Regge theory Froissart-Gribov project ior 

to imaginary and in general complex h e l i c i t i e s . Formula EF,5) i s [the 

discontinuity of) the Handelstan-Socnerfeld-Vatson transform, the 

d i sc re te -he l i c i ty version of which was used to get Eq. (2.2) with (2.4) . 
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Fig. K A particle pole term contained in the 6-point function. 
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Fig. 2. A Regge pole contribution to the 6-point function. 
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Fig. 3. A particle pole term contained in the 4-point function. 

° ML 1792262 

Fig. 4. A Regge pole contribution to the 4-point function. 

2 I 
XII 771.2251 

Fig. S. A iloublo-Rcgge contribution to the S-point function. 
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Fig. 6, The standard Totier vertex in no-Regge, single-Regge, 
and double-Reggc configurations. 

XBL 779-2253 
Fig. 7, Elastic un i ta r i ty ; X6 is the Misheloff rotation for 

par t i c le 6. 
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F i g . 8 . Mu l t i -Rcgge product ion a m p l i t u d e . 
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XBL 779 2252 

Fig. 9. Spin and helicity labeling for multiperipheral unitarity 
product. Upper variables are primed versions of lower 
variables. 



v,o,q • B z r N° 
,V_y, X — k j . t , 

1, X«L 7712267 

Fig. 10, The BCP frame trlfid for a production vgrtex. 
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Fig. 11. Two vertices combined to make one rung. 
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Fig. 12. Four new frames added to the Ping. 
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Fig. 13. Central level frames f and g added to the rung. 
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Fig. 14. Complete 12-frame system describing one rung. 
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[x.e = R y v,f,h = B, t = B y q.v.o = B z] 

Fig. 15. Multiperipheral ladder formed by combining runRS of FiR. 14. Rungs are separated by 
y-boosts £.. Legend indicates meaning of labeled parameters. xtsi_ 779-2246 



XBl 779-2251 

Fig. 16. Standard frames for triple-Regge vertex in i t s 
spacelike configuration, A ( t , t , , t J ) < 0. 
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<< . IX,) d . „ (X.) 
p'n 1 p'p 1 
MM 2 1 

He: H -••$> He: H 
Fig. 17. Functional structure of the multiperipheral ladder, after 

Mandelstam trick. 
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( i ) ^ . < H ^ v w ! F w / f = 
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Fig. 18. When E-functions of Fig. 17 are heliciry-poie expanded, 
residual functions F are grouped to the rungs to form 

X8L 7797248 
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Fig. 19. The hclicity-pole propagntor. 
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Fig. 20. The kernel. 
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Fig . 21 . Dotted f i g u r e shows segment of m u l t i p c r l p h c r a l ladu r 
in p a r i t y - i n v e r t e d world. In t ha t world, frames si wn 
are connected by £ ' = -£• 

K,2(v,) P 2(5 2) K^v, ) P3(«,) K M ( v J 

[ v = ? = Bv ] 

XBL 779-2254 

Fig. 22. The 3 - p a r t i c l e or 3 - c l u s t e r c o n t r i b u t i o n to the 

4-Reggeon ampl i tude . 
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XBL 7792259 

Fi?. 23. Functions B, C, D arc convoluted to give function A. 
The variables on the bottom line are conjugate to the 
boost parameters as shown. The diagonal variable j is 
angular momentum, variables u and X are helicities. 

( 3 ,A(1,4) KO,2)P(2)K(2,3)P(3)K(3,4) 
H j X j X' j u' 

X X X X = X X X X X X X X 
e. v i «z v * « , v

3 < • ; 

Fig. 24. The 3-particle/cluster contribution to the 4-Reggeon 
amplitude, in both energy-plane and j-plane. 
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K(l .3) K(l,2) P(2) A{2,3) 

u j u' u j A j u' 

XX JXX = XX XX + XX X X / JX > 
C v C C v C' *, u, ^ ^ c; 

Fig. 25. The bootstrap equation in hoth energy- and j-p]nncs. 
XBL 779-2?63 

P(a)K(a,l)Pd)A(l,Z)P(2)K(2,b)P(b) 

= X X 

Fig. 26. The reattachment of the end-rungs (see Appendix F). 
XBL 779-2255 



= 2 

Fig. 27. The Regge-pole expansion of the unnormalizcd 
4-Reggeon ring discontinuity. ^ 779-2312 

Fig. 28. The vertex bootstrap. XSL 779-2313 



31 = 
Fig. 29. Relation between discontinuity A and the Toller-

normalized 4-Reggeon ring discontinuity. The 
R-notation is that of Ref. 7. XBL 779-2316 

Fig. 30. Relation between the cut vertex G and the Toiler-
normalized ring function R. XBL 779-2319 
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Fig. 31 . Highly schematic boots t rap for the 
3-Reggeon ordered amplitude. 

=Ji)~-®3^-~ 
Fig. 32. Vertex bootstrap with "dotted Reggeon" replacing 

the single produced particle of Fig. 31. 
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Fig. 33. The two twist-pair contribution to the cylinder in various 
notations (see text). XBL 779-2314 
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J-o 
1 

j-a J -a 

Fig. 34. The diagonalized twT twist-pair cylinder term near j = ct. 
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r i g . 3S . The C c y l i n d e r t e r m in t h e r a p i d i t y mode l . 
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(1) C ( l . 3 ) A ( l , 2 ) *P (2 ) A(2 ,3 ) 

U j V' U J j y ' 

xx( )xx = rxT^TTxT^Tx 
t, v r ?, v , v, e: 

Fig. 36. The C^ cylinder term with exact kinematics. 
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XBL 779-2316 
Fig. 37. The complex helicity plane for Eq. (11.26) or (11.27). 

If helicity pole h is in the right half-plane, contour 
should be deformed to the right. The other poles may 
or may not be present depending on nonsense zeros. 
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Fig. 38. 

XBL 7797323 

C may he- expressed as a double Reggc sum involving 

the complete twisted Heggcon loop k. The cross-hatvh 

indicates that the loop has been summed over all 

helicity pale-- of all possible Rcggcon pairs. 

J\ 5* 
"1 ̂ e 

Fig. 39. Quark line structure of twisted Reggeon loop coupling meson 
to baryonium. Since loop Reggeons are fermions, e-factors 
in propagator are set to one-half. X8L779-2324 
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A<0 

/ 

XBL 779-2311 

Fig. 40. Five frames of a movie showing the kinematic continuation of 
a segment of the multiperipheral ladder from the multiperipheral 
region A where t < 0 to the cross channel physical region D where 
t > 0 . Heavy line is equation A(t,t ,t') = 0. Frames of movie are 
described in Table 1 (next page). 



TABLE 1. 

A <-* ! ft ( - t j«S - i ( t , t , , t ; ) •» 

B <-* , 
)>S ( - t j>S • i ( * A ) * 

B c - 1 . } «l ( - t }>s • K+A)' 1 

C '-*, )>S • iCt ^ • i f+A)' 5 

D + i ( t , )>s • i ( t j»S " ( • A ) 4 

D • i [ t . j»S • i ( t }>s • iC*A) % 

(-tr 

( - t ) 1 

» i ( t ) " 

• i ( t ) ' 

• i ( t ) ' 

( • S j V 

( • * , ) ' 

(«,)• 
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