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CALCULAT ION OF PARTTY VIOLATING EFFECTS
IN TIE
0%, 7%, FORBIDDEN MITRANSITION IN THALLTUM

David B. Neuffer

Physics Department, University of California
Berkeley, California 94704
Materials and hblﬁ?ﬂlar Research Division
Lawrence Berkeley lLaboratory
Berkeley, California 94720
ABSTRACT
Calculations are presented of the El amplitude expected in
forbidden Ml transitions of T and Cs if parity is violated in the
neutral weak e-N interaction, as proposed in a number of gauge models,
including that of Weinberg and Salam. Valence electron wave functions
are generated as mumerical solutions to the Dirac equation in a
modified Tietz central potential. These wave functions are used to
calculate allowed El transition rates, hfs splittings, and Stark El
transition amplitudes. These results are compared with experiment
and the agreement is generally good.
the relativistic T2 cazp,1 . 72}’,1 Ml transition amplitude 7] is
also calculated and corrections due to interconfiguration interaction,

Breit interaction, and hfs mixing are included. The result:

(-3.2¢1.0) - 1075188

m ¢

;&ztheo
e

is in agreement with the experimental value:

) 10S el
= (-2.11+£0.30) - 10 o

MMexpt X
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The parity viclating El amplitude an is calculated and a value for the
circular dichroism in the Weinberg model

ZIm(an)
Pexpt

= -2.6x1073

is obtained. Parity violating effects in other T2 transitions are

discussed.

Contributions to the Ml amplitude for the forbidden Cs 625%- 725li

and 625;2«828,1 transitions and to the Cs 625% g-factor anomaly from
relativistic effects, Breit interaction, interconfiguration interaction,
and hfs mixing are calculated, and it is found that this current

theoretical description is not entirely adequate. The parity violating
El amplitude apv for the 655'7253 and 65_,{82512 transitions is evaluated.

The results

2o a2 R 11
By (6°5, - 7°5,) i 3.50-10

Qy lugl

i 1.48-1071 q fug]

2 2
ﬂpv(ﬁ S%- 8 SH)

arc obtained. With a measured value 574*pt and the Weinberg value

QW = -99, we find a circular dichroism § = 1.64 x 10'4 for the 6“55—72512

transition.
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I. CALCULATION OF PARITY VIOLATING EFFECTS

IN THE 62p,’ - 72p‘! FORBTDDEN M1

TRANSITION IN THALLIUM
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1. INTRODUCTION

Discov&ry of strangeness-conserving neutral weak currents in
ncutrino-nu%lcon scattering cxpcrinnntslhns stimulated considerable
intcrest in %hc possible existence of a weak neutral electron-nucleon
intcraction.} If such an interaction violates parity, as predicted hy
several theoﬂotical gauge models including that of Weinberg and Salam :
(W-S),cffccts}in heavy atoms such as optical rotation in allowed M1
transitions, %nd circular dichroism (dependence of absorption on
photon helicit?) in forbidden Ml transitions may be observable.

An experi?ent to study the latter effect in the doubly f{orbidden
Ml transition ¢2P5'7ZP5 (292.7 nm.) in atomic T¢ vapor has becn pro-
posed.3 The id%a, originally suggested for the 6252.7283 transition
in Cs by Bouchi%t and Bouchiat,4 is that a short range, parity violating,
neutral weak indcraction HPV mixes the 62P,:‘,72Plj TR states with nZSz

2

states. Thus thL transition 6 PL-72P%, nominally M1 with amplitude
; E

2 ‘ 2
N =<7 P, nv‘J|M1| 6 P,/z, my> (1

|

also contains a parity-violating electric dipole component with

A
amplitude &Pv==<7‘f%,mJIE1162P%, my>. It can be shown that interference
between 77 and 8PV results in a dependence of the GZP%-7ZPk absorption

1
rate W on right (RY or left (L) handed phuton helicity:

2In(Ep)- 2 2InEp)

. WR) - W(L -
bal? + 16 1% 7

+ W(L @

-

The "circular dichrofsm" § can be detected by observing the fluorescence

accompanying decay o the 7ZP,/z state (see Fig. 1). The first step in

\

i



that experiment was the determination of the M1 amplitude itself,
L3
the result being:

= (-2.11 2 0.30) - 1077 (3)

mcxpl Uy
where up = |o|h/2moc. In that measurement and also in the experiment
proposed to detect &, use is made of the interference which occurs
between A and/or ‘;PV and the Stark-induced electric dipole amplitude b
vor ()21‘,2-72Pll transitions in an exteral clectric lield.

In this paper we present results of calculations of
the atomic structure of TR which are nccessary in order to make useful
comparisons between these cxperiments and the predictions of models of
the neutral weak inleraction. The thallium atom has 81 electrons with
2 ground state clectronic configuration: ]:‘.:"...Sd10 6526p. Our
approach is to assume that all singly-cxvited T2] states of
interest have the same inncr electron configuration (152...5d10652,
with total L=0, $=0) as that of the ground state, and differ only in
the valence electron orbital. This approximation, while not strictly
correct, is reasonable, since inner shell ionization encrpies
arc at least several times larger than that of the 6p valence electron.
It also has the obvious virtue of simplicity, since within such an
approximation most properties of interest to us can be calculated from
the valence electron wave-function, which is obtained by solving the
Dirac equation numerically in a spherically symmetric potential, for

all states ol interest. We have chosen the potential:



vir) = - %

r

Without the exponential shielding factor e” T, v(r) is the "Tietz"
potential,5 which yields a good approximate solution :o the Thomas-
Formi equation. The factor e T is inscrted to accowt tor the exponen-
tial decrease of electron density for large r. DParameters n and y are
chosen so that che calculated and observed EaZP,E and 721‘,2 energies agree.

We describe calculations of energy levels, allowed El oscillator
strengths, and P, S,1 hyperfine structure splittings, all in good
agreement with observations (see Section 2). As is well known, the 62P3/2
hfs splitting is strongly affected by interconfiguration interaction,
and a correction for this must be applied in order to obtain reasonable
agreement with experiment (see Appendix A). Our calculation of 77
(Section 3) includes the one-electron relativistic contribution and
corrections due to interconfiguration, hyperfine, and Breit interactions;
the result is in agreement with the experimental value (Eq. 3). Our
calculation of the Stark transition amplitudes &S yields two second-
order matrix elements a,B for linearly polarized excitation light
parallel and perpendicular, respectively, to the applied static field
E. The ratio B/c is in agreement with the experimental results of Chu,
Commins, and Cont13 (see Section 5).

The satisfactory agreement between experiment and the calculations
described in the previous paragraph provide confidence that our esti-

mate of the parity violating amplitude &PV should be reliable enough



so that future experimental determinations of circular dichroism may
yield useful tests of gauge models. For purposes of the present

discussion we present the analysis in terms of the W-S model,2 which
describes low-energy strangcness conserving neutral weak interactions

in terms of an effective Hamiltonian density:

G A
x(x) = \/_T-J’\(X) +J7 (1) (%)

where G is the Fermi coupling constant of weak interactions;
G =3x 1071 in units (n = m, = c = 1) used throughout. The
current oA (x) has both hadronic and leptonic parts, the furmer being

expressible as:

Jgad—v”w\ 251n6J>‘m (6)

where v 0 is the I component of the strangeness-conserving hadronic

0 is the neutral AS=0 hadronic axial current, .JA’E"

vector current, A}‘
is the EM current, and ew is the so-called 'Weinberg" angle, which is
given by sinzew 20.3. That portion of the neutral leptonic current

involving e~ is:

gleptie - .1 {(1 - 4sin®0) ¥, vy ¥e + ¥y ¥y Vs we] Q)
where Y, is the electron field ope¢rator.
The first and second terms on RHS are respectively vector and axial-
vector currents. We are interested in those portions of H(x) which
are pseudoscalar, not scalar; thus we consider the product of the axial
portion of Jlept e and the vector portion of J:;a a (The other pseudo-
scalar term corresponding to the product of the vector part of J.'iept,e and

the axial part of Jhad gives a much smaller contribution since it is



proportional to total nuclear spin, and for a heavy nucleus, most of
the nucleon spins cancel in pairs.) lgnoring this latter portion,
we find:

A ,F.M)

r —
3P x) = - 762_- weYAYch . (V}"0 - Zsinzew J (8)

Taking matrix clements of ad (x) for the static limit of the nucleus,

we obtain the matrix element of the effective Hamiltonian:

’ GQW " -+
<> = o R v ®| ®

where

Q = (1-4sin’e) z-N (10)

and ¥ (?c), ¥y (;) are Dirac wave-functions corresponding to states of
opposite parity, and "x=0" indicates the product is averaged over the
nuclear volume. In fact, only P!! and S‘: states yield non-negligible
matrix elements. Equation (9) is derived from the W-S model. However,
other gauge models with parity violation would lead to the same expression
with only Qg of Eq. (10} beirg model dependent. In most cases ile ~Z.

In Section 4 we use Eq. (9) to calculate &,. Finally, Section 6 contains
an estimate of parity violating effects for transitions in T& other

Z

than 62P, ~72p, .
% e}

2. THALLIUM WAVE FUNCTIONS IN THE ONE ELECTRON

CENTRAL FIELD APPROXIMATION

2.1 Construction of Wave Tunctions
The Dirac equation is
(G-p+B-eVly = (1-EDv an

where EI is the valence electron ionization enmergy [(1 - EI) is the total



- . -+
clectron energy including rest mass), and o and B are tne usual Dirac
miatrices,  We write

f(r) X:
T
(12)

ig(r) u
T K

As usual, « = *(j+4} for even(odd) parity states, the x‘:K are two-

component angular momentum-spin functions” given by:

C(!E:Qﬂ.;; '.i,U'lg,u) Yl’z"z[e,(’))

~ (1 ) 1 U+ a%
L(’!,R;J;'i,u""hu) YQ (6,¢)

Xy (0,6) =

the C's are Clebsch - Gordan coefficients, u = mes L= Je+tf -,

and the Y's are spherical harmonics. Equation (12) reduces to the

two coupled radial cquations:

_Ell_tr‘_ = ._:_f + [2-B/-V(D)lg

(14)

{

£ = Lo RV

Following the procedure used by Schwart?’ to calculate hyperfine
structure splittings in T2 and other heavy atoms, we choose for V(r)
the modified Tietz potential of Eq. (4). Parameters n and y are chosen
so that calculated and observed E\ZP!i and 72P!2 energies agree.

The fitting procedure is as follows:



(1) For very small r (r < 1y =0.02 2==0.02), i.c. for v
[

within the nuclear radius Tys One of the tollowing three potentials is

chosen:
-Zc2
a) Vir) = =+ {Point nucleus)
-Ze2
b) V(r) —?5 {Constant potential)
2

<) V(r) = ze” (E3 - ) (Constant nuclear charge density)
2ro rg

The initial wave-function values for this region are generated using a

powey series expansion to solve Eq. (14).

