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ABSTRACT 

A computer model is described for the de SQUID in which the two 

Josephson junctions are non-hysteretic resistively shunted tunnel junctions. 

In the absence of noise, current-voltage (I-V) characteristics are obtained 

as functions of the applied flux, ~ , SQUID inductance, L, junction critical 
a 

current, I , and shunt resistance, R. The effects of asymmetry in L' I , 
. 0 0 

and Rare discussed. I-V characteristics, flux-voltage transfer functions, 

and low frequency spectral densities of the voltage noise are obtained at 

noise in the resistive shunts. The transfer functions and voltage spectral 

densities are used to calculate the flux and energy~~oluti~~of the SQUID 

operated as an open-loop, small signal amplifier~ The resolution of the 

SQUID with ac flux modulation is discussed. The flux resolution calculated 

for the SQUID of Clarke, Goubau, and Ketchen is 1.6 x 10-
5 ~ Hz~, approxi

o 

mately one-half the experimental value. Optimization of the SQUID resolu-

tion is discussed: It is shown that the optimum operating condition is 

B = 2LI /~ ~ 1. Finally, some speculations_~r~_made on the ultimate 
0 0 

performance of the tunnel junction de SQUID. When the dominant noise 

source is Johnson noise in the resistive shunts, the energy resolution per 

!..< 
Hz is 4~T(nLC) 2

, where C is the junction capacitance, and the constraint 
1 

R = (~ /2nCI )~has been imposed. This result implies that the energy 
0 0 

1 

resolution is proportional to (junction area)~. In the limit ei
0

R >> ~T, 

the dominant noise source is shot noise in the junctions; for B = 1, the 

energy resolution per Hz is then approximately h/2. 

' 
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1. INTRODUCTION 

1 The de SQUID (Superconducting QUantum Interference Device) is a 

sensitive detector of changes in magnetic flux. The resolution of the 

Josephson tunnel junction device of Clarke, Goubau, and Ketchen 
2 

is 

limited by Johnson noise in the resistive shunts used to eliminate 

hysteresis in the current-voltage characteristics. Approximate expres

sions2•3 for the flux resolution as a function of device parameters can 

be obtained in the limits 8 = 2LI /~ >> 1 or S << 1, where L is the 
0 0 

SQUID inductance, and I is the critical current of each junction. 
0 

However, most SQUIDs are operated with 2LI / ~ 'V 1, for which value no 
0 0 

detailed calculations of the flux resolution are available. Thus, a 

proper optimization of the SQUID performance has not been possible. 

Previous calculations of the behavior of the de SQUID have been 

concerned mostly with the noise-free properties in the zero voltage state. 

For example, the dependence of the critical current on applied external 

1 
flux has been investigated by Jaklevic, Lambe, Silver, and Mercereau, 

4 5 6, 7 
Zinnnerman and Silver, Schulz-DuBois, and by De Waele and DeBruyn Ouboter 

8 9 for the symmetric SQUID, by Fulton, Clarke and Paterson, and Tsang and 

10 11 Van Duzer for asymmetric SQUID, and by Fulton, Dunkleburger and Dynes, 

12 and Tsang and Van Duzer for the SQUID with non-sinusoidal current-phase 

relationships. A qualitative discussion of the noise-free current-voltage 

characteristic for the SQUID in the small inductance limit has been given 

by DeWaele and DeBruyn Ouboter, 6 and by Tinkham. 3 However, no quantitative 

calculation of the flux dependence of the current-voltage characteristics 

has previously been made. 
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After briefly reviewing the relationship between critical current 

and applied flux, we calculate numerically noise-free current-voltage 

characteristics for the symmetric and asymmetric SQUID as a function of 

the device parameters. Next, we extend the calculation to include 

explicitly the voltage noise sources associated with the shunt resistances. 

Noise-rounded current-voltage characteristics are obtained for the single 

13 
shunted junction and compared with those computed by Auracher using a 

14 15 
similar technique, and by Ambegaokar and Halperin and by Fulton using 

different methods. The agreement is excellent. In addition, computed 

voltage power spectral densities for the single junction agree well with 

16 those computed by Vystavkin et al. by another method. We then compute 

noise-rounded current-voltage characteristics and voltage spectral den-

sities for experimentally interesting values of the SQUID parameters and 

determine the flux and energy resolution. The values computed for B >> 1 

and B << 1 are in excellent agreement with those obtained from approximate 

expressions. The measured energy resolution of the de SQUID of Clarke 

et al. 
2 CB '\.. 2. 5), approximately 4 x 10-30 JHz -I, is within a factor of 

two of the calculated value. 

Finally, we discuss the optimization of the SQUID. For the case in 

which the SQUID is operated in a flux-locked loop with an ac flux modula-

tion, we find an optimal value of B ~ 1. As an example of optimization, 

we consider possible improvements in the tunnel junction de SQUID of 

2 
Clarke et al. If the inductance were lowered by a factor of 3 to 0.3 nH, 

and the junction capacitance were lowered by a factor of 200 by decreasing 

the junction area, the energy resolution would be increased by a factor of 

about 15. We speculate that the ultimate energy resolution of the SQUID 

·~· .J 
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may be limited by the shot noise in the junctions to a value given by 

the uncertainty principle, and that is four orders of magnitude higher 

than that presently achieved experimentally. 

17 A brief preliminary report of this work has appeared elsewhere. 

·, 
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2. EQUATIONS FOR THE DC SQUID 

Our model for the de SQUID1 consists of two resistively shunted 

Josephson jtmctionsJ-8 mounted on a superconducting ring (see Fig. 1). 

We derive a set of equations describing the time-dependent behavior of 

the SQUID, including the effects of the Johnson noise associated with 

the shunts. For the general case of an asymmetric SQUID, the critical 

currents of the two junctions are (1- a)I and (1 + a)I Clal ~ 1). 
0 0 

The shunt resistances are R/(1- p) and R/(1 + p) CIPI < 1). The self 

inductances of the two arms are L
1 

and L
2

, the mutual inductance between 

the arms is M, and the ring inductance is L. The constant bias current 

is I, and the time-dependent currents in each arm are I
1

(t) and I
2
(t). 

Thus 

(2.1) 

We define the circulating current J(t) to be 

(2.2) 

We assume that the flux threading each junction is always much less 

than a flux quantum, ~ , and that the currents flowing through the june-
. 0 

tionsobey the Josephson current-phase relation. The currents I 1 (t) and 

I
2

(t) are related to the voltages v
1

(t) and v
2
(t) and phase differences 

ol(t) and 62(t) across the junctions by 

(1- a)I
0 

sino
1 

+ (1- p)(V
1 

(2.3) 

and (2.4) 

Here, V and VN
2 

are the time-dependent Johnson noise voltages in series 
Nl 

with the shunt resistors. The phase differences develop in time according 

l 1 
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to the voltage-frequency relations 

(2.5) 

and (2.6) 

The total voltage V developed across the SQUID is 

(2.7) 

and (2.8) 

The phase differences o
1 

and o
2 

are related by~ 

where <I>T is the total flux threading the superconducting ring. The total 

flux is the sum of the individual fluxes <1>
1 

and <1>
2 

produced by the currents 

I
1 

and I 2 and the externally applied quasistatic flux, <I>a. We can restrict 

<I> to the range 0 < <I> < <I> without loss of generality since all SQUID 
a a o 

responses are periodic in <I> with period <I> . The fluxes <1>1 and <1> 2 are 
· a o 

proportional to the currents ~l and I 2 . Defining £1 = - <I>1/I1 and 

£
2 

= + <I>
2
/I

2 
we can easily show that £

1 
+ £

2 
= 1; we take £ 1= (1- n)1/2 

and £
2 

= (1 + n)1/2 Clnl < 1). The total flux thus becomes 

<l>T = <I>a + 1J + n1I/2 , (2.10) 

where we have used Eqs. (2.1) and (2.2). The geometric quantities 1, 1
1

, 

1
2

, £
1

, £
2

, and Mare related in the following way. Suppose that in some 

time-dependent mode di
1
/dt ~ 0 and di

2
/dt = 0. The inductive voltage drop 

around the entire loop (neglecting any contributions from the junctions or 

shunts) is V = 11di/dT- Mdi/dT. The rate of change of flux in the ring 

yields V = £1di/dt (again ignoring any flux contributions from the junctions 

or shunts) . Hence £
1 

= 1
1 

- M, and, similarly, £
2 

= 1
2 

- M. Using these 
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expressions for M and the fact that dJ/dt = - di
1
/dt = di

2
/dt (since I is 

constant), we can reduce Eqs. (2. 7) and (2.8) to 

v L dJ 
v 1 - (l - n) 2 dt ' (2 .11) 

and v L dJ 
v 2 + (l + n) 2 dt · (2.12) 

These equations include the effect of the mutual inductance even though 

M does not appear explicitly. 

