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ABSTRACT 
Calculations are presented of the El amplitude expected in 

forbidden Ml transitions of T£ and Cs if parity is violated in the 
neutral weak e-N interaction, as proposed in a number of gauge models, 
including that of Weinberg and Salam. Valence electron wave functions 
are generated as numerical solutions to the Dirac equation in a 
modified Tiets central potential. These wave functions are used to 
calculate allowed El transition rates, hfs splittings, and Stark El 
transition amplitudes. These results are compared with experiment 
and the agreement is generally good. 

2 2 ihe relativistic TH 6 P. - 7 P, Ml transition amplitude ?n. is 
-5 ^ 

also calculated and corrections due to interconfiguration interaction, 
Breit interaction, and hfs mixing are included. The result: 

% r t » , " (-3.2 ±1.0). 10 -a e J*. <theo " i - ' . " * - ^ - " ' a H ^ 
is in agreement with the experimental value: 

^expt " (-2-11* 0.30). 1 0 " S ^ 



The parity violating El amplitude S ^ is calculated and a value for the 
circular dichroism in the Weinberg model 

2Im(fi ) 
6 - ™ - -2.6x10 3 

"'cxpt 

is obtained. Parity violating effects in other T£ transitions arc 
discussed. 

Contributions to the Ml amplitude for the forbidden Cs 6 S, - 7 S, 
2 2 2 

and 6 S, - 8 S, transitions and to the Cs 6 S, g-factor anomaly from 
relativistic effects, Breit interaction, interconfiguration intei'act i on, 
and hfs mixing are calculated, and it is found that this current 
theoretical description is not entirely adequate. The parity violating 2 2 El amplitude E „ for the 6S, -7 S, and 6S, -3 S, transitions is evaluated. 

The results 
£ P V ( 6 \ - ? 2 V = i 3 - 5 0 * 1 0 " U % | M B I 

&w&\- g 2 V = i 1 ' 4 8 ' 1 0 " U % | U B I 

are obtained. With a measured value ^ ? e x n t and the Weinberg value 
Oj = -99, we find a circular dichroism 6 = 1.64 x 10 for the 6"S, -72S, 
transition. 
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I. CALCULATION OF PARITY VIOLATING EFFECTS 
IN THE 62P. - 72P, FORBTDDEN Ml 

TRANSITION IN THALLIUM 
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j 1. INTRODUCTION 
i Discovery of strangeness-conserving neutral weak currents in 
! 1 

ncutrino-nucileon scattering experiments has stimulated considerable 
interest in the possible existence of a weak neutral elcctron-nucleon 
interaction.i If such on interaction violates parity, as predicted by 

i 
several theoretical gauge models including that of Weinberg and Sal am " 
(W-S),effects| in heavy atoms such as optical rotation in allowed Ml 
transitions, Jimd circular dichroism (dependence of absorption on 
photon helicit'y) in forbidden Ml transitions may be observable. 

An experinent to study the latter effect in the doubly forbidden 
Ml transition ij-P, -7 P. (292.7 nsn.) in atomic Tc vapor has been pro-

3 ' ? 2 
posed. The id^a, originally suggested for the 6"S,-7 S, transition 
in Cs by Bouchiit and Bouchiat, is that a short range, parity violating, 

\ 2 2 2 
neutral weak interaction Hp„ mixes the 6 P, ,7 P, T8 states with n S, 

I 2 2 

states. Thus tW; transition 6 P, -7 P, , nominally Ml with amplitude 

7n= <l\, n-j|Ml| 6Z?h, raj> (1) 

also contains a parity-violating electrvc dipole component with 
1 2 

amplitude ^y-<7',P, ,m,|El|6 P, , m T>. It can be shown that interference 2 2 between 7% and £„. results in a dependence of the 6 P,-7 P̂  absorption 
rate W on right (R,( or left (L) handed photon helicity: 1 . W(R) - W(L) 2 ^ ( V - ^ 2 I l"( epy) 

" wfo) + W(L<" = u,2 , ,, ,2 ~ % 

The "circular dichrotism" 6 ran be detected by observing the fluorescence 
accompanying decay o" the 7 P, state (see Fig. 1). The first step in 

I 
i 
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thal experiment w.r: I In' determination of the Ml amplitude- itself, 
the result being:" 

*cxpt * '-2-11 , - ° - 3 0 ) * 1 0 ' 5 " B f 3 ) 

where p., = |o|fi/2m%c. In that measurement and also in the experiment 
proixjsetl to detect 6, use is made of the interference which occurs 
between/*! and/or'I w and the Stark-induced electric dipole amplitude fi„ 

2 2 Tor (> r, -7 1», transitions in an external electric field. 
3 1 

In this paper we present results of calculations of 
the atomic structure of Tf which are necessary in order to make useful 
comparisons between these experiments and the predictions of models of 
the neutral weak interaction. The thallium atom has 81 electrons with 

f 10 2 
-a ground st ate electronic configuration: ls"...5d 6s 6p. Our 
approach is to assume that all singly-excited TBI states of 
interest have the same inner electron configuration (Is ...5d Gs , 
with total L=0, S=0) as that of the ground state, and differ only in 
the valence electron orbital. This approximation, while not strictly 
correct, is reasonable, since inner shell ionization energies 
are at least several times larger than that of the 6p valence electron. 
It also has the obvious virtue of simplicity, since within such an 
approximation most properties of interest to us can be calculated from 
the valence electron wave-function, which is obtained by solving the 
Dirac equation numerically in a spherically symmetric potential, for 
all states of interest. We have chosen the potential: 
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V(r) = - . ^ - l ) e-Yr . e^ ( 4 ) 

r(l + nrr r 
Without the exponential shielding factor e _ Y r , V(r) is the "Tietz" 
potential, which yields a good approximate solution :o the 1'homas-
Fcrmi equation. The factor e " Y r is inserted to account loi the exponen­
tial decrease of electron density for large r. Parameters n and y arc 
chosen so that che calculated and observed 6 P, and 7"P, energies agTee . 

We describe calculations of energy levels, allowed El oscillator 
strengths, and P, , S, hyperfine structure splittings, all in good 

2 agreement with observations [see Section 2). As is well known, the 6 P,/, 
hfs splitting is strongly affected by interconfiguration interaction, 
and a correction for this must be applied in order to obtain reasonable 
agreement with experiment (see Appendix A). Our calculation of tn 

(Section 3) includes the one-electron relativistic contribution and 
corrections due to interconfiguration, hyperfine, and Breit interactions; 
the result is in agreement with the experimental value (Eq. 3). Our 
calculation of the Stark transition amplitudes £ yields two second-
order matrix elements a,6 for linearly polarized excitation light 
parallel and perpendicular, respectively, to the applied static field 
E. The ratio g/a is in agreement with the experimental results of Qiu, 
Commins, and Conti (see Section S). 

The satisfactory agreement between experiment and the calculations 
described in the previous paragraph provide confidence that our esti­
mate of the parity violating amplitude £

p v should be reliable enough 
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so that future experimental determinations of circular dichroism may 

yield useful tes ts of gauge models. For purposes of the present 

discussion we present the analysis in terms of the W-S model, which 

describes low-energy strangeness conserving neutral weak interactions 

in terms of an effective Hamiltonian density: 

where G is the Fermi coupling constant of weak interactions; 

G = 3 « 10" 1 2 in units (li * m = c = 1) used throughout. The 

current J (x) has both hadronic and leptonic pa r t s , the former being 

expressible as: 

JLA = V M + A X ' ° - 2 s in 2 8 Jx'm (6) 

had w 

where V * is the I , component of the strangeness-conserving hadronic 

vector current, A ' is the neutral AS=0 hadronic axial current, J*>m 

is the B1 current, and 6 is the so-called "Weinberg" angle, which is w 2 given by sin f> = 0.3. That portion of the neutral leptonic cuirent 
involving e i s : 

jlept.e . . 1 [ ( 1 . 4sin 20 w) F e y x * e * fe Y„ Y 5 * e ] (7) 

where V is the electron field op<rator. 
The first and second terms on RHS are respectively vector and axial-
vector currents. We are interested in those portions of X(x) which 
are pseudoscalar, not scalar; thus we consider the product of the axial 
portion ô T j ^ P 1 ' 6 and the vector portion of Jj^j. (The other pseudo-
scalar term corresponding to the product of the vector part of J ̂  » and 
the axial part of X , gives a much smaller contribution since it is 



-6-

proportional to total nuclear spin, and for a heavy nucleus, most of 
the nucleon spins cancel in pairs.) Ignoring this latter portion, 
wo find: 

3 f P V 0 0 * - _ 5 _ \rxysVB • (V A , 0-2sin 29 w JX'm) (8) 
V £ 

Taking matrix elements o£ x) for the static limit of the nucleus, 
we obtain the matrix element of the effective Hamiltonian: 

<HPV> - - — 2 L <K(x) y ^ . 2 v T z 5 1 
(x) (9) 

]xa0 

where 

fy = [1 - 4sin 28 w) Z - N (10) 

and iK(x), i|)2^x^ a r e D i r a c wave-functions corresponding to states of 
opposite parity, and "x=0" indicates the product is averaged over the 
nuclear volume. In fact, only P. and S, states yield non-negligible 
matrix elements. Equation (9) is derived from the W-S model. However, 
other gauge models with parity violation would lead to the same expression 
with only (X, of Eq. (10) being model dependent. In most cases |Qj ~ Z . 
In Section 4 we use Eq. (9) to calculate Spy. Finally, Section 6 contains 
an estimate of parity violating effects for transitions in Tu other 
than 6ZP. -72P, . 

2. THALLIUM WAVE FUNCTIONS IN THE ONE ELECTRON 
CENTRAL FIELD APPROXIMATION 

2.1 Construction of Wave Functions 

The Dirac equation is 
[3-p+e-eV]* = (1-Er)i|i (11) 

whore E. is the valence electron ionization energy [(1 - Ej) is the total 
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electron energy including rest mass], and a and g are tne usual Dirac 

matrices. IVc write 

* - I ' ( 1 2 ) 

* i & r 

As usual, K = *(j + ' i ) for even (odd) parity s t a tes , the x1' are two-

component angular momentum-spin functions given by: 

X > . * ) - * , (15) 

the C's are Clebscli - Gordan coefficients, u = m., J, = |K + !J| - 1, 
and the Y's arc spherical harmonics. Equation (12) reduces to the 
two coupled radial equat ions: 

jjl , .Ef + [ 2 - B j - V W l g 

§* • 7 8 * [fij+VWJf 
(14) 

7 

Following the procedure used by Schwartz to calculate hyperfine 
structure splittings in TS, and other heavy atoms, we choose for V(r) 
the modified Tietz potential of Eq. (4). Parameters n and y are chosen 2 2 so that calculated and observed 6 P. and 7 P, energies agree. 
The fitting procedure is as follows: 



(1) For very small r (r «: r =0.02 ^ = 0.02), i . e . for r 
e 

within the nuclear radius rft, one of the following three potentials is 
chosen: 

7 2 
a) V(r) = ~ (Point nucleus) 

7 J 
b) V(r) = '=£- (Constant potential) 

** U / c) V(r) = I — - 3] (Constant nuclear charge density) 
r 0 \ r o 

The initial wave-function values for this region arc generated using a 

power series expansion to solve Eq. (14). 
(2) For r > r n Eqs. (14) for f(r), g(r) are integrated numerically stcp-

p 
wise using a fourth order Runge-Kutta method. Approximately 5000 
intervals of length increasing from 0.00H to 2.0* are used. 
(3) The eigenvalue condition is that lim f(r) = 0. The energy 

r-*oo 
P.j in Kqs. (14) is varied to insure that this condition 
is satisfied. 