(2) Forr> g Egs. (14) for f(r), g(r) are integrated numerically step-

wise using a fourth order Runge-Kutta method. & Approximately 5000

intervals of length increasing from 0.001X to 2.0X are used.

(3) The eigenvalue condition is that #ﬂ: f(r) =0. ‘The cnergy

“I in Egs. (14) is varied to insure that this condition

is satisfied.

The energy spectrum does not depend strongly on the choice of
potential in step (1). Of all the quantities computed below, only the
weak electron-nucleus interaction depends significantly on this choice,
and for that quantity the dependence is only ~ 10%. The number of
intervals can be reduced substantially without significant loss of
precision except for calculation of the forbidden Ml transition (sec
Sec. 3); however this reduction would provide no economic advantage on

tle LBL CDC 7600 computer. The calculation procedure can be reversed by



choosing an asymptotic form for f and g at large r, and integrating

step-wise toward r = 0. This yields the same states as the

procedure actually used, but is less convenient for calculation of aPV'
The values of n and y chosen for most calculations are

n o= 2.5937a6] = 355.43 871
(18)

y = 0.257a7! = 353447}
Numerical values of % and % versus r are given for several states of
Table 1. These values are chosen to yield agreement between calculated
and observed 62P%, 72[’,1 energy levels to within 0.1%. Other low lying S%,

D, P, and P5 energy levels are calculated, and these all agree with
L i

observations to within 2%. Table IT includes a comparison of calculated
and observed energy levels.
2.2 Hyperfine Structure

The one-electron central-field (OECF) wave functions described
above can he used to calculate hyperfine structwie splittings for
comparison'with experimental values. This comparison provides a
reasonably sensitive test of the accuracy of calculations of &py since
both the latter and the hfs depend on values of the wave-functions near

the origin. The perturbation Hamiltonian for hfs is

Fhes = easA = em s —73— = e, * 73 (16)

where En = gnunT is the nuclear magnetic moment operator, U is the
nuclear Bohr magneton, and I = % is the spin for both stable thallium

isotopes, 203T2 and ZUSTE. Also gn(zosz) = 3.223, gn(zost) = 3.255;g
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in our calculations these are averaged to I 3.24. It can then be

shown that the hfs energy splittings are given in first-order by6:

M= egu (J+y) - 4—%‘5—1 ‘R an
-
where ©
R -f—fizi- dr (18)
by
o ,

Table IT includes a list of hfs splittings calculated for the various
energy levels, together with experimental values where these are available.
The discrepancies are not due to major defects in the wave functions, but
rather to interconfiguration interaction, which is known to have an
especially large effect on the 62P3/2 state. This is demonstrated in
Appendix A which contains an estimate of interconfiguration interaction
for 6p electron states. Although the effect on the 62P3 /2 hfs splitting
is large it can be shown that interconfiguration interaction corrections

to &PV are negligible.

2.3 Fine Structure
Another test of the wave-function for small r is the fine structure
splitting AEFS = E{j =2+%) - E(j =2-%) for £#0. Non-relativistically,

1
AELe = (L+%) <n2]; %\—r’-]nb

In a relativistic calculation such as ours, the fine structure is part
of the unperturbed Hamiltonian, and the calculated fine structure is
simply the difference between calculated (j = L+%) and (j = 2-1)
energy levels. Comparison of these differences with observed encrgy

differences from Table 11 for P states yields discrepancies £ 15%.
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An altemative strategy of choosing V(r) by requiring AEp, to agree for
6P states introduces 10% errors in the excited state cnergies and unaccept -

able (~2x) errors in electric dipole matrix elements.

2.4 Allowed Electric Dipole Transitions
We also calculate electric dipole radial integrals and transition
strengths using the OECF wave-functions. In the relativistic notation
of Berestetskii, Lifschitz, and Pitaevskii,m the transition matrix

element is
N T N
Vfi = e/d T g (r) Au (r) (19)
where j‘éi r) = ﬁf W ¥; is written in terms of the initial and final
Dirac wave-functions wi, Wf, y" are the standard 4x4 matrices, and

Au [}:) is the 4-vector potential. In the long-wavelength approximation

for an electric multipole field of order J,M we have:
A () = (Ao (r), 0, 0, 0)

-+

+ dS'E J+l 4’ + k . ik-7
A, (1) = _[(2—“)'3‘ = 37 UK - @) (&) e

I+ >
N RN T W O ST M (X
= (-1) i - -— (20)
’ I e ()

For El1 radiation, this becomes:

- M, I 32 T
fo 0= )M e BT (D) (1)
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Combining Igs. (19) and (21) we obtain:

1M

vitt = 1 i w2 2 T i r WOE) @ (22)

The spontaneous emission rate A is given by:

f 211V

fi

where Ei is szi summed over photon states and final clection states
6] £ mf), and averaged over initial electron states (ji' mi). For
OECF wave-functions the angular integration is easily separated and we

find the following:

Transition A-coefficient

5, * p!i, Difp > Pli 4/9 e? o <r>fTi
S, * Py 8/9 ¢* w3 <r>§i
Dyfo > Papy 4/45 et W’ <r>f_i
Dss2 * P3sp r/15 e? w3 <>l

where w 1S the observed energy difference between initial and final
states, and T fr(f + gfgi)dr. The signs of these radial
integrals are fJ.xed by the convention that f(r) > 0 as r + 0 for

every state. 1In Table 111, the radial integrals <C>es and calculated
A-coefficients for nD -+ 6P and nS + 6P transitions are listed,

together with observed A coefficients for the same tramnsitions as
determined by Gallagher and Lurio.11 The agreement between theory

and experiment is generally good, the discrepancy in the transition rates

typically heing < 20%. This corresponds to a discrepancy in the
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adial integrals of < 10%, and reveals that our wave functions are
reasonably accurate in the range r » 2A,
The oscillator strengths Ffi are defined by

2J.+ 1 A,
N { if .
P2l et 2%
fi 2, + 1 202 W2

where Ji' Jf arc the initial and final total electronic angular

momenta. These quantities have previously been calculated

By Anderson et 311.2 by a method similar to ours (one-electron Dirac

wi.ce- function and central potential). Table IIl includes a comparison
of their calculated oscillator strengths with ours for nD + 6P and

ns + 6P transitions. Table IV gives the same comparison for 7P -+ nS
and 7P + nD transitions, the radial integrals for which are neceded in
cvaluation of Spy and &S (see Sections 4 and 5). Our calculated cicillator
strengths and those of Anderson et al.  are nearly identical, which
suggests that  the discrepancies (¢ 20%) between calculated and observed
values are due to a failure of the OECF approximation, rather th-»
mercly to an inadequatc central potential, Thus to obtain more accurate

results it may be necessary to go beyond the simple OECF model.

3. MAGNETIC DIPOLE TRANSITION RATES
3.1 The Relativistic Contribution
The relativistic contribution to#7 arises from the transition

matrix element: 10

3 P +
Ve, =ie -/ide r w;(r) ay;(n)-

Ty
T2Y Ym|g, (k) (24)
7 1

2
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where gl(kr) = 1/2%? JS/Z (kv) 1is a spherical Bessel function. Using

-r
Ig. (12) for ¢;, 'D[ which are both f‘!’ scates, employing a =(0 ”)aml
G0

- F/r)x‘; = -x‘fl. and utilizing the anti-commutation of 3.t/

- R
and 0 - \ﬁYlm, we obtain

Vg = - ie v fdr g () (g + Figp) -

H * U 25
f =+ i
frdﬂ x_1 o-VYlm X-l
We rewrite this as
= (0" VasE WL e (26)
where Em is the spherical unit vector:
>
€= V (Van/3r Yim) (27)
and
A (kr)
ﬁfl- E.'ﬂ = -efdr gl wr (ffgl + gffl) .
(28)

Hex Hy
fdQ xf 3-3\/41r/3rY x ¥
-1 Im *-1
for P!i > 13‘,1 transitions. The expression for ﬁﬁ . Em in the case of
- S,} transitions is the same except for a change in sign.
To find the transition rate
; oy 12 2 4 3> ~ 12
A= 2% |vfi| = g (uﬁ < & | (29)
we sum over final and average over initial states to obtain:

. quie? | f Eljk—r-) (Feg; * ggf;)dr I 2 _ (30)
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2
S

Ml transition in hydrogen. The result is also valid for allowed % - %

This formula was previously obtained by Johnson!3 for the 2 - 12&
2

transitions. In this case ﬁﬁ of Eq. (28) approaches the familiar

ey = ./Wf [%i S %] v & £
in the non-relativistic limit. This expression vanishes if the radial
parts of v and wf are orthogonal.

We use our OECF radial wave-functions for 62Pl1, 7ZP!s states to

compute the result:

gl(kr) -5
n = .ef (figf + giff)dr = -1.757x% 10 g (32)

REL w
The extremely small size of this matrix element implies that relatively
large corrections might occur due to interconfiguration mixing, hyper-

fine mixing, and the Breit interaction.

3.2 Interconfiguration Interaction Correction
Electrostatic interaction of the outer electron with excited core
states alone (as in Appendix A) does not directly effect the M! tran-
sition rate, since it mixes only those states having the same total

).14 However, in second order, Spin-orbit

Land s (P, in T2
coupling allows an admixture of different L, S atomic ¢ * (e.g.
4P,4 in T) and this admixture can give rise to a finite . umplitude
even in the non-relativistic limit.

A consistent fourth order treatment is necessary; the calculation
which follows is similar to that done by Phillips for corrections to

gJ(Cs).14 Since the ground configuration of TR is (152.....5d106526p),
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we only consider the effects of 6s-clectron excitation {the correction

duc to 5d excitation tums out to be smaller)., The unperturbed
states are
- 2 2.1 2
e T @(6°P,) = 6s7(°S,) op “P
0 L 0 s (33)
- 2 2.1 2
by 2 (7 Ph) = 68 ( SO) 7p Plz

The first-nrder perturbation is the electrostatic interaction and the

perturbing states considered are:

3 2
by = 6575 ( $;) 6p P%
(34)
3 2
®, = 6s7s( S ™ mi
Thus the perturbed states arc
be = U + o b, + 0o
6 6 676 777 (35)

Yy = by + Bebe + B0
vhere Qs Oy bg» By are calculated by first order perturbation theory,
and antisymmetrization of the total wave function is taken into account.
For example:
- . (6s, 6p; 7s, 6p)
% = V32 G g

where Gl(és, 6p; 7s, 6p) is the exchange electrostatic integral,

AE = E(¢6) - E(w6), and E(¢6) is a fictitious energy calculated for a
6s7s6p configuration in the potential of Eq. (4). Numerical compu-
tation gives:

ag = -0.010, o, = +0.023, B¢ = 0.094, B, = 0.006 . (36)



4 - 30 2 . .