The final set of equations for J and V in terms of the bias current I, 

the applied flux ~a' the noise voltages VNl and VN
2

, and the SQUID param

eters I , R, L, a, P, and n are obtained from Eqs. (2.1)-(2.12) by elimi
o 

nating r
1

, I 2 , v
1

, and v
2

. For convenience, we use the following dimen

sionless units: voltage in units of I R, current in units of I , flux in 
0 0 

units of ~ , and time 8 in units of ~ /2rri R. The dimensionless quantitites 
0 0 0 

are expressed in lower case letters. We define 8 = 2LI /~ • 
0 0 

Eqs. (2.9) and (2.10): 

from Eqs. (2.5~(2.12): 

(1 + n) 
v = 2 

dol (1 - n) do2 
~ + 2 d8 

and from Eqs. (2.1) to (2.6): 

do
1 

i/2 - j - (1 - a) sino
1 

d8 1 - p 

and 

do
2 

i/2 + j 
--= 

- (1 + a) sino
2 

d8 1 + p 

+ VNl ' 

+ VN2 

Hence from 

(2.13) 

(2~14) 

(2.15) 

(2.16) 
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Equations (2.13)-(2.16) can also be used to describe the behavior 

of the SQUID shown in Fig. l(b). This configuration is used in the SLUG~ 19 

and the thin film gradiometer;·ZO In this case, the applied flux is coupled 

to the SQUID by means of a signal current, I . In Appendix A, we show 
s 

that ¢a and j must be replaced by -(1- s)Sis/4 and (jT + is/2) respectively, 

where jT is the total circulating current, and s describes the asymmetry 

in the upper and lower arms of the SQUID. With these substitutions, all 

of the enusing results can be applied to SQUIDs in this configuration. 

In particular, the critical current and voltage across the SQUID are 

periodic in the signal current with period (1 - s)LI /2. 
s 
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3. SQUID CHARACTERISTICS IN THE ABSENCE OF NOISE 

In this section we discuss the behavior of the SQUID in the absence 

of noise. We thus set vNl = vN
2 

= 0 in Eqs. (2.15) and (2.16). 

3.1 Case I: v = 0 

Consider first the case in which the bias current i is sufficiently 

low that no voltage is produced across the SQUID. The largest such current, 

i , is a function of a, 8, n, and ¢a· Although curves of i (¢ ) have ap-
e c a 

5-12 
peared previously in the literature;--- for future reference, 

we include here plots of i vs. ¢ for various values of a, 8, and n. 
c a 

For v = 0, we can set the time derivatives in Eqs. (2.13)-(2.16) equal to 

zero to obtain 

i = (1 - a) sino
1 

+ (1 + a) sino
2 

, (3.1) 

2j = -(1 - a) sino
1 

+ (1 +a) sino
2 

(3. 2) 

and (3.3) 

Eqs. (3.1) to (3.3) are independent of the shunt imbalance, p, as we expect 

for v = 0. We computed the variation of i with ¢ by numerically solving 
c a 

* these equations (see Appendix B). 

Curves of i vs. ¢ for variable a and n with B = 1.0 appear in 
c a 

Figs. 2(a) and 2(b) respectively. Equations. (~-~-p-(3.3) imply that ic attains 

the maximum value, 2.0, for some ¢ whatever the 
a 

values of a, n, and B. 

With o
1 

= o
2 

= TI/2, we have j = a and ¢ = - B(a a + n)/2 at that point. 

The values of i at other values of ¢ depend on n and a in the following c a 

manner. With n = 0, the modulation depth, 6i = i icm1."n' falls to c cmax 

* 10 An elegant alternative method of solution has been given by Tsang and Van Duzer. 
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zero as a is increased from 0 to 1. In addition, the value of ¢ at which 
a 

i . occurs shifts away from 0.5 as the SQUID asymmetry increases. In cm1n 

the limit lal = 1, i = 2 for all ¢ • It should be noted that in the 
c a 

large B limit, 1'1i is much less sensitive to the value of a: Zimmerman 
c 

and Silver
4

demonstrated experimentally that 1'1i becomes significantly reduced 
c 

only when the critical current of one of the junctions fall below 1'1ic(~ = 0) .. 

The modulation 1'1i is independent of the value of n, as can be seen 
c 

from Fig. 2(b). For a = 0, the value of ¢ at i . is shifted from · a c m1n 

¢ = 0.5 for n = 0 to ¢ 
a a 

0.5 - Bni . /4 for n i 0. In faci, the cm1n 

entire ic vs. ¢a curve for arbitrary n can be readily generated from the 

corresponding n = 0 curve. A particular value of i at ¢
0 

for n = 
c a 

0 will 

occur at ¢n = ¢0 
- Bni /4 for n i 0. a a c · 

Since the amount by which ¢n is 
a 

shifted increases with i , the n i 0 curves appear skewed (see Appendix C 
c 

for a proof). 

Curves of i vs. ¢ for various values of B with a = n = 0 are plotted 
c a 

in Fig. 3. 
. . . 21 
Similar curves have been published else,vhere.~;J 

C Let 1'1I = 2I - I (~ /'?..) be the modulation 
c 0 c 0 

depth in dimensioned units. We display the dependence of 1'1I on the param
c 

eters L and I in Fig. 4. 
0 

For variable L and fixed I , the modulation 
0 

depth is expressed in dimensionless units as (1'1I /2I ), and plotted vs. 
c 0 

B = L(2I /~ ) in Fig. 4(a). As L is reduced below a value corresponding 
0 0 

to B ~ 0.1, 1'1I approaches the limit 2I independent of L. Hence decreasing 
c 0 

the SQUID inductance below 0.1 ~ /2I has little effect on 1'1Ic. 
0 0 

The dependence of 11I on I for fixed SQUID inductance L is plotted 
c 0 

in Fig. 4(b). Here,the modulation depth is plotted as the dimensionless 

parameter 11I /(~ /L) vs. B = I (21/~ ). For B ~ 40, 1'1I ~ ~ /L. Thus 
c 0 0 0 c 0 

the modulation depth approaches a limit independent of I for sufficiently 
0 
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large values of I . The experimental points shown were obtained by Clarke 
0 

and 
22 

Paterson using a SQUID with SNS junctions-;--- The agreement is 

excellent. 

3.2 Case II: v > 0 

When the SQUID is biased at a constant current i > i , the circulating 
c 

current j and voltage v oscillate in time. We integrate Eqs. (2.13) to 

(2.16) stepwise in time to determine the dependence of v(8) and j(8) on 

a, 8, n,p, and~. The initial conditions are chosen to minimize the tran
a 

sient response of the SQUID. The resu?:ts shown~ for v(8) and j (8) are taken after several 

oscillaqoos, ~d_t~s. reflect the steady state behavior corresponding to the 

state of least energy of the SQUID. Fig. 5 shows v(8) and j(8). vs. time 

for several values of the SQUID parameters. The period of oscillation 

for v(8) is T = 2n/v in all cases, where v is the time-averaged voltage. 