The energy spectrum does not depend strongly on the choice of 
potential in step (1). Of all the quantities computed below, only the 
weak electron-nucleus interaction depends significantly on this choice, 
and for that quantity the dependence is only - 10?. The number of 
intervals can be reduced substantially without significant loss of 
precision except for calculation of the forbidden Ml transition (see 
Sec. 3); however this reduction would provide no economic advantage on 
the LBL CDC 7600 computer. The calculation procedure can be reversed by 
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choosing an asymptotic forra for f and g at large r , and integrating 

step-wise toward r = 0. This yields the same states as the 

procedure actually used, but is less convenient for calculation of £_.. 

The values of n and y chosen for most calculations are 

(15) 
n « 2.5937ap] = 355.43 X" 1 

Y = 0.25793Q1 = 35.34 A' 1 

Numerical values of — and & versus r are given for several states of 
Table 1. These values are chosen to yield agreement between calculated 

? 2 
and observed 6 P. , 7 P, energy levels to within 0.1*. Other low lying S,, 
D, , P, , and P» energy levels are calculated, and these all agree with 

• U S 'i 

observations to within 2%. Table II includes a comparison of calculated 
and observed energy levels. 

2.2 Hyperfine Structure 
The one-electron central-field (OECF) wave functions described 

above can be used to calculate hyperfine structuie splittings for 
comparison with experimental values. This comparison provides a 
reasonably sensitive test of the accuracy of calculations of £„. since 
both the latter and the hfs depend on values of the wave-functions near 
the origin. The perturbation Hamiltonian for hfs is 

m x r ••• - * 

Hhfs = e S • A = " • -7- = e i Sn * ̂ T (16) 

where m = s u I is the nuclear magnetic moment operator, u is the 
nuclear Bohr magneton, and I = h is the spin for both stable thallium 
isotopes, 2 0 3 n and 2 0 5TJl. Also g ^ 2 0 ^ ) = 3.223, g ^ 2 0 5 ™ ) = 3.2SS;9 
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in our calculations these are averaged to e =3.24. It can then be 
shown that the hfs energy splittings are given in first-order by : 

AW - eg-U-tf + W • - 4 s — • R (17) 
^ ^ 4K* - 1 

where 00 

R - j -&- dr CIS) 
0 

Table II includes a list of hfs splittings calculated for the various 
energy levels, together with experimental values where these are available. 
The discrepancies are not due to major defects in the wave functions, but 
rather to interconfiguration interaction, which is known to have an 

2 especially large effect on the 6 P,,, state. This is demonstrated in 
Appendix A which contains an estimate of interconfiguration interaction 

2 for 6p electron states. Although the effect on the 6 Vy„ Ms splitting 
is large it can be shown that interconfiguration interaction corrections 
to &m are negligible. 

2.3 Fine Structure 
Another test of the wave-function for small r is the fine structure 

splitting & E F S = E(j=H-'!5) - E(j = SL-h) for M O . Non-relativistically, 

A E F S = (* + y <n£| i ^ | nl> 

In a relativistic calculation such as ours, the fine structure is part 
of the unperturbed Hamiltonian, and the calculated fine structure is 
simply the difference between calculated (j = 8. +'{) and (j = I - h) 

energy levels. Comparison of these differences with observed energy 
differences from Table II for P states yields discrepancies i 155. 
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An alternative strategy of choosing V(r) by requiring AEp S to agree for 
6P states introduces 10p. errors in the excited state energies and unaccept­
able (~2x) errors in electric dipole matrix elements. 

2.4 Allowed Electric Dipole Transitions 
We also calculate electric dipole radial integrals and transition 

strengths using the OECF wave-functions. In the relativistic notation 
of Berestetskii, lifschitz, and Pitaevskii, the transition matrix 
element is 

Vfi = e / d ^ jfi ( ? } \ ( ? ) ( 1 9 ) 

where j^. (r) = IFr y v *j is written in terms of the initial and final 
Dirac wave-functions i*-, tyr, y v are the standard 4*4 matrices, and 
A (r) is the 4-vector potential. In the long-wavelength approximation 
for an electric multipole field of order J,M we have: 

\ (r) = (AQ (r), 0, 0, o) 

o 
Kih--f$?Jf7?2 ^N-"^(l)- e i t ? 

/ ( • l r ' i - j ^ as— r; (i) (20) (-if1^ M ^L r" (I) 
> J (2j+i):: J r 

is becomes: 

. ,•*. . T-M+1 . ,. MI 3/2 vM / r \ AQ (r) = (-1) . i . r • - 3 - u

 Yi {-) 

(2J+1) 

For El radiation, th i s becomes: 

(21) 



- 1 2 -

Combining Vx\s. (19) and (21) we obtain: 

V}.f = (-1) i U.V2 2 V ? y d 3 ? ^ ( ? ) r yf (I) *. ( r ) ( 2 2 ) 

The spontaneous emission rate A is given by: 

A f i " *> Vfl 
"7 2 

where V f i is V f i summed over photon states and final electron states 

(j f» <"f)> and averaged over initial electron states (j^, m.). For 

OECF wave-functions the angular integration is easily separated and we 

find the following: 

Transition A-coefficient 

4/9 e 2 J <T>2

n 

8/9 e 2 u>3 <r> 2
i 

4/4S e 2 u)3 <r>2j 

R/15 e 2 <.'3 <r>|i 

where u is the observed energy difference between initial and final 
states, and <r>£. = J r ( L f . + g^g^dr. The signs of these radial 
integrals are fixed by the convention that f(r) > 0 as r •» 0 for 
every state. In Table III, the radial integrals <r> f i and calculated 
A-coefficients for nt> * 6P and nS •* 6P transitions are listed, 
together with observed A coefficients for the same transitions as 
determined by Gallagher and Lurio. The agreement between theory 
and experiment is generally good, the discrepancy in the transition rates 
typically being £ 205. This corresponds to a discrepancy in the 

s,. -
•2 

•V °V2 + \ 

V P 3/2 

D 3/2 * P.V2 

D 5/2 * p s /z 



-13-

"iiilial integrals of x lOli, and reveals that our wave functions are 

reasonably accurate in the range r ?• 2A. 

The osci l la tor strengths V,. are defined by 

, :fi "( -J—~ I - T T <") 
" \ 2J. <• 1 J Ic w" 

where J., J_ are the initial and final total electronic angular 

momenta. These quantities have previously been calculated 
12 by Anderson ct al. by a method similar to ours (one-electron Dirac 

wu.'e-function and central potential). Table III includes a comparison 

of their calculated oscillator strengths with ours for nD •» 6P and 

n.S -• 6P transitions. Table IV gives the same comparison for 7P •+ nS 

and 7P •* nD transitions, the radial integrals for which are needed in 

evaluation of ii.-. and £„ (see Sections 4 and 5). Our calculated c .cillator 

strengths and those of Anderson et al. are nearly identical, which 

suggests that the discrepancies (£ 20%) between calculated and observed 

values are due to a failure of the OECF approximation, rather th"I 

merely to an inadequate central potential. Thus to obtain more accurate 

results it may be necessary to go beyond the simple OECF model. 

3. MAGNETIC DIPOLE TRANSITION RATES 

3.1 The Relativistic Contribution 

The relativistic contribution to#Z arises from the transition 
.10 matrix element: 

v !-* -*. * 
g^kr ) (24) I f i = i e i 5 1 j i i r tj)f (r) a ^ ( r ) - — ' 
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whcre gj(kr) = -t/jkT J 3/?C" ' ) i s a spherical Bessel function. Using 

Uq. (12) for ij/j, i|if which are both r, scates, employing a = ( " ] anil 
1 '* V a O / 

(a • r/r)x^ = " ^ i t and ut i l iz ing tho anti-conmutation of o • r / r 

and o* i?Y,_, wc obtain lm 

V f i = - i e Vlu J dr g. (kr) (f f 8 i • f i 8 f ) 

C u f -<• / r do. x o . v v ; 1 M i 
lm X - l 

Wc rewrite th i s as 

V f i = (-1)'" 75737 u) 3/ 2 u f i • gm 

(25) 

(26) 

where 6 is the spherical unit vector: 

V » C V ^ 7 I r Y l m ) (27) 

and 

"f* 2 - * ./TTTT-v „"i 

(28) 

J dQ x _ o • * ^/4 :^T r Y. <. i " " " ' " " " - ' ' ' l m X - l 

for P, -<• P, transitions. The expression for \ic. • S in the case h h r fi m 

S, - S, transitions is the same except for a change in sign. 
•2 -i 

To find the transition rate 

of 

A - 2, |V f i| 2 - p tff. • g j 2 (29) 
we sum over final and average over initial states to obtain: 

3 2 I f g l ( k r ) I 2 

' A = 4U.V J 7 — — (f f g i * gffi)dr J 
(30) 
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This formula was previously obtained by Johnson for the 22S, - 12S, 
Ml transition in hydrogen. The result is also valid for allowed h - !5 

transitions. In this case u f i of Eq. (28) approaches the familiar 

Sfi = J * t [ 7 L + ê 4 ] * i d 3 r (JD 
in the non-relativistic limit. This expression vanishes if the radial 
parts of iji. and ty. are orthogonal. 

2 ? We use our OECF radial wave-functions for 6 P. , 7 P. states to 
compute the result: 

R̂EL * eJ -\r (fi«f + « i f f ) d r * -1'757" 1 0 "B ( 3 2 ) 

The extremely small size of this matrix element implies that relatively 
large corrections might occur due to interconfigiiration mixing, hyper-
fine mixing, and the Breit interaction. 

3.2 Interconfiguration Interaction Correction 
Electrostatic interaction of the outer electron with excited core 

states alone (as in Appendix A) does not directly effect the Ml tran­
sition rate, since it mixes only those states having the same total 
L and S ( P, in T£). However, in second OTdeT, Spin-orbit 
coupling allows an admixture of different L, S atomic f (e.g. 
P, in TH) and this admixture can give rise to a finite . jmplitude 
even in the non-relativistic limit. 

