Submitted to Journal Low LBL 6243 C-I
Temperture Physics : Preprint .

W37 a1 &

DC SQUID: NOISE AND OPTIMIZATION _

Claudia D. Tesche and John Clarke | :
CECEIYV T
Y VAIQ;I,',-V,\‘,;‘:E .

Q,,E:RF(S{ o L""""—»‘A‘RAT"Z)RY
May 1977 MaR 301073

LIBRARY ANTY
*T‘CE\\:‘.JP"IENTS SEC, ION '

Prepared for the U. S. Energy Research and
Development Administration under Contract 7405-ENG-48

- ‘ A
For Reference

Not to be taken from this room

\_ _ J

e¥29-1d1

>

LGRS



DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.



UG 047111709

To be submitted to J. Low Temp. Phys.

LBL-6243

*
DC SQUID: NOISE AND OPTIMIZATION

Claudia D. Tesche and John Clarke

Department of Physics, Uni&ersity of California
and Materials and Molecular Research Division
Lawrence Berkeley Laboratory, Berkeley, California 94720

* .
Work supported by the U.S.E.R.D.A.



ABSTRACT

A computer model is described for the dc SQUID in which thé‘two
Josephson junctions are noﬁ—hysteretic fesistively shunted tunnel junctions.
in the absence of noise, current-voltage (I-V) characteristics are obtained
as functions of the éppiied flux, @a, SQUID inductance, L, junction critical
current, Io’ and shunt resistance, R. The effects of asymmetry in L, Io’
and R are discussed. I-V characteristics, flux-voltage tranéfer functions,
and low frequency spectral densities of the voltage noise are obtained at
experimentally interesting values of the parametersin the presence of Johnson
noise in the resistive shunts. The transfer functions and voltége spectral
densities are used to calculate the flux and energy}ggdhmipgof the SQUID
operated as an open-loop, small signal amplifier. The resolution of the
SQUID with ac flux mpdulation is discussed. The flux resolution calculated

| | | _ o
for the SQUID of Clarke, Goubau, and Ketchen is 1.6 x 107" ¢_ Hz *

, approxi-
mately one-half the experimental'value. Optimization of the SQUID resolu-
tion is discussed: It is shown that the optimum operating condition is

R = 2LIO/®O=¥ 1. Finally, some speculationséfénmde on the ultimate
pérformance of the tunnel junction dc SQUID.'_When the dominant_noise

source is Johnson noise in the resistive shunts, the energy resolution per
Hz'is 4ka(ﬂLC)%; where C is the junction capaciténce, and the éonsttaiﬁt
.R = (¢'o/2'rrCIO)Li has been imposed. This result implies that the energy
resolution is proportional to (junction area)%. In the limit eIOR >>AkBT,

the dominant noise source is shot noise in the junctions; for g = 1, the

energy resolution per Hz is then approximately h/2.
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1. INTRODUCTION

The dc SQUIDl (Superconducting QUantum Interference Device) is a
sensitive detector of changes in magnetic flux. The resolution of the
Josephson tunnel junction aevice of Clarke, Coubau, and‘Ketchen 2 is
limited by Johnson noise in the resistive shunts used to eliminate
hysteresis in the current-voltage characteristics. Approximate expres-

>” for the flux resolution as a function of device parameters can

sions
be obtained in the limits B = 2LIO/<I>o >> 1 or B << 1, where L is the

SQUID inductance, and I0 is the critical current of each junction.

‘However, most SQUIDs are operated with:ZLIo/¢B v 1, for which value no

‘detailed calculations of the flux resolution are available. Thus, a

proper optimization of the SQUID performance has not been possible.
Previous calculations of the behavior of the dc SQUID have been

concerned mostly with the noise-free properties in the zero voltage state.

For example, the dependence of the critical current on applied external

flux has been investigated by Jaklevic, Lambe, Silver, and Mercereau,

Zimmerman and Silver,4 Schulz—DuBois,5 and by De Waele and De Bruyn Ouboter ’

. for the symmetric SQUID, by Fulton,8 Clarke and Paterson,9 and Tsang and

Van DuzerlO for asymmetric SQUID, and by Fulton, Duhkleburger and Dynes,ll
and Tsang and Van Duzer12 for the SQUID with non-sinusoidal cufrent—phase
relationships. A qualitative discussion of the noise-free current-voltage
characteristic for the SQUID in the small inductance limit héé been given
by De Waele aﬁd De‘Bruyn'Ouboter,6 and by:Tinkhqm.3 However, no quantitative

calculation of the flux dependence of the current-voltage characteristics

has previously been made.



After briefly reviewing the relationship between critical current
and applied flux, we calculate numerically noise-free current-voltage
characteristics for the symmetric and asymmetric SQUID as a function of
the device parameters. Next, we extend the calculation to include
explicitly the voltage noise sources associated with the shunt resistances.
Noise-rounded current-voltage characteristics are obtained for the single
shunted junction and compared with those computed by A.uracherl3 using a
similar technique, and by Ambegaokar and Halperin14 and by Fulton15 using
different methods. The agreement is excellent. In addition, computed
vpltage powerbspectral densities for the single junction agrée well with
those computed by Vystavkin gg_él.l6 by another method. We then compute
noiée—rounded current—voltage characteristics and voltage spectral den—
sities for experimentally interesting values of the SQUID parameters and
determine the flux and energy resolution. The values computed‘for B> 1
and B << 1 are in excellent agreement with those obtained from approximate
expressions. The measured energy resolution of the de¢ SQUID of Clarke
.gglgl.z (B v 2.5), approximately 4 X 10_3°JHz_1, is within a factbf of
two of the calculated value.

Finally, we discuss the optimization of the SQUID. For the case in
which the SQUID is operated in a flux-locked loop with an ac flux modula-
tion, wé find>;nvoptimal value of B ® 1. As an example of optimizafion,
welconsider possible improvements in the tunnel junétion dc SQUID of
Clarke gg_gl.z ff the inductance were lowered by a factor of 3 to 0.3 nH,
and the junction capacitance were lowered by a factor of 200 by decreasing
the junction area, the energy resolution would be increased by a factor of

- about 15. We speculate that the ultimate energy resolution of the SQUID

-~
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may be limited by the shot noise in the junctions to a value given by
the uncertainty principle, and that is four orders of magnitude higher
than that presently achieved experimentally.

A brief preliminary report of this work has appeared elsewhere.l7
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2. EQUATIONS FOR THE DC SQUID

Our model for the dc SQUIchonsists of two resistively shunted
Josephson junctionsla mounted on a superconducting ring (see Fig. 1).
We derive a set of equations describing the time-dependent behavior of
the SQUID, including the effects of the Johnson noise associated with
the shunts. For the general case of an asymmetric SQUID, the critical
currents of the two junctions are Kl - OL)Io and (1 + OL)Io (Ial < 1).
The shunt resistances are R/(1 - p) and R/(1 +.p)b (|p| <.1). The self
inductances of the two arms are Ll and L2, the mutual inductance betﬁeen
the arms is M, and the ring inductance is L. The constant bias current
is I, and the time-dependent currents in each arm are Il(t)_and Iz(t).