Fhe 087s¢ S])np P, states are now mixed with states
or (*p) = ns7s(%5,) n'p % (37)
n 2 1 "z

by spin-orbit intcraction. We employ the perturbation Hamiltonian

» > ' d
t = . . = o 5 :
=L a 1y 7(r vr) S (38)
i i
and rewrite our wave functions as*
u:'=l/+u[¢+a¢'(P)+ﬂ'(4P)]
o Y6~ % AN

l (39)
+ 36[¢7 + b() 6( P,Z) + h7 ;( P,i)]

and
by =¥y * gl +C¢(P)+C¢7(P)]

(40)
+ﬁ7[¢7+d¢'(P)+d¢“(P)]

The coefficients 36""d7 are calculated from the observed P-state
fine structure splitting. For example,
2 2
I [E(6 p3/2) - E(6 P!i)]

a = - (41)
6 g AE

where AL = E(wﬁ) - E(¢é). We find: a6=+0.033, a, =+0.0081, h6=+0.()1l,

h, = +0,0029, cb=+0.06], C7=+0.012, d6=+0.022, d7=0.0043. The

7
interconfiguration interaction correction to 72 is now computed from

Igs. (39), (40) by means of the formula
1 *
PRy < <‘P6|Ml|\v7 > - Mgy, (42)

In the evaluation of all the perturbing terms we use the non-relativistic

form (31). We find:
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My = Hogeg + 8,dg) (agag + Bebhe) + (a0, + Body) (0ga, + Bcbo)] -

utg’r) - gCpO1+ § = Lex 100 (a5
Inclusion of higher s-state excitations (6s ns np) does not significantly
change Eq. (43). However, since the electrostatic exchange integrals

are fairly sensitive to small changes in wave-{imctions, the 4th order

result (43) might be in error by as much as a factor of 2.

3.3 Breit Interaction Corrections
The OECF approximation used up to now does not include a complete
description of electron-electron interactions, even if we assume a
spherically symmetric core. To order vz/cz, the electron-electron

interaction contributes a term to the Hamiltonian:

(44)

-+ - + > &+ -
o £ 22 s (R, GiG)
i<k Tin 2 3 }

ick \ ik Tik

The first term on RHS of (44) is in fact partially included in the
central potential (Eq. 4) but the second term is not, and must be
regarded as an additional perturbation. This term may be reduced to

the following expression (Breit interaction)ls:
(45)

2
€ 1 = . B ___.1 > . (.. B, . D
T Z [r—‘ Py By v (i w GPa) Pk)]
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In order to calculate the contribution of this interaction to the Ml
transition we replace i; by B + cA (electron charge = -e), where

A= Bxr/2.

‘Thus we obtain:

3 3 Y
) 1 1 + e i Pk
Al = (¥, xA) .5 - . S
B, eff Vi xsz ir i k 2 o Tk
-+ > >
T Ri TipeD
ik 31k k (46

Tik
This cxpression has been derived previously by Abragam and Van Vleck,m

and Schwartz. 17

We now consider the special case of one electron out-
side a spherically symmetric electron distribution; it has been shown
that only electrons outside of closed shells give non-vanishing
contributions. 16

It can then be shown that the matrix ¢icment of the first term on

RIS of (46), called the “Lamb" correction.18

. IK(rZ) o, )dr,

—ed X ->
P, = 3 fu oyt yyx vy (1)) dry (an

IT)-%,
-+ x> >
where p(ry) = Z by (100 (ry)
k#1
For present purposes we choose klil, \Ui to be 6P, 7P,§ wave functions,
2
respectively; for p('fz) we insert the spherically symmetric density

obtained from our central potential, and we set Bl z. Then the amplitude

for the my = s > my = Y4 transition is reduced to a sum of radial intcgrals:
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2
_e f LI c
‘/7211—1;51_ 4—5--<V>+~§'<W>] (48)
whcrc
l(x ) 4 , 5
<> = f rz p(rz)drz] I (rl) rl‘ dr1 (49)
0
and - -
e =f lt(rl)[f a(r,)r, drz]l‘-'(rl)rlzdrl (50)
0 N

and F, F' are the non-relativistic 6p, 7p radial wave-functions,
respectively. The resulting contribution to ”n ic evaluated numerically
to be (The<V>and<W> terms enter with opposite signs and largely cancel.)
-7
»ZL = -4x1077 (51)

The second term on RHS of (46), called the "orbit-orbit" correcticln,16

gives the following matrix element:

-3 * > 1 ! 4 ® *
Pow = 3‘_[“‘1 (ry) [“Sf plry) T drz"/ elrylr, dry '“1]
1 o T
1

By (7)) d3r1 (52)

x

For Bl £, my =k m"l = L, this becomes:

My = 'eSB [<W> + <V>) (53)
0 S
which yields the following numerical contribution to 77

. -5
Mo = ~1.20 x 1077 u (54)

-



3.4 Total Theoretical Ml Rate;
Corrections to gJ(Tﬂ,, 62P!2)
We collect the four contributions to the Ml amplitude (Eqs. (32),

(43), (51), and (54)}):

. : -5 .
= gy * Mgy H g g = -3.2x107 (55)

Our analysis of hyperfine structure indicates that there is an uncertainty
of ~20% in the calculation of relativistic effects. In addition, 772“

has an independent uncertainty of ~0.1527%. The combined theoretical
5
Hpe
The Zeeman cnergy shift in a constant magnetic field B, is related

uncertainty of 27 (Eq. 55) is estimated to be ~1.0x 10"
to g; by:

aE = Bp 8y, BZ (56)
In zeroth order

JEA) 4 LOAL) - S(S*D) | J(I+1) + S(S*1) - L(i#1)
23(J+1) 5 27(J+1)

By

where 8= 2.002319114. The corrections to g, are obtained in the same
manner as those described in Sections 3.1 - 3.3, merely by computing

t)ZP,,-t')ZP,f diagonal matrix elements. The results of this calculation
1 1

19 The agreement

arc displayed in Table 5 and compared with experiment.
is very good. We expect an error of < 15% for &g from the same
considerations mentioned above, modified slightly for ()ZP!i - 6ZP,1_
diagonal elements. The very close agreement (~3%) is, we believe,

fortuitous.
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3.5 Hyperfine Mixing
Next, we calculate the additional contributions to the Ml amplitude
arising from admixture to 6P, 7P wave-functions of 7P, 6P components,
respectively, due to hyperfine interaction. According to first onder

perturbation theory,

STEPLE Mol 62D, F>
3 3

hge
Tep - B7p

[62P,1,F> = [67P, P> + [72Pli,F> (s7)

2 2
—_— <6“P, ,F'| ..ol 7°P,,F'>
(o ps e 7%, ps + | st T T
k! % E, - E
P op

6P, "> (58)

where the |...> indicates a perturbed state, and HHI-‘S’ given by Eq. (16},
is diagonal in F, the total atomic angular momentum. This contributes

to the Ml transition matrix element as follows:

2 L

<72P,’,F' M1 6 P, FPoypg = (<7P,F IHpg| 6P,F>-<6P,F' IHm:Slﬂ’J' »)

—L < Fr ML P, (59)
E, -E e -8

6p ~7p

where on the RHS we use the non-relativistic M1 operator, whose matrix
clcments are ndependent of principal quantum number n. It is interesting
to note that the LHS of Eq. (59) vanishes for F = F'4 thus this correction,
unlike the previous ones, only affects F=0~+ #' =1land F=1+F" =0

transitions. The hyperfine matrix elements on the RHS may be computed

by the metiicds of Section 2.3 with the following results:
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For F=0, ¥'=1,

F'=1,F=0

-6
HES +2.6 x 10 u

Ml

B

For F=1, F'=0,

LY = -
;FSO’F 1 = -2.6 x 10 6 UB . \/_1_

1
Mi 3

3.6 Other Ml Transitions
The methods outlined in Sections 3.1- 3.3, and 3.5 may be used to
calculate other T Ml transitions, forbidden or allowed. These include

2

the 6 P,1 - 62P% transition (allowed) which has been suggested as an

interesting candidate for a neutral current experiment, and the t‘)ZP,1 - 72P,1,
()ZP:‘2 - 72P,1 transitions which are not so strongly forbidden as nP,E - n‘P!!
and nP,1 -n'P_,5 cases, since for %+% or %+%, the radial wave functions
are not fully orthogonal. In what follows we ignore the small higher-
order effects considered in Sections 3,2, 3.3, and 3.5, and consider

only the one-electron amplitude of kq. (28). For r\P;1 - nP,1 transitions

we find

My = 20 Tl = e | f glffr) (B8, + 85|
and similarly for %+% transitions. The results are tabulated in
Table 6. In the allowed cases, the Ml matrix elements are within 2% of
the non-relativistic value -v2 /3, while the forbidden (62P1§- 72P;§,
tEvZP,1 - 72P,i) matrix elements are about 10% of the allowed values,

which corresponds to the expected magnitude of spin-orbit coupling

effects.
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These transitions also have non-zero electric quadrupole (E2)

amplitudes, We obtain:
o0 2
AEZ & '7:‘[5' Ozws{j(-) ff 1‘2 Ei dr} (63)

The portion of the E2 amplitude which is proportional to
}'gf rzgi dr is quite negligible. Table 6 includes a tabulation of
the B2 radial integrals and resulting A coefficients. The coefficient
AEZ [6213,s - 6ZP,i) has also been calculated by Garstangzn and his
result (0.11 sec'l) and ours arc in agreement.
4. PARITY VIOLATING El AMPLITUDES

a.1 6%p, » 1%
]

P_,i Transition
As previously discussed (Sec. 1) parity-violation in the electron-
nucleon weak neutral intevaction manifests itself in the matrix element:
Gy x =+ +
<) Hpylb,> = —= P () ve¥y (X) (64)
1Ppvl¥2” = 7 sv2 % 1 o

We write the perturbed 6P, 7P states as:

<nS,, |Hg, | 6P, >
[8P. > = |oP.> +Z__“;__£V___if_ I8, > (63)
E ! E-E G
n 6P “nS
<nS, | Hp, |7P.>
75> = 7> +Z___’1____"l’___‘1_ [ns,> (66)
n Egp - Byg
From (64) we obtain:
S, JHy| n'P> = = S Y 1 () gy (1) - £, (g ()]s
S iyl B2 = w7 o 7 [Fast B nep(™) &g non

(67)



This expression is averaged over the nucleus assuming a constant

proton- and neutron- density. As an altemative, onc may assume a point-
like nucleus, and evaluate <nS|HW|n'?> at the nuclear radius; this
increases the mmerical value by 6%. The El matrix element is obtained
by evaluating:

“7P, |E1{nS> <nS|H,| 6P, >
<7Ti'i |1 GT"!; = E : LA |

ns Eop = Fos

<7P, IHPV|nS> <nS|E1|6P;§>

+ (()8)
ns Exp - Eis
For the El matrix ¢lements on RHS of Eq. (68) we have
~ mg , -+
<nSIE1|Plz> = ¢ <n§ E'Tlp;; = offsrfp dr -x_? e-erpr
_ef. - - I
= §[tb p dr , [ms = mp = -4) (69)

Lxpression (68) is evaluatel by two methods:

1. A sum is taken over the lowest five states l6szns>, n>o;
and the effect of the autoionizing |6s 6p 7p> state is also taken into
account by including in the sum a term corresponding to the unphysical

state |6s2 6s>. (See Appendix B for this argument.)