A consistent fourth order treatment is necessary; the calculation 
which follows is similar to that done by Phillips for corrections to 
gj(Cs). 1 4 Since the ground configuration of Tt is (is2 5d 1 06s 26p), 



i 

- l b -

wc only consider the effects of 6s-electron excitation (the correction 

due to 5d excitation turns out to bo smaller). 'Hie unperturln'd 

s ta tes are 

.!• = !^(62P, ) = 6s 2 ( 1 S„) dp 2P, 

^ .= H7\) = 6S-( J S 0 ) 7p £P, 

The f i r s t -Tdor perturbation is the electrostat ic interaction and the 

perturbing states considered are: 

* 6 = 6s7s( 3 S 1 ) 6p 2P,. 
(3-1) 

* 7 = 6s7s( 3Sj) 7p 2 P, s 

Thus the perturbed states are 

*6 " *6 + a6*6 + a7*7 ( J S ) 

h = h + B6*6 + B7*7 
wuere a,, 017, be, By are calculated by first order perturbation theory, 
and antisymmetrization of the total wave function is taken into account. 
For example: 

a 6 = -rm G l

C 6 s ' 6 P | 7 s ' 6 P } 

where G,(6s, 6p; 7s, 6p) i s the exchange e lect ros ta t ic integral , 

Ali = E(*,) - E(iKr), and E(*,j is a f ict i t ious energy calculated for a 

6s7s6p configuration in the potential of Eq. (4). Numerical compu­

tation gives: 

a 6 = -0.010, a ? = +0.023, 6 6 = 0.094, g ? = 0.006 . (36) 
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3 i 
'IIK' ('S7s('S.)np "P, states arc now mixed with states 

*' (41', ) = f.s7s(3S,) n'p 4P, (37) 

hy spin-orbit interaction. We employ the perturbation Hamiltonian 

II' = I f.. • {.. - S . = '. jU $!•) [.- S. (38) 
. i i l • '• \ r 3 r / I I ( ' 
i l i 

and rewrite our wave functions as' 

+ V*7 + W V * b7* f̂4P,2)] 
and 

4 d 
i i ' f P 1 + t- * i r H p ' ' 7 - *7 + a 7 [ * 6 + C 6 * 6 ' V +=7*7t V 3

 ( 4 Q ) 

+ B 7 [ *7 + d 6 * 6 ( 4 p ! s

) + d 7 < t , 7 ( 4 p ! , ) I 

ITic coefficients a, . . . . d - are calculated from the observed P-state 

fine structure sp l i t t ing . For example, 

2 „ [E(fr 2P,, 2) - E(6 2 PJ] 
a , - ^2 . 5JL i _ f 4 1 ) 

AE 

where Al: = K(i|<6) -F.(4g). We find: a 6 =+0.033, a ? =+0.0081, b f =+0.012, 

h ? = +0.0029, c b =+0.061, c y =+0.012, d f i=+0.022, d ? = 0.0043. The 

interconfiguration interaction correction to Tn. is now computed from 

Hqs. (39), (40) b;' means of the formula 

In the evaluation of a l l the perturbing terms we use the non-relat ivis t ic 

form (31). We find: 
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Vnu = [(a 7c 6 + 6 7 d 6 ) ( V 6

 + W * ( a 7 c 7 + B 7 d 7 ^ V ? + W • 
4 P 1 . „r 2D 1 1 . 5 . = .i o v in-6 .. ( " ) '•itgf \ ) - g{\)] • J ' "1-9 * 1 0 

B 

Inclusion of higher s-state excitations (6s ns np) docs not significantly 

change Eq. (43). However, since the e lectrosta t ic exchange integrals 

are fairly sensitive to small changes in wave-functions, the 4th order 

result (43) might be in error by as much as a factor of 2. 

3.3 Breit Interaction Corrections 

The OECF approximation used up to now does not include a complete 

description of electron-electron interact ions, even i f we assume a 

spherically symmetric core. To order v / c " , the electron-electron 

interaction contributes a term to the Hamiltonian: 

i<k V ̂  rik" / :<k rik 2 

The first term on RHS of (44) is in fact partially included in the 
central potential (Eq. 4) but the second term is not, and must be 
regarded as an additional perturbation. This term may be reduced to 
the following expression (Breit interaction) : 

lft ik ( 4 5 ) 



-19-

ln order to calculate the contribution of this interaction to the Ml 

transit ion we replace p by p + eA (electron charge = -e ) , where 

A = li« r /2 . 

Thus wc obtain: 

All. I!, erf £ L ( * , r i r " V - v V S 
* • * ! 'ik 'ik'Pk 

'ik A r i k 

(461 

16 This expression has been derived previously by Abragam and Van Vleck, 
17 

and Schwartz. We now consider the special case of one electron out­
side a spherically symmetric electron distribution; it has been shown 
that only electrons outside of closed shells give non-vanishing 
contributions. 

It can then be shown that the matrix element ol the first term on 
18 R1IS of (46), called the "Lamb" correction, 

r 2 )dx 2 

f j ( r x ) dtj (47) 
- e 3 /",* - - - rfACr2) p(r. 

*»i. = rjh C r i ) 0 i "V J — ^ * ; 

where p(r 2) = J t , , ^ ^ ( r ^ 

For present purposes we choose if)., iK to be 6P, , 7P, wave functions, 
respectively; for p(r~) we insert the spherically symmetric density 
obtained from our central potential, and we set 5 II z. Then the amplitude 
for the m. h •* m,. = !j transition is reduced to a sum of radial integrals: 
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\ = 7 » [ - 7 f - < V > + T < w > ] («) 
where _ 

< V > = / H J r 2 P C r 2 ) d r 2 F ( r ^ .'{ 
•'o r i L o J 

0 L ' r l 

drj (49) 
I) 

imd 

<W> = | l=(r,)| | p ( r 2 ) r 2 d r 2 P M r p r ^ d r j (50) 

and F, F1 are the non-rclat ivist ic 6p, 7p radial wave-functions, 

respectively. The resulting contribution to ^i i r evnluated numerically 

to be (The<V> and<W> terms enter with opposite signs and largely cancel.) 

7nh ' - 4 x l ( f 7

 M R (51) 

The second term on RHS of (46), called the "orbit-orbit" correction, 

gives the following matrix element: 

*»0R " ~if< fy [ ^ j f l p C r 2 } r 2 4 d r 2 + / " ^ 2 d r 2 h i 

x BI|,J f r ^ d 3 ^ (52) 

For 5 II £, m. = h •+ ml = %, th is becomes: 

-e 3B %R = V [ < W > + < V > 1 ( 5 3 ) 

which yields the following numerical contribution to 5̂ ? 

y?lm = -1.20 * 10" 5 p B (54) 
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3.4 Total Theoretical Ml Rate; 
Corrections to g,(TH, 6 P, ) 

We collect the four contributions to the Ml amplitude (Eqs. (32), 
(43), (51), and (54)): 

9 ) 1 = ^REI, + ^11 + ^ L + 2*0R = - 3- 2 , < 1 0" 5
 B

 ( 5 5 ) 

Our analysis of hyperfine structure indicates that there is an uncertainty 
of ~20» in the calculation of relativistic effects. In addition, ? ? 7 U 

has an independent uncertainty of ~0.15??Z.. The combined theoretical 
uncertainty of 7f\ (Eq. 55) is estimated to be-l.Oxio" p 

The Zeeman energy shift in a constant magnetic field B is related 
to gj by: 

AE = y BgjmjB z (56) 

Tn zeroth o rde r 

J (J+1) + L(L+1) - S(S-H) + J ( J+1) * S(S+1) - L(L+1) 
g 

2J(J+1) ° 2J(J+1) 

where g„= 2.002319114. The corrections to g. are obtained in the same 
manner as those described in Sections 3.1 - 3.3, merely by computing 
2 2 6 P, -6 P, diagonal matrix elements. The results of this calculation i i 19 arc displayed in Table 5 and compared with experiment. The agreement 
is very good. We expect an error of i 154 for 6g from the same 
considerations mentioned above, modified slightly for 6iP, -6 P, 
diagonal elements. The very close agreement (~34) is, we believe, 
fortuitous. 
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3.5 Hyperfine Mixing 

Next, we calculate the additional contributions to the Ml amplitude 

arising from admixture to 6P, 7P wave-functions of 7P, 6P components, 

respectively, due to hyperfinc interaction. According to f irs t order 

perturbation theory, 

-j— , <?\,v |iiu,..c,l <\,r> , 
|6ZP, ,F> = |6 /P,S,F> + '—fv l ? V F > ( S ? ) 

'6p " J7p 

-i •> <62P, , F ' | I W l 72P, ,F'> , 
\T\,F'> = \1% ,F'> + i - ^ 2 |6^p, > F>> f 5 8 ) 

S % • h bp 

where the |...> indicates a perturbed state, and H„,.,..., given by Eq. [161, 
is diagonal in F, the total atomic angular momentum. This contributes 
to the Ml transition matrix element as follows: 

J-v <7\,V< |M1| 6^P,.,F> [ f f s * (<7P,F | r ^ p S | 6P,F>-<6P,F' |H|rj-s|71>,F'->) 

• • <nP, ,F' |M1| nP, ,F> (59) 
b6p b 7p 

where on the RHS we use the non-relativistic Ml operator, whose matrix 
elements are ndependent of principal quantum number n. It is interesting 
to note that the LHS of Eq. (59) vanishes for F = F 1; thus this correction, 
unlike the previous ones, only affects F = 0 -»• i:l = 1 and F = 1 + F' = 0 
transitions. The hyperfine matrix elements on the RHS may be computed 
by the methods of Section 2.3 with the following results: 
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Por F=0, !••• = 1, 

Ml | | | : s = +2.6 x 10 u B 

For F= 1, P' =0, 

M 1 F'=0,F=1 . , , v i n-6 / T Ml H p s - -2.6 x 10 „ B . V I 

3.6 Other Ml Transitions 

The methods outlined in Sections 3.1 - 3.3, and 3.S may be used to 

calculate other TJfc Ml transitions, forbidden or allowed. These include 
2 2 the 6 P, - 6 Pi transition (allowed) which has been suggested as an 

2 2 interesting candidate for a neutral current experiment, and the 6 P, - 7 P5 , 
2 2 6 P, - 7 P, transitions which are not so strongly forbidden as nP, -n'P, 

and nPj -n'Pi cases, since for V v ^ or \ + h, the radial wave functions 

are not fully orthogonal. In what follows we ignore the small higher-

order effects considered in Sections 3,2, 3.3, and 3.5, and consider 

only the one-electron amplitude of tq. (28). For nPj - nP, transitions 
-2 'S 

we find 

V>* = 2" |Vfi! - e a IJ^TS-V&^'M 
and similarly for h + h transitions. The results are tabulated in 

Table 6. In the allowed cases, the Ml matrix elements are within 2% of 
2 2 the non-relativistic value -vT/3. while the forbidden (6 P, - 7 P3 , *5 -2 2 2 6 P3 - 7 P,) matrix elements are about 104 of the allowed values, 

which corresponds to the expected magnitude of spin-orbit coupling 

effects. 
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These transit ions also have non-zero e lectr ic quadmpole (1:2) 

amplitudes. We obtain: 

A, E2 ~ 75 
1 J. S e ID JVS dr (63) 

The portion of the E2 amplitude which is proportional to 

/Bf r 8; dr is quite negligible. Table 6 includes a tabulation of 

the E2 radial integrals and resulting A coefficients. The coefficient 

A r, (6 Pj •* 6 P.) has also been calculated by Garstang^ and his 

result (0.11 sec ) and ours are in agreement. 

4. PARITY VIOLATING El AMPLITUDES 

4.1 62P, + 72P, Transition 

As previously discussed (Sec. 1) parity-violation in the electron-

nucleon weak neutral interaction manifests itself in the matrix element: 

®W * •+ •* I ^ilW = ~ZT *I W Yr*2 W L (64) 
We write the perturbed 6P, 7P states as: 

^ , <nS,. | H m, | fiP,.> 
(6?) 

(66) 

6P, > = 6P,> + / ^ = = 
n E6P cnS 

- i"-V 

V 1 ^ 1 HPV l 7 V 
|7P,.> = |7P,s> + 2 ^ ' 3_ 

n E 7 P " ^ S 

|nSj> 

From (64) wo obtain: 

<n.\ iHpyl n ' P ^ - i 4 5K i [ f n s W g n , p ( r ) - f n , p ( r ) B n s ( r ) ] . 6 'V'p 
(67) 
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This expression is averaged over the nucleus assuming a constant 

proton- and neutron- density. As an alternative, one may assume a point-

likc nucleus, and evaluate <n.S|I]—.|n'P> at the nuclear radius; this 

increases the numerical value by b%. The El matrix element is obtained 

by evaluating: 

<7V, | El | 57, > 
y -7Pla|I-l|nS:- < n . S | H p v K 

n s n6P" EnS 

^ <7P. |Hpv|nS> <nS|l21|6IV 
* 2 ^ —~ —' (f'8) 

n s E7P " EnS 

For the El matrix olements on RHS of Eq. (68) we have 

< nS |E1| P, > = e <nS|e-r|P,> = c / f f irf p dr • x ™f 
e • e x r*l 

?/ f s " . dr , fia_ = m = -h) (69) 
O I- -S p 

Expression (68) is evaluates by two methods: 
2 

1. A sum is taken over the lowest five states |6s ns>, n > 6 ; 

and the effect of the autoionizing |6s 6p 7p> state is also taken into 

account by including in the sum a term corresponding to the unphysical 

state |6s 6s>. (See Appendix B for this argument.) 