Thus

I =TI +1I_.. : (2.1)

We define the circulating current J(t) to be

J = (12 - Il)/2 . : (2.2)

We assume that the flux threading each junction is always much less
than a flux quantum, @0, and that Fhe currents flowing through the junc-
tionsobey the Josephson current-phase relation. The currents Il(t) and
Iz(t) are related to the voltages_Vl(t) and Vz(t) and phase differénces

él(t) and 62(t) across the junctions by

=
I

| 1 - a)Iolsindl + (1 - p)(Vl - le)/R > (2.3)

)/R . (2.4)

and I VNZ*

a1 + oc)I0 sind, + 1+ p)(v2 -

. d
Here, VNl an VN2

with the shunt resistors. The phase differences develop in time according

are the time-dependent Johnson noise voltages in series

W
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to the voltage-frequency relations.

d61/dt % (_2e/h)Vl s (2.5)
and d62/dt = (2e/h)V2 . ‘ (2.6)

The total voltage V developed across the SQUID is
V=V, +Ldl /dt +MdI /dt , - (2.7)
and vV=uv,+ L2d12/dt + MdIl/dt . v - (2.8)

The phase diffefences 61 and 62 are related ﬁyé‘

8, -8, = 2ma /o, - - (2.9

where @T is the total flux threading the supercondugting ring. The totél
flux is the sum of the individual fluxes Ql and @2 produced by the currents
Il and Iz-and the externally applied quasistatic flux, @a. We can restrict
éa to the range 0 < @a <‘®o without loss of generaiity since all SQUID

responses are periodic in ¢a with period @o. The fluxes @l and @2 are

proportional to the currents Il and Iz. Defining £1 = - <I>l/Il and
= 1 £ = » ' ,c = -
£2 f <I)2/I2 we can ea51ly show that £1 + 5 L; we_take 1 (} n)L/Z
and £2 = (L + n)L/2 (|n| < 1). The total flux thus becomes
9, = @ +1LJ +nl1/2 , ' i (2.10)

where we have used Eqs. (2.1) and (2.2). The geometric quéntities L;_Ll,
L2’ £1, £2,.and M_aré related in the following way. Suppose‘tﬁat in some

time-dependent mode dIl/dt # 0 and dIZ/dt = Q. The inductive voltage drop
around the entire loop (neglecting any contributions from the junctions or
shunts) is V = leIl/dT - MdIl/dT. The rate of changé of flux in the ring

yields V = £ dIlldt'(again ignoring any flux contributions from the junctions

1

1 1 2 2

or shunts). Hence £ = L, - M, and, similarly, £, = L, - M. Using these
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expressions for M and the fact that dJ/dt = - dIl/dt = dIZ/dt_(since I is

" constant), we can reduce Eqs. (2.7) and (2.8) to

L dJ R
v=v, - a-n T (2.11)
and Vev. + @+ Ly (2.12)
2 2 dt .

These equations include the effect of the mutual inductance even though
M does not appear explicitly.
The. final setvofvequations for J and V in terms of the bias current I,

the applied flux Qa’ the noise voltages VN and VNZ’ and the SQUID param-

1
eters IO, R, L, &, P, and N are obtained from Eqs. (2.1)-(2.12) by elimi-

nating Il, 12, Vl, and V2.

sionless units: voltage in units of IOR, current in units of Io’ flux in

For convenience, we use the following dimen-

units of Qo, and time 6 in units of @o/ZﬂIOR. The dimensionless quantitites
are expressed in lower case letters. We define B = 2LIO/®O. Hence from
Egqs. (2.9) and (2.10):

j=(8; -6, - 27 )/m8 - ni/2; : - (2.13)

from Egs. (2.5-(2.12):

e 1 a-n L2 (2.14)
2 de 2 ae A

Vand-frqm Egqs. (2.1) to (2.6):

ddl i/2 - 5 - (1 - o) sin61

B T + Vy1 (2.15)
and

ds, i/2+3 - @ +a) sind,

® 1+ 0 * Vyg (2.16)
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Equations (2.13)-(2.16) can also be used to describe the behavior

of the SQUID shown in Fig. ;(b). This configuration is used in the SLUG,19

and the thin filﬁ gradiometer-;zo In this case, the applied flﬁx is coupled
to the SQUID by means of a signal current, IS. In Appendix A, we show

that ¢a and j must be replaced by -(1- 5)613/4 and (jT + is/2) respectively,
where jT is the total circulating current,_and ¢ describes the asymmetry

in the upper and lower arms of the SQUID. With these substitutions, all

of the enusing results can be applied to SQUIDs in tﬁis configuration.

In particular, the critical current and voltage across the SQUID are

periodic in the signal current with period (1 - €)LIS/2.
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3. SQUID CHARACTERISTICS IN THE ABSENCE OF NOISE

In this section we discuss the behavior of the SQUID in the absence

of noise. We thus set Vel = vN2 = 0 in Eqs. (2.15) and (2.16).

3.1 Case I: v =20
Consider first the case‘in which the bias cﬁrrent i is sufficiently
low that no voltage is produced across the SQUID. The largest such current,
ic, is a function of a, B, N, and - Althougﬁ curves of ic(¢a) have ap-
peared previously in the literature-;é:'12 for future reference,
we include here plots of ic vs. ¢a for various values of a, B, and n.

For v = 0, we can set the time derivatives in Eqs} (2.13)-(2.16) equal to

zero to obtain

1= (1-0) sing, + (1 + o) sing, , (3.1)
2j = -(1 - a) sind, + (1 + q) sing, , ' (3.2)
and 62 = 61 - 27r¢a - mRj - wAni/2 . : (3.3)

Egs. (3.1) to (3.3) are independent of the shunt imbalance, P, as we expect
for v = 0. We computed the variation of iC with ¢a by numerically.solving
these equations* (see Appendix B).

Curves of ic vs. ¢a for variable o and n with -8 = 1.0 appear in
Figs. 2(a) and 2(b) respectively. Equmi§n$(359f(l3)imply that i_ attains
the maximum value, 2.0, for some ¢a whatever the Valueé of a, n, and B.
With 61 = 62 = m/2, we have j = o and ¢a = - B(ao + n)/2 at that point.
The values of ic at.other values of ¢a depend on n andva in the foliowing

manner. With n = 0, the modulation depth, Ai =i =~ -1 ., falls to
: c “cmax - cmnin

An elegant alternative method of solution has been given by Tsang and Van Duzer.lO
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zero as O is increased from 0 to 1. 1In addition, the value of ¢a at which
icﬁdlloccurs shifts away from 0.5 as thé SQUID asymmetry increases. In
the limit lo] = 1, i, =2 for all ¢, Tt should be noted that in the
large B limit, Aic is much less sensitive to the value of a: Zimmerman
and Silver® demonstrated experimentally that Ai becomes significantly reduced
only when the critical current of one of the junctions fall below Aic(q = 0).
The modulation-Aic is independent of the value of n, as can be seen
from Fig. 2(b).” For a = 0, the value of_¢é at icmin is shifted from
¢a = 0.5 forn=20 t0 ¢a = 0.5 - BnicnﬁJ1/4 for n # 0. In fact, the
entire iC vs. ¢a curve for arbitrary 7 can be readily generated from the
corresponding n-=.0‘cqrve. A particular value of'ic'at ¢Z for n = 0 will
occur at ¢2 =.¢Z - Bnic[4 for n # 0. Since the amount by which ¢2 is
shifted increases with ic, the n # 0 curves appear skewed (see Appendix C
for a proof).
Curves of iC vs. ¢a for various values of B with & = n = 0 are plotted

in Fig. 3. -'Similar curves have been published elséwhere.2;>:>

C et AT =21 -1 @ /2) be the modulation
c ) c o
depth in dimensioned units. We display the dependence of AIC on the param-
eters L and I in Fig. 4. For variable L and fixed I the modulation
depth is expressed in dimensionless units as (AIC/ZIO), and plotted vs.

B = L(210/®0) in Fig. 4(a). As.L is reduced below a value corresponding

to B~ 0.1,‘AIc approaches the limit 2T independent of L. Hence decreasing

the SQUID inductance below 0.1 <I>o/2Io has little effect on AIC.