For the special case of a completely symmetric SQUID (a = n = p = 0) at 

~ = 0, j(8) = 0. For the symmetric SQUID at~ = 0.5, j(8) oscillates 
a a 

symmetrically about zero with period T/2. For all other cases, the 

current j(8) also oscillates with the period T of the voltage oscillations. 

For bias currents very near i , v(8) and j(8) exhibit sharp spikes, indi
c 

eating the presence of many higher harmonics of the fundamental frequency. 

As i is increased, v(8) and j(8) become progressively more sinusoidal. 

This behavior is very similar to that observed in single junctions.-2
_3 

The curves of voltage vs. time can be averaged over a complete cycle 

to yield i-v characteristics as functions of the various SQUID parameters. 

In Fig. 6(a) we plot i~v characteristics for the symmetric SQUID with 

8 = 1.0 for several values of ~ . The effect of changing S on the i-v 
a 

characteristics for~- = 0.5 is seen in Fig. 6(b). As i increases, the 
a 

characteristics approach the equivalent single junction curve (represented 

" 1 
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in Fig. 6(a) as <P = 0, and in Fig. ~(b) asS'\.. 00). Hence the SQUID volt
a 

age becomes essentially independent of the applied flux,¢ , for large values 
a 

of i (i ~ 4.0). At lower values of i, the presence of instantaneous cir-

culating currents through the junctions for <P f 0 produces an increase 
a 

in v over the single junction value. 

The dependence of the average v and average circulating current j on 

<Pa for the symmetric SQUID for various values of S at i = 2.1 is shown in 

Fig. 7. We see that j = 0 for <P = 0 and 0.5 only. 
a 

The dependence· of the i-v characteristics and the curves of j vs. <P 
a 

and v vs. <P on the degree of SQUID asynunetry is shown in Fig. 8 for S = 1. Notice 
a 

that the discontinuity in slope in the i vs. <P . curves is not present in the 
c a 

v vs. <Pa curves. Consider first the family of curves [Figs. 8(a)-(c)] for 

n f 0. The curves of j and v vs. <P with n f 0 are found by shifting the 
a 

curves for n = 0 by flux- nSi/4 (see Appendix C). Since the shift is 

proportional to i, the i-v characteristics for n f 0 cannot be generated 

by a simple shift of then = 0 characteristics. 

The i-v characteristics for <P = 0.5, and curves of j and v vs. <P 
a a 

for i = 2.1 are plotted in Fig. 8(d)-(f) for several values of a, the 

critical current imbalance. As lal + 1, the i-v characteristic becomes 

independent of <Pa• and approaches the single junction characteristic. 

This behavior can also be seen in v vs. <P [Fig. 8(f)]. In addition, 
a 

as lal + 1, j increasesfor all values of <P . 
a 

The curves in Fig. 8(g)-(i) for various values of p show the effects 

of an imbalance in the shunt resistances. For <P = 0.5, the i-v charac
a 

teristics are relatively independent of p. This insensitivity .to p is 

reflected in the v vs. <P curves. However, the curves of j vs. <P are 
a a 

relatively sensitive to the value of p; in the limit of large i, j 

approaches ip/2. 
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3.3 Discussion 

We conclude that the behavior of the de SQUID is relatively insen-

sitive to quite large asymmetries in the inductance of the two arms, 

in the critical currents, or in shunt resistances of the two junctions, 

provided that neither critical current falls below ~i (a= 0). Conse-c---- -------

quently, it appears that near-optimum performance can be achieved with 

a wide range of values of n, a, and p. In the remainder of the paper, 

we will be concerned only with the symmetric case n = a = p = 1. 
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4. SQUID CHARACTERISTICS IN THE PRESENCE OF NOISE 

In this section we discuss the behavior of the SQUID in the presence 

of Johnson noise generated in the resistive shunts. We first discuss our , 

numerical techniques. As a check on these techniques, we show that our 

results for the noise-rounded i-v characteristics and voltage noise spec-

tral densities for a single shunted junction are in good agreement with 

work previously published-J-?-'~e then compute tile ~v characteristics, voltage 

noise spectral density, and flux resolution of the SQUID as functions of 

the relevant parameters. 

4.1 Numerical Techniques 

We assume that the Johnson noise voltages across the external shunt 

resistances dominate any other source of noise in the SQUID, for example, 

h . - . h . . 24 ' 25 h 1 fl . . h . -. 1 s ot no1se 1n t e JUnct1ons , or t erma uctuat1ons 1n t e cr1t1ca 

26 
current • The voltage noise sources vNl and vN2 in Eqs. (2.13)-(2.16) 

are then uncorrelated, each having a white voltage spectral density, 

S~ = 4~TR, or, in dimensionless units, S~ 16 = 4f, where f = 2rrk T/I ¢ . 
-~ 0 0 

We approximate the random voltages vN(6) by trains of voltage pulses 

each of duration ~6 and random amplitude vk. We have used two different 

techniques to generate the vk. In Method I we generate a pseudo-random 

set of Gaussian distributedvk.Wethenintegrate Eqs. (2.13)-(2.16) using 

a simple integration routine. The resultant v(6) is used to calculate 

noise-rounded i-v characteristics. Unfortunately, as we shall discuss, 

the calculation of spectral densities f,rom these v(6) requires large 

amounts of computer time. In Method II we use an approximation for the 
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vk that reduces significantly the computation time for the spectral 

densities. 

Method I. We use a pseudo-random number generator to generate a Gaussian-

distributed set vk of zero mean with <v~> = 2f/68. The computed power 

spectrum of the voltage pulses averaged over many sets is white and 

tends to a constant, 4f, as required. TWo independent trains of voltage 

pulses are used to approximate vNl and vN2 in Eqs. (2.13)-(2.16). We 

integrate the phases o
1

(8) and o
2

(8) using an iterative scheme 8(8 + 68) 

8(8) + 68 d0/d8. The value of 68 is chosen so that 68 do/d8 « 2n. The noise-

rounded i-v characteristics labeled Method I in Figs. ll(a) and 12(a) and the 

transfer functions in Fig. 13. were generated by time-averaging v(8) com-

puted in this way. We estimate that the results are accurate to ± 5%. 

Spectral densities, S , can be calculated directly from the v(8) 
v 

generated by Method I. N values of v(8) at equal time steps 68 can be 

used to calculate S at frequency intervals of = l/N68. For the case of 
v 

a single shunt resistance (i = 0), the values of v(8) are just the vk·' . c 

and the spectral density (averaged over many sets of vk) tends to 4f as 

required. We shall be interested in computing spectral densities for the 

single junction and the SQUID from values of v(8) sampled at time inter-

vals corresponding to n68 ~!lis an integer). In those cases, the averaged 

spectral density for a single shunt resistance is white with a magnitude 

n4f. The additional factor n is a result of the normalization of the vk. 

For vk defined over time steps 68, <v~> = 2f/68, while for vk defined 

over n68, <vk2 > = 2f/n68. Hence generating vk over time steps 68 and 

sampling the resultant v(8) over time steps n68 increases the spectral 
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density by a factor n. It is important to notice that this simple 

relationship will not hold in general for the case of the single shunted 

junction or SQUID, since in the limit f -+ 0 those spectral densities must 

be independent of n. Hence to obtain results for S that are consistent 
v 

in both the noise-dominated and noise-free limits, we must take n = 1. 