2. The operators / -^ "r-L a r e replaced by Dirac Green's 

functions, described in detail in Appendix C. This calculation includes 

the contribution of all intermediate S-states including continuum 

and autoionizing states and is thus more reliable and complete than 

method 1. 
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The results are summarized in Table 7. The Green's function 
method yields the numerical value for £_. = < TP, |E1| ̂ P,> in Eq. (68): 

8 ^ = 1.93 i • 10" 1 0 (̂  |pB| (70) 

which corresponds to an A coefficient: 

A - 1.20 • 10' 1 6 Q^ sec" 1 (71) 

In the Weinberg model, 

0^ « Z (1 •• 4 sin 20 w) - N s -140 (72) 

for ll, using sin 0 • 0.3 as suggested by the experiment of Reines 

et a l . 2 2 Thus we obtain from (70) and (72): 

Spy = -2.70 i • 10" 8 | p B | (73) 

For the circular dichroism 5 i t can be shown that one obtains: 

21m (fipy)^ 2Im(S ) 
6 ' 7 ,• * ™ (74) 

\*i\z + \*\2 m 
Inserting (73) and the experimental value of 9% from Eq. (3) into (74) we 
obtain: 

6 - -2.6 • 10" 3 (75) 
This result is to be compared with the calculation of Sushkov, 

'expt 
22 FlambauDi, and Khriplovich, who obtain, also using V^eat fromEq. (3), 

6 * -2.5 • 10" 3 (76) 
To calculate Spy, they use non-relativistic hydrogenic wave-functions with an 
empirically determined correction factor. Their radial El integrals are ex­
tracted from experimental evidence where available, or from numerical 
calculations, and a finite sum over the five nearest levels is performed. 
It can be seen from Table VII that our complete Green's function evalu­
ation differs from our finite sum by about 20S. The close agreement 
of Eqs. (75) and (76) is therefore somewhat fortuitous. 
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4.2 Other Parity-Violating Transitions 
For P, - Pj,, transitions we may ignore the effect of H™, on the 

P,,- state since J = 3/2 wave functions have extremely small amplitudes 
at the nucleus. Thus, 

_ V 1 <P3/2 lE1l n S > < n S lHPvl V 
<hn IEII v = 4 - - ^ i — - — E L ^ L - ™ 

ns r.p t:^ 
h 

These matrix elements were evaluated in the same way as described above 
for £„,. Ihe results are summarized in Table 8, where 

<P, / 7 |E1| nS> = ~ l i p r fc dr (77a) •=?/' r V 2 , C M „ 3 , - — ^ x p ^ r x ^ 

5. STARK EFFECT 
5.1 62P. - 72P, Transitions *£ -a 

We now calculate the electric-field-induced El transitions which 
2 2 2 

can occur between 6 P, , 7 P. levels through Stark-mixing with S, 
D, / 2 states. The coordinate system is shown in Fig. 2. Action of the 

-*• •+ perturbation H' = eE • r » eE y results in the perturbed states: 

E lnSxnSl eE„y |NP,> J —2_JLJ« 

• £ |nD3/2><nD3/2 K ^ "V ( 7 8 ) 

" D3/2 ^ - E r J ) 3 / 2 

Thus an electric dipole transition stimulated by laser photons with 
linear polarization 

t = cose f sine Z (79) 
has amplitude: 
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£ = <72P, | El | 6 2P,>, h Stark 

. y . ^ 2 ^ |ee . f |n |><n|ei : o y|6 2 P^ 

n = S, , I ) , , , s tates 
\ - En 

<7 2 PJeE y|n><n|ee-r|6 2P,> 
L, —: ; («o) 
n n7P, s - Rn 

The result of a calculation of this amplitude may be represented by a 
2«2 matrix whose rows and columns are labelled by m,(6 P, ) and 
mj(7 Pi) respectively: 

Ss = e4E_ 

•jf7 V = * 

h -H = V 6 V 

acosG -iSsinO 
-igsinO acosO 

(81) 

Here 

and 

(82) 
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whcre I-:() = li(ft"P, I, !i? = U(72\\), and R^,^ = <7 \>h\T\n\>, etc. 

The quantities a and 3 have been evaluated by summing over the nearest 

S and I) states, and also [jy use of the Green's function, Appendix C. 

The results are summarized in Table 9. 

Chu, Commins and Conti have measured (i/ot. Their result: 

P / , 1 ,L-Xpt = " • M , 8'" 

is in good agreement with the Green's function value of Table 9. Those 

theoretical values of a ami B were employed by them to determine the 

experimental value of 771 as described below. 

5.2 Experimental Determination of Ml Amplitude 

A finite 7 P, final state polarization can arise along the ? axis 

of Fig. 5.1 through interference between Jfyand/or £„, and £<,. Inter­

ference between7?land £ may then be utilized to measure ??i. Here the 

effects of 6 which are in any case very small, are neglected. In 

an extension of this experiment now underway, interference between 

£,,„ and f; is utilized to determine S_. itself. 

In order to facilitate comparison with observations in which some 
2 2 of the hfs components of the 6 P, - 7 P, transition are resolved, we 

replace the matrix of Eq. (81) by one whose rows and columns are labelled 
2 2 

by l:', nip, (for 7 P, ) and F, m,. (for 6 P,J, respectively. Including 

'"pv.^and s c , the total dipole amplitude D ir given in Table 10. 

In the experimental determination of/^, the 6"P, hfs splitting, 
2 2 

but not that of 7 P, , is resolved. Thus the 7 P^ polarization is given 
by the formula: 
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E m l n p ' ' m F ' l 2 

m,;,mV ' ' I- ' 

""- E Kj?" „,., 
III|.,lllp ' 

Neglecting \7?i\ compared to |6q| (which is jus t i f iable for the rather 

large li fields employed) Eq. (84) becomes the following for the four 

indicated cases of interest : 

3 a 
P = 0 

a) F = 1, F' = 1 t II t (0=0) 

b) F = 0; F' = 0 e n £ (o=o) 
c) F = 1; F' = i.o t i t (0=90°) 

J) F = 0; F' = 1 e 1 £ (0=90°) 

P = - | | ' (72P, hfs unresolved) 

-2 f 
We now apply the hfs mixing correction of Eq. (60) to case d) (it also 
applies to case c but this was not observed in detail). The resulting 
ratio P d '/P is then in good agreement with experiment. From their 
measurements of P and/or P, Chu et al' obtain the experimental value 
of 9>l given in Eq. (3). 

5.3 Interference of Spy and Sj, 
When the incident light is circularly polarized, it becomes 

possible to measure the interference between E and £ s , again by 
2 detecting the polarization of the 7 P, state (by means of circular 

polarization of its decay fluorescence). The formulae analogous to 
Eq. (85) are readily obtained from Table 10. We quote only the result 
for the F = 0 + F' = 1 transition: 



-31-

p = , * _ii (86) 
w + f r + «2Cfi-fr + r e 

where f =771- ry:pv, n = ±1 for RHC (LUC) laser light, and the 
approximation P=-2f/B is valid for large electric fields (E>>1 V/cm). 

6. PARITY VIOLATION IN 2P, - 2 P 3 TRANSITIONS ! -i 

I'or the transitions 62P, - 6 2P, , 62P, - 72P, , and 62P, - 72P, , we 
include E2 as well as Ml contributions and write: 

<T> = <Pj |ti • xxc + ec • r + ie(c-r) (k-r) I P, (87) 

where JJ = eh/2mc (L + SJ, and e = y cos8 + z siiiG. 
The resulting transition matrix is given in Table 11. .Tie polarization 
is calculated as in Eq. (86) with the result 

2?n- luce™,) 
P = , = E L _ (88) 

M 2 •! t<e2>l2 

The numerical results are summarized in Table 12. 
2 2 The transition 6 P, • 6 Pi has been discussed as a candidate for 

optical rotation experiments to detect parity violation. We compare 
2 2 -7 

our value of the 6 P, - 6 P3 polarization 4.17.10 , with that obtained 23 from the calculation of Henley and Wilets : 
P = 4.80 • 10" 7, for sin 20 w = 0.3 (89) 

The discrepancy of 15% is largely due to the <fi,> amplitude which Henley 
and Wilets ignored. Once this correction is made, the two calculations 
agree within 2%. 
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I Ion ley and Kilets used a Green's function technique with hyhrid Dirac-

Schroedinger wave functions; that is, relativistic wave functions arc 

calculated for very small r and matched to non-rclativistic functions 

at larger r. liinpirical energies rather than calculated energies 

(which in their case differ by ̂ 20$) are inserted, although it is 

claimed that this does not change fip,, substantially. Since Henley 

and Wilets do not report calculations of TH parameters other than 

<ip., (6"P,-6 PJ/T) we cannot make an accurate comparison of their cal­

culation with ours or with experiments. 

We note in passing that in calculations * of the optical 

rotation of the- currently investigated S,,,- D, ,, and S^,,- DV/, 

transitions in bismuth, the effect of <fi,> is ignored. In the cal­

culations of Garstang for these transitions, the fi„ amplitude in 
M S , , 7- -n,,, is in fact negligible, but the large C, amplitude cal­

culated for S,,-- D 5 / ? would reduce the optical rotation by V50°. 

A more precise calculation may alter this result substantially. 

The n transitions f>2pr/2'72pi/2' 1/2 P3/2 m s v a l s o b e c o n s i l l e r e t ' 
in optical rotation experiments, although the experimental diffi­
cult ies are formidable. 
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FIGURE CAPTIONS 

Figure 1 Low-lying energy levels of the Tt atom (not to scale). The 
2 2 hypcrfine structure splittings of 6 P., 7 P. states are 

shown. Absorption of the 62P, -72P. Ml photon (292.7 nm) is 
detected by observing fluorescence at 535 nm. accompanying 

2 decay of the 7 P, state. 
Figure 2 Coordinate system and orientation of electric field E, laser 

beam, and detectors as described in this paper and utilized 
in the experiment of Chu, Commins and Conti. 
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APPENDIX A 
Interconfiguration Interaction and Hyperfine Structure 

of the 62P,,, State 
2 It is well known that the observed hfs of the 6 P, /, state in TI 

differs markedly from that calculated in the OMCF approximation using 
10 2 the single 5d 6s 6Pj/ 2 configuration, because the actual atomic state 

contains admixtures of other configurations, ' notably (...6s 7s 6p). 
2 We write the unperturbed wave function (...6s 6 1 as *„ and form two 

possible P,,, C° r pi) states from the 6s 7s 6p configuration. These are 
iK (6s 7s ( S.) 6p P,) with the 1 s electrons in a spin-one state, 
and * 2 (6s 7s ( S Q) 6p Pj) with the total s electron spin equal to 
zero. The states and notation are similar to those of Koster, who 
performs a similar calculation for gallium. We write for the total 
wave-function: 

I)I = <x0i|>0 + a 1 * 1 + a ^ j (Al) 

The coefficients a , , a 2 are given in f i r s t order perturbation theory by 

<*iiviv 
V E i 

(A2) 

and 

<* 2ivk 0> 
a2 = E - E C A 3 ) 

2 
where V = £ ^— and the matrix elements of V in A2, A3 are calculated 

i<j ij 
from the e lect ros ta t ic integral : 
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F 0 (6s, 6s; 6s, 7s) ' ]] ^ t ^ ^ f y ^ %A^%fy d V h 2 

and the similar find direct exchange integrals l :

n (6s , 6p; 7s, 6p) and 

G, (6s, 6p; 6p, 7s). We use the 6s wave-function (ionization energy = 

2.3376 • 10" ) calculated from Eq. (4). This is not self-consistent, 

since that central potential already includes the 6s charge distr ibution. 