The dependence of AIC on Io for fixed SQUID inductance L ié plotted
in Fig. 4(b). Here, the modulation depth is plotted as the dimensionless
= . > ~ .
parameter AIC/(QO/L) vs. B IO(ZL/QO) For B 2 40, AIC QO/L Thus

the modulation depth approaches a limit independent of Io for sufficiently
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large values of Io. The experimental points shown were obtained by Clarke
22
and Paterson using a SQUID with SNS junctions: = The agreement is

excellent.

3.2 Case II: v >0

When the SQUID is biased at a constant current i > ic, the circulating
current j and voltage v oscillate in time. We integrate Eqs. (2.13) to
(2.16) stépwise in time to determine tﬁe dependence.pf v(0) and j(6) on
o, B, n, P, and ¢a. 'The initial conditions are chosen to minimize the tran-
sient response of the SQUID. The results shown for ¥(9) and j ®) are taken after several
osciﬂatﬁxm,qn@th§§ refleét the steady state behavior corresponding to the
state of least energy of the SQUID. Fig. 5 shows v(0) and j(0) vs. time
for several values of the SQUID parameters; The period of oscillation |
for v(0) is T = 27/v in all cases, where v is the time-averaged voltage.
For the special case of a completely symmetric SQUID (a =n = p = 0) at
¢a = 0, j(0) = 0. For the symmetric SQUID at ¢a =0.5, j(8) oscillates
symmetrically about zero with period T1/2. For all other cases, the
current j(6) also oscillates with the‘period T of the voltage oscillations.
For bias éurrents very near ic, v(8) and j(8) exhibit sharp spikes, indi-
cating the presence of many higher harmonics of the fundamental frequency.
As 1 is increased, v(8) and i(e) become progressively more sinusoidal.
This behavior is Very similar to thét observed in éingle junctions:zs

The curves of voltage vs. time can be averaged over a complete cycle
to yield i;; characteristics as functions of the various SQUID parameters.
In Fig. 6(a) we plot i-v characteristics for the symmetric SQUID with
B = 1.0 for several values of ¢a. The effect of changing B on the i-v
characteristics for ¢é = 0.5 is seen in Fig. 6(b). As i increases, the

characteristics approach the equivalent single junction curve (represented
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in Fig. 6 (a) as ¢a = 0, and in Fig. 6(b) as B v ©). Hence the SQUID volt-
age bécomes essentially independent of the.applied-flux,¢a,for 1arge values
of i (i 2 4.0). At lower values of'i, tﬁe présence of instantaneous cir-
culating currents through the junctions for ¢a'# 0 produces an increase

in v over the single junction value.

The dependence of the average v and average circulating current 3 on
¢a for the symmetric SQUID for various values of B at i = 2.1 is shown in
Fig. 7.‘ We see that j = 0 for ¢a = 0 and 0.5 only.

The dependence of the i-v characteristics and the curves of 5 vs. ¢a
and v vs. ¢a on the degree of SQUIb asymmetry is shbwn in Fig. 8 for f = 1. Notice
that the discontinuity in slope in the ié vs. ¢a.curves is not present in the
v vs. ¢a curves. Consider first the famiiy of curves [Figs. 8(a)-(c)] for
n# 0. The curvésioflg and';.vs. ¢a with n # 0 are found by shifting the
curves fér n =20 by fluk - NBi/4 (see Appendix C). Since the shift is
proportional to i, the i-v characteristics fof n # 0 cannot be generated
by a simplé'shift of the n = 0 characteristics. -

Tﬁe i-v characteristics for ¢a-= 0.5, and curves of j and Vv vs. ¢a
.for i=2.,1 are plotted in Fig. 8(d)-(f) for several values of o, the
critical current imbalance. As Id| + 1, the i-v characteristic becomes
independent of ¢a; and approaches the single junction characteristic.

This behavior can also be seen in v vs. ¢a [Fig. 8(f)j. In addition,
'aé ]u| > i, 3 increasesfbr'all values df.¢a.'

The éurves in Fig. 8(g)-(i) for various values of p show the effects
of an imbalance in the shunt resistances. TFor ¢a = 0.5, the i-v charac-
teristics are relatively independent of P This insensitivity.ﬁo p is
reflected in the v vs. ¢a curﬁes. VHowever, ;hé curves of j vs. ¢a are
relatively sensitive to the value of p; in the iimit of large i, 5

approaches ip/2.
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3.3 Discussion

We conclude that the behavior of the dc SQUID is relatively insen-
sitive to quite large asymmetries in the inductance of the two arms,
in the critical currents, or in shunt resistances of the two junctionms,

provided that neither critical current falls below Aicgq_:,9)3m Conse-
quently, it appears that near-optimum performance can be achieved with
a wide range of values of n, o, and p. In the remainder of the paper,

we will be concerned only with the symmetric casen =a = p = 1.
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4. SQUID CHARACTERISTICS IN THE PRESENCE OF NOISE

In this section we discuss the behavior of the SQUID in the presence

of gohnson noise generated in the resistive shunts. We first discuss our

numerical techniques. As a check on these techniques, we show that our

results for the noise-rounded i-v characteristics and voltage noise spec-
tral densities for a single shunted junction are in good agreement with

: . 5,16, . — s
work previously published: e then compute the +v characteristics, voltage
noise spectral density, and flux resolution of the SQUID as functions of

the relevant parameters.

4,1 Numerical Techniques

We assume that the Johnson noise voltages across the external shunt

resistances dominate any other source of noise in the SQUID, for example,

b

c . . . 5 . . I
shot noise in the junctions , or thermal fluctuations in the critical

current26.= The voltage noise sources Vi1 and VN2 in Eqs. (2.13)-(2.16)

are then uncorrelated, each having a white voltage spectral density,

N _ o . N _ 6 .
SV = 4kBTR, or, in dimensionless units, s, = 4T, where T = anBT/Io¢o.

We approximate the random voltages VN(G) by trains of voltage pulses

each of duration A6 and random amplitude v We have used two different

K

techniques to generate the v, . In Method I we generate a pseudo-random

k
set of Gaussian distribunaivk,Wethenintegrate Eqs. (2.13)-(2.16) using
a simple integration routine. The resultant v(8) is used to calculate
noise-rounded i-v chafacteristics. Unfortunately, as we shall discuss,

the calculation of spectral densities from these v(8) requires large

amounts of computer time. In Method II we use an approximation for the
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Vi that reduces significantly the computation time for the spectral

densities.

Method I. We use a pseudo-random number generator to generate a Gaussian-

distributed set Vi of zero mean with <v§> = 2T'/AB, The‘computed power v
spectrum of the voltage pulses averaged over many sets vy is white and

tends to a constant, 4I', as required. Two independent trains of voltage

pulses are used to approximate i1 and sz in Eqs. (2.13)-(2.16). We

integrate the phases 61(6) and 62(6) using an iterative scheme §(6 + AB) =

§(B8) + AB d6/d8. The value of A6 is chosen so that AB d§/d6 << 2m. The noise-

rounded i-v characteristics labeled Method I in Figs. 11(a) and 12(a) and the
transfer functions in Fig. 13 were generated by time-averaging v(0) com-
puted in this way. We estimate that the results are accurate to * 5%.
Spectral densities, SV, can be calculated directly from the v(©)
generated by Method I. N values of v(8) at equal time éteps AB can be
used to calculate Sv at frequency intervals §f = 1/NAA. For thé case of
a single.shunt resistance (iC = 0), the values of v(0) are just the Vi
and the spectral density (averaged over many sets of vk) tends to 4T as
required. We shall be interested in computing spectral densities for the
éingle junction and the SQUID from values of v(0) sampled at time inter-
vals correéponding to nAO (nis aninteger). - In those casés,.the avefaged
spectral density for a singlé shunt resiétance is white with a magnitude