2. The operators Z M are replaced by Dirac Green's
n En'p EnS

functions, described in detail in Appendix C. This calculation includes
the contribution of all intermediate S-states including continuwm
and autoionizing states and is thus more reliable and complete than

method 1.
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The results are summarized in Table 7. The Green's function
method yields the numerical value for &y, = < 7—1:'!i |E1| 'é—Pl; in Eq. (68):
&y, =1.95i - 1019 q [u| (70
"1 Q lHg )

which corresponds to an A coefficient:

2 -1

A= 1.20 - 1071 Q€ sec (1)
In the Weinberg model,

Q =2 (1~ 4sin%,) - N& -140 (72)
for Tg, using sinZGw = 0.3 as suggested by the experiment of Reines
et al.22 Thus we obtain from (70) and (72):

&, =-2.70 i - 10°% |ug] (73)

PV . B
For the circular dichroism § it can be shown that one obtains:

, 2Im (87 . 2Im(Epy)

= LY (74)
I7n1° + |&] 7n

Inserting (73) and the experimental value of 27 from Eq. (3) into (74) we
obtain:

§=-2.6 +107° 75

This result is to be compared with the calculation of Sushkov,

Flambaum, and Khriplovich ’ZZ

who obtain, alsousing mm fromEq. (3),
§=-2.5 - 1073 (76)

To calculate GPV’ they use non-relativistic hydrogenic wave-functions with an

empirically determined correction factor. Their radial El integrals are ex-

tracted from experimental evidence where available, or from numerical

calculations, and a finite sum over the five nearest levels is performed.

It can be seen from Table VII that our complete Green's function evalu-

ation differs from our finite sum by about 20%. The close agreement

of Egs. (75) and (76) is therefore somewhat fortuitous.



4.2 Other Parity-Violating Transitions
For P,q - P3/2 transitions we may ignore the effect of Hp, on the
P3/2 state since J = 3/2 wave functions have extremely small amplitudes

at the nucleus. Thus,

— Z <Py |E1| nS><nS JHpy | P>

<F.,, |El] P> = (77)
3/2 Y
ns Ep - En'i
I
These matrix elements were evaluated in the samc way as described above
for &PV' ‘the results are summarized in Table 8, where
'Q' a@
<P,,, |E1| nS> = &2 [f r fo dr (77a)
3/2 Sh P %

5. STARK EFFECT
2 "2 ses
5.1 6 Pli 7 P,1 Transitions
We now calculate the electric-field-induced El1 transitions which
can occur between 62P‘:’ 721’;i levels through Stark-mixing with 25,1,
ZDS/Z states. The coordinate system is shown in Fig. 2. Action of the

perturbation H' = ef - T eE y results in the perturbed states:

Z fns><nS| eE.y INP;;

TNP;> = |NP%> +
" Be " s

. InDp><iD3/p feEqy| NP> (78)
372 B, - Fng ),
Thus an electric dipole transition stimulated by laser photons with
linear polarization
E=cos6 ¥ sind £ (79)

has amplitude:



= 2p Ir1] 62
& = <7°P, |EL| 6 P oSt ark

2 > . 2
Z<7 b, [eg-T|n|><n|ek y|6 P>

n Esp,’ - B
n = b,:, 1)3/2 states

2 g2
<7 P.q,‘ ef yln><n]et 1|6 P>

n r“7P,§ - F’n

(80)

The result of a calculation of this amplitude may be represented by a

2x2 matrix whose rows and columns are labelled by mI(6ZP!z) and

my (721’%) respectively:

&8s = eZE .
° 2
=
| % e mJ(6 P!i)

mJ(72P!i) = % |ocos®@ -iBsin®

n

- |-iBsin®@ acos®

Here
1 E 1 1
=3 R7]’,nSR6P,nS (57_[5"8 * E6'En9)
2 }: R R 1 1
+ 7P,nD “6p,nD | g +
¥ nby,, ' ’ (E7 ER) Es‘EnD)
and
1§ R R 1 1
s=—2‘ 7P,nS T6P,nS [ - = )
9~ U \B s Ers

O] -

E R7p,np Rep,nD (ﬁ— - & lEnD)

n03/2 7 “nD 6

(81}

(82)

(83)



. il . el , _ 2 2, .
where !:() = (6 P,_'), 127 = L7 P,z), and R7I’,nS = <7 P,Jr]n J';’ cte.
The quantities o and B have been evaluated by summing over the ncarest
S and D states, and also by use of the Green's function, Appendix C.
The results arc summarized in Table 9.

3

Chu, Commins and Couti have measurcd f/a, Their result:

Pfal oy 0484 (84)

is in good agrcement with the Green's function value of Table 9. Thesc
theoretical values of a and g were employed by them to determine the

experimental value of 222 as described below.

5.2 Experimental Determination of Ml Amplitude

A finite 72!’,2 final state polarization can arise along the ? axis
of Fig. 5.1 through interference between % and/or &py and &.  Inter-
ference bhetween 772 and &S may then be utilized to measure 7% ‘lere the
cffects of &PV’ which are in any case very small, are neglected. In
an extension of this experiment now underway, interference between
&y and &S is utilized to determine 8py itself,

In order to facilitate comparison with observations in which some

2P,4 - 72P;§ transition are resolved, we

of the hfs components of the 6
replace the matrix of Eq. (81) by one whose rows and columns are labelled
by F', Mg (for 72P_,2) and F, m: (for 62P,/z), respectively. Including
&y, Mand &g, the total dipole amplitude D ir given in Table 10.

In the experimental determination of 77 the 62l"!2 hfs splitting,

but not that of 72P,1, is resolved. Thus the 72P,/ polarization is given
2

by the formula:
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g, | 2
m%?n'F m’:'lD",m} ,
]2 (85)

IDF m} i

P(F) =
U

Ncglccting]anz compared to |lI.S|2 (which is justifiable for the rather

large L fields empleyed) Eq. (84) becomes the {ollowing for the four

indicated cases of interest:

a) F=1,F =1 el & (o=0) peiZ

b) F=0;TF =0 gt (e=0) P=0

) F=1;F =1,0 e1 B (e=90°) p= 27" (7 P, hfs unresolved)
d) F=0; F =1 g1 T (e=90°) P=-2?

We now apply the hfs mixing correction of Eq. (60) to case d) (it also
applies to case c but this was not obscrved in detail}. The resulting

ratio Pgorr /P

, 1S then in good agreement with experiment. From their
measurements of I’a and/or Pd Chu et 313 obtain the cxperimental value

of 7 given in Eq. (3).

5.3 Interference of S'PV and &¢
When the incident light is circularly polarized, it becomes
possible to measure the interference between &PV and &;, again by
detecting the polarization of the 72?*& state (by means of circular
polarization of its decay fluorescence)}. The formulae analogous to
Eq. (85) are readily obtained from Table 10. We quote only the result

for the F= 0 + F' = 1 transition:



we-0? - x50’

4(8+£)% + u5(B-£)° + £

-2f
e (86)

where £ =772- ng n = *1 for RHC (LHC) laser light, and the

1%
approximation P=-2f/8 is valid for large electric fields (E>>1 V/am).

6. PARITY VIOLATION IN ZP,’ - ZP% TRANSITIONS
s

For the transitions 62P,) - 62P,2, 62P,j - 72P,’, and 62P1’ - 72Pli, we
i E 1

include E2 as well as M1 contributions and write:
—_— . .
<T> = <Py [l xxCreR T rie(ER) (k) [Py (87)
"2

where 1 = eh/me (L+8), and € = y cosd + Z sing.
The resulting transition matrix is given in Table 11. The polarization
is calculated ss in Eq. (86) with the result

277« Im (&
b - TTT_Jiﬂ&— (88)

2
71"+ 3 '<&z>[2
The numerical results are summarized in Table 12.
The transition 62P;2 - E»ZP';i has been discussed as a candidate for

optical rotation experiments to detect parity violation. We compare

our value of the 62P,1- 62P;2 polarization 4.17.10-7, with that obtained
from the calculation of Henley and Wilet523:
P = 4.80.1077, for sinzew = 0.3 (89)

The discrepancy of 15% is largely due to the <6,> amplitude which Henley
and Wilets ignored. Once this correction is made, the two calculations

agree within 2%.



lHenley and Wilets used a Green's function technique with hybrid Dirac-
Schroedinger wave functions; that is, relativistic wave functions arc
cialculated for very small r and matched to non-rclativistic functions
at larger r.  linpirical energies rather than calculated cnerpies
{which in their casc differ by ~20%) are inserted, although it is
cluimed that this does not change &oy substantially. Since Henley

and Wilets do not report calculations of T& parameters other than

&PV (62P3-62P3/2) we canmnot make an accurate comparison of their cal-
culation with ours or with experiments.

We note in passing that in calculationszs’24

of the optical
rotation of the currently investigated 35, ,,-2n and s -2n
i © Y & 3/2° 3/2 %327 Vs/2
transitions in bismuth, the effect of <€,> is ignored. In the cal-
culutions of Garstangzofor thesc transitions, the &, amplitude in
4 2
53/2—'03/2 is in fact negligible, but the large 62 amplitude cal-
culated for 483/2'2D5/7 would reduce the optical rotation by ~30%.
A more precise calculation may alter this result substantially.
iriame (2 2 2 22, . i
The T2 transitions 6 P3/2 7 P1/2' 6 pl/Z 7 Pyyp MY also be considerec

in coptical rotation experiments, although the experimental diffi-

culties are formidable.
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FIGURE CAPTIONS

Low-lying energy levels of the T& atom (not to scale). 'The
hyperfine structure splittings of 62P5 ,7ZP5 states are
shown. Absorption of the 62P3-72P% M1 photon (292.7 nm) is
detected by observing fluorescence at 535 nm. accompanying
decay of the 72P!2 state.