The restriction n = 1 limits our ability to calculate spectral den-

sities efficiently from v(8) when v(8) is generated by Method I. To see 

this, we briefly discuss the general behavior of the spectral density for 

i :f 0, f :f 0. The spectral density contains noise-broadened peaks at the 

fundamental Josephson frequency fJ = v/2TI and its harmonics. We are 

0 interested in computing the low frequency spectral density, S , at fre
v 

quencies well below·fJ, where the spectral density is white. As the bias 

current, i, is lowered towards i the harmonics become more important, 
c 

and, as f(T) is increased from zero, the broadening increases. Thus, 

for i rv i , and for experimentally interesting values of r, S must be computed 
~ v 

for frequencies well above and well below fJ. However, the lowest frequency 

-~ ~ is of = l/N~8, where ~8 rv 10 /fJ. Thus N >> 10 (for example, for 

i rv i and f rv 0.05, N rv 106), and the computation of a single 
c 

spectral density is very time consuming. In addition, many spectral 

densities (typically 40) must be averaged together to obtain accurate 

results. We thus use an alternative method to generate vk; this method 

significantly reduces the computation .time for spectral densities at 

experimentally relevant values of i and r. 
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Method II. We generate values of the Fourier transform, vk, of the 

Johnson noise voltages at N equal frequency intervals of. The interval 

of is fixed by the requirement of << f
3

, and N is fixed by the require

ment Nof >> f
3

• The actual values of Nand of are determined empirically 

0 
by computing low frequency spectral densities S for the SQUID for variable 

v 

N and of. 0 
N is increased and of is decreased until S becomes independent 

v 

of N and of. Typically, N = 512 and of = 0.01 f
3

. Our values vk approxi-

mate the Johnson noise in the following way. The Fourier transform of a 

set of Gaussian distributed noise voltages, vk' is a set of complex numbers 

27 
with Gaussian distributed amplitudes and uniformly distributed phases 

We approximate the Fourier transform of the noise pulses by a set of 

complex numbers with constant amplitude and uniformly distributed phases. 

The amplitude of vk is fixed by the requirement <v~> = 2fNof, and the 

random phases are generated by a pseudo-random number generator with 

uniform distribution over [0, 2n]. We find that the voltage_ pulse 

amplitudes, vk, generated in this way are Gaussian distributed. Figure 9 

shows a histogram of the vk obtained from 30 sets of vk in this way, 

together with the exact Gaussian distribution with <v 2 > = 2fNof. The 

agreement between the two curves is good. This approximation enables us 

to compute smooth average spectral densities for a single junction using 

only one set of vk, and for the SQUID using only a small number of sets 

of vk. 

The Fourier transforms of the vk were taken as representative values 

of the Johnson noise over pulse times o8 = l/2Nof. Since o8 was consi-

derably larger than the value of ~8 used in Method I, we interpolated 

between adjacent noise values. We found our results for S0 were independent 
v 
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of the details of the interpolation scheme used. Hence we used a linear 

interpolation for convenience. 

We found Methods I and II yielded identical noise-rounded i-v 

characteristics for a single junction (section 4.2). We also computed 

spectral densities of the voltage noise across a single junction for 

i >> i from v(8) generated by Methods I and II. The two methods yielded 
c ' 

spectral densities that were in good agreement. However, whereas we 

needed to average the spectral density typically 40 times using Method I, 

only a single set of vk was required using Method II. We also computed 

spectral densities using vk with Gaussian distributed amplitudes. The 

values for S
0 

averaged over many trials were in agreement with those 
v 

obtained with constant amplitude vk. We conclude that our approximation 

scheme adequately represents the Johnson noise for our purposes. 

Method II was used to compute the voltage noise spectral densities 

of the SQUID [Fig. 14]. Equations (2.13)-(2.16) were integrated with 

interpolated noise values determined by the vk as in the single junction 

case. We checked the values of the average voltage computed from v(8) 

at time intervals cS8 with those obtained by Method I, and found good 
( 

agreement. Because the SQUID involves two independent random noise 

sources, we found it necessary to average S0 over typically 8 sets of 
v 

vk to achieve a satisfactory result. 

are accurate to ± 5%. 

We estimate that our values of S
0 

v 
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4.2 Single Junction with Noise 

In order to test our numerical techniques, we first applied Methods I 

and II of section 4.1 to the case of a single resistively shunted Josephson 

junction. For a junction biased at a constant current i, the voltage v 

d h ;: h . . . f 14 an p ase u across t e JUnct1on sat1s y--

v = i - sin o + vN , (4.1) 

and do/d8 = v , (4.2) 

where vN is the Johnson noise voltage across the shunt resistance. We 

integrated these equations stepwise in time for various values of i and r. 

Representative plots of 6(8) and v(8) for i = 0.9 and r = 0.05 appear in 

Fig. 10. The phase 6(8) undergoes random excursions of considerably less 

than 2n about an equilibrium position for a period of time, then ma~~s 

a fairly sharp transition of + 2n to an equivalent equilibrium position. 

These transitions are randomly timed and, according to Eq. (4.2), give 

rise to voltage pulses during the transitions. These voltage pulses are sareWhat 

obscured in the plot of v vs. 8 in Fig. lO(b). The v vs. 8 curve appears 

to be dominated by the random noise source vN shifted by a constant voltage. 

This behavior is consistent with Eq. (4.1) since the term (i - sin o) is 

approximately constant between the transitions o + o + 2n. Notice that, 

although the excursions of o around the equilibrium positions are small 

compared with 2n, the time derivative, do/d8 = v, is not small compared 

with the amplitude of the voltage pulses associated with the transitions 

in o. In fact, as we decrease ~T to improve our approximation for the 

Johnson noise source, v ~ v ~ 1/~T increases. Since the voltage pulses 
N 

associated with the 2TI transitions of o have fixed area and duration, 

they become buried in the Johnson noise voltage pulses as T decreases*. 

*Fulton15 has used a thermal activation model in a simple derivative of 

.. 

- . 
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We obtained i-v characteristics by time-averaging v(8) at fixed i. 

The i-v characteristics obtained using both Methods I and II to generate 

v(8) are shown in Fig. ll(a). The smooth curves are from the Fokker-

14 
Planck calculation of Ambegaokar and Halperin;-- The results of the two 

numerical techniques are in excellent agreement with each other with the 

Fokker-Planck calculation-~ 14 and with other numerical calculations. 13 ' 28 

We also computed voltage power spectral densities, S , from curves 
v 

of v vs. 8 using Method II. We observed that the peaks in S corresponding 
v 

to the noise-free Josephson frequency, fJ, and its harmonics become broad

ened in the presence of thermal noise. As i is reduced, the noise broad-

ening increases in a manner that is consistent with the results of Vystavkin 

~ a1. 16 At frequencies well below fJ the power spectrum is white. We take 

·0 the value of S in this region to be the low frequency spectral density S . 
v v 

In Fig. ll(b) we 

voltage spectral 

plot the square root 

0 k 
density (S /4f) 2 vs. 

v 

of the normalized low frequency 

the noise-rounded voltage v for 

two values of r. These values are in excellent agreement with the results 

16 
of Vystavkin et al. (obtained by another method) that are plotted as 

smooth curves in Fig. ll(b). By comparing Figs. ll(a) and (b), we observe 

that the maxima in (dv/di) and in S
0 

occur at the same value of current, 
v 

the spectral density of the noise in a resistively shunted junction at 

currents below i • In this model, the noise arises from the random timing 
c 

of the voltage pulses that occur when o jumps by 2TI. Although according 

to our calculation these pulses are obscur~d by the simulated Johnson noise, 

the results of Fulton's calculation (at low voltage), of the calculation 

Vystavkin et al./
6 

and of our calculation are all in good agreement. 
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In addition, a decrease in the maximum of dv/di (for example, 

as a result of increasing f) is accompanied by a decrease in the maximum 

4.3 SQUID Characteristics in the Presence of Noise 

4.3.1 SQUID Transfer Function 

We now use the methods of section 4.1 to compute from Eqs. (2.13)-

(2.16) the voltage v(8) and circulating current j(8) for the SQUID in the 

presence of noise. As in section 3.2, we frequently select the value 

B = 1.0 in calculating results, since, as we shall see later, this value 

is optimum for practical SQUIDs. If we choose B = 1.0 and L = 1 nH, we 

find I ~ 1 ~A and for T ~ 4.2 K, f ~ 0.2. Noise-rounded i-v character
a 

istics for the symmetric SQUID are plotted in Fig. 12(a) with r = 0.05 

and B = 1.0 for several values of ~ • The noise-free i-v characteristics 
a 

are also shown. l.Je observe that the differential resistance, (dv/di), is 

a function of both i and ~ . In particular, the maximum differential 
a 

resistance decreases as ~ increases from 0 to 0.5. From these i-v 
a 

characteristics we obtain the variation of v with~ [Fig. 12(b)] for 
a 

several values of i with r = 0. 05 and B = 1. 0. The corresponding noise-

free curves are also shown. For bias currents i ~ 3, v becomes relatively 

independent of ~ , while for i ~ 1, v is zero for most values of ~ . At 
a a 

intermediate values of i, the SQUID transfer function, (avja~ )., depends - a 1. 