n4l'. The additional factor n is a result of the normalization of the v, . ' -

k
For Vi defined over time steps A6, <v§> = 2T'/AB, while for Vi defined
over nAf, <v.2> = 2T'/nAB. Hence generating v, over time steps A® and

k k

sampling the resultant v(6) over time steps nA® increases the spectral
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density by a factor n. It is important to notice that this éimple
relationship will not hold in general for the case of the single shuntéd
junction or SQUID, since in the 1limit I' + O those spectral densities must
be independent of n. Hence to obtain results for SV that are consistent
in both the noise-dominated and noise-free limits, we must take n = 1.
The restriction n = 1 limits our ability to calculate spectral den-
sities efficiently from v(6) when v(0) is generated by Method I. To see
this, we briefly discuss the general behavior of the spectral density for
i #0, T # 0. The spectral density contains noise-broadened peaks at the
fundamental Josephson frequency fJ =.;/2ﬂ and its harmonics. We are
interested in computipg the low frequency spectral density, S:,Vat fre-
" quencies well below'fJ, where the spectrél density is white._ As the bias
current, i, is lowered towards ic the harmonics become more important,
and, as T'(T) is increased from zero, the broadening increases. Thus,
for i n ;c’ and for experimentally interestingvvalués of T, SV must be computed

for frequencies well above and well below fJ. However, the lowest frequency

is 8f = 1/NAS, where A8 n 10_u/fJ. Thus N >> 10* (for example, for

i &'ic and T' v 0.05, N v 106), and the computation of a single
spectral density is very time consuming. In additiqn, many spectfal
densities (typically 40) must be averaged together to obtain accurate
results. We thus use"an alternative method to genéraﬁé §k;"thié method
significantly reduces the compuﬁation.time for spectral densities at

experimentally relevant values of i and r.



Method II. We generate values of the Fourier transform, Gk’ of the
Johnson noise voltages at N equal frequency intervals 8f. The interval

0f is fixed by the requirement §f << fJ, and N is fixed by the require-
ment NGf >> fJ. The actual values of N and 6f are determined empirically
by computing low frequency spectral densities Sz for tﬁe SQUID for variable
N and §f. N is increased and 8f is decreased until Sg becomes iﬁdependent
of N.and 6f. Typically, N = 512 and &6f = 0.01 fJL Oﬁr values Gk approxi-
mate the Johnson noise in the following way. The Fourier transform of a

set of Gaussian distributed noise voltages, v, ,is a set of complex numbers

k’

27
with Gaussian distributed amplitudes and uniformly distributed phases .
We approximate the Fourier transform of the noise pulses by a set of
complex numbers with constant amplitude and uniformly distributed phases.

The amplitude of ¥, is fixed by the requirement <v2> = 2I'N§f, and the

k k

random ﬁhases are genérated by a pseudo-random number generator with
uniform distribution over [0, 2m]. We find that the voltage pulse
amplitudes, Vk, generated in this way are Gaussian distributed. Figure 9
shéws.a histogram of the Vi obtained from 30 sets of Vk in this way,
together with the exact Gaussian distribution with <v2> = 2IN8f. The
agregment between.the two curves is good. This approximation enables us
to compute smooth average spectral densities for a single junction using
only one set of v,, and for the SQUID using onl& a small number of sets

k

of Vk.

~ )
The Fourier transforms of the v, were taken as representative values
of the Johnson noise over pulse times 66 = 1/2NSf. Since 86 was consi-

derably larger than the value of AB used in Method I, we interpolated

between adjacent noise values. We found our results for Ss were independent



of the details of the interpolation scheﬁe.used. Hence we used a linearv
interpolation for convenienge.

We found Methods I and II yielded iden;ical noise-rounded i-v
characteristics for a single junction (sec;ion_4.2); We also computed
spectral densities of the Voltage‘nbise across a single junction for
i>> iC from v(6) generatedvby Methods I and II. The two methods yielded
spectral densities that were in good agreement. However, whereas we
needed to average the spectral density typically 40 times using Method I,

only a single set of v, was required using Method II. We also computed

k

spectral densities using Vv, with Gaussian distributed amplitudes. The

k

) - . . .
values for Sv averaged over many trials were in agreement with those

obtained with constant amplitude v . We conclude that our approximation

scheme adequately represents the Johnson noise for- our purposes.
Method II was used to compute the voltage noise spectral densities
of the SQUID [Fig. 14]. Equations (2.13)-(2.16) were integrated with

" interpolated noise values determined by the v, as in the single junction

k

case. We checked the values of the average voltage computed from v(0)

- at time intervals 86 with those obtained b§ Method I, and found good
( v
agreement. Because the SQUID involves two independent random noise

‘ . o .
sources, we found it necessary to average SV over typically 8 sets of

) . . ‘ . - o o o
Vi to achieve a satisfactory result. We estimate that our values of SV

are accurate to * 57%.
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4.2 Single Junction with Noise

In order to test our numerical techniques, we first applied Methods I
and II of section 4.1 to the case of a single resistively shunted Josephson
junction. For a junction biased at a constant current i, the voltage v
and phase § across the junction satisfyli

v=1-sin§ + vy o ' (4.1)

and d§/d8 = v , o (4.2)
where VN is the Joﬁnson noise voltage across fhe shunt resistance. We
integrated these equations stepwise in time for various values of 1 and T.
Representative plots of §(8) and V(G) for i = 0.9 and T = 0.05 appear in
Fig. 10. The phase §(0) undergoes random excursions of considerably less
than 27 about an equilibrium position for a period of time, then makes
a fairly sharp transition of + 27 to an equivalent equilibrium position.
These transitions are randomly timed and, according to.Eq. (4.2), give
rise to voltage pulses during fhe transitions. These voltage pulses are somewhat
obscured in the plot of v vs. 6 in Fig. 10(b). The v vs. 0 curve appears
to be dominated by the random noise source VN shifted by a constant voltage.
This behavior is consistent with Eq. (4.1) since the term (i - sin §) is
approximately constant between the transitions § -~ § + 27.  Notice that,
although the excursions of Gbaround the equilibrium positions ére small
compared with 2ﬂ, the time:derivative, d§/d6 = v, is not sﬁall compared
with the amplitudé of the voltage pulses associated with the transitions
in 8. 1In fact, as we decrease AT to improve our approximation for the
Johnson noise source, VvV 'V Yy m.l/AT increases. Since the voltage pulses

assoﬁiated with the 27 transitions of § have fixed area and duration,

. *
they become buried in the Johnson noise voltage pulses as T decreases”.

*
Fultonl? has used a thermal activation model in a simple derivative of

.



We obtained i-v characteristics by time—avefaging v(B) at fixed i.
The i-v characteristics obtained using both Methods I and II to generate
v(8) afe shown in Fig. 11(a). The smooth curves are from the Fokker—
Planck calculation of Ambegaokar and Halperin-“l“4 The results of the two
numerical techniques are in excellent agréement with each othef with the
Fokker-Planck calculationlié'and with other numerical calculations.l3’28

We also computed voltage power spectral densities, Sv’ from curves
of v vs. O using ﬁethod IT.: We observed that the peaks in Sv corresponding
to the noise-free Josephson frequency, fJ, and its harmonics become broad-
ened in the presence of thermal noise. As if is reduced, the noise broad-
ening increases in a manner that is consistent with the results of Vyétavkin
g£_§;.16 At freqﬁencies well below fJ the power spectrum is whité. We take
the value of SV in this region to be the low frequency spectral density’Ss.
in Fig. 11(b) we plot the square root of the normalized low frequency
voltage spectral densify (S‘c;/ﬂ')l/2 vs. the noise—rounded.voltage‘; for
two values of I'. These values are in excellent agreement with the results
of Vystavkin'95_51.16'(obtained by another method) tﬁat are plotted as
smooth curves in Fig. 11(b). By comparing Figs. 11(a) and (b), we observe

. —, .. i &0
that the maxima in (dv/di) and in Sv occur at the same value of current,

the spectralvdensity of the noise in a resistively shunted junction at
currents below ic. In this model, the noise arises from the_réndom-timing
of the voltage pulses that occur when § jumﬁs by 2m. Although according

to our calculation these pulses are obscured by the simulated Johnson noise,
the results of Fulton's calculation (at low voltage), of the calculation

- 6
Vystavkln_ggﬂgl.;l and of our calculation are all in good agreement.



