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ABSTRACT

A definition or measure of ecological stability is intro-
duced which is advantageous in that it may be empirically accessible
and in that it relates to practical concerns in situations of
environmental stress. It is shown how this measure can be analyzed,
for an arbitrary system described by a community matrix, by model —
independent mathematical methods. The relationship between the
stability of any such system and both the distribution of community

matrix eigenvalues and the pattern of pathway linkages is discussed.
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I. Introduction

One of the central problems in ecology is to learn
how to predict what will happen to a disturbed ecosystem. What
one would like is to be able to measure certain properties
(ideally, a few simple ones) of ecosystems before they are per-
turbed and then on the basis of the results of the measurements
to be able t§ predict how gently or violently the system will
respond to a-aisturbance. For this reason, much effortjhas been
directed toward understanding what properties of ecosystems'
tend to enhance stability against external stresses. We call
such properties stability indicators. A’ wide range of defini-
tions of stability (May, 1973; Holling, 1973 ; Botkin and Sobel, 1974;
Orians, 1974) and an even wider range of.possible stability indicators
for ecosystems have been considered by ecosystem theorists.
Among the former are resistance, resilience, neighborhood asymp-
totic stability, global asymptotic stability, and structural
stability, while theilatter include species diversity, (Odum, 1969;
May, 1973;‘Goodman, 1975), nutrient pathway diversity (MacArthur, 1955},
nutrient transit-time diversity (Harte and Morowitz, 1975), time lags
- (May, 1973), spatial heterogeneity (Andrewartha and Birch, 1954;
Horn and MacArthur, 1972), érazing strategies (Steele, 1974), density

dependence (May, 1973), and stochasticity (May, 1973; Roughgarden, 1975).



A shortcoming of much theoretical work in écology is
that results often are not expressed or expressible as relations
among readily measureable quantities. A familiar‘example is the
oft-quoted result that a necessary and sufficienf condition for
asymptotic stability of a system described by a community matrix
is the negativity of the real parts of all the eigenvalues of
that matrix. While mathematically rigorous, this result unfor-
tunately 1is not very useful for two reasons. First,
measurement of all the community matrix eigenvalues for an actual
ecosystem iﬁvnearly impossible. Secondly, the property of asymptotic
stability, while mathematically precise, is unverifiable because
it entails an infinite time of observation.

This work is motivated by our perceived need to bring
theoretical stability analysis more in align with experimental
constraints. Our objective is to introduce a relatively prac-
tical quantitative measure of stability and to explore how
the value of this stability measure depends upon ecosystem parameters
(such as averaged properties of the distribution
of eigenvalues of the community matrix). In an earlier work,
(Harte and Morowitz, 1975), summarized briefly below, we
describe how a single function, characterizing in an approxi-

mate way the distribution of eigenvalues can be empirically



determined by an appropriate tracer experiment. Because measure-
ment of this approximate distribution is far easier than
measurement of all the community matrix eigenvalues (although
still by no means easy!) analysis along these lines could

enhance the empirical relevance of theoretical analysis.

II. A Practital Measure of Stability

All notions of stability in ecology pertain to the
relation between a stressed state of a system and the state
the system would have been in if there had been no stress.
Where they différ is in the aspects of that relation which are
selected as being especially important. No single measure
of ecosystem stability can be suitable for all purposes and
satisfy the interests of all ecologists. The notion of resis-
tance to stress is very useful if one's interest is in the
maximum extent of the deviation between the stressed and
unstressed system. Resilience is of relevance to those concerned

with the rate at which a system returns to pre-stress conditions.

Asymptotic stability is a useful concept for those concerned with

whether or not a system will eventually return to its pre-
stressed state. Other concepts of stability likewise single

out certain aspects of perturbed behavior for emphasis.



Asymptotic stability, together with the community
matrix eigenvalue method of analysis, is perhaps the most
widely applied of all. Yet it is not likely to be a practical
concern in a situation in which, for example, effluent is dumped
in a lake or a forest is clear-cut. First, it is too stringent
a condition in the sense that return of a system to precisely
its pre-stressed state is neither likely (especially if the
stress is not removed!) nor essential to environmental
acceptability. Secondly, the condition that a system
ultimately returns to its predisturbed state may be too lenient
if the system takes a very long time to do so and is displaced
quite far from undisturbed conditions prior to its eventual
return. In short, asymptotic stability, while mathematically
convenient, is neither environmentally relevant nor, as men-
tioned in the introduction, empirically accessible.

The measure of stability analyzed here incorporates
both resistance and resilience ina single integrated measure
of the deviation between the stressed and unstressed states of
the system. Suppose that in the absence of an external distur-
bance to an ecosystem, the state of the system is characterized

by the functions of time, fi(t), with i=1, 2, ..., N. The
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;; describe the unperturbed componenfs of the system; they are
usually most conveniently taken to ;efer to the carbon contents
of these compartments although that is not of importance to us
here. Let the functions Axi(t) be a measure of the magnitude
of the effect on the ith compartment resulting from some per-
turbation. The Axi's are usually taken to describe the same
property of the compartments that the i&’s describe although
they could as well describe levels of a toxic substance or any
other measure of system response. Assume that the perturbation

begins at time t=0. Then we let

Ax ()

Zn fdtp(t\L s (1)
be our measure of stability. A large value of S corresponds
to high stability. Note that this definition of stability incor-
porates a measure of both the magnitude of the deviation of the
perturbed system from equilibrium and the rapidity with which
it returns, if at all. The n, may all be chosen to be equal
to unity if each compartment is deemed to be of equal wéight
or importance, although a subjective judgment might favor
choosing the n's corresponding to some species to be larger

than others. A time-weighting function, p(t) , under the



integral sign can be chosenbto be different from a constant in
order to reflect the observer's judgment about the relative
importance of short-term or long-term effects. In order to
compare the intrinsic stability of different systems, the inte-
grals in Eq. 1 must be averaged over a set of initial perturba-
tions of specified magnitude, as discussed further ih the
following section.