on~ and the parameters B(L, I) and f(I , T). 
a o o 

We plot (av/a~ ) . vs. i for variable ~ , L, T, and I in Figs. 13(a)-
--- - a 1. a o 

(d). All the curves show a peak in (av/a¢ ). at a bias current corres-- -·- a 1. 

pending roughly to the noise-free critical current determined by ~ and B. 
a 
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The height and width of the curves are a function of¢ , 8, and r. For 
a 

example, the family of curves in Fig. 13(a) for variable ¢a cr = 0.05 

and 8 = 1.0) shows maxima which decrease as ¢a + 0 and ¢ + 0.5. At 
a 

¢ = 0 and 0.5, Cdv/d¢ ) = 0 for all values of i. Thus, changes in ¢ a a a 

can produce substantial changes in (@-·vja¢ ) . . The curves of ca:v;a¢ ) . 
a ~ a ~ 

vs. i for fixed I and T, and for variable L(~ 8) are plotted in Fig. 13(b) 
. 0 

for r = 0.05 and ¢ = 0.25. For 8 ~ 0.1, the curves approach a limit 
a 

independent of L. This result reflects the fact that for 8 $ 0.1, 

6I + 2I independent of L. For large L (8 >> 1) (av/a¢ ) . + 0. 
c o - - a ~ 

The temperature dependence of (av/a¢ ). is plotted in Fig. 13(c) 
a ~ 

for¢ = 0.25 and 8 = 1.0. As T (~f) increases, the SQUID i-v charac
a 

teristics approach the i-v characteristics of the shunts, and hence 

(avja¢). + 0. ForT+ 0 (f ~ 0.001), the SQUID i-v characteristics 
a ~ 

approach the noise-free curves. Thus Cav/a¢ ). approaches a noise-free 
a ~ 

limit that diverges at i = i (8, ¢ ). 
c a 

The critical current I appears in both the parameters_ 8 (~ I ) and 
0 . 0 

f (~ 1/I ). Thus, in Fig. 13(d), the curves of (~v/3¢ ). vs. i for 
o · a ~ 

variable I reflect a combination of Figs. 13(b) and (c). Since the 
0 

dependences of (av/3¢ ). on 8 and r tend to cancel as I is varied, 
· ---a ~ o 

(av/d¢ ) is less strongly dependent on I 
- a o 

* than on 8 or r separately . 

In the limit of large I (f « 0.1, 8 » 10) the values of (av/a¢ ) . 
o a ~ 

approach the noise-free large 8 limit, and cav/3¢ ). + 0 for all i. . - a ~ 

This result is consistent with the fact that as 8 + ao, !J.I + qi /L [Fig. 4(b)], 
c 

* Notice that (av/a¢ ). is a dimensionless quantity. The corresponding - a ~ 

dimensional variable (I R/¢ )(av;a¢ ). is roughly proportional to I o o · a ~ o 

for the range of parameters in Fig. 13(d). 
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LH /I -+ 4> /LI = 2/B. Hence the i-v curves for all i and <1> 
c o o o a 

collapse into the <1> = 0 curve as B -+ oo, and Gfv/8<1> ) . -+ 0. Although a --- a 1 

in the range displayed in Fig. 13(d) (av/8<1> ). increases as I decreases, 
- a 1 o 

in fact, for very low values of I, (av/acp ). must fall off, and tend to 
o a 1 

zero as I -+ 0. This behavior is a result of the fact that when B -+ 0, 
0 

(8v/8<1> ). -+constant [Fig. 13(b)], whereas when r-+ oo, (8v/o<1> ). -+ 0 a 1 - a 1 

[Fig. 13(c)]. 

4.3.2 SQUID Voltage Noise 

We computed voltage spectral densities for the SQUID as a function 

of the various parameters using Method II of section 4.1. The spectral 

densities have the same general characteristics as the spectral densities 

of the single junction. There are a series of noise braodened peaks at 

the Josephson frequency, f
3

, and harmonics. Well below fJ the spectral 

density is white; we are interested in S0
, the average value of the 

v 

spectral density in this low frequency range. 

In Fig. 14(a), we plot the normalized frequency voltage spectral 

density S0 /2f vs. i forB = 1.0 and r = 0.05 for four values of <1> . 
v a 

For i >> i (<1> ) the spectral densities approach the Johnson noise limit 
c a 

of 1.0 (for two shunts in parallel, the shunt spectral density is 2f). 

Near i (<1> ), the spectral density is a maximum, as in the case of the 
c a 

single junction. The value of the maximum decreases as <1> increases a . 

from 0 to 0.5. This effect is consistent with the decrease in the 

maximum differential resistance, (dv/di), with increasing flux that is 

observed in the noise rounded i-v characteristics (sec. 4.3.1). 

The dependence of S
0

/2f on the variables L, T, and I for <1> = 0.25 
v o a 

is plotted in Figs. 14(b)-(d). As the inductance L (~B) increases [Fig. 14(b)], 
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S
0
/2f approaches the limit of a single junction with critical current 2I . 

v 0 

In the low inductance limit (B ~ 0.1), the spectral densities approach a 

limiting form. This result is consistent with the independence of !::.I 
c 

[Fig. 4(a)] and (av;a~ ). [Fig. 13(b)] on Lin the low B limit. 
. a 1. 

The dependence of S0 /2f on temperature [Fig. 14(c)] is similar to 
v 

that of the single junction. As T ~ 0 (f ~ 0.01), the spectral density 

approaches a limit determined by the noise-free differential resistance; 

as i ~ i , 
c 

~ oo,and S0 /2f diverges. 
v 

In the large temperature 

limit (f ~ 1) the noise tends to the Johnson noise of the shunts, and 

S
0

/2f ~ 1 for all i. 
v 

0 
The dependence of S /2f on I [Fig. 14(d)] is a combination of the 

v 0 

effects in Figs. 14(b) and (c). In the limit I ~ oo (B~ oo, r ~ 0), the 
0 

curves approach the corresponding single junction noise-free limit. As 

I ~ 0 (B ~ 0, r ~ oo), the B.,-dependence drops out forB::: 0.1, and the 
0 

curves approach the Johnson noise limit, S
0
/2f = 1. 

v 

4.3.3 SQUID Flux Noise 

We take as a measure of the rms flux noise the dimensionless ratio 

0 !.< 
(s 12n 2

/ (av;a~ ) .. v · a 1. 

k 
Curves of s¢ vs. i for variable ~a' L, T, and 

I
0 

are plotted in Figs. 15(a)-(d). The family of curves for variable ~a 

with r = 0.05 and B = 1.0 [Fig. 15(a)] exhibit minima at i "'i (~ ). 
c a 

For 0.1 < ~ < 0.4, the value of a 

for B = 1.0, r = 0.05. For ~ ~ 
a 

values of i[(av;a~ ). ~ 0)]. 
a 1. 

s~ 
~ min 

is relatively independent of ~a 

± n/2 (n = 0, 1, 2, 
k ... ) , s 2 ~ oo for 
~ 

all 

~ . The family of curves of s~ vs. 1. for variable L (~B) [Fig. lS(b)] 

with r = 0.05 and~ = 0.25 also have minima at i"' i (B). As B ~ 0 
a c 
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~ the curves become progressively flatter, and s~ . approaches a limit 
"' m~n 

:::::: 0.5. 
!.: 

As B increases beyond unity, the curves become sharper with s: 
"' min 

growing roughly as B. 