- 22 -

i ic. In addition, a decrease in the maximum of dv/di (for example,

as a result of increasing TI') is accompanied by a decrease in the maximum

(¢}

of S .
v

4.3 SQUID Characteristics in the Presence of Noise

4.3.1 SQUID Transfér Function

Wé now use the methods of.section 4.1 to compute from Eqs. (2.13)-
(2.16) the voltage v(0) and circulating current j(6) for the SQUID in fhe
presence of noise. As in section 3.2, we freéuently select the value
B = 1.0 in calculating results, since, as we shall see later, this value
is optimum for practical SQUIDs. If we choose B = 1.0 and L = 1 nH, we
find IO =~ 1 pA and for T < 4.2 K, T < 0.2. Noise-rounded i-v character-
istics for the symmetric SQUID are plotted in Fig. 12(a) with ' = 0.05
and B = 1.0 for several values of ¢a. The noise-free i-v characteristics
are also shown. We observe that the differential resistance, (dG/di), is
a function of both i and ¢a. In particular, the maximum differential
resistance decreases as ¢a in;feases from 0 to 0.5. From these i-¥
charécteristics we obtain the variation of v with ¢a [Fig. 12(b)] for
several values of i withI = 0.05 and B = 1.0. The corresponding noise-
free curves are»also shown. Fof bias currents i 2 3, Vv becomes relatively
independent of ¢a’ while for i <1, v ié zero for.ﬁost values of ¢a; At
intermediate values of i, the SQUID transfer function, (33/a¢a)i, depends
on ¢a and the parameters B(L, Io) and F(Io,vT).

We plot (§;/§¢a)i vs. i for variable ¢a; L, T, and I0 in Figs. 13(a)-
(d). All the curves show a peak in (§§/§¢a)i at a bias current corres-

ponding roughly to the noise-free critical current determined by ¢a and B.
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The height and width of the curves are a function of ¢a’ B, and T'. TFor
example, the family of curves in Fig. 13(a) for variable.cba (' =0.05

and B =1.0) sHows maxima which decrease as ¢a + 0 and ¢a + 0.5. At

¢a =0 and 0.5, (dG/d¢a) = 0 for all values of i. Thus, changes in ¢_

can produce substantial changes in (&5/8¢a)i. The curves of (35/3¢a)i

vs. 1 for‘fixed Id and T, and for variable L(= B) are plofted in Fig. 13(b)
for I' = 0.05 and‘q)a = 0.25. TFor B < 0.1, the curves approach a limit
independent of L. This result reflects the fact that for B < 0.1,

AIC > 210 independent of L. For large L (B >> i) (§§/8¢a)i + 0.

The temperature -dependence of (37/3¢a)i is plotted in Fig. 13(e)
for ¢a = 0.25 and B = 1.0. As T (« T') increases, the SQUID i-v charac-
.teristics approach the i-v characteristics of the shunts, and hence
(33/8¢a)i + 0. For T >0 (T < 0.001), the SQUID i-¥ characteristics
" approach the noise-free curves. Thus (BTI/Bd)a)i approaches a noise-free
limit that diverges at i = ic (B, ¢a).

The critical current-Io appears in both fhe parameters B (« Io) and
T (e« 1/10). Thus, in Fig. 13(d), the curves of‘(a3/8¢a)i vs. i for
variable I0 reflect a combination of Figs. 13(b) and (c). Since the
dependences of (§§[Q¢a)i on B and I tend to céncel as Io is varied,
(3§/B¢a) is‘less strongly dependent on IO than on B or T separately*.
In the limit of large I; (F << 0.1, §>>10) the values of (36/3¢a)i
approach the noise—free'large B limit, and (SV/§¢a)i >0 for al} i.

This result is consistent with the fact that as B - m,'AIc -® /L [Fig. 4(b)],

o = ‘
Notice that (8v[§¢a)i is a dimensionless quantity. The corresponding
dimensional variable (IOR/d)O)(B\?/qua)i is roughly proportional to Io

for the range of parameters in Fig. 13(d).
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or Ai =AI /T +9® /LI = 2/B. Hence the i-v curves for all i and ¢

c ¢’ "o o o , a
collapse into the ¢a = 0 curve as B > %, and (§§/8¢a)i + 0. Although
in the range displayed in Fig. 13(d) (3778¢a)i increases as Io decreases,
in fact, for very low values of Io’ (8773¢a)i must fall off, and tend to
zero as IO -+ 0. This behavior is a result of the fact that when B - 0,
(8778¢a)i -+ constant [Fig. 13(b)], whereas when ' -+ o, (377§¢a)i -0

[Fig. 13(c)].

4.3.2 SQUID Voltage Noise

We computed voltage spectral densities for the SQUID as a function
of the various parameters using Method II of section 4.1. The spectral
densities have the same general characteristics as the spectral densities
of the single junction. There are a series of noise braodened peaks at
the Josephson frequency, fJ,vand harmonics. Well below fJ the spectral
density is white; we are interested in Ss, the average value of the
spectral density in this low frequenéy range.

In Fig. 14(a), we plot the normalized frequency voltage épectral
density SS/ZF vs. 1 for 8 = 1.0 and T = 0.05 for four values of ¢a.
For i >> ic(¢a) the spectral densities approach the Johnson noise limit
of 1.0 (for two shunts in parallel, the shunt spectral density is ZF).
Near ié(¢a)’ theISpectral density is a maximum, as in_the'casefof the
single junction. The value of the maximum decreases as ¢a increases
from 0 to 0.5. This effect is consistent with the decrease in the
.maximum differential resistance, (dv/di), with increasing flux tﬁat is
observed in the noise rounded i-v chafacteristics (sec. 4.3.1).

The dependence of Sg/ZF on the variables L, T, and Ib for ¢a = 0.25

is plotted in Figs. 14(b)-(d). As the inductance L (x B) increases [Fig. 14(b)1},
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.Sz/ZT approaches the limit of a single junction with critical current 210.
In the low inductance limit (B < 0.1), the spectral densities approach a
limiting form. This result is consistent with the independence of AICF
[Fig. 4(35] and (33/8¢a)i'[Fig. 13(b)]) on L in the low B limit.

The dependence of 83/2F on temperature [Fig. 14(c)] is similar to
that of the single junction. As T + 0. (T < 0.01), the spectral density
approachés a limit determined by the noise—ffee differential fesistance;
as i - ic,r(BQ/Bi) - o and 83/2F diverges. 1In the large.témperature
limit (' 21) the no?se tends to the Johnson noise 6f the shunts, and
s0/2T > 1 for all i.

Thé»dependence of SE/ZF on IO [Fig. 14(d)] is a combination of the
effects in Figs. 14(5) and (c¢). In the limit 10+'® (B>, T > 0),“the
curves approach the corresponding single junction noise-free limit. As
IO.+ 0 (B>0, T » o), the B~dependence drops out for B < 0.1, and the

curves apprqach the Johnson noise limit, S$/2F = 1.