Coordinate system and orientation of electric field E, laser

beam, and detectors as described in this paper and utilized

in the experiment of Chu, Commins and Conti.
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APPENDIX A
Interconfiguration Interaction and Hyperfine Structure
of the 6ZP3/2 State

It is well known that the observed hfs of the (JZP_.,,/2 state in T1
differs markedly from that calculated in the OLCF approximation using
the single de 6::.26[)3/2 configuration, because the actual atomic state
contains admixtures of other configurat:ions,‘25 notably (...6s 7s 6p).
We write the unperturbed wave function (...6526p) as v, and form two
possible P3/2 (or P,i) states from the 65 7s 6p configuration. These are
¥y (6s 7s (351) 6p ZPJ) with the ? s electrons in a spin-one state,
and by (6s 7s (150) 6p ZPJ) with the total s electron spin equal to
zero. The states and notation are similar to those of Koster,Z(’ who

performs a similar calculation for gallium. We write for the total

wave- function:

b= ol * ulwl + uzkbz (A1)
The coefficients 01,Qy are given ir first order perturbation theory by
<o [V]v,>
1 0
Q€ T ——m——— (A2)
1 EO-E1
and
<, V[y>
2 0
o, = —&-_9 (A3)
2 EO-E2
3
where V= 3 £ and the matrix elements of V in AZ, A3 are calculated
i<y "ij

front the electrostatic integral:
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o2
Fy(6s, 65; 65, 7s) =f/w6 (x )vﬁg(xz) wﬁg(xl)u@ (%,) drd1,

wd the similar snd direct cxchange integrals Fo(ﬁs, 6p; 7s, 6p) and
Gy (6, 6p; Op, 7s). We use the 65 wave-function (ionization energy =
2.3376 10'5) calculated from Eq. {4). This is not self-consistent,
since that central potential already includes the 652 charge distribution.
However, this introduces an error estimated at only 10 to 15% in the
ionization energy. The 7s and 6p;y states are calculated in the same
centra) potential, and the energy denominator is approximated by the

2 2

65-7S energy difference. Normalizing with ag +ap+ ay = 1, we find:

OP i ay=0.97, a =+0.0097,

2

oy = +0.23
(A4)
6P§: % ={.97, o = 0.029 oy = 0.22

The large difference “1(93/2) - al(Pk] occurs pecause of a corresponding
difference in the exchange integral Gy (6s, 6p; 6p, 7s} between

6P3/2 and (‘)P‘i states.

The hfs splitting is:

2 4 2
Bgpp = Bg(67P3p) + g oy (Bgg * Bg)
4 .
- — g0, (Bg, - Bq.) - £ a0, V& R6s ATs
3/3 172 76s 7s 36 172
~ 2 22 2 (As)
by = 8y(67F ) + 5oy (B, * A7) + = aym(Be - 4g)
k%
4
* g;% Beshos

where only the dominating s-electron perturbation is included.
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In formiTac (A5) we use the experimental value of 8,5, Eq. (Ad),
and the calculated value beg = 135 Ghz. The numerical results are
simarized in Table Al. They show that the 62P3/2 hfs is strongly
alfected by configuration mixing while the 621’li hfs is not. Further,
similar corrections can be obtained for 6sns6p configurations with
n>7. ‘That of the 6s8s6p and 6:9s6p configurations is also included in
Table Al. We {ind for 058sbp3/2= ay =(.012, a, = 0.09; while for
65956p3/2, oy =0.007, oy =0.05.

Because of the uncertainties and lack of self-consistency inherent
in the present approach, there is no profit in attempting to include

contributions of configurations bsnsﬁpS/, with n»9,



Observed

Table AI,
Hfs splitting
Unperturbed including (6s7s6p)
Hfs splitting: correction; Hfs
State AEO AEl = AEO + §{657s6p) AE, = AE; + 6{6s8s6p) + 6(6s9s6p) splitting
6’p, 21.8 Ghz 22.1 22.1 21.33
3.27 Ghz 1.37 0.81 0.518
A
i

6°P5),
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APPENDIX B
We demonstrate that the effect of the €+6p7p autoionizing state is
taken into account (approximately) by calculating the ampiitude &PV if
a4 term corresponding to the unphysical 0s° 6s state is included. The
term in question is:

<65657p|E-r|656p7p><656p7p|Hﬁv|bsﬁsﬁp>

EOsﬁsép ) E6sﬁp7p

<6565 7p|Hiy, | 656p7p><655p7p| € 1| 63656p>
+

(B1)
E65657p ) E656p7p
Now:
<6657p | & F|636p7p><6s6p7p |H' |65656p> =
- <6S|€'?|6p><7p]Hﬁv|65> =
- <Tp|ii, ] 6s><65 | €T |6p> (B2
and
<65657p{Hfy, | 6s6p7p><656p7p|€ T |63656p> =
- <7p|e-¥|6s><6s |Hyy | 6p> (B3)
Furthermore E6sﬁs7p - E656p7p = -(E6p - Eés) (B4)
and E65656p ' E6s6p7p = -(E7p “Bgy) (B5)
Inserting B2 - BS in Bl we obtain:
<7p|&-T|6s><6s|Hpy [6p>  <7p|Hp,|65><6s |&-F(6p>
= + (B6)
I:6p - Egs By - Eg

which is the desired result.
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APPENDIX C
Construction and Use of the Dirac Green's F nction
The construction of the Dirac Green's fimcticn has been described
hy Mohr,'{7 and Gyulassy,28 with emphasis on the case f a spherically
symmetric central potential. This function is a solt ion of the

differential equation:
3 .
(n(?z) - E) G(FI,?Z, E) = 16”(F,-T)) (c1)
where H is the Dirac Hamiltonian with potential V(,) = V(|T,) and 1
is the 4x4 identity matrix. Separation of radial an angular varisbles

is accomplished by writing

-+ t + -+ t -+
Gl eryrp ) X R @) -ty B G @)

G(¥,,7p,E) -2

it
* +
162y, BN B @D B lryury B (opk Y, R))
(c2)

where the X (3) are the same functions as defined in Eq. (13). Egq. (C2)
is justified by the completeness relation:

S @[ Je,epac )

¥ (e,)x e,)= S {¢,-¢ cosb., - cost

bt "k 27 1 01 2" 2 1
Only Gii_lcontributes to &PV (S%-states) while for 8; (Stark mixing),
the terms Cfi_l (S% states) and 6:22 (DS/Z states) « ntribute. Eq. (C1)

reduces to . 2x2 radial equation:



1 3 Y.
1+V[r2)-h r‘a‘;( )+ ;.E G (rz 10)
18 N )
T, )ty -1V (r,)-E RTENE N

) 1 0 6(r2~rll
01 PR

It can be shown that the solution of C3 is:

1 LR ()

G (r,,ry,B) = a(r,-r.)
< T20T) ¥ 1772 SRy
F, (r,)F¢ (1))

+ e(rz-r])
Gy (5)EL (7))

where JK(E) is the Wronskian:

I® = {elmFm-clwFim}

and F¥, G* are solutions of the equation:

(g (e

1+V(r)-E A tT

1 g
(7 40 5 -14V(r)-E G

G,
<

(F<) is the solution which is regular as r0, whilc(r'>
G

12 -
GK (rz,r] ,E)
G2 (r, 0

(C3)

Felr)6)(r))

G (r5)61(r))
FS(r,)C (1))

c4)
G5 (r,); (1))
=0 (cs)

) is the solution
>

regular as r+o., These solutions are calculated ia1 the same manner as the
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eigensolutions of Eq. (11), that is, by mumerical integration ot the
differential equation starting with the asymptotic soluticn either for
small r (for F, G, and using V(r) in (c) of Section 2.1)or for large r
(for F_, G,, using V(r) + lg—). We note that F, G of (CS)¢« »rrespond to
{/r, g/r of Eq. (13).

The parity violating amplitude oy of Eq. (68) can be written as:

8 {{<W7ZP (rl)lee T G(Tl ’TZ’E6p) Hpvl\lJ P (Tz)>d rzds;l

§.U‘<¢L715P:1(?l)leG(;v?z'E?p)ee';[wu (2% &%)

Because of the short range character oy HP\/ the first term in C6 becomes:

(Ce)

L]

. o,
—e[f7p TZ(TZ F(k-'-l) (TZ'EG))er 'f)(]ml €'er XT;
[
160, (x=-1) (k=-1)
8nvZ .J(Eﬁ)RZ { ®ES T REg ey (®) - (G (R EQ) ) g ()
anuc
c7)

In practice this expression is averaged aver the region R ¢ Truc where
’

e is the nuclear radius. The second term in C6 becomes:

+
-1) Loy g ¥ M2
e f £ r) (1L ¢ (ry,Ep)) drp - X7 &€

'% [K=-1) (K"l) }
ot a2 1 s Eep® - BT EDG ®
(¢8)
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A similar calculation was performed for &S (Sec. 5). In this case oLy
"large'* components (f,F) contribute significantly. For example, the

matrix element o of Eq. (82) is written:

. l[J‘&pr_;—z)rz(rgff“"” (rrBe) (FET 1 (r, By £ (ryddryr,
9 0

J(Eb)
o0 60 - — 1
. [J’ £ 0, F D e g, E Ve, 0)ryf rpdrdr, J
[]
J(E;)
- _é_ . [same as above with k = +2] (C9)

In all of the above expressions,

"

T

S larger of T1,T,

T smaller of T1,T,.

<

The expression for § (Eq. 83) is obtained in the same way.
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Table TI1.
Fitted energy Valence- Observed
Spectroscopic level Spectroscopic electron hyperfine
level (ionization ener hyperfine splitting
designation energy, mec=1) level splitting (GHz) (GHz)
op°P, 1.1939x10"°  1.1953x10™>  21.8 21.3°
6p°Pyy 9.8745x10°%  1.0062x107° 3.27 .528°
7pZP!§ 3.6756x10°8  3.6648x107° 2.7 2.13¢
7P, 1 3.3937x10°°  3.4219x10°8 .494 624
8P, 1.9199x10°®  1.0158x1076 .989 .79¢
8p°P; /2 1.8155x10°%  1.8254x1070 .187 .26°
7s%S,, 5.4164x20°°  5.5280x1070 14.3 12.40
8s%s, 2.5160x10°%  2.5521x107® 4.3
9s%s, 1.4650x10°%  1.4796x1076 1.90
10s%s, 9.594x10”7 9.6260x10" 1.01
<
11s%, 6.772x10"7 6.811x10° 0.59

Table II References.

a) C.E. Moore, Atomic Energy Levels Vol. III, Circular of Nat. B. of

Stand. 467 (1958).

b) A. Gallagher and A, Lurio, Phys. Rev. 136, A87 (1964).

c) G. Gould, Phys. Rev. 101, 1828 (1956).

d) A. Flusberg, 1. Mossberg and S.R. Hartmann, Phys. Lett. S5A, 403
(1976).