The dependence of s; on temperature [Fig. 15(c)] is weak for 0.025 < 

f < 0.075, where s¢:::::: 1.0. In the high temperature limit (T ~ f ~ oo), 

1 

S0 /2f ~ 1 and (ov/o¢ ). ~ 0; hence we expects;~ 00 • For f ~ T ~ 0, 
v a ~ "' 

!.: 
both S

0
/2f and (ov/o¢ ). diverge at i = i (8, ¢ ); s: becomes a sharp 

v a~ c a "' 

function of i, falling to zero as i ~ i • 
c 

k A family of curves of s¢ for variable I
0 

is plotted in Fig. 15(d) 

for ~ 
"'a 

~ 0.25. As I
0 

increases, the curves of s¢ become progressively 

!.: 
sharper, and r 2 • 

..,~ . ~ncreases. 

"' m~n 
As I decreases, the curves flatten for 

0 

intermediate values of B; however, for very small values of I , the 
0 

!.: !.: 
dependence of s¢ on 8 drops out, and s¢ ~ 00 as r ~ oo. 

4.4 SQUID Energy Resolution 

In this section we relate the computed flux noise spectral density, 

z;;¢' to the energy resolution of the SQUID, Sq, /2L. We compare our results 

with high-and-low-8 limiting expressions and with experimental results. 

We take the flux noise referred to the output of the SQUID as 

s; = s~/(ov/o<Pa~. With (ov/()<Pa)I= (o~loct>aVoR/<1>0 , s~ = (s~/202~TR, 

and 2L = 8<I>
0
/I

0
, we have the following expression for S~/2L in terms of I;;¢: 

or 

S~/2L 

s; /2L 

(<P 2hr)s~<8, r, i, ¢) f/RB, 
o "' a 

= (2kBTL/R) (2/8 2
) set> (8, r, i, ¢a) 

(4.3) 

(4.4) 

Equations (4.3) and (4.4) are exact expressions for the energy resolution 

in terms of the computed flux spectral density, s¢· 

. . 
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From_~ ___ di~ferent vi~~point, we can derive approximate expressions 

2 3 
for the energy resolution in the high- and low-S limits as follows ' . 

For <I> R:~ (n ±\)<I> , we take ('dV/'d <I> )I R:~ ('dV/'di )I(di /d<I> ) R:~ MI /<I> , · o · a c c a c o 

where we have set ('dV/'dic)I R:~ 

From Fig. 4(b), we find ~I R:~ 
c 

(R/2) for I R:~ I , and di /d<I> = 2~I /<I> • 
c c a c o 

<I> /1 for B ~ 40, so that ('dV/'d<I> )I R:~ R/1 
o a 

as B -+oo. From Fig. 4(a), we find that forB :S 0.1, ~I R:~ 2I R:~ B<P /L, 
c 0 0 

and ('dV/'d'I>a)I R:~ BR/1. We make the following approximation
2 

for S~. For 

I
0 

= 0 (shunt resistances only), the voltage spectral density isS~ 

4~T(R/2) and the circulating current spectral density isS~= 4~T/(2R), 

where S~ and S~ are independent and uncorrelated. For the SQUID (I I 0), 
0 

the voltage is a function of the currents flowing through the junctions 

and around the SQUID loop. Hence SV and SJ are no longer uncorrelated, 

o R 
and SV > S for !I 'V I . The contribution of the circulating currents to v . . c 

o - 2 R R zR 
S is approximated by ('dV/'d<I> ) S "'' where S"' = 1 SJ. Thus v . ai w w 

So ~ SR + ('d~/'d<I> )2 1zSR • 
V V a I J 

Ih the high B limit, ('dV/'d<I> ) R:~ R/1, and 
a I 

CB >> 1), 

while in the low B limit, ('dV/'d<I>a)I R:~ R/BL and 

S~/21 R:l kBTIL/RB 2
, CB << 1) . 

(4.5) 

(4.6) 

(4. 7) 

We now compare the computed expression for S<I> [Eq. (4.4)] with the 

approximate expressions [Eqs. (4.6)and (4.7)1. In the high B-limit, our 

k: 
calculated curves of 1:';2 

<I> 
vs. i become sharp functions of i. We choose 

k: 
the minimum value of 1:';2 

<I> 
corresponding to i R:l i (¢ 

c a' B) for the comparison. 

Calculations of 1:';<1> for <l>a 

0 
and hence S <I>/ 21 R:~ 2~ TL /R, 

= 0.25 and 8 ~ 10 yield 1:';~ R:~ 82 /2 at i 'Vi (¢ , B), 
'+' c 0 

in agreement with Eq. (4.6). From Fig. 15(b), 

~ for r = 0.05 and <l>a = 0.25, we see that 1:';<1> approaches a limit of about 0.5 
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for S ~ 0.1 over a wide range of bias currents. Hence, from Eq. (4.4), 

S~/2L + kBTL/RS 2 asS+ 0, in agreement with Eq. (4.7). We conclude that 

Eq. (4.4) shows the correct limiting behavior for high and low S. 

Finally, we compared our computed results with the~ 

~asured flux resolution of the tunnel junction de 

SQUID of Clarke et a1.
2 

It should be noted that whereas the model cal-

culation assumes that the junction capacitance is zero, practical junctions 

have a capacitance and are usually operated with S = 2TII R2C/~ ~ 1. 
c c 0 

However, since the I-V characteristics with S = 1 are not very different 
c 

from those with S 
c 

18 
0,-- and since we are concerned with frequencies 

much less than (RC)- 1
, we do not expect the calculated flux noise power 

spectra with S = 1 to differ substantially from our calculated spectra. 
c 

In the tunnel junction SQUID, the inductance was L = 1 nH, the shunt 

resistance was R = 0.6 n, and the critical current of each junction, was 

about 2.5 ~A. Thus S ~ 2.5 and r ~ 0.072. The SQUID was biased above 

the critical current at i ~ 2, and a modulating flux of peak amplitude 

¢ /4 was applied. The ac voltage across the SQUID was demodulated with 
0 

a lock-in amplifier, and the output from the lock-in was fed back to 

flux-lock the SQUID in the usual manner. The measured flux resolution 

!.: -5 _L 
was S~ ~ 3.5 x 10 ~ Hz ~. 

'i' . 0 
We compute a flux resolution for the SQUID 

. ),; 
with ~a fixed at ~0/4 of S~ = 1.3 This value applies to a 

SQUID that is not flux modulated, but is used as a small signal amplifier 

for ~ near ~ /4. a o 
k 

The flux modulation scheme increases S 2 as follows. 
~ 

First, the voltage noise S~ of the SQUID is a function of the modulation 

flux. For a SQUID biased at i = 2 and modulated about ¢a = 0, we estimate 

that the effective modulated voltage noise is S
0 ~ 2 S

0 
(¢ = 0.25) [see 

Vm V a 

- . 
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Fig. 15(a)]. Second, the transfer function (av;a~a)I at ~q = ~0/4 must 

be replaced v!ith (av ;a~ )I at ~ = 0, where V is the amplitude of the 
m q q m 

Fourier component of the SQUID voltage at the modulation frequency, w /2TI, 
0 

and ~ is the quasistatk applied flux. By plotting V vs. t for ~ q -- a 

~ + (~ /4) cos w t from the curves of V vs. ~ [Fig. 12(b)], we find 
q o o a 

(av ·;a~ )I at ~ = 0 is approximately equal to 1.3(av/a~ )I at ~ = ~ /4 . 
m q q a a o 

From these results, we compute a flux resolution for the modulated SQUID 
k: - -5 _!,; 

of S ~ ~ 1. 6 x 10 ~ Hz 2
• In view of the uncertainty in the measured 

'¥ - 0 

values of the SQUID parameters and of the neglect of the capacitance in 

the calculation, we conclude that the computed spectral density of the 

flux noise is in sensible agreement with the experimentally measured 

value. 
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5. SQUID OPTIMIZATION 

We now consider the choice of the SQUID parameters L, R, I , and 
0 

the bias current i that minimizes the energy resolution at a given 

temperature T. In most practical applications the SQUID is coupled to 

a signal coil with coupling coefficient a, and, for magnetometers and 

2 0 2 voltmeters, the appropriate low frequency figure of merit is Sif/2a L. 