4.3.3 SQUID Flux Noise
We take as a measure of the rms flux noise the dimensionless ratio

L . L _ A
g2 = (83/2F)2/(3v/8¢a)i. Curves of 72 vs. i for variable ¢a, L, T, and

¢ (0
I0 are plotted in Figs. 15(a)-(d). The family of curves for variable ¢a

with T = 0.05 and B = 1.0 [Fig. 15(a)] exhibit minima at i v 1_(4).

S . . Y
.1 < < 0. .
For 0.1 ¢a 0.4, the value of §¢ min 1s_relat1yely 1ndepend§pt of ¢a
. L . '
for 8 = 1.0, T = 0.05. For ¢af*:tn/2 (n=0,1, 2, ...), C£ + o for all -

values of i[(BTI/Bd)a)i > 0)].

5
¢

with T' =:0.05 and ¢a = 0.25 also have minima at i ~ iC(B). As B > 0

The family of curves of 2 vs. i for variable L (x B) [Fig. 15(b)]
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. 1
the curves become progressively flatter, and Qz min approaches a limit

1
~ 0.5. As B increases beyond unity, the curves become sharper with Cz min
growing roughly as B.

on temperature [Fig. 15(c)] is weak for 0.025 <

The dependence of C?

I' < 0.075, where §¢ ~ 1.0. In the high temperature limit (T « [ » =),
1
83/2T +~ 1 and'(B?r/Bq)a)i -+ 0; hence we expect Cg >, For ' «T->0,

L
73

¢

both 53/2T and (85/3¢a)i diverge at i = ic(B; ¢a); L: becomes a sharp

function of i, falling to zero as i ~> ic.

A family of curves of C%ifor variable Io is plotted in Fig. 15(d)

¢
1
for ¢a = 0.25. As IO increases, the curves of C; become progressively

L
¢ min

intermediate values of B; however, for very small values of Io’ the

sharper, and [ increases. As IO decreases, the curves flatten for

L
(;—rooasl"—)oo.

dependence of I on 8 drops out, and [

= X

4.4 SQUID Energy Resolution

In this section we relate the computed flux noise spectral density,
C¢, to the energy resolution of the SQUID, §b/2L, We comfare'our results
with high-and-low~f limiting expressions and with experimental results.
We take thé flux noise referred to the output of the SQUiD as
o

S, = So/(3/3@); . With @928 (VBN RIO, ] = (S0/2T) 2k, TR,

and 2L = B@B/Io, we have the followiﬁg expression for Sg/ZL iﬁ terms of C¢=

Sp/2L = (8/mTy (8, T, 1, ¢,) T/R8 , | (4.3)

(8, T, 1, 6 . (4.4)

or §§/2L (2kpTL/R) (2/B%) ¢

¢

Equations (4.3) and (4.4) are exact expressions for the energy resolution

in terms of the computed flux spectral density,

.



From a different viewpoint, we can derive approximate expressions

for the energy resolution in the high- and low-8 limits as followsz’3.

~ + 1 T/5 ~ 7/ R
For & (n f'1)®o, we take (3V/8¢;)I (BV/BIC)I(QIC/d¢a) RAIC/¢6’
where we have set (9V/dI ). =~ (R/2) for I~ I , and dI /dd = 2AT /o .
'L , c c a c o
From Fig. 4(b), we find AI_~ & /L for B 2 40, so that (3V/30 ), ~ R/L
as B > . From Fig. 4(a), we find that for B < 0.1, AIC ~ 210 ~ -B@o/L,

and (BV/8®a)I ~ BR/L. We make the following approximation2 for Ss. For

R

Io = 0 (shunt resistances only), the voltage spectral density is SV =

ékBT(R/Z) and the circulating current spectral density is S§ = 4kBT/(2R),

R
where SV and S? are independent and uncorrelated. For the SQUID (IO + 0),

the voltage is a function of the currents flowing through the junctioné

and around the SQUID loop. Hence SV and SJ are no longer uncorrelated,

and Sg > S§ for T ~ Ic. ' The contribution of the circuléting currents to

o . ‘ . T 2 <R R _ . 2.R
SV is approximated by (BV/BGA)I qu where S® =L SJ,. Thus
e ~ R - 2 2 R .
| Sy = Sy + (37/32 )7 LS (4.5)
In the high B limit, (BV/3¢5)1‘% R/L, and
while in the low B limit, (3v/3¢_); ~ R/BL and
Sg/2L ~ K TL/RB*, (B << 1) . N %))

We now coﬁpare the computed expression for Se [Eq. (4.4)] with the
approximate expressions [Eqs.‘(4.6)and (4.7)]. In thevhigh B—liﬁit, our

calculated curves of > vs. i become sharp functions of i. We choose

S e

the minimum value of L2 corresponding to i =~ ic(¢é’ B) for the comparison.

Calculations of £, for ¢_ = 0.25 and B > 10 yield ¢, ~ B2/2 at i i (6., 8),

¢ ¢
and hence Sg/ZL*=2kBTL/R, in agreement with Eq. (4.6). From Fig. 15(b),
' %

¢

for T = 0.05 and‘¢a'= 0.25, we see that r? approaches a limit of about 0.5
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for B < 0.1 over a wide range of bias currents. Hence, from Eq. (4.4),
S%/ZL > kBTL/RB2 as B > 0, in agreement with Eq. (4.7). We conclude that
Eq. (4.4) shows the correct limiting behavior for high and low B.

Finally, we compared our computed results with thi;j

CT;;;;;;;dvflux resolution of the tunnel junction dc
SQUID of Clarke_gg'gl.z It should bé noted that whereas the model cal-
culation assumes that the junction capacitance is zero, practical juncfions
have a capacitance and are usually operated with Bc = ZﬁIcRZC/QO ~ 1.
However, since the I-V characteristics with BC = 1 are not very different
fromrthose with BC = 0;18 and-since we are concerned with frequencies
much iess than (RC)_I, we do not expect the calculated flux noise power
spectra with Bc = 1 to differ substantially from our calculated spectra.
In the tunnel junction SQUID, the inductance was L = 1 nH, the shunt
resistance was R = 0.6 2, and the éritical current of each junction, was
about 2.5 pA. Thus B = 2.5 and I = 0.072. The SQUID was biased above
the critical current at i n 2, and a modulating fiux of peak amplitude
¢o/4 was applied. The ac voltage across the SQUID was demodulated with
a lock-in amplifier, and the output from the lock-in was fed back to
flux-lock the SQUID in the usual manner . The measured flux resolﬁtion
was Sg ~ 3,5 X% 10_5 @o'Hz_%. We compute a flux résolution for the SQUID
b

with ¢a fixed atf@o/4 of S® =1.3 x IO‘SQO/VEZ.' This value applies to a

SQUID that is not flux modulated, but is used as a small signal amplifier

1
3

o
of the SQUID is a function of the modulation

for @a near ¢6/4' The flux modulation scheme increases S; as follows.

o
v

flux. For a SQUID biased at i = 2 and modulated about ¢a = 0, we estimate

First, the voltage noise S

that the effective modulated voltage noise is Ss <2 83 (¢a = 0.25) [see
m

cwd
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Fig. 15(a)]. Second, the transfer functionb(SV/BQa)I ;t @q = ¢0/4.must
be replaced with (3Vm/3'~’1>q)I at @q = 0, where.Vm is the amplitude of the
Fourier component of the'SQUID voltage at the modulation frequenéy, w0/2ﬂ,
and @q is the quasistatic applied flux. By plottiﬁg v vs. t for @a =
@q + (®0/4) cos‘wot from the cur?es of V vs. @a [Fig. 12(b)], we find
(BVﬁ/BQq)I at @q =0 is approximately eqﬁal to 1.3(3_\7/84)&)I at @a = ¢0/4.
From these results, we compute a flux resolution for the modulated SQUID
5