However, th is introduces an error estimated at only 10 to 15% in the 

ionization energy. The 7s and 6p, states are calculated in the same 

central potent ial , and the energy denominator is approximated by the 
2 2 2 6S-7S energy difference. Normalizing with a Q + at + ou = 1, we find: 

bP,/. a n = (i.97, ^ = +0.0097, o 2 = +0.23 
(A4) 

61V a 0 = 0.97, aj » 0.029 a2 = 0.22 

The large difference OCJCPJM) - a ,{PJ occurs because of a corresponding 

difference in the exchange integral G, (6s, 6p; 6p, 7s) between 

6P , , , and 6P, s t a tes . 

The hfs sp l i t t ing i s : 

A 3/2 = V^S/Z3 + * a l ( A6S + A 7 s ^ 

- ~ a l a 2 C A6s " A7s> " 3 ^ a l V A 6 s A7s 

\ - V 6 V + i a l fA6s + A7s> ^ ^ " f c " V 

3 ^ o s ' s 

where only the dominating s-electrcm perturbation is included. 
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Tn formulae (A51 we use the experimental value of &--, Eq. (A4), 
and the calculated value A,,, = 13S Ghz. The numerical results are 

2 summarized in Table Al. They show that the 6 P,,, hfs is strongly 
2 affected by configuration mixing while the 6 P, hfs is not. Further, 

similar corrections can be obtained for 6sns6p configurations with 
n>7. That of the 6s8s6p and 6s9s6p configurations is also included in 
Table Al. We find for (>s8sbp3y2: a,=0.012, u 2 = 0.09; while for 
6s9s6p 3, 2, a x = 0.007, c»2 =0.05. 

Because of the uncertainties and lack of self-consistency inherent 

in the present approach, there is no profit in attempting to include 

contributions of configurations 0sns6p,., with n>9. 



Table AI. 

Hfs sp l i t t ing 
Unperturbed including (6s7s6p) Observed 

Hfs sp l i t t ing : correction: Hfs 
State AEQ aE 1 = AEQ * 6(6s7s6pl AE2 = AEX + «(6sSs6p) + 6(6?9?6p) sp l i t t ing 

6 2P, 21.8 Ghz 22.1 22.1 21.33 H 

6 2 P 3 , 2 3.27 Ghz 1.37 0.81 0.518 
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APPENDI:: B 
We demonstrate that the effect of the 6s6p7p autoionizing state is 

taken into account (approximately) by calculating the amplitude £_, if 
2 a term corresponding to the unphysical fts 6s state is included. The 

term in question Is: 
<6s6s7p|e-r|6s6p7p><6s6p7p|H^v|6s6s6p> 

F - F '6s6s6p 6s6p7p 
<bs6s7p|H^y|6s6p7p><6s5p7p|£•r|6s6s6p> 

E6s6s7p " E6s6p7p 

E6p " E6s E 7 " E6s 

(Bl) 

Now: 
<6s6s7p|e-r|6s6p7p><6s6p7p|H'[6s6s6p> = 

- <6s|e-r|6p><7p|H*v|6s> = 
- <7p|M^v|6s><6s|e-r|6p> (B2^ 

and 
<6s6s7p|Hj!>v|6s6p7p><6s6p7p|E-r|6s6s6p> = 

- <7p|g-r|6s><6s|H^v|6p> (B3) 
Furthermore E 6 s 6 s ? p - E 6 s 6 p _ p = - ( E 6 p - E f o ) fB4) 

^ E6s6s6p • E6s6p7p £ "(E7p " V ( B 5 ) 

Inserting B2 - B5 in Bl we obtain: 
<7p | £ -f 16s><6s | H ^ 16p> <7p | H ^ 16s ><6s | £ •? | 6p> 

CB6) 

which is the desired result. 
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APPENDIX C 
Construction and Use of the Dirac Green's F 'action 

The construction of the Dirac Green's function ILLS been described 
by Mohr," and Gyulassy, with emphasis on the case >f a spherically 
symmetric centra] potential. This function is a soli ion of the 
differential equation: 

(II(r2) - E) G(? 1 (r" 2, E) = 16*1?^) (CI) 

where H is the Dirac Hamiltonian with potential V(r,) = V{|r,|) and I 
is the 4x4 identity matrix. Separation of radial an angular variables 
is accomplished by writing 

t t 
iG^r^.E)^ (S^Gj) f (r-^.E^Ce^^); 

(C2) 

where the X (c) are the same functions as defined in Eq. (13). Eq. (C2) 

is jus t i f ied by the completeness relat ion: 

5 3 x K

P ( ? 2 ) x y

K ( S ^ f W* 2 -* 1 )6 (cos6 2 - cose^ 

Only G1^ contributes to 8 ^ (S, -states) while for £ . (Stark mixing), 

the terms C1^ , (S, states) and G ^ 2 (Py2

 s t a t e s ) ' ' " t r ibute . Eq. (CI) 

reduces to . 2x2 radial equation: 
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1+V(r 2 )-E 

1 3 

r2£-zW*T2\/<Z\>-'vV G*2fVri'E> 

r , ^ ( r 2> + r , -1+V(r2)-H / V r ^ r ^ r j . E ) c f f r ^ r ^ E ) , 

1 0 ^ <5(r 2 " r i) 

0 1 

It can be shown that the solution of C3 i s : 

CKlr2.r}.V = 1 
f(E) 

. ( r r r 2 ) | 
^ f r - J F ^ ) 

• e { r z - r , ) | 

where J (E) is the Wronskian: 

(C3) 

G^rJG*^), 

(C4) 

= 0 (C5) 

the solution which is regular as r+0, while/'>) is the solution Q)" '£) 
regular as r •*•«". These solutions are calculated in the same manner as the 
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eigensolutions of Eq. (11), that is, by numerical integration oi the 
differential equation starting with the asymptotic solution either for 
small r (for F , G, and using V(rl in (c) of Section 2.1)or for large r 

-e 2 

(for F > F G >, using V(r) •» ~ r - ) . We note that F, G of (C5)i ̂ rrespond to 
i/r, g/r of Hq. (13). 

The parity violating amplitude £~. of Eq. (68) can be written as: 

SPV = 

J .' -i H 

- [[<$h, ^ H W 5 ^ ! . ? 2 ' E 7 P

) e £ ' ? | ¥ 6 ' p , C?2)>d3?.d3r a 
J J * * (C6) 

Because of the short range character oi H~. the f i r s t term in C6 becomes: 

E e r x - l 

iG0,v 

6u*7 J(E f t 

— 2 . { ( R F ^ - 1 ) ( R . E 6 )8 6 p (R) - (RG^ = -^(R,E 6 ) ) f 6 p (R)f 

R<r nuc 

(C7) 

In practice th i s expression i s averaged over the region R s r where 

r i s the nuclear radius. The second term in C6 becomes: 

— 2 I CRF<K =" 1 }(R,E 7)g 7 n(R) - (RGf* _ 1 ) (R,E 7 ) ) f 7 (R) j 

(C8) 
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A similar calculation was performed for fig (Sec. S). Tn this case on*y 
"large" components (f,F) contribute significantly. For example, the 
matrix element a of Eq, (82) is written: 

' " - * 
/ ? f 7 P

f r 2 > r 2 ^ r A C'-<.E 6 ) ) (r > Fr' 1 ) C^>.E 6 ) )r 1 f 6 p (r 1 )dr 1 dr 2 

- ° J ( V 

,/? VVVVi""""K^m^-^jv,, My^o^dr^ 
J(E ?) 

same as above with K - +21 - 2 , same as above with K = +21 (C9) 

In all of the above expressions, 
r_, = larger of r,,r2 

r < = smaller of r,,r2. 

The expression for 6 (Eq. 83) is obtained in the same way. 
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Tablc II. 

Spectroscopic 
level 

designation 

Fitted energy 
level 

(ionization 
energy, meC2-l) 

Spectroscopic 
energy 
level*1 

Valence-
electron 
hyperfine 

splitting (GHz) 

Observed 
hyperfine 
splitting 

(GHz) 
7 1.1939x10"S 1.1953X10"5 21.8 21.3b 

6p 2P J / 2 9.8745X10'6 1.0062xl0"5 3.27 .528c 

7p2P,s 3.6756X10"6 3.6648xl0"6 2.71 2.13d 

7" 2 p3/2 3.3937x10"6 3.4219X10"6 .494 .62d 

8p\ 1.9199X10"6 1.9158xl0"6 .989 .79e 

8p 2P 3 / 2 1.815SX10"6 1.8254xl0"6 .187 .26e 

7s2S,f 5.4164X10"6 5.5289xl0"6 14.3 12.4b 

&s\ 2.5169xl0"6 2.5S21xlO"6 4.32 

* \ 1.4650x10"6 1.4796X10"6 1.90 

Ws\ 9.594x10"7 9.6260xl0"7 1.01 

Us\ 6.772x10"7 6.811x10"7 0.S9 

Table II References. 

a) C.E. Moore, Atomic Energy Levels Vol. Ill, Circular of Nat. B. of 

Stand. 467 (1958). 

b) A. Gallagher and A. Lurio, Phys. Rev. 136, A87 (1964). 

c) G. Gould, Phys. Rev. 101, 1828 (1956). 

d) A. Flusberg, T. Mossberg and S.R. Hartmann, Phys. Lett. 55A, 403 

(1976). 

c) A.N. Odintsov, Opt. i Spektr. 9, 75 (142), (1960). 
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Table III. 

Transition 
7 T 
7 W 

6ZP,. 

A-coefficient a (Gallagher 5 Lurio) 
in7 c.r-1 

A-coefficient 
(this work) 
10 7 sec** 

Radial 
integral 

<r> f i 

(*) 

Oscillator 
strength 

(this work) (A.A.Sf)" 

11 V 
7 V 6 P V 2 
8 V 6 P 3 / 2 
1 ( , V 6 P 3 / 2 

w \ z - 6 \ 
"S/z-^s/z 
7 D V 2 - 6 P 3 / 2 
8 D 3 / 2 - 6 P 3 / 2 
9 U 3 / 2 - 6 P 3 / 2 

iDyz6lPyz 
7 D , / 2 " 6 P 3 / 2 
8 D 5 / 2 - 6 P 3 / 2 

6.25+0.31 
1.78±0.16 

.78±0.10 

.31±0.06 

7.05+0.32 
1.73±0.16 
0.80+0.08 
0.57+0.06 

12.6 ±1.0 
4.4 +0.5 
1.89±0.3 

.98±0.22 

.58±0.15 

2.20±0.23 
0.76±0.08 
0.37+0.04 
0.19t0.02 

12.4 ±1.5 
4.2 ±0.5 
1.7 ±0.2 

5.78 294.1 .124 .123 
1.75 91.S .0175 .0172 
0.777 51.8 .00625 .00616 
0.412 35.1 .00301 .00295 
0.244 26.0 .00170 .00167 

8.30 422.1 .178 .162 
2.30 103.9 .0180 .0172 
1.01 56.3 .00605 .0059 
.534 37.5 .00285 .00286 

16.04 -307.7 .368 .40 
6.39 -154.8 .109 .121 
3.19 - 99.8 .0434 .053 
1.82 - 71.9 .0257 .028 
1.14 - 55.2 .0156 .017 

2.88 -419.6 .0538 .052 
1.01 -186.9 .0129 .0136 
0.498 -117.5 .00549 .0056 
0.279 - 83.0 .00285 .0029 

16.3 -405.6 .489 .46 
6.06 -186.9 .116 .12 
2.96 -116.9 .0489 .051 

yRef. 11 
bRef. 12 
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Table IV. 