¢) A.N. Odintsov, Opt. i Spektr. 9, 75 (142), (1960).
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Table I1I.
Radial
A-coefficient . A-coefficient integral Oscillator Oscillator
(Gallagyer § i,urio) (this work) N3g) strength strength

Transition 107 sec” 107 sec-1 (x) (this work) (A,AGT)
7%, -6%p, 6.25¢0.31 5.78 294.1 .12 1123
szsli-e.ng2 1.78£0.16 1.75 91.5 .0175 .0172
925,!-6.21);s .78¢0.10 0.777 51.8 .00625 .00616
1025,2-62&2 —-- 0.412 35.1 00301 .00295
11285-62P% .31£0.06 0.244 26.0 .00170 .00167
75“6%y2 7.05¢0.32 8.30 422.1 .178 .162
8 b.-62P3/2 1.73£0.18 2.30 103.9 .0180 L0172
9 s%-azps/z 0.80£0.08 1.01 56.3 .00605 .0059
1075, -67Py 0.57£0. 06 .534 37.5 .00285 00286
62D3/2-62P% 12.6 £1.0 16.04 -307.7 .368 .40
721)3/2-6.2?,2 4.4 0.5 6.39 -154.8 .109 121
aznw-e.zp,= 1.89:0.3 3.19 - 99.8 .0434 .053
92D3/2-62P5 .98+0.22 1.82 - 7.9 .0257 .028

2
10%Dy,,-6P, .5840.15 1.14 - 55.2 .0156 017
62D3/2-62P3/2 2.20:0.23 2.88 -419.6 .0538 .082
7205/2-62P3/2 0.76:0.08 1.01 -186.9 L0129 L0136

2D3/2-62P3/2 0.37£0.04 0.498 -117.5 .00549 .0056

2 2
o%0s,,-6%P3,, 0.19:0.02 0.279 - 83.0 .00285 .0029
62D ,,-6%p 12.4 1.5 16.3 -405.6 .489 .46
25278, 372
72D, 5-6%Py 12 4.2 0.5 6.06 -186.9 .116 .12
2.2 2
8%D¢/5-67P3/5 1.7 £0.2 2.96 -116.9 .0489 .051
Ypef. 11
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Table IV.
Radial
integral Oscillator OscillatoI
<r>pi strength strength
Transition x) (this work) (AAGT)
72 72P -1072.6 .315 .440
2sli 7 Pli 991.6 .41 .258
9255-72P5 219.5 .0234 .0219
mzs;i-ﬂpli 114.3 .00784 .00741
1125%- 7%, 75.1 .00277 .00342
7 sli 7 P3/z -1007.8 .476 .440
o P -7 P3/2 1240.2 .297 .294
9 55 -7 P3 ) 202.2 .0176 .0164
10 s12 72p 3/2 100.4 .00550 .00542
6203/2-7 P 1321.4 .369 .340
3/2-721> - 489,2 .202 .248
3/2-72p - 254.2 .0733 .0850
/2-72p - 165.3 .0352 .0399
102D3/2-7 P - 120.0 .0199 .0223
62D3/2-7 Ps/z 1328.0 .0152 .0166
721>3/z-7zp3/2 - 729.8 .0396 .0418
8 03/2-7293/2 - 331.0 .00937 .0116

9 03/2-7 Ps/2 - 204.9 .00495 .00506
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Table V. g- factor anomaly calculation and comparison with experiment.

Measured ezp,‘ g-factor 0.6656924 (18)%
0-order theory 0.6658936
g-factor anomaly -0.0002012 (18)2

calculated anomaly

relativistic -0.000107
configuration interaction <0.000001

Lamb ~0.000006
orbit-orbit -0.000082

Total calculated anomaly -0.000195

3Ref. 19.
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Table VI
. - -1 -
I'ransition 7ix 3/V/2 I\ml(sec ) ﬁfrzfédr, Ap, (sec 1)
[
(x°)

6%p, - 6°p +0.9796  4.083 2.94 - 10° 0.158

: 372
o2, - 7¢p -0.0002  3.31 -1.27 + 10° 55.2

\ 32 . . . .
7%p, - 6%p -0.115  2.18 -3.00 - 10° 72.8

\ 32 . } ; )
7p - 7%y, +0.9822 8.706 2070 2.40 - 10° 3.69 - 107
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Table VII. Calculation of 8PV

Mcthod A:
Contributions to &
<7P, |E1|ns><ns|H.,,,|6P, >  <7P, |Ho,|ns><ns|E1|6P >
Intermediate c HPV L 5 PV 4
s-state E6 - En E7 - En
| 65> -1 0,97 1070 qfugl  «d 0.631 - 1070, luyl
| 75> +i 5.08 -i 1.69
| 85> -i1.77 +i 0,485
| 95> -i 0,232 +i 0,093
|10s > -i 0.084 +i 0.037
. . 1a-10 . -10
Total i2.81 *10 leuBI -i 0.45 - 10 leuBI
=3 . 10710
=1 2.36 107 Qlugl
Method 8: i 2.13 - 1010 Q Jug! -1 0.20 - 10710 0 fug

=i1.93 -1010 Q,lug!
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Table VIII. &PV for n'P% - nl-":,,/2 transitions.

Z e<nPS/2[E1_lns><ns{HW[n'P%>

Mcthod 1:

F‘P%' Eg
Intermediate )
¢ 2, .2 2, 2 2
s-state 6 P3/2 6 Pli 7 P3/2 6 P‘: 3/2 7 P
j 65> -1 4,22 x ~i 0.65 -i 0.86
10-10
Qtug!
{7s> -i 2,83 +i 6.76 +i 3,43
|8s> -i 0.264 -i 3,13 -i 0.78
|9s> -1 0,041 -i 0,30 -i 0.14
|10s> -i 0.041 -i0.10 -i 0.06
Total -i 7.45 x +i 2,58 +i 1,58
10-10
Q fugl
Method 2: -i 8.09 x +1 1,75 x +i 1.25 x
10 -10, -10,
Q, lugl 107°7Q, fugl 10777, gl
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Table 1X
Finite sum over Green's
(uantity Summed .. 5 IONSbf cnergy levels function
(738, - 11%5,, 62 Dm - 102[)3/2) method
R7p,ns Rns,6p 1o o
B - ELa 3.78 - 10 3.64 - 10
6 - Ing
Rzpns Ras,6p I |
——— -2.58 « 10 -2.71 ¢ 10
77 B
R7p,n0 Bup,6p 10 0
——— 3.50 - 10 2.81 - 10
‘6 ~ Enp
Rop, o0 Bup, 60 1 11
7 " “nD
e%a (in wnits B ) 2.43 - 107° 2.05 - 107°
volts/cm : :
e’s 1.78 - 1075 1.64 - 1077
B/a 0.73 0.80
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Table X. Dipole transition amplitudes D = <Ml> + <Elp> + <El >

2 s
for 6 P!2 (F, mF) + 72P1i (F', mF.) transitions.

STARK

2 F 0 1 1 1
6 P-‘s’ Mg 0 -1 0 1
i s i
—(77sind -7ncos6 ~==(7715.n8
V2 + &, sind vZ
, -8'sind +8'sing
a'coso ‘&PV cosf) ‘GPV cos0)
i < i <
—(~77sing o 'cost-77cose=(?5in
vz ‘&PV sin@ VZ 0
-B'sing +B'sind
-ﬁwcos[)] &y cos6)
77 c088 —15_(7)2 sin® o'cos -'-%_(7)151119
-B'sin@ +B'sing
‘&PV cos6 ) *8PV cos@)
F—(~72sing L (77sin6 a' cos8+77cosd
0 vZ -8W sin®
+B'sing -B'sind
'gPV cos8) NZW cos8)
a' = e Eou B' = EZ EOB
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Table XI. P - P, transition amplitudes.
372 -
m
\‘1 1 1
m 2 2
P3/2
&
3 <§ﬁl ' —Z—)i sind -y% &, (s
Z 2 /6
+1/3
= &PV cos0
&
1 -ncosb + &, sind Z. LY sing
7 134 2 V2
+1 &
—%V— cosb
m_ %
1 (—”~ —/:) i sind -Mcosd + &PV sin6
2 2 2
+i &
—‘;! cosb
Im &
% - Jé—‘ 8.2 cosb ( + %) i sin@
2
+i /3 &
Vi B cosé
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Table XIt. Amplitudes for P.;/Z-P11 transitions.

Transition
amplitude ()P‘..,/Z-ﬁP!2 7P3/2- TPA, 6P3/2- 7P,2
vZ /Z Vi
98'% -.092% -.118'%
6 .22 -.434 767
Spy -1 8.00x1071%,  +i 17510710, +i 126410 1%,
P(Q-140)  4.17 x 1077 1.67 « 1078 4.85 » 10°°

7= '—-"j-_f(f,1 By * Ty f3y5) 8y @) odr Jugl

. 2z
&y = -Zsﬁff!s fap v dr lugl
- ¥ Z:PS/ZIrlns><n-.=,|HW[P12 > fugl

E - E
e n

&

1




J1. CALCULATIONS OF PARITY VIOLATION
IN FORBIDDEN M1 TRANSITIONS IN CESIUM
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1. INTRODUCTION

Fxistence of a neutral, weak, parity-violating electron-nuclcon
interaction implies that forbidden Ml transitions in heavy atoms, e.g.,
6%p,-7%, in thalliwn (12) and 6%5,-7%5,, 675,-8%, in cesium (Cs) should
exhibit circular dichroisi. In a previous pnpcr1 (hereafter referred to
as I) we presented calculations of the atomic properties of TR relevant
to the interpretation of observations of circular dichroism in the thallium
transition in terms of the Weinberg-Salam gauge field model. Here we
present analogous calculations ror the Cs transitions. In both cases
experiments are currently underway to detect the parity violating effect.

Our approach is the one electron central field (OECF) approximation.
We find numerical solutions to the Dirac equation for the valence electron

in a "Tietz" central potential:2

2 2
vy = -l e M
r(l+nr) r

where parameter n is chosen to give agreement between the observed and
calculated 625,1 energies. The wave-functions obtained are used to calculate
fine and hyperfine structure splittings, and allowed (El1) transition rates
and excited state lifetimes. These are compared with experimental results
(see Section 2). ‘The 6%5,-75, , 65, 8%, ML amplitudes and corrections

to gJ(szs,:) are calculated in Section 3 and compared with experiment.
Relativistic contributions to the matrix elements, as well as the "Lamb"
correction and corrections due to interconfiguration interaction and
hyperfine mixing are included. We find that the current theoretical
formulation for these latter small effects is not entirely adequate.

In Section 4, we present calculations of the parity-violating El amplitudes
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8,,‘,(625,‘-725%) , aw(szs,’-szs,’) based on the Weinberg-Salam model,>
We £ind
Epy(65-75) = 3.50ix10°M gl (2)
and

Epy(65-85) = 1.48ix10"1 qlug (3)

Here fupl = Ieh/Zmecl and Q, = (1- 4sinzew)Z-N, where 8, is the "Weinberg"
angle. Results (2) and (3) are somewhat smaller than earlier estimates

by Bouchiat and Bouchiat4 (see Section 4). Finally, in Section 5 we
calculate Stark matrix elemen;s for the transitions 625,’-7sz in an external
electric field, and compare our results to earlier calculations by Bouchiat

4 5

and Bouchiat,” and to the experimental results of Bouchiat and Pottier.