Since s; ex: L 2 in the high 8 limit [Eq. (4 .6)], the figure of merit can 

be reduced by decreasing L, provided that a 2 is not also correspondingly 

decreased. In practice, the constraint on a 2 appears to impose a lower 

limit on L of 10-~ to 10-9 H. To avoid hysteresis, the junction param-

eters must also satisfy the constraint 2ni R2C < ¢ , where C is the 
0 - 0 

junction capacitance. In practice, there is a lower limit on C that is 

set by the area of the smallest tunnel junction that can be fabricated. 

Hence, there is an upper limit on R for fixed I of R2 ~ ¢ /2TII C. Thus 
0 0 0 

for L and C fixed, S~/2a 2L becomes a function only of I
0 

and T, or of 

8 = I (2L/~ ) and f = 2nk T/I ~ . 
0 0 -""B 0 0 

We consider first the simpler case in which the SQUID is not in a 

flux-locked loop, but is operated as a small signal amplifier with no 

ac flux modulation. We assume that a is essentially independent of L. 

From Eqs. (4.6) and (4.7) we find S~/2L ex: 8~ (8 >> 1) and S~/2L ex: 8- 3
/

2 

(8 << 1). Consequently, there is an intermediate value of 8 that minimizes 

0 
S¢/2L. As an example, consider a cylindrical tunnel junction SQUID in 

which the diameter of the cylinder is reduced to 2 rom, and the area of 

the junctions is reduced to 10-
6 

mm2 • The appropriate parameters are 

estimated to be L = 0. 35 nH, C = 1 pF, R2 I = 200 rt ]..lA (2TII R2 C/¢ ~ 0 .6), 
0 0 0 
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and T = 4.2 K. In Fig. 16 we plot computed values of s;/21 vs 8 with 

i = i (</>, 8), and <P = 0.25. Equations (4.6) and (4.7) are also plotted 
c a a 

for all values of 8: 0 Notice that the computed value of S~/21 agrees well 

with these equations in the appropriate limits. The computed curve is 

almost constant for 1 $ 8 < 10. A SQUID operated as a small signal 

amplifier with a~ 1 at ~ = 0.25 and i = i (</> , 8) would have an energy 
a c a 

-32 -1 
resolution of about 1.6 x 10 JHz relatively independent of 8 in that 

range. 

When the SQUID is flux modulated and operated in the usual flux-

locked mode, the energy resolution depends more strongly on 8 than in 

the unmodulated case. Since the optimal choice of bias current depends 

on the applied flux, the SQUID operated at constant bias current cannot 

be optimally biased over the entire modulation cycle. As a result, as 

8 increases the average value of S~21 at fixed bias current also in
o . 

creases. In addition, from Fig. 15 we see that S~/21 becomes a sharp 

function of i = I/I for large 8. Thus small variations in the bias 
0 

current I or the junction critical current I can lead to substantial 
0 

increases in Hence, for the flux modulated 

SQUID with 1 = 0.35 nH, C = 1 pF, R2 I = 200 Q2~ and T = 4.2 K, the 
0 

optimal value of 8 is approximately 1. Similar calculations at other 

values of the SQUID parameters also lead to 8 ~ 1 as the value for opti-

mal energy resolution in the flux-locked mode. We estimate an energy 

-32 -1 
resolution of 1.9 x 10 JHz for the flux-locked SQUID from an analysis 

similar to that in Sec. (4.4). 

In summary, the procedure to obtain optimum performance from a tunnel 

junction SQUID is as follows. One first chooses a SQUID configuration, 
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and thusonefixes L. The critical currents of the junctions are set by the 

constraint B = 2 LI /¢ ~ 1. The shunt resistance, R, for each junction 
0 0 

is chosen to satisfy 2 rri R2 C/~ ~ 1, where C is determined by the area 
0 0 

of the junction. Finally, the SQUID is operated with a bias current 

approximately equal to the total critical current in the absence of noise. 
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6. ULTIMATE PERFORMANCE OF THE DC SQUID 

The dependence of sZ/2L on L, C, and T for 8 = 1 can be approximated 

~ as follows. From Fig. 15 we find ~¢ (8, f) ~ 1 for 8 = 1. Hence, from 

Eq. (4.4),wefindS%/2L~ 4~TL/Ror 

(8 1)' (6 .1) 

where we have used the constraint R2 = ~ /2TII C = L/TIC. Thus, apart from 
0 0 

numerical factors close to unity, the energy resolution for 8 = 1 is just 

!.: 
~T divided by the resonant frequency of the ring, l/2TI(LC/2) 2

• We expect 

Eq. (6.1) to remain valid provided the Johnson noise associated with the 

shunts is the dominant noise source. However, when ~T/eV ~ ~T/I0R ~ 1 

(Vis the bias voltage), the shot noise in the tunnel junctions will be 

th d . . . 24 e om1nant no1se source. For junctions biased at a current of about 

2I , the shot noise voltage will have a low frequency spectral density 
0 

of approximately 2e (2I ) (R/2) 2 ~ ei R2 in the low temperature limit. 
0 0 

If we replace 2kBTR with ei
0

R2 in Eqs. (4.6) and (4.7), we obtain 

S~/2L ~ h8/4. (8 >> 1, ei
0
R >> kBT), 

and S~/2L ~ h/88 (8 << 1, ei R >> kBT). 
0 

For the optimum value 8 ~ 1, Eq. (6 .1) becomes 

S0 /2L ~ h/2 
~ 

(8 = 1, ei
0

R » ~T) 

(6.2) 

(6. 3) 

(6.4) 

Thus, it appears possible to operate a SQUID with its energy resolution 

limited by the uncertainty principle. With 8 = 1, this limit requires 

!.: 
4~T(nLC) 2 < h/2. If we choose T = 4.2 K, and L = 0.35 nH, this inequa-

lity implies C ~ 10-2 pF, or a junction area ~ 10- 11 mm2 for Nb-NbOx-Pb 

junctions. 29 In principle, junctions of these dimensions can be fabri-
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cated with electron beam milling techniques. For B ~ 1 and L = 0.35 nH, 

the required critical current, I ~ 3 ~. corresponds to a current den
a 

-2 sity of about 3 kA em , a value that is readily achieved with junctions 

29 of larger area. The shunt resistance is about 100 ~- These values of 

1: 
L and C correspond to a SQUID frequency, 1/2'IT(LC/2) 2

, of approximately 

10 11 Hz. Although this frequency is below the gap frequency(~ 3 x 10 11 Hz), 

other r~laxation processes may limit the SQUID to a lower frequency of 

operation. In that case, it will not be possible to achieve the resolu-

tion given by Eq. (5.4) with a SQUID operated at 4.2 K. 