Radial 
integral Oscillator Oscillator 
<r>pi strength strength 1 

Transition (X) (this work) (A.A5T) 

7%-7S -1072.6 .315 .440 
8 V 7 A 
9S

ZH7% 
1 0 V 7 P * 
irs.-7*p. 

991.6 
219.5 
114.3 
75.1 

.241 

.0234 

.00784 

.00277 

.2X 

.0219 

.00741 

.00342 

7\\7hn 
8 V 7 P 3 / 2 
%-7\ll 
1 0 V 7 P 3 / 2 

-1007.8 .476 .440 7\\7hn 
8 V 7 P 3 / 2 
%-7\ll 
1 0 V 7 P 3 / 2 

1240.2 .297 .294 

7\\7hn 
8 V 7 P 3 / 2 
%-7\ll 
1 0 V 7 P 3 / 2 

202.2 .0176 .0164 

7\\7hn 
8 V 7 P 3 / 2 
%-7\ll 
1 0 V 7 P 3 / 2 100.4 .00550 .00542 
6S/2-7\\ 
7}yr7\ 
8S/z7% 
* \ / 2 7 \ 

1321.4 .369 .340 6S/2-7\\ 
7}yr7\ 
8S/z7% 
* \ / 2 7 \ 

- 489.2 .202 .248 

6S/2-7\\ 
7}yr7\ 
8S/z7% 
* \ / 2 7 \ 

- 254.2 .0733 .0850 

6S/2-7\\ 
7}yr7\ 
8S/z7% 
* \ / 2 7 \ - 165.3 

- 120.0 
.0352 
.0199 

.0399 

.0223 

(>2

D3/2'7

2h/2 
7

2

P 3 / 2 - 7

2

P 3 / 2 
8 D 3 / 2 - 7 P 3/2 
9 Z D 7 / 7 - 7 % , , 

1328.0 .0152 .0166 (>2

D3/2'7

2h/2 
7

2

P 3 / 2 - 7

2

P 3 / 2 
8 D 3 / 2 - 7 P 3/2 
9 Z D 7 / 7 - 7 % , , 

- 729.8 .0396 .0418 
(>2

D3/2'7

2h/2 
7

2

P 3 / 2 - 7

2

P 3 / 2 
8 D 3 / 2 - 7 P 3/2 
9 Z D 7 / 7 - 7 % , , 

- 331.0 .00937 .0116 

(>2

D3/2'7

2h/2 
7

2

P 3 / 2 - 7

2

P 3 / 2 
8 D 3 / 2 - 7 P 3/2 
9 Z D 7 / 7 - 7 % , , - 204.9 .00495 .00506 
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Table V. g- fnctor anomaly calculation and comparison with experiment. 

Measured 6 P. g-factor 

0-order theory 

g-factor anomaly 

calculated anomaly 

relativistic 

configuration interaction 

lamb 

orbit-orbit 

0.6656924 (18)" 

0.6658936 

-0.0002012 (18)a 

-0.000107 

<0.000001 

-0.000006 

-0.000082 

Total calculated anomaly -0.000195 

^ef. 19. 
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Table VI 

Transition % x 3/^2" V j C s e c ' 1 ) / f f r Z f i d r ' A^Csec" 1) 
0 (**) 

6 2 p', - 6 2 p3/2 +0.9796 4.083 2.94 • • 10 5 0.158 

6 \ " 7 2 p3/2 -0.0902 3.31 -1.27 • 105 55.2 

72P, - 6 2P J / 2 -0.115 2.18 -3.00 • 105 72.8 

7 \ " 7 2 p3/2 +0.9822 8.706 • 10" •3 2.40 • • io6 3.69 • ID"4 
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Table VII. Calculation of S, PV 

Method A: 
Contributions to t m 

Intermediate 
s-s ta te 

<7P J j|El|ns><ns|H p v|6P ! s> 

E f i - E n 
o n 

<7P l l |H p v |ns><ns|El|6P ! 5> 

E 7 " E n 

| 6s > - i 0.197 • 1 0 - 1 0 Q j u B | +i 0.631 - l O ' ^ I P g l 

| 7s > +i 5.08 - i 1.69 

| 8s > - i 1.77 +i 0.485 

| 9s > - i 0.232 +i 0.093 

| 1 0 S > - i 0.084 +i 0.037 

Total i 2.81 • 1 0 " 1 0 Q w | u B | - i 0.45 • 1 0 " 1 0 Q j u B | 

10 

Method B: 

i 2.36 • 10 i u Qjy. 

i 2.13 • 1 0 1 0 q ju , - i 0.20 • i o " 1 0 OW1MBI 

i 1.93 • 10" 1 0 Q^IPgl 
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Table VIII. ^ for n'P, - n P J / 2 transitions. 

Method I: £ e^iPj^ lEl lnsxnslHpyln 'P^ 

\ S 

Intermediate 
s-s ta te 6 \ 2 - 6 \ ^S/zA A/zA 

|6s> - i 4.22 x - i 0.65 - i 0.86 

|7s> - i 2.83 +i 6.76 +i 3.43 

|8s> - i 0.264 - i 3.13 - i 0.78 

|9s> - i (1.041 - i 0.30 - i 0.14 

|10s> - i 0.041 - i 0.10 - i 0.06 

Total - i 7.45 x +i 2.58 +i 1.58 

Method 2: -i 8.09 x +i 1.75 x +i 1.25 x 
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Table IX 

Quanti ty Sunmed 
Finite sum over 

5 lowest energy levels 
( 7 ^ - l l 5 s v 6 2 D J / 2 - 102D 3 / 2) 

Green' s 
function 
method 

R 7P,nS "nS.oP 
ii x: 3.78 • 10 1 0 3 . 6 4 • I I ) 1 0 

V • ^ n S 

R7l>,nS RnS.6P 

V ' EnS 

R7[',nD ^ , 6 ? 

V • ^ D 

R7P,nD "tiD^P 
E 7 " E n D 

2 P B 
e a (in units 
oh 

volts/cm 

-2.58 • 10 11 

3.50 • 10 10 

8.00 • 10 11 

2.43 • 10 

1.78 • 10" 

0.73 

- 2 . 7 1 • 1 0 ' 

2.81 • 10 10 

7 . 0 1 • • 10 

2 . 0 5 ' ' 10 

1 . 6 4 • ' 10 

0 . 8 0 

11 
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Table X. Dipolo transition amplitudes D - <M1> + <Elp V
> + ^sTARK 5 

2 7 
for 6 P. (F, m p) •* 7 P, (F', m-,) transitions. 

"• V mp 0 

a'cose 

—(TTjsine 

-B'sine 
•Spy C0S6) 

•Tflcose 
+ Spy sine 

—pnsxne 

+6'sine 
+£py cose) 

—C-Zft sine 

-B'sine 
-EpyCosO) 

a'cose-wzcose 
•Spy sine 

—(^sine n 
+B'sin6 
^ p y C0S6) 

0 

-7n cose —Cosine 
1 

-B'sine 
•Spy cose) 

a'cose :-(7?Isine 
I 

+B'sin6 
^ p y COSB) 

—(-»?sine 
/2 

+B'sin6 
"Spy C0S6) 

0 
—Cosine 

-B'sine 
t£py cose) 

a'cos8+/^cose 
-Spy sine 

a' = e E„a B' = e" F.0B 
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Table XI. P - Pi transition amplitudes. 
3/2 ''' 

1 
2 

l 
2" 

3 
2 

+ i 4 £ p v cose 

- y i a? ..iso 

1 
2 

-/tocosB + « ^ sine 

+ i f i pv -j- cose 

1 
2 

+ i f i P V ~ cose 

-7^cos6 + S sine 

3 
2 

- y | a2cose + — i sine 
\ 2 ^ 5 / 

+ i A S 1 -!-2- pv 
j cose 
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Tablc XII. Amplitudes for P,,,-P, transitions. 

Transition 
amplitude ^ m ^ \ ^/Z^H ^ l / l ^ 

.767 

+i 1.26x10"10Q) 

4.85 ,. 10" 9 

7ri' ^ f 1*H H/2 + rh hrf a i ( u , T ) d r N 

&Z= ^ J \ f 3 / 2 r 2 d r !"BI 

CPV= ¥ Z 3 P 3 / 2 l r l n S > < n S l l W l P 4 > W 
E, - E h n 

.98 n .092' ft 

PV 

P(Q =-140) 

.22 

- i 8 . 0 9 x l O " 1 0 O w 

4.17 x 1 0 " 7 

- .434 

+i 1 .75«10" 1 0 Q W 

1.67 x 1 0 " 8 
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II. CALCULATIONS OP PARITY VIOLATION 
IN FORBIDDEN Ml TRANSITIONS IN CESIUM 
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1. INTRODUCTION 
Existence of a neutral, weak, parity-violating electron-nucleon 

interaction implies that forbidden Ml transitions in heavy atoms, e.g., 
62P,-72p. in thallium (Tit) and G2S. -72S, , 62S,-82S. in cesium (Cs) should 
exhibit circular dichroistn. In a previous paper (hereafter referred to 
as I) we presented calculations of the atomic properties of Tl relevant 
to the interpretation of observations of c'rcular dichroism in the thallium 
transition in terms of the Weinberg-Salam gauge field model. Here we 
present analogous calculations tor the Cs transitions. In both cases 
experiments are currently underway to detect the parity violating effect. 

Our approach is the one electron central field (OECF) approximation. 
We find numerical solutions to the Dirac equation for the valence electron 

2 in a "Tietz" central potential: 

V(r) - .-!&^.<L (1) 
r(l + nrr r 

where parameter n is chosen to give agreement between the observed and 
2 calculated 6 S, energies. The wave-functions obtained are used to calculate 

fine and hyperfine structure splittings, and allowed (El) transition rates 
and excited state lifetimes. These are compared with experimental results 

2 2 2 2 (see Section 2). The 6 S,-7 S, , 6 S..-8 S, Ml amplitudes and corrections 
to g.(6iS, ) are calculated in Section 3 and compared with experiment. 
Relativistic contributions to the matrix elements, as well as the "Lamb" 
correction and corrections due to interconfiguration interaction and 
hyperfine mixing are included. We find that the current theoretical 
formulation for these latter small effects is not entirely adequate. 
In Section 4, we present calculations of the parity-violating El amplitudes 
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^ P V ( 6 2 V 7 Z V * ^ W ( 6 2 s > s " 8 2 V b a s e d CT1 t h e Weinberg-Salam model.3 

We find 

and 
SpyCes-SS) - 1.46ixi0 - 1 1 <}w|pB| (3) 

Here |uB| » |efi/2m c| and Q^ - (1 - 4sin flw)Z-N, where 8^ is the "Weinberg" 
angle. Results (2) and (3) are somewhat smaller than earlier estimates 
by Bouchiat and Bouchiat Csee Section 4). Finally, in Section 5 we 

2 2 calculate Stark matrix elements for the transitions 6 S,-7 & in an external 
electric field, and compare our results to earlier calculations by Bouchiat 
and Bouchiat, and to the experimental results of Bouchiat and Pottier. 

2. CESIUM WAVE FUNCTIONS IN THE ONE-ELECTRON 
CENTRAL FIELD APPROXIMATION 

2.1. Construction of Electronic Wave-Functions 

As in I, we solve the Dirac equation for the valence electron in a 
centrally symmetric potential V(r). The latter approximates the nucleus 
and 54 core electrons as a fixed charge distribution. With 

^ xJJ(e,« 
iiLfcl ^(e,*) 

reduces • o .he coupled radial equations: 

!j£ = - | f + [2-E-V(r)]g 

& - [E + V(r)]f + £ g 

the Dirac equation 

(4) 
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Our units are fi = m = c = 1, E is the ionization energy, and other notation 
is defined in I. The parameter n of the potential of Eq. (1] is found 
to be 

n - 3SS.12 %~l - 2.5914 a^1 (5) 
2 by requiring agreement between observed and calculated 6 S, energies. 