2. CESIUM WAVE FUNCTIONS IN THE ONE-ELECTRON
CENTRAL FIELD APPROXIMATION

2.1. Construction of Electronic Wave-Functions

As in I, we solve the Dirac equation for the valence electron in a
centrally symmetric potential V(r). The latter approximates the nucleus

and 54 core electrans as a fixed charge distribution. With

f
0 de.e

Vv o= , the Dirac equation
180 e,0)

reduces "o .he coupled radial equations:

af

F = CEf+(2-E-V(ig

@
£ - Eevelerle



Our units are h=me=c=l, E is the ionization energy, and other notation
is defined in I. The parameter n of the potential of Eq. (1) is found
to be

n = 385241 = 2.5014 a! (s)

by requiring agreement between observed and calculated GZS!, energies.

‘The wave-functions are calculated by integrating Eqs. (4) stepwise from

the nuclear radius R, = .016% as described in detail in I. Table 1 presents
calculated S!’, P;i, P,,2 energies along with the observed values {obtained

from the tatles of C. E. Noore6).

2.2. Hyperfine Splittings

In first order perturbation theory the hyperfine energy is given by:7

wF = ;_g_K___ egN“N[F(F+1) - 1(I+1) - J{ I.l)Jf f(r) ZT)dT
kK -1 0 r
. (6)
133 s 8 .
For Cs (the only stable isotope), I = 7/2, gy " 5.16," leading to

F=4,3 for J=1/2 states and F=5,4,3,2 for J=3/2 states. Hyperfine
splittings AE are calculated between the highest and lowest F levels.

These are related to the usual hfs interaction constants A by AE; , 72 = Y
and AEJ=3/Z = 1ZA3/2. The results are presented in Table 1, and compared
with experimental values. Agreement is reasonably good.

2.3. Allowed El Transition Rates

For P, -5, and P, -S!, El transitions the Einstein A coefficient is
574 E

= 4 2.3 2
A= det <plris )

In Table 2 we present radial integrals and transition rates for P!’-S!,,
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TABLE 1
Tonization Ionization Hyperfine Hyperfine )
energy energy energy energy
State {calculated) (rneasured)f' splitting splitting
(mcZ=1) (calculated) (observed)
GHz GHz
65, 7.62024x10°  7.62024x10° 9.212 9.193 £<.001°
75, 31212 x20°% 30200 x 207 2.346 2.185 + .012°
85, 17200 %107 17117 x 207 0.935 0.876 *+ .006°
95, 1.08%9 x10°  1.0909 x 107 0.468 0.438 + .008°
6P,  4.9081 x 10°¢ 4.9622 x 107 1.642 1.168 £<.001°
6Py,  4.7732 x 10° 47713 x 10 0.723 0.611 + .006°
Py, 2.332x20°° 23301 0%  o0.408 0.377 2<.0016
Ty, 22953 x10°% 2,275 x 207 0.224 0.199 + .001°
8, /2 1.3824 x 10 1.3711 x 107 0.220°
By, 13620 x 1070 13050 107 0.100 0.0916 + .0002%
%, 0.9146 x10°  0.9064 x 107 0.117 0.093%
6 0.8924 x 107° 0.054

9P3/2 0.9037 x 10

%4. Bucka and G. von Oppen, Ann. Phys. 10, 119 {1962).

b, M. Kallas, G. Markova, G. Khvotenko, M. Chaika, Optik y Spek. 19,
173 (303) (1965).

€J. Abele, M. Baumann, W. Hartmann, Phys. Lett. A 49A, 205 (1974).

dP. Tsekaris, J. Farley, R. Gupta, Fifth International Conf. on Atomic
Physics, Abstract J13, 250 (1976).

R. Gupta, W. Happer, L. K. Lam, and S. Svanberg, Phys. Rev. A8, 2792
(1973).

fp. Feiertag, A. Sahm, and G. Zu Putlitz, Z. Physik 255, 93 (1972).
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TABLE 2. A-coefficients in Cs

N (.r)fi radial A-cogffic%int
Transition integral (%) (10" sec 7)
6P1/2-6SI/2 -861.4 37.3
7P1/2-681/2 - 80.4 2.40
8P1/2-651/2 - 30.8 0.582
9?1/2-681/2 - 18.0 0.245
693/2-65 1/2 -846.8 41,82

3/2-65 1/2 -104.0 4,11
8P3/2-651/2 - 46.6 1.34
91’3/.:-651/2 - 28.6 0.623
6P1/2-7S 172 747.3 8.00

1/2-75 1/2 -1777.3 3.83

1/2-78 -181.8 4,39

1/2- - 73.9 0.148
6P3/Z'7SI/2 830.3 7.80
71’3/2-751/2 -1730.0 4,27
8P3/2'751/2 -230.3 0.729
9P3/2-781/2 -101.9 0.286
6P1/2—851/2 184.8 2.79

P 1/2 -88 1/2 1605.4 1.54

1/2-85 -5016.4 0.883
‘.~JP1/2-851/2 -322.8 0.137
6P3/2-851/2 186.8 2.50
7P3/2-851/2 1750.3 1.47
8P3/2-8b3j2 -2919.4 0.983

-396.6 0.217

9P3/2-851/2

A

P W 2l T
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P;«,'Slﬁ transitions. These numerical values are required for computation
of GPV and Stark amplitudes (Sections 4 and 5).
To judge the accuracy of these transition rates, we calculate values

of Cs excited state lifetimes. The lifetime of a state ILJ) is given by

-1
T - Z A
Ly (L.J' |Ly> L .>)

where the sum is over all states IL'J,) with energy less than that of
|LJ). Table 3 compares available measurements of Cs lifetimes with our
calculated values; agreement is, again, reasonably good.

»

3. MAGNETIC DIPOLE TRANSITION RATES

The relativistic contribution to the 65-7S or 65-8S M1 transition

amplitude is
Moy e[ g UL (£ + 5yfpar (8

where g, (kr) = ValZkr J3/2(kr) is a spherical Bessel function, and k
and w are the wave-number and angular frequency of the absorbed photon,
respectively. The formula for nP,i-n'P,’ Ml transitions (as in thallium)
was derived in I and is identical to Egq. (8) except for sign. We use our

OECF radial wave-functions to compute the numerical results

n

o, (65°78) = 9.05x20°° Jug) o)

Pl (65-85) = 5.68x107° fug| a0

These results and additional corrections are summarized in Table 4. The

"Lamb correction," discussed in I, arises from the interaction between
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TABLE 3. Lifetimes of Cs states

Measured Calculated

State lifetime lifetime
(nsec) (nsec)
6P/, 34.0 £ 0.6% 26.8
6032 20.7 + 0.2° 23.9
7Py /2 158 £ 5° 149.0
7Py 135 + 1° 113.0
8P, ) 307 + 14°% 351.0
8Py, 274 + 12° 270.0
85, /5 g7 + o 82.0

4y, K. Link, J. Opt. Soc. Am. 56, 1195 (1966).

b5 Svanberg and S. Rydberg, Z. Phys. 227, 216 (1968).

D. W. Pace and J. B, Atkinson, Can. J. Phys. 53, 937 (1975).

9}, Marek, Physics Lett. A, 60A, 190 (1977).

5. Marek and K. Niemax, J. Phys. B: Atom. Molec. Phys. 9,
L483 (1976).
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valence electron spin and core electron orbits. For Sx,'S;, transitions

this is given by:

Z A -%ezmwn . a1

Here (W) = j(':F(rlj[j;:p(rz)rzdrz] F'(rljridr1 where F, F' are thc non-
relativistic 65, 7S(8S) radial wave-functions respectively, and o(rz) is
a spherically symmetric core electron density, as in I, The "orbi;orbit"
correction vanishes for S,:-S,’ transitions.

The relativistic and “Lamb" contributions to the g-factor anomaly
for the 625!5 state may be computed in the same way. As previously noted
by Perlg and by l’hillips,10 the calculation of relativistic effects leads
to a g-factor anomaly which is too small and of the wrong sign when
compared with experimental results. It has been suggested by a number

10,4,11 pight be responsible

of authors that interconfiguration interaction
for the discrepancy. As discussed in I, electrostatic interaction of the
outer electron with excited core states does not by itself affect Ml
transition amplitudes or the g-factor anomaly since it mixes only those
configurations which have the same total angular momentum and spin (25153~
However, in second order, spin orbit coupling allows an admixture of
different L-S states (such as ZP!S, 4!’;i in Cs) which can give rise to
finite contributions to Ml transitions or g-anomalies. Our detailed
calculation of this effect is sinﬁlar to that presented for thallium in
1, and differs only slightly from the work of l’hillips.10 The ground

configuration of Cs is 152 5p665. For first-order excited configura-

2 5p5656p or ls2 ves 5p5756p. The outer s and

3

tions, we take 1s

excited p electrons can form 1P or “P states which we label by w’i', w‘;
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respectively (where n corresponds to the nS valence electron). Thus the

perturbed 6S, 7S states are written

[6S) = |6S) + alwi’ + azwg + B1“‘Z + Bzw; (12)
e 6 6 7 7
178y = ]78) + YUy ¢ Yaup *+ Sp0p + SoU) (13)

L*S coupling mixes the ZS(IP) states with ZP(1P) states, and also mixes

2S(:I'F') states with 2P(:I'P) and 4P(:"P) states. Thus we obtain in second

order:
1650 = {653+ ... + aghy (%68) + ayhy (%)
' 7 ]
v agny(*ed) + 8,8, (%]) + 8,8,(%0]) + 8,85 (%) (14)
[78y = 178y + ... + chl(zct{’) + 7,0, (%69
+ v, + ;0 By + 6,0, %60 + 5,0,(%]) (15)

The m»p’;' are mP(B'P) states with s-electron radial quantum number n. The

Ai, Bi' Ci' Di’ are determined by the electrostatic interaction between
outer electrons. The expressions for this interaction are as presented
by Phillips except that we find a result V6 times larger from anti-

symmetrizing initial and final states. For example,

A = VE Fo* Gy
1~ T2 TIE (16)

where F and G, are the direct and exchange electrostatic integrals and
AE is the perturbation energy denominator.

The second order coefficients o5, Bi’ Yio Gi are determined by fine
structure matrix elements of the S5p electron state, as computed by Phillips.

For example, o; = &/ VZ 4E, where £ is the spin-orbit parameter of the

’
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Sp-hole, Our value of £/AE = 0.07 calculated with OECF wave functions
differs slightly from Phillips' estimate E/AE = 0.10. The coefficients
are evaluated numerically using OECF wave-functions and contribute as

follows to the 65-75 Ml amplitude:
2 2
N . g(’P) -g(’S)
77211 (65-75) = (mAyCy *+ 81518;D;) ( R

+ (aghgvaCy + oApysCy * BpBy8D ¢ Bz“é“z”é"(@@>
(17}
The results for ?)1II(6S-7S) and similar corrections for the 65-8S Ml
amplitude and the 6S g-factor anomaly are presented in Table 4. Similar
corrections due to the (5p56p5d) configuration have been calculated;
however, these are substantially smaller (~25% of that obtained from Eq.
(17)). The overall uncertainty in the interconfiguration interaction
correction could be as much as a factor of two or three. However, as can
be seen from Table 4, these calculated corrections are too small to account
for the observed 6S g-factor and 6S-75 Ml amplitude by an order of
magnitude. This discrepancy is not improved much by including contributions

of Sp°n'pns (n' >6) or 5p°

n'pnd (n'>6, n>s) configurations since their
contributions diminish rapidly as n, n' increase. Our conclusion,
consistent with that of Phillips, is that the observed anomalies are not
due to interconfiguration interaction of this type.