) ’ -5
of Sy~ 1.6 x 107 ¢ Hz

values of the SQUID parameters and of the neglect of the capacitance in

1 .
——p
2. In view of the uncertainty in the measured

the calculation, we conclude that the computed spectral density of the
flux noise is in sensible agreement with the experimentally measured

value.
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5. SQUID OPTIMIZATION

We now consider the choice of the SQUID parameters L, R, Io, and
the bias current i that minimizes the energy resolution at a given
temperature T. In most practical applications the SQUID is coupled to
a signal coil with coupling coefficieﬁt Oy and; fo% magnetometers and
voltmeters, phe appropriate low frequency figure!of merit?is Sg/ZazL.
Since §; « L2 in the high B limit [Eq. (4.6)], the figure of merit can
be reduced by decreasing L, provided that a? is not also correspondingly
decreased. In practice, the constraint on a? appeafs to impose a lower
limit on.L of lO-loto 10—9 H. To avoid hysteresis, the junction param-
eters must also satisfy the constraint ZNIORZC < ¢6, wheré C is the
junction capacitance. In practice, there is a lower limit on C that is’
set by the area of the smallest tunnel junction that can be fabficated.
Hence, there is an upper limit on R for fixed'Io of R? < QO/ZWIOC. Thus
for L and C fixed, Sg/ZazL becomes a function only of Io and T, or of
B =1I/(2L/0) and T = 2k T/I o .

We consider first the simpler case in which the SQUID is not in a
flux-locked loop, but is operated as a small signal amplifier with no
ac flux modulation. We assume that o is essentially independent of L.

.. From Egs. (4.6) and (4.7) we find Sg/ZL « BLi (B > 1) and Sg/ZL « 8—3/2

(B << 1). Consequently, there is an intermediate value of B that minimizes
o .
S®/2Lf As an example, consider a cylindrical tunnel junction SQUID in
which the diameter of the cylinder is reduced to 2 mm, and the area of
2

. . . -6 .
the junctions is reduced to 10 ~ mm“. The appropriate parameters are

estimated to be L = 0.35 nH, C = 1 pF, R210 = 200 € pA (ZNIOR20/®O ~ 0.6),

i



o
«
S
L
2
g
-
-
_—
v,
.

and T = 4.2 K. 1In Fig. 16 we plbt computed values of SZ/ZL vs B with

i-= ic (¢a,-8), and ¢a = 0.25. Equations (4.6) and (4.7) are also plotted
for ail values of B: Notice that the Computed value of Sg/ZL agrees well
with these equations in:the appropriate limits. The computed curve is
almost constant for 1 < B < 10. A SQUID operatgd as a small signal

amplifier with o = 1 at @a = 0.25 and i = ié (¢a,-8) would have an energy

resolution of about 1.6 leO_a

2'JHz—l relatively independent ofIB in that
range.

When the SQUID is flux modulated and operated in the usual flux-
locked mode, the energy resolution depends more strongly on B than in
the unmodulated case. Since the optimal Choicg of.bias current depends
on the applied flux, thé SQUID operated at constant biés_CUrrent cannot
be optimally biased over the entire modulation cycle. As a result, as
B increases the average value of S%/ZL at fixed bias current also in-
creases;' In addition, from Fig. 15 we see that S;/ZLfbecomes a sharp_.
function of i = I/Io for large B. Thus small variations in the bias
currént i or the junction critical current Io can lead: to substantial
increases in Sg/ZL. Hence, for the flux modulated
SQUID with L = 0.35 nH, C = 1 pF, RZIO = 200 Q%pA and T = 4.2 K, the
optimal value of 8 is approximately 1. Similar calculations at other
values of.the SQUID parameteré'also lead to B = 1 as the;value'er:oﬁti—
mal energy resolution in the flux-locked mode. We estimate an éhergy

32 - ' -
JHz ’ for the flux-locked SQUID from an analysis

resolution of 1.9 x 10~
similar tb,that in Sec. (4.4).

In summary, the procedure to obtain optimum performance from a tunnel

junction SQUID is as follows. One first chooses a SQUID configuration,



andthusonefixes L. The critical currents of the junctions are set by the

constraint B = 2 LIO/¢o ~ 1. The shunt resistance, R, for each junction

is chosen to satisfy 2 HIORZC/QO <1, where C is determined by the area

of the junction. Finally, the SQUID is operated with a bias current

approximately equal to the total critical current in the absence of noise.



6. ULTIMATE PERFORMANCE OF THE DC SQUID

The dependence of S;/ZL on L, C, and T for B = 1 can be approximated

1
as follows. From Fig. 15 we find Qé (B, ) =1 for B 1. Hence, from

)
Eq. (4.4), we find Sg/ZL ~ 4K,TL/R or

Sg/2L ~ 4kBT(ﬁLC)% B =1), | - (6.1)

where we have uséd-the constraint R? @O/Zﬂioc = L/wC. Thus, apart from
numerical factors close to unity, the energy resolution for B =1 is just
kBT divided by the resonant frequency of the ring, l/Zﬂ(LC/Z)%. We expect
Eq. (6.1) to remain valid provided the Johnson noise associated with the
shunts is'the dominant noise éogrce. However, Whgp kBT/eV ~ kBT/IOR <1
(V is the bias voltage), the shot noise inlthe tunnel junctions will be
the dominant noise source.24 For junctiomns Biased at a current of about
ZIO, thé shot noise Voltagé will have é low frequency_specffal density

of approximately ‘Zé(ZIO) (R/2)% =~ eIoR2 in the low temperature limit.

If we replace '2kBTR with eIoR2 in Eqs. (4.6) and (4.7), we obtain

S?D/ZL ~ hB/4 (B >> 1, el R > kgI), - (6.2)
and S%/ZL ~ h/8B (B << 1, eI R >> kgT). (6.3)

For the optimum value B =~ 1, Eq. (6.1) becomes

(o] ’ . ’ .

S(D/ZL ~ h/2 RB=1, eIOR >> kBT) . S (6.4)
Thus, it appears'possible to operate a SQUID with its energy resolution
limited by the uncertainty principle. With B = 1, this limit requires

1 -
4kBT(1TLC)2 < h/2. If we choose T = 4.2 K, and L = 0.35 nH, this inequa-

2 11

lity implies C < 10 ° pF, or a junction area < 10 ~ mm? for Nb-NbOx-Pb

junctions.29 In principle, junctions of these dimensions can be fabri-
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cated with electron beam milling techniques. For B = 1 and L = 0.35 niH,
the required critical current, Io ~ 3 pA, corresponds to a current den-
sity of about 3 kA cm_z, a value that is readily achieved with junctions
of larger area.nghe shunt resistance is about 100 Q2. These values of
L and C correspond to a SQUID frequency, l/2ﬂ(LC/2)%, of approximately
10 M Hz. Although this frequency is below the gap frequency (v 3 X 10" Hz),
other relaxation processes may limit the SQUID to a lower frequency of
operation. In that case, it will not be possible to achieve the resolu-
tion giveﬁ by Eq. (5.4) with a SQUID operated at 4.2 K.

One may also atteﬁpt to achieve the resolution suggested by Eq. (6.4)
by operating the SQUID at a lower temperatufe: With L = 0.35 nH and
C = 1 pF, the temperature must be below 0.4 K. vThe correspoﬁding fre-
quency at which the SQUID would operate is about 10°Hz. A preamplifier

with a noise temperature below 0.4 K would be required.
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APPENDIX A

We derive the response of the SQUID shown in Fig. 1(b) to a signal
current IS applied to one‘superconducting arm of the SQUID. .The current

IS generates a current IS/Z in the inductances Ll and L2 and in L3-and L4,

together with a circulating current JS. These currents are superimposed

on the currents I/2 and J produced by the bias current, I. Hence the

currents through L., L,, L3, and L4 are

1> 72
I, = /2 - J - IS/2 - Jg > (A1)
I, =T/2+J+1/2+Jg, ' | - (A2)
I,=1/2-J+ 15/2 - Jg s (A3)
.and I, =1/2+ q - Ig/2 + I . | ' _ (A4)

The bias current I is constant in time; we assume that I, is quasistatic

S

Thus,, dIl/dt = dI3/dt = - dIA/dt = - dIZ/dt = - dJT/dt, where JT = J + JS.