One may also attempt to achieve the resolution suggested by Eq. (6.4) 

by operating the SQUID at a lower temperature: With L = 0.35 nH and 

C = 1 pF, the temperature must be below 0.4 K. The corresponding fre-

quency at which the SQUID would operate is about 1010 Hz. A preamplifier 

with a noise temperature below 0.4 K would be required. 
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APPENDIX A 

We derive the response of the SQUID shown in Fig. l(b) to a signal 

current I applied to one superconducting arm of the SQUID. Jhe current s 
IS generates a current IS/2 in the inductances L

1 
and L2 and in L3 and L4, 

together with a circulating current JS. These currents are superimposed 

on the currents I/2 and J produced by the bias current, I. Hence the 

currents through L
1

, L
2

, L
3

, and L4 are 

I/2 J (Al) 

(A2) 

(A3) 

(A4) 

The bias current I is constant in time; we assume that IS is quasistatic 

Since only the time dependent circulating currents J and JS determine 

the voltages across the inductances, Eqs. (2.11) and (2.12) become 

v = v1 - (1- n)(L/2)(dJT/dt) (AS) 

and v = v2 + (1 + n)(L/2)(dJT/dt) (A6) 

As in sec. 2, the parameter n describes the imbalance between the indue-

tance of the arm containing L
1 

and L
3

, and the arm containingL
2 

and L
4

. 

Equations (2.3)-(2.6) for v
1

, v
2

, o
1

, and o
2 

are unchanged. Equation (2.10) 

for the total flux <I>T is modified by IS. We define a parameter E,; analogous 
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to n that describes the imbalance between the inductance of the arm 

containing L
1 

and L2 , and the arm containing L
3 

and L4 ; the signal flux 

is then ~ = LJ + ~LI /2. Hence s s s 

~T = LJT + nLI/2 + ~Lls/2 . (A7) 

From Eqs. (Al)-(A7) with Eqs. (2.3)-(2~6), the basic equations in 

dimensionless parameters are: 

v = 
(1 + n) 

2 

i/2 

(1 - p) 

(1 - a) sin 61 
+ VNl ' 

i/2 + (is/2 + jT) - (1 .~ a) sin 62 
(1 + p) + VN2 

Equations (A8)~(All) have the same form as Eqs. (2.13)-(2.16) if we 

identify j with (jT + is/2) and <!>a with -q- ~)13 i/4. 

(A8) 

(A9) 

(AlO) 

(All) 
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APPENDIX 'B 

The procedure used to calculate i (¢ ) is as follows. By combining 
c a 

Eqs. (3.1)-(3.3) we eliminate j, and express a
2 

as a function of a
1 

and i: 

(Bl) 

We define a function of i and a
1 

to be 

F(i,a
1

) = i - (1 - a) sina
1 

- (1 +a) sina
2 

. (B2) 

Eq. (3.1) is satisfied.when F(i,a
1

) = 0. Plots of F(i,a
1

) vs. a
1 

for 

fixed i generate a family of continuous curves each labeled by the value 

of i. Since F is also continuous in i, the curve corresponding to the 

greatest value of i that still has a zero (i.e. F(i,a
1

) = 0 for some a1) 

will necessarily satisfy ClF/Cla
1 

= 0 at that point. Hence, 

-(1- a) cosa
1

- (1 + a)[l + nS(l- a) cosa
1

] cosa
2 

Equation (B2)with F = 0 and Eq. (B3) with oF /oa 1 

terms of i: 

i = (1 - a) sina
1 

+ a) 2 _ [ 
1 

0 allow us_ to express o
1 

in 

(1 - a) casal ]
2

]~ 
+ nS(l ~ a) cosa 1 

(B4) 

Now both F and ClF/Cla
1 

can be expressed as function of a single variable 6
1

. 

We search for the simultaneous zeros of F and ClF/oo
1 

with respect to o
1 

using a Newton-Raphson search routine in one variable only, and thus 

determine the maximum supercurrent, i , as a function of a, S, n, and ¢ . 
c a 

(B3) 
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APPENDIX C 

We show that ¢n = ¢
0

- Bni/4. Suppose the set of values (v0
, j 0

, ¢0
) a a a 

satisfy Eqs. (2.13)-(2.16) for arbitrary a, p, B, and i with ~ = 0. We 

want to show that the set (vn, .n <fln) for n I 0 can be shifted so that J ' a 

the shifted values satisfy the n = 0 equations, and hence have the n = o 

time-averaged values. Now the set (vn, jn, ¢:) satisfy Eqs. (2.13)-(2.16) 

with n I o. Rewriting these equations, we have 

jn = <o 1 - o 2 )/~B - (¢: - ~Bi/4)2/B , 

and vn - (do 1/d8 - do 2/d8)n/2 = (do 1/d8 + do 2/d8)/2 

Since both ¢ and i are independent of time, we have 
a 

Hence 

vn - <~nB/2)djn/de = (do 1/de + do
2
/d8)/2 . 

If we take vs = vn - (~nB/2)djn/d8, js jn, and ¢s = ¢n - ~Bi/4 we see 
a a 

that the shifted set (vs, js,·¢s) satisfy Eqs. (2.13)-(2.16) for n = 0. a . 

Hence the time-averaged values vs and js evaluated at <fls will equal the 
a 

· i 1 1 ° d -:c5 -+>
0 -+-s B -:s -:n d 8 = vn or1g na average va ues v an · J at ~ = ~ . ut J = J , an v 
a a , 

- - -- n 
- (~nB/2)djn/dt = vn. Hence the values vn and jn at some ¢ are just 

a 

the values of v0 and j 0 at <fln - nBi/4. Consequently, an imbalance n in 
a 

the SQUID inductance appears as an effective external flux - nBi/4 for 

fixed bias current i. 
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Fig. 2 

Fig. 3 

Fig. 4 
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Figure Captions 

Model for the de SQUID with (a) externally applied flux~ , and 
. a 

(b) flux generated by a current, I -- ... ······ .. .. . . s 

Critical current of SQUID vs. applied flux as a function of 

(a) a, and (b) n. 

Critical current of SQUID vs. applied flux as a function of B. 

Critical current modulation vs. B as a function of (a) L, and 

(b) I . 
0 

Voltage and circulating current vs. time as functions of applied 

flux, a, n, and p. 

Fig. 6 Current-voltage characteristics of synnnetric SQUID as a function 

of (a) applied flux, and (b) B. 

Fig. 7 (a) Average voltage and (b) ayerage circulating current vs. 

applied flux as a function of B· 

Fig. 8 (a), (d), (g) Current-voltage characteristics; (b), (e), (h) 

average circulating current vs. applied flux; and (c) , ( f) , 

( i) avera&e vo~tage vs. applied flux, for SQUID as functions 

of n, a, and p. In all cases B = 1. 

Fig. 9 Histogram of random voltages vk generated by Method II for 30 

trials. Dotted curve is Gaussian with the same normalization. 

Fig. 10 Representative plots of (a) phase, and (b) associated voltage 

vs. time for single junction with r = 0.05, and i = 0.9. 

Fig. 11 (a) Current-voltage characteristics of single resistively shunted 

junction in presence of noise computed with Method I (e), and 

Method II (~. 0, o). Solid curves are from Ambegaokar and 



Fig. 12 

Fig. 13 

Fig. 14 

Fig. 15 

- 42 -

. 14 
Halpen.n-.----- Dotted line is noise-free characteristic. (b) Low 

frequency voltage spectal density vs. average voltage for single 

resistively shunted junction computed with Method II(~. D, o). 

Solid curves are from Vystavkin et a1.J.6 

(a) Current-voltage characteristics of SQUID in presence of 

noise as functions of applied flux computed with Method I (•), 

and Method II(~, D, o). Dotted lines are noise-free charac-

teristics. (b) Average voltage vs. applied flux for SQUID as 

function of bias current, i, in presence of noise with r = 0.05 

(solid lines). Dotted lines are noise-free values. 

SQUID transfer function vs. bias current as a function of 

(a) applied flux, (b) SQUID inductance, (c) temperature, and 

(d) critical current per junction. 

Low frequency voltage spectral density vs. bias current as a 

function of (a) applied flux, (b) SQUID inductance, (c) tempera-

ture, and (d) critical current per junction. Dashed lines represent 

Johnson noise limit. 

k 
Flux noise spectral density, s2,vs. bias current i as a function 

<I> 

of (a) applied flux, (b) SQUID inductance, (c) temperature, and 

(d) critical current per junction. 

Fig. 16 ~ f,_?"f._-yp,. 8. 
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