An appreciable cor;rection to the Ml amplitude arises from hyperfine
mixing. The size of this effect can be derived from I-59, as modified for

Cs 25’5 states. We find

¢ FriMi| 3]
(m's,FIHHFS]ss,F) - <es,F'|Hm:S|ns,F'9- " IS, (18)
. Egg-Epg

The amplitude vanishes for F=F'; ti s unlike the other amplitudes it only
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affects F=3 + F'=4 or F=4 » F'«3 transitions. The hyperfine integrals

are evaluated numerically, and we employ:
e ]
<ns;’r-'|m|ns,ir> = - Z(F melofFymp) (19)

The numerical results are summarized in Table 4. An observation of the

3+4 and 4+3 transitions with the same accuracy that Bouchiat and I’ottier12

reported for the 4+4 and 3+3 components of the 65-7S transitions would

clearly reveal the hyperfine correction.

TABLE 4. Summary of contributions to the Ml transition rates.

s -y .

-factor (8g/|g)) 65, -75 68, -85,
gam:)rnaly (gg= I%J S;‘ & - Sl’ 4

Relativistic ~ +1.75x10°° +9.05x107® +5.68 x107°
Lamb +6.2 x 1070 +2.87x10°% +1.78x1070
Interconfigu- -6 -6 .6
ration Inter- -8.3 ¥ 10 -7.0 % 10 -5.9 x 10
action
Hyperfine . 8.36 x 10”0 4,02 x107%
mixing (F-F") (F-F")

a b
Observed  ; 18140.002x10"7 -4.24£0.34x1075 .-

value

%p, A. Vanden Bout, et al., Phys. Rev. 165, 88 (1968).
bM. A. Bouchiat and L. Poitier, Jour. de Phys. Lettres 37, L-79 (1976).

The poor agreement indicates that we do not fully understand the
sma1l 1074 to 10'5, up to fourth order, effects contributing to the Ml
amplitwdes. There do not affect the calculation of SPV since that
calculation depends on large, first-order, amplitudes such as (El ‘op
and w(?=0). The small size of #W is determined only by the small size
of GF. )
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4. CALCULATION OF PARITY VIOLATING E1 AMPLITUDE

According to the Weinberg-Salam model, the parity violating electron-
nucleus interaction provides the following interaction matrix element

{I-64):

G - -
Yy [Hou [0,) = s VY ¥, (0 (200
117pvi¥2 PR N T A I

This mixes S-states with opposite parity p-states, as follows:

1
(n P%IHPvlnS%)

nS,» = {nS.» + ] [n'Py > 1)
sl’ oy Ens - Eyp g
Thus Eq. (20) can bs reduced to:
(n'P, HpyInS > = i Sy (£2 -fsgp)l 8 (22}
g k! 8yin P8 r=0 "s"p

The "'r=0" symbol indicates that the expression is averaged over the
nuclear volume, and we assumed a constant nucleon density for r < 0.016X.
An altemnative procedure would be to assume a point-like nucleus and
evaluate (HPV) at the nuclear radius; this produces a value 2% larger.
An El transition amplitude is now possible between the perturbed

S-states. Its value is given by

(n‘Plilelbs,’i) . <nS,!}len'P!i)

(nS_|E1]65, = ¥{(nS, |Elin'P) L (n'P, |E1]68,?
SalF1I05,) - I SRR 5 R B By e
' (23)
where
(nS, |E1n'P> = ems,|e-rn'P) = £ [f vf_ ar (24)
AR LE S % 3 )& iy

and the last expression is derived for the particular case m, =n&)= -k,

;= Ez. The numerical results are summarized in Table 5, where Eq. (23)
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has been evaluated by two methods:

1. A finite sum over the nearest four intermediate p-states

2. The use of the Dirac Green's function.
The Green's function automatically includes all intermediate states,
including continuum and auto-ionizing states as shown in I. The two
methods give similar results, as shown in Table 5. The Green's finccion
method is considered more accurate, since it is more complete.

In the Weinberg model, with sinzew- 0.30 as suggested by the

experiment of Reines et al.,12
Q = - ((45'1;,29”. 1)Z+N) = -99 (25)
133 : . ; -9
for Cs*”. This leads to a vaiue of &y, = -i3.47x10 luBI for the

65,1-75,‘2 transition. This corresponds to a circular polarization

(circular dichroasm) of:

2Im(& PV)
P72exp

= = 1.68x107% (26)

Bouchiat and Bouchiat,4 using non-relativistic wave functions with
a relativistic correction factor for (Hw), a modified Bates-Damgaard
method for e(Z-;), and a finite sum over the nearest four P states,
obtained a somewhat higher estimate of -i4.7 x10"9 fug| for &y, in
this transition.

Using our analysis of hyperfine structure and excited states decay
rates, we can form a reasonable estimate of errors. Our hyperfine
structure and fine structure calculations indicate that the magnitudes
of the P-state wave functions as r+0 are ~10% lower than physically

accurate. However, decay rate comparisons indicate that our (El) matrix
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TABLE SA. Calculation of ‘PV for the l‘tSll-7S!s transition.

Method 1:
Intermediate e fls IrinP, 3 tnPy JHp, |63 e 78 [Hpy, nPy ) (nP, |1 {68)
P-state 3 Egg - By 3 TEg
l6p) -1 7.823x10°11 q Jug | +i 6.912
{7p +i 5.259 -i 0.802
{8P) +i 0.303 -1 0,093
lopy +i 0.084 -i 0,051
Total -i 2.18 +i 5.98
= i 3.80x107M g ug
Metht ¢
-i 1.75 +i 5.24

= iz.50x10° 4! Qw]uB]
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TABLE 5B. Calculation of &_, for the 6S,=->8Sl= transition.

pv

Methud 1:
Intermediate e (85|r|nPB) (nP!’|HPV!65) s (85|HWInP!i)(nP!’|r]6S)
P-state 3 "'E‘S:?p ’Sﬂ
[6P) -1 1.935 % 107 q fup| +i 2,445
[7P) -i 4.751 +i 0.647
18P) +i 5.027 -i 0.303
{9p> +i 0,366 -i 0.054
Total -i1.20 +i 2.74
= i 1.aax107 g lug

Method 2:

-i 0.81 +i 2.29

= i 1.48x1071 qulug



-76-

elements are too large by ~10%. These errors cancel in the evaluation

of ﬂw and our &, error should not be greater than ~10%.

§. CALCULATION OF THE STARK EFFECT E1 TRANSITIONS

In actual experimental technique (see Bouchiat and Pottier) % and
‘PV are measured in interference with the El transitions induced by an
external electric field. % and ‘PV are not directly observed but are
compared to ‘S' which is calculated. Therefore, it is important to
calculate a reliable value of &..

The coordinate system used in the calculation is illustrated in

Fig. 2, and is the same used in I. An electric field E°8 is perpendicular

y
to the photon propagation vector éx' The photon has polarization
> PO 2 .. .

£ = CO56€ y+ smeez, and the Sk states are mixed with P’s’ P;’ states

by Stark effect.
—— — > > +
= ' . 1 ' .
|nS!5> [nS,é) + 'EP:(n !,leEO rlnSQ In Py o+ 'EP:(n P%Ielio r|nS,s) ]n'P}!>
TRE. n Y T
n'Py BE;, 3y BE, )

There is an El transition amplitude &g between the perturbed states, which

we represent as a 2x2 matrix whose rows and colums are labeled by mJ(ﬁsls)

and mJ(nSE) respectively
&g = (Eleg-;fﬁ_s;)

, ;
= eE_ -« | & -4 = m,y(65.)
mJ(7Sl’) = 3 | acos@ -igsing

;

-} |-igsing acosd (28)
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1 Z ( 1 1 )
a = = R +
9 P&\S n'P, 6S,n'P, \ E_-E E -E
"'Pli Tk L\ ™n n'P;i 6 'Pl’

n
2 E 1 1
+ & R, + (29)
s,n'P, Res,n'P, | E.- TTE
9 nvp/ ' 3’2 ’ }h( 6 ED'P?’ l:ﬂ n'P;1>
2
1 1 1
B = 1 R 4—
5 2 P&\S,n'Pli 65,n'P, (Ee E"'P!s E En'P,,)
L
1 1 1
+ = ' R ' - + = (30)
3 P Ris,n P, Ros,n'py <En En.l,31 E En.P%>
where
= ! =
Rés,m,!= (65,I7'n'By,  Eg = E(6S,) » (31)

etc. The quantities a and g have been evaluated by summation over the
nearest P%, P!! states, and also by use of the Green's function. The
results are summarized in Table 6.

Our results can be compared with the calculation of Bouchiat and
Bouchiat, which was used in the experimental determination of 7% (65~ 75) .5
Their calculation used the El oscillator strengths calculated by Stone and
signs determined by the Bates-Damgaard method with a sum over the four
lowest energy levels. Their value is efa = -1.62x10°° |uB|/ %
and |a/B| = 7.0 for 85(75-65). Our value of la/8| is 10.1 and agrees
more closely with the experimental result 8.8+%0.4. However, our analysis
of excited state lifetimes leads us to suspect that our value

S

% = -1.97x10° ’uBl/% is ~10% to 20% toc large, so the true
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value of e’u is probably somewhere between our result and that of
Bouchiat and Bouchiat.

In Table 7 we combine the calculations of SS' 7, and &PV in a
single 2x2 matrix so that the interference among these amplitudes can be
readily extracted. Table 7 gives the (6S+n$) transition amplitudes with

s a . s . b > .
the photon directed along e, with polarizatiun ¢ = eycosc + e,sing.



TABLE 6.

A. (7S[E1]65)

Finite sum method:
Green's function:

Experimental value:

B. (B8S|E1]6S)

Finite sum method:

Green's function:

eza

volts/cm

()

-2.043x 10"

-1.972x 10"

-3.132x 107

-3.166 % 10"

5

5

5

5

Stark effect El amplitudes.

ezB

( ugl )
volts - cm

-1.78x 1078

-1.96x10°%

-3.71x1078

-3.97x1078

10.0f

8.8:x0.4

8.45

7.86


file:///volts
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TABLE 7

nZS!’ - GZSlj Transition amplitudes,

¢nS|EL +Ml +£g[65) =

(nS%)

+ !j - 23 2
o= om (67S)

= 4+ a' cosd -i B' sing

+ P cosb +1Zsing

- &Pv sin® +i Epv cos0
= -k -i B' sinb a' cosd

-i?7sind - Mcos8

-i 8w coso +&W siné

m4

Bl

~ PR
= e _cosb + ¢, Sine

= eZuE

2

Y

zesEz
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