Since only the time dependent circulating currents J and J_ determine -

S

the voltages across the inductances, Eqs. (2.11) and (2.12) become

\Y

v, - (- m@/2) (@ /de) | )

and V = v, + 1+ n)(L/2)(dJT/dt) . : (A6)

As in sec. 2, the parameter n describes the imbalance between the induc-

tance of the arm containing Ll and L3, and the arm cdntaining.Lz?and'L4.

61, and 8, are unchanged. Equation (2.10)

Equations (2.3)-(2.6) for Vv 9

1’ V2’

for the total flux @i is modified by I

g* We define a pérameter g analogous'



to n that describes the imbalance between the inductance of the arm

containing L., and L2, and the arm containing L., and LA; the signal flux

1 3

is then ® = LJ + £LI /2. Hence
s s s ‘
@T = LJT + nLI/2 + ELIS/Z . . (A7)
From Eqs. (Al)-(A7) with Eqs. (2.3)—(2,6), the basic equations in

dimensionless parameters are:

jT_= (61 - 62)/ﬂ8 - ni/2 - €is/2 R (A8)
as ds
_ 1+ 1, @ -1 2
V= T S T (49)

dé i/2 - (iS/Z + jT) - (1 - o) sin 61

0 ) + Vi1 ? (A10)
_d62 ) i/2 + (is/2 + jT) - (1 + a) sin 62 'y ALD)
dé (1 + p) N2 °

Equations (A8)-(All) have the same form as Eqs. (2.13)-(2.16) if we

identify j with (i + 1_/2) and ¢_ with-(1- £)8 is/a.
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The procedure used to calculate ic(¢é) is as follows. By combining

Eqs. (3.1)-(3.3) we eliminate j, and express 62 as a function of 61 and i:

5, = 8§, - 2mp_ - TRi(l + n)/2 + TR(L - n) sinc‘il . (B1)

We define a function of i and 61 to be
F(i,@l) =i - (1-=a) sinGl - (1+ o) sin62 . (B2)

Eq. (3.1) is satisfied when F(i,6,) = 0. Plots of F(i,8.) vs. Gi for
fixed i generate a family of continuous curves each labeled by the value
of i. Since F is also continuous in i;'the curve corresponding to the

greatest'value’of i that still has a zero (i.e. F(i,5l) = 0 for some 51)

will necessarily satisfy BF/Bél = 0 at that point. Hence,

8F/361 = -(1-a) Fosﬁl - (1 + a)[l + mR(1 - a) cosdl] cosG2 .

Equnjon(Bz)with F=0and Eq. (B3) with 8F/851 = 0 allow us;to.express 61 in

terms of 1i:
2
(1 - a)’cosél

i=(1l- o) sin§, + {(1 + a)? - (B4)

1+ m8(1 - a) cosGi

Now both F and 8F/361 can be expressed as function of a single variable 61.

We search for the simultaneous zeros of F and BF/BGl with respect to 61
using a Newton-Raphson search routine in one variable only, and thus

determine the maximum supercurrent, ic, as a function of o, B, n, and ¢a.

(B3)
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(o} o}

%)

satisfy Eqs. (2.13)-(2.16) for arbitrary a, p, B, and i with n = 0. We

We show that ¢2 = ¢Z -~ Bni/4. Suppose the set of values (vo, j

want to show that the set (vn, jn, ¢2) for n # 0 can be shifted so that
the shifted values satisfy the n = 0 equations, and hence have the n = 0
time-averaged values. Now the set (vn, jn, ¢2) satisfy Eqs. (2.13)-(2.16)

with n # 0. Rewriting these equations, we have
3N = (8, - 86,)/mB ~ (7 - mBi/4)2/8
1 2 _ a ’

and v - (d8,/d6 - d8,/d8)n/2 = (48,/d6 + d8,/d0)/2 .

Since both ¢a and i1 are indepehdent of time, we have

nBdj"/d8 = a8 /do - ds,/do .
Hence

v - (mB/2)d3"/d0 = (d8,/d0 + d8,/d0)/2 .
If we take v° = v - (ﬂnB/Z)djn/de, jS = jn, and ¢: = ¢2 - mBi/4 we see
that the shifted set (VS, jS,'¢:) satisfy Eqs. (2.13)-(2.16) for n = 0.
Hence the time-averaged values ;g and Eg evaluated at ¢z will equal the

original average values v° and‘gﬁ at ¢Z.= ¢2. But jS = jN, and v° = yN
1

- (mB/2)d;"/dt = v, Hence the values vl and j" at some ¢2 are just

‘ the valuesiof v° and jo at ¢2 - nBi/a. Consequéntly, an imbalance n in

the SQUID inductance appears as an effective external flux - nBi/4 for

fixed bias current i.
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Figure Captions

Model for the dc.SQUID with (a) externally gpplied flug @a, and
(b) flux generated by a current, I_

Critical current of SQUID vs. applied flux as a function of
(a) o, and (b) n.

Critical current of SQUID vs. applied flux as a function of B.
Critical current modulation vs. B as a function of (a) L,.and
(b) I_.

Voitage and circulating current vs. time as'functioné of applied

flux, o, N, and p.

‘Current-voltage characteristics of symmetric SQUID as a function

of (a) applied flux, and (b) B.

(a) Average voltage and (b) average circulating currgnt‘vs.
appliéd flux as a function of B.

(a), (d), (g Current-voltage characteristics; (b), (e), (h)
average circulating current vs. applied flux; and (c), (£),
(i) average voltage vs. applied flux, for SQUID as functions
of n, o, and p. In all céses B = 1.

Histogram of random voltages v, generated by Method II for 30

k .
trials. Dotted curve is Gaussian with the same_ndrmalization}'
Representative plots‘of (a) phase, and (b) associated voltage

vs. time for single junction with I' = 0.05, and i = 0.9.

(a) Cutrrent-voltage characteristics of single resistively shunted

junction in presence of noise computed with Method I (e), and

Method IT (A, O, 0). Solid curves are from Ambegaokar and



Fig. 12

Fig. 13

Fig. 14

Fig. 15

‘Fig. 16

- 42 -

Halperinﬁjﬁ Dotted line is noise-free characteristic. (b) Low
frequency voltage spectal density vs. average voltage for single
resistively shunted junction computed with Method II (A, O, o).
Solid curves are from Vystavkin gg_gl;;

(a) Current-voltage characteristics of SQUID in presence of
noise as functions of applied flux computed with Method I (e),
and Method II (A, O, 0). Dotted linés are noise-free charac-
teristics.  (b) Average voltage vs. applied flux for SQUID as
function of bias current, i, in présence of noise with I' =0.05
(solid lines). Dotted lines are noise-free values.

SQUID transfer function vs. bias current as a function of

(a) applied flﬁx, (b) SQUID inductance, (¢) temperature,.and

(d) critical current per jdnction.

Low frequency voltage spectral density vs. bias current as a
function of (a) applied flux, (b) SQUID inductance, (c) tempera-
ture, and (d) critical current per junction.. Dashed lines represent
Johnson noise limit.

Flux noise sPectrai density, c:,vs. bias current i as a function
of (a) applied flux, (b) SQUID‘inductance,'(c) temperature, and
(d) critical current per junction.

Sy/2L vs. B.
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