The wave-functions are calculated by integrating Eqs. (4) stepwise from 
the nuclear radius R * .016* as described in detail in I. Table 1 presents 
calculated S. , P, , Pj, energies along with the observed values (obtained 
from the tables of C. E. Moore 6). 

2.2. Hyperfine Splittings 

In first order perturbation theory the hyperfine energy is given by: 

W F = - £ - egNuNCF(F+l) - 1(1*1) - J( -1)] (" f M s W d r 
h 4K -1 N N JQ r Z 

(6) 
For C s 1 3 3 (the only stable isotope), I = 7/2, g N • 5.16,8 leading to 
F=4,3 for J-1/2 states and F» 5,4,3,2 for J-3/2 states. Hyperfine 
splittings AE are calculated between the highest and lowest F levels. 
These are related to the usual hfs interaction constants A by AEj=i/? • 4A. ,, 
and AE. -,, * 12A,,2- The results are presented in Table 1, and compared 
with experimental values. Agreement is reasonably good. 

2.3. Allowed El Transition Rates 

For P, -S, and P, - S, El transitions the Einstein A coefficient is 

A = f e V |<Pj|r|S^>r (7) 

In Table 2 we present radial integrals and transition rates for PL-S^I 
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TABLE 1 

State 

Ionization 
energy 

(calculated) 
(m ec2 -• 1) 

Ionization 
energy 

(measured) 

Hyperfine 
energy 

splitting 
(calculated) 

GHz 

Hyperfine 
energy 

splitting 
(observed) 

GHz 

6 Sl/2 7.62024 x :10"6 7.62024x lO-6 9.212 9.193 ±<.001c 

7 Sl/2 3.1232 x lO-6 3.1229 x 10- 6 2.346 2.185 ± .012e 

8 Sl/2 1.7201 x 10-6 1.7117 x 10' 6 0.935 0.876 ± .006e 

9 Sl/2 1.0839 x ID"6 1.0909 x 10-6 0.468 0.438 ± .008e 

6 Pl/2 4.9081 x lO-6 4.9622 x lO-6 1.642 1.168 ±<.001c 

6 P3/2 4.7732 x lO-6 4.7713 x ID"6 0.723 0.611 ± .006fc 

7 Pl/2 2.3392 x lO- 6 2.3301 x lO-6 0.498 0.377 ±<.001^ 

7 P3/2 2.2953 x ID'6 2.271S x ID"6 0.224 0.199 ± .001fc 

8 Pl/2 1.3824 x lO-6 1.3711 x lO-6 0.220' 

8 P3/2 1.3624 x lO-6 1.3450 x lO-6 0.100 0.0916 + .0002' 

9 Pl/2 0.9146 x lO-6 0.9064 x lO-6 0.117 0.093d 

9 P3/2 0.9037 x ID"6 0.8924 x ID'6 0.054 

"H. Bucka and G. von Oppen, Ann. Phys. 10, 119 (1962). 
bK. M. Kallas, G. Markova, G. Khvotenko, M. Chaika, Optik y Spek. 19, 
173 (303)(1965). 

CJ. Abele, M. Baumann, W. Hartmann, Phys. Lett. A 49A, 205 (1974). 

P. Tsekaris, J. Farley, R. Gupta, Fifth International Conf. on Atomic 
Physics, Abstract J13, 250 (1976). 

eR. Gupta, W. Happer, L. K. Lam, and S. Svanberg, Phys. Rev. A8, 2792 
(1973). 

<U. Feiertag, A. Sahm, and G. Zu Putlitz, Z. Physik 255_, 93 (1972). 
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TABLE 2. A-coefficients in Cs 

Transition 
< r > f i radial 
integral (*) 

A-coefficient 
(10 6 sec" 1 ) 

6 P l / 2 " 6 S l / 2 -861.4 37.3 

7 P l / 2 - 6 S l / 2 - 80.4 2.40 

8 P l / 2 " 6 S l / 2 - 30.8 0.S82 

9 " l / 2 - 6 S l / 2 - 18.0 0.245 

6 P 3 / 2 " 6 S l / 2 -846.8 41.82 

7 P 3 / 2 ' 6 S l / 2 -104.0 4.11 

8 P 3 / 2 " 6 S l / 2 - 46.6 1.34 

9 P 3 / r 6 S l / 2 - 28.6 0.623 

6 P l / 2 - 7 S l / 2 747.3 8.00 

7 P l / 2 " 7 S l / 2 -1777.3 3.83 

8 P l / 2 " 7 S l / 2 -181.8 4.39 

9 P l / 2 " 7 S l / 2 - 73.9 0.148 

6 P 3 / 2 " 7 S l / 2 830.3 7.80 

7 P 3 / 2 " 7 S l / 2 -1730.0 4.27 

8 P 3 / 2 " 7 S l / 2 -230.3 0.729 

9 P 3 / 2 " 7 S l / 2 -101.9 0.286 

6 P l / 2 - 8 S l / 2 184.8 2.79 

6 P l / 2 - 8 S l / 2 160S.4 1.54 

8 P l / 2 ~ 8 S l / 2 -5016.4 0.883 

9 P l / 2 " 8 S l / 2 -32'!. 8 0.137 

6 P 3 / 2 " 8 S l / 2 186.8 2.50 

7 P 3 / 2 " 8 S l / 2 17S0.9 1.47 

8 P 3 / 2 " 8 i > l / 2 -2919.4 0.983 

9 P 3 / 2 ~ 8 S l / 2 -396.6 0.217 
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Pj-'Sjj transitions. These numerical values are required for computation 
of 8 p v and Stark amplitudes (Sections 4 and S). 

To judge the accuracy of these transition rates, we calculate values 
of Cs excited state lifetimes. The lifetime of a state |L,) is given by 

^ " (£ Aiv - nvf 
where the sum is over all states |L',,> with energy less than that of 
|L,). Table 3 compares available measurements of Cs lifetimes with our 
calculated values; agreement is, again, reasonably good. 
* 

3. MAGNETIC DIPOLE TRANSITION RATES 

The relativistic contribution to the 6S-7S or 6S-8S Ml transition 
amplitude is 

^REL " 'fh0*1 (*!*£ • Mf** (8) 

where g,(kr) - V"/2kr J.,,(kr) is a spherical Bessel function, and k 
and ID are the wave-number and angular frequency of the absorbed photon, 
respectively. The formula for nP.-n'P. Ml transitions (as in thallium) 
was derived in I and is identical to Eq. (8) except for sign. We use our 
OECF radial wave-functions to compute the numerical results 

^ R E L ( 6 S " 7 S : ) " 9- 0 S x 1 0" 6 I V ( 9 ) 

% E L C 6 S " 8 S ) * s- 6 8 x 1 0" 6 IHBI (10> 
These results and additional corrections are summarized in Table 4. The 
"Lamb correction," discussed in I, arises from the interaction between 



-67-

TABLE 3. Lifetimes of Cs states 

State 
Measured 
lifetime 
(nsec) 

Calculated 
lifetime 
(nsec) 

6 Pl/2 34.0 ± 0.6a 26.8 

6 P3/2 29.7 ± 0.2b 23.9 

7 Pl/2 *58 ± S c 149.0 

7 P3/2 135 ± l b 113.0 

8 Pl/2 307 ± 14e 351.0 

8 P3/2 274 ± 12e 270.0 

8 Sl/2 87 ± 9 d 82.0 

aJ. K. Link, J. Opt. Soc. Am. 56, 1195 (1966). 
6 S . Svanberg and S. Rydberg, Z. Phys. 227, 216 (1969). 
CD. W. Pace and J. B. Atkinson, Can. J. Phys. S3, 937 (1975). 
dJ. Marek, Physics Lett. A, 60A, 190 (1977). 
eJ. Marek and K. Niemax, J. Phys, B: Atom. Molec. Phys. 9, 
L483 (1976). 
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valence electron spin and core electron orbits. For S, -S, transitions 
this is given by: 

5 % L - - i e 2 < W > y B . (11) 

Here (W) - / F(r 1)[/°°p(r 2)r 2dr 2] F'fr^rjdrj where F, F' are the non-
relativistic 6S, 7S(8S) radial wave-functions respectively, and p(r,) is 
a spherically symmetric core electron density, as in I. The "orbit-orbit" 
correction vanishes for S,-S, transitions. 

The relativistic and "Lamb" contributions to the g-factor anomaly 
2 for the 6 S. state may be computed in the same way. As previously noted 

9 10 
by Perl and by Phillips, the calculation of relativistic effects leads 
to a g-factor anomaly which is too small and of the wrong sign when 
compared with experimental results. It has been suggested by a number 
of authors that interconfiguration interaction ' ' might be responsible 
for the discrepancy. As discusssd in I, electrostatic interaction of the 
outer electron with excited core states does not by itself affect Ml 
transition amplitudes or the g-factor anomaly since it mixes only those 
configurations which have the same total angular momentum and spin ( S,). 
However, in second order, spin orbit coupling allows an admixture of 
different L-S states (such as P. , P^ in Cs) which can give rise to 
finite contributions to Ml transitions or g-anomalies. Our detailed 
calculation of this effect is similar to that presented for thallium in 
I, and differs only slightly from the work of Phillips. The ground 
configuration of Cs is Is ... 5p 6s. For first-order excited configura-2 5 2 S tions, we take Is ... 5p 6s6p or Is ... 5p 7s6p. The outer s and 
excited p electrons can form P or P states which we label by I)J?, IJJ" 
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respectively (where n corresponds to the nS valence electron). Thus the 
perturbed 6S, 7S states are written 

|6S> - |6S) + Oji^j + a 2 i | i | + Bjil/j + 621>\ (12) 

|7S> - |7S> + Y ^ i • 72*2 + Vl + 4 2*2 ( 1 3 ) 

2 1 2 1 
L-S coupling mixes the S( P) states with P( P) states, and also mixes 
S( P) states with P( P) and PC P) states. Thus we obtain in second 

order: 
|6S> = |6S> + ... + OJAJC 2 * * ) + a 2A 2( 2$j) 

+ a 2 A 2 ( 4 * 3 5 + e 1B 1C Z*i) + 62B2(2<(.^ + e2B2(4<t,^) (14) 

|7s> = |7s> + ... + Y ^ C 2 * ^ + Y 2c 2( 2*f) 

+ Y 2C 2( 4*3) + *i Di C2*i> + ^VM' + 6 2 D 2 ( 4 < t , 3 } W 

The "V? are mP(T >) states with s-electron radial quantum number n. The 
A., B., C,, D., are determined by the electrostatic interaction between 
outer electrons. The expressions for this interaction are as presented 
by Phillips except that we find a result V6~ times larger from anti-
symmetrizing initial and final states. For example, 

VT Fo + G i 

where F Q and G-, are the direct and exchange electrostatic integrals and 
AE is the perturbation energy denominator. 

The second order coefficients a - , Bj. Y«» &* are determined by fine 
structure matrix elements of the 5p electron state, as computed by Phillips. 
For example, a, - C/vTiE, where £ is the spin-orbit parameter of the 
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5p-hole. Our value of £/4E • 0.07 calculated with OECF wave functions 
differs slightly from Phillips' estimate 5/AE a 0.10. The coefficients 
are evaluated numerically using OECF wave-functions and contribute as 
follows to the 6S-7S Ml amplitude: 

5Wn(6S-7S) - (a^Cj + 6^6^) (^illlli.Sl'j 

+ (« 2V2 C2 + a2 A>2 C2 + WA + ^Z^J-K 5 2!^) 
(17) 

The results for 3PL.(6S-7S) and similar corrections for the 6S-8S Ml 
amplitude and the 6S g-factor anomaly are presented in Table 4. Similar 
corrections due to the (5p 6pSd) configuration have been calculated; 
however, these are substantially smaller (~25% of that obtained from Eq. 
(17)). The overall uncertainty in the interconfiguration interaction 
correction could be as much as a factor of two or three. However, as can 
be seen from Table 4, these calculated corrections are too small to account 
for the observed 6S g-factor and 6S-7S Ml amplitude by an order of 
magnitude. This discrepancy is not improved much by including contributions 
of Sp n'pns (n' > 6) or 5p n'pnd (n' >6, n>s) configurations since their 
contributions diminish rapidly as n, n' increase. Our conclusion, 
consistent with that of Phillips, is that the observed anomalies are not 
due to interconfiguration interaction of this type. 

An appreciable correction to the Ml amplitude arises from hyperfine 
mixing. The size of this effect can be derived from 1-59, as modified for 
Cs 2S, states. We find 

/ \ <nS, , F'|Ml|n& , F> 
hn'S.Fl^gleS.F) - (eS.F'lI^pglnS.F'))- * 3. (18) 

• E6S " ̂ S 
The amplitude vanishes for F"F'; t; s unlike the other amplitudes it only 
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affects F=3 + F'=4 or F=4 •* F'«3 t ransi t ions. The hyperfine integrals 

are evaluated numerically, and we employ: 

(nS^F ' lMl lnS^F) * - | < F'mpjo|Fjiiip) (19) 

The numerical resul ts are summarized in Table 4. An observation of the 

3+4 and 4+3 transi t ions with the same accuracy that Bouchiat and I'ottier 

reported for the 4+4 and 3+3 components of the 6S-7S transi t ions would 

clearly reveal the hyperfine correction. 

TABLE 4. Summary of contributions to the Ml t ransi t ion ra tes . 

g-factor (6g/ |gl) 6S. -7S. 6 V 8 S l < 
anomaly (g* -2) "s "s -i i 

Relat ivis t ic +1.7Sxio* 5 +9 .05xl( f 6 +5 .68xlo" 6 

Lamb +6.2 x 10" 6 +Z.87xio~ 6 +1.78 x i o " 6 

Interconfigu- , „-6 - „ „ ,„-6 ration Inter- -8.3 *• 10 -7.0 * 10 -5.9 x io 
action 

Hyperfine 8 .36xio" 6 x 4 .02xi0" 6 x 
mixing " CF-F') ( F - F ' ) 

v a l u T ^ -1-181 ± 0.002 x lO" 4 -4.24±0.34 x 10" 5 

aP. A. Vanden Bout, et al., Phys. Rev. 165, 88 (1968). 
bM. A . Bouchiat and L. Pottier, Jour, de Phys. Lettres 37, L-79 (1976). 

The poor agreement indicates that we do not fully understand the 
small 10 to 10" , up to fourth order, effects contributing to the Ml 
amplitudes. There do not affect the calculation of &—. since that 
calculation depends on large, first-order, amplitudes such as <El>Sp 
and i|i(r=0). The small size of S_ V is determined only by the small size 
of G p. 
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4. CALCULATION OF PARITY VIOLATING El AMPLITUDE 
According to the Weinberg-Salam model, the parity violating electron-

nucleus interaction provides the following interaction matrix element 
(1-64): 

CO 

"CilHrnrllM - ~ * ! W Y , * 2&l * ( 2 ( ° 
1 F V i iJT y b l l(x-O) 

This mixes S-states with opposite parity p-states, as follows: 

<n'P, |H~, |nS, > 
|nS,> - |nS > + 1 —hLjfJi- |„ . P > 

H * w EnS b wP * 
(21) 

Thus Eq. (20) can be reduced to: 

The "r=0" symbol indicates that the expression is averaged over the 
nuclear volume, and we assumed a constant nucleon density for r< 0.016X. 
An alternative procedure would be to assume a point-like nucleus and 
evaluate <H p v> at the nuclear radius; this produces a value 21 larger. 

An El transition amplitude is now possible between the perturbed 
S-states. Its value is given by 

' <n'P. |H_,|6S, > (nS. iHoJn'P.) 
<nS,|El|6S,> = J. <n& |El |n 'P > * " * * * W , * <n'P.|El|6S. 
, ^ w [ ^ fc6S T I ' ^nS V 

(23) 
where 

<nS!s|El]n'P!5> = e<nS3jE*.r'|n,P,s> = | f f s rf r dr (24) 

and the last expression is derived for the particular case m =m=-!s, 
c = e . The numerical results are sumnarized in Table 5, where Eq. (23) 
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has been evaluated by two methods: 
1. A finite sum over the nearest four intermediate p-states 
2. The use of the Dirac Green's function. 

The Green's function automatically includes all intermediate states, 
including continuum and auto-ionizing states as shown in I. The two 
methods give similar results, as shown in Table S. The Green's for.ccion 
method is considered more accurate, since it is more complete. 

2 In the Weinberg model, with sin e w«0.30 as suggested by the 
12 experiment of Reines et al., 

Q w ' - ((4sin 2e K-l)Z+N) - -99 (25) 

for C s 1 3 3 . This leads to a value of Spy - -i3.47 x10" 9|u B| for the 
6S,-7S, transition. This corresponds to a circular polarization 
(circular dichroism) of: 

2Im(6 w) , 
p = El. = 1.64x10 4 (26) 

J^exp' 

Bouchiat and Bouchiat, using non-relativistic wave functions with 
a relativistic correction factor for <Hp,,>, a modified Bates-Damgaard 
method for e<e"r>, and a finite sum over the nearest four P states, 
obtained a somewhat higher estimate of -i4.7xl0" |>iB| for Spy in 
this transition. 

Using our analysis of hyperfine structure and excited states decay 
rates, we can form a reasonable estimate of errors. Our hyperfine 
structure and fine structure calculations indicate that the magnitudes 
of the P-state wave functions as r + 0 are ~10$ lower than physically 
accurate. However, decay rate comparisons indicate that our <E1> matrix 



-74-

TABLE 5A. Calculation of * m r for the 6S. -7S. transition 

Metf"v* 2: 

PV V7S". 
Method 1: 

Intermediate 
P-state 

c <7S|r|nP, s> (nP^lHpylbS) 

1 % & • * * 

e (VSlH^lnP^) <nl 
3 E 7 S - E n 

|6P> - i 7.823 x l O " 1 1 Q^lvgl • i 6.912 

|7P> +i 5.259 - i 0.809 

|8P> +i 0.303 - i 0.093 

|9P) • i 0.084 - i 0.031 

Total -i 2.18 +i 5.98 
* i 3.80*10" nQ^|u Bl 

-i 1.75 +i 5.24 
= i 3.50x10 " Qy\u •• "'B' 
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TABLE SB. Calculation of 8 for the 6S. -•8S, t ransi t ion. 

Method 1: 

Intermediate e (8S|r|nP ) j><nP, i|HpV!6S> , (SSlHpylnP^). 
P-state 3 E6s " V 3 

E 8s " Enp 

|6P> - i 1.93S x 10" 1 1 Qjugl +i 2.445 

|7P> -i 4.751 +i 0.647 

|8P> +i 5.027 - i 0.303 

|9P> +i 0.366 - i 0.054 

Method 2: 

Total - i 1.29 +i 2.74 

= i 1 . 4 4 x l 0 - 1 1 Q w | p B | 

- i 0.81 +i 2.29 

* i 1.48 x l O " 1 1 Q ^ l 
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elements are too large by~10t. These errors cancel in the evaluation 
of Spy and our S error should not be greater than ~10i. 

S. CALCULATION OF THE STARK EFFECT El TRANSITIONS 

In actual experimental technique (see Bouchiat and Pottier) /%• and 
*py are measured in interference with the El transitions induced by an 
external electric field. 7*1 and Spy are not directly observed but are 
compared to *_, which is calculated. Therefore, it is important to 
calculate a reliable value of S g. 

The coordinate system used in the calculation is illustrated in 
Fig. 2, and is the same used in I. An electric field E e is perpendicular 
to the photon propagation vector e . The photon has polarization 
E ' cosee +sin8e , and the S, states are mixed with P. , Ps states 
by Stark effect. 

InS^) - InS^) •£<n'P,5|eE0-r'|nS!4> In'P^ +^<n'Pj j|eE 0.?|nS J j> |n'P%> 
*'\ ~^T~ "'** ~ZB^— (27) 

There is an El transition amplitude £_ between the perturbed states, which 
we represent as a 2x2 matrix whose rows and columns are labeled by m,(6S,) 
and m,(nS.) respectively 

S s = <nSjs|ec-r|6SJj> 

• \ 

-h 

h -H • nijCfiS^) 
ocose -i$sine 
-igsine acose 
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' S ^ W P ^ "w.n'P^-^ + E 6-E n.pJ 

h 

' \ J 1 "nS.n'P̂  ^ . n ' P ^ E - ^ - + ^=k^J 
H 

+ J E W ^ R 6 S , n - p j E — ^ + B ^ H P») 

where 

R6S,nP, " < V n ' V ' E6 * E ( 6 V ' < 3 1 ) 

etc. The quantities a and $ have been evaluated by summation over the 
nearest P., P; states, and also by use of the Green's function. The 
results are summarized in Table 6. 

Our results can be compared with the calculation of Bouchiat and 
Bouchiat, which was used in the experimental determination of 7K (6S-t-7S). 
Their calculation used the El oscillator strengths calculated by Stone and 
signs determined by the Bates-Damgaard method with a sum over the four 
lowest energy levels. Their value is e a • -1.62x10" l^nl/s 
and |a/6| a 7.0 for Sg(7S-6S). Our value of |ce/B| is 10.1 and agrees 
more closely with the experimental result 8.8*0.4. However, our analysis 
of excited state lifetimes leads us to suspect that our value 
e 2a - -1.97 x10" S |u B|/ X is ~l0t to 20$ too large, so the true 
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value of e a is probably somewhere between our result and that of 
Bouchiat and Bouchiat. 

In Table 7 we combine the calculations of * s, '7>\, and «„. in a 
single 2x2 matrix so that the interference among these amplitudes can be 
readily extracted. Table 7 gives the (6S + nS) transition amplitudes with 
the photon directed along e with polarization E • e cosO + e sine. 
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TABLE 6. Stark effect El amplitudes. 

A. <7S|E1|6S> e 2 a eh 1 a 1 
( ' M P ! ) ( '"B 1 ) 1 p 1 
\vol t s /cm/ \ v o l t s - cm / 

Finite sum method: -2.043 x lO" S -1.78 *10" 6 13.5 

Green's function: -1.972 x lO" 5 -1.96 x lO" 6 10. Of 

Experimental value: -- -- 8.8 + 0.4 

B. (8S|E1|6S) 

Finite sum method: -3.132 x lO" 5 -3.71 x lO" 6 8.45 

Green's function: -3.166 x l0~ 5 -3.97 x lO" 6 7.86 

file:///volts
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TABLE 7 
2 2 n S. - 6 S. Transition amplitudes. 

<nS|El+NQ + E s | 6S> -

(nS.) 
"5 

* h - h « mz((>\) 

' *h a' cose 
+ 9n cose 
- S ^ sine 

- i 6" sine 
+iJ5"Zsine 
+i Spy cose 

= -H - i B' sine 
-i"Pn sine 
- i fipv cose 

a' cose 
- sfccose 
+5pV sine 

e cosB + e sinb 
y z 

e 2a E.. 

z e2B E, 
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