While Eq. 1 provides an index or measure of stability
which is empirically convenient (or can be made so by appro-
priate choices of the n, and p(t)) and appears to have the
flexibility to reflect well many of the realities of environ-
mental impact concerns, it does not connect in any transparent
way with methods of mathematical analysis of theoretical models
other than computer simulation. And yet if it is to provide
more than just anofher empirical property of stressed ecosystems
and is to be related-in some way to properties of the pre-stressed
system, such as diversity, then methods of theoretical analysis
of this measure would be useful. 3y means of such methods, one
could identify, for purposes of ultimate verificqtion, interes-
ting candidates for stabilizing or destabilizing properties of

ecosystems. The rest of this article will develop an analytic



approach to the study of this stability index, and present
some preliminary results about some possible candidates for

stability indicators.

III. Analysis of S.
The value of S for a particular ecosystem subjected
to a particuier disturbance will depend upon how large the Axi
grow and how rapidly, if at all, they damp out to zero. In
order to see what generalities can be deduced, consider a quite
general model description consisting of coupled, nonlinear,
first order differential equations for the time dependence of
the compartment variables. Assuming, now, that the ratios Axi/ii

are small, then a linearized matrix equation:

a@{a x, (t) = Zj;Aiijj (t) (2)

is obtained. A is commonly referred to as the community matrix;
its eigenvalues will be denoted by -Xa (Note the minus sign
in front of Xu introduced for future convenience.) 1f, as

we hereafter assume, the §£ are time independent and the

original non-linear equations have no explicit time dependence,

and, in the absence of eigenvalue degeneracy, the time evolu-

tion of the Axi's can be easily computed to be:
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Ax, (t) = Ya, e ot (3)
1 m 1o _

where the ay depend upon the matrix elements of A and the

initial conditions, Axi(O). If the eigenvalues of A all have

negative real parts, as we hereafter assume, then the Axi's
are guaranteed to damp to zero as t - ®. The eigenvalues
—ka, which determine the damping times, are related in a
moderately cghplicated way to the residence times‘of the compart-
ments of the system; in general the damping time constants, or
inverse negative real parts of the eigenvalues denbted by
Re_l(Aa), are large if the residence times are all long.
The qualitative dependence of integrals ,fdt(ij(t))2
upon time constants, Re_l(la) , of the system can be conjec-
tured. Dimension counting would suggest that when the time
constants are small, the integrals are small. Therefore, small
Re_l(ka) should be an indication of high stability. Moreover, equita-
bility, orbsmall di;persion, of the time constants: tends to prevent a situ-
ation in which a subset of terms in Eq. 3 with, say, positive coefficients
dominate the integrand.at early times just subsequent to the
perturbation, while the remaining terms with negative coeffi-
cients dominate at later times. Therefqre, if the sum of the

Reul(ku) is fixed, the more equitably they are distributed,
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11
the less the Axi should grow and the larger S should be.
Below, we prove several theorems which establish rigorous
connections between S and the distribution of eigenvalues.

Explicitly displaying the dependence of the Axi(t)
on the initial conditions, Axi(O) , we rewrite Eq. 3 as
N N At
- Ax.(t) = 2, 2ax (0)ct ey (4)
1 Py _ ] Jj1
j=lo=1 -
where C?i is of the form:
o _ g1
51 = Pjolai (5)
and D is the matrix of eigenvectors of A. For future refer-
ence we note that the C?i satisfy:
u —
2055 = %51 ©)
and
o .
:[_:cii =1, (7

both of which constraints follow from Eq. 5. For the rest of
this discussion we will assume that the N and p(t) 1in
Eq. 1 are-equal to unity and that the eigenvalues are real and

negative. This will simplify the algebra. It will also
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influence our results; 6thcr cases can be treated, however,
by the methods we develop here.

Substituting Eq. 4 into Eq. 1 and performing the
integration, we obtain

B

o
ij(O)Axk(O)CjiCki

.1 1 N N N N N
sl-ly s sy

E (8)
i=1j=1k=1a=1B=1 xi(ka + A

8l

Iﬂborder to proceed we must make an assumption about
the Axi(O). One possible initial condition would be to take a particular
Axi(O) different from zero and the others equal to zero. While in some
sitpations this is a realistic initial condition and is, in fact, the most
commonly considered one in theoretical studies, we choose instead to evalu-
ate S by averaging over a set of many initial displacements. We adopt this
procedure because we are interested in general, not specific, stability
properties of ecosystems. That is, we do not want to know the value of
S for a particular initial condition, but rather its value for a random
average over a wide.range of possible initial conditions. Our averaging

procedure-will be to take an average of S—l, denoted <S_1>, over initial

displacements which are randomly distributed subject to:

—2
<Axi(O)ij(O)> = §ijxi (9)
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The "absence-of-correlation' . assumption made here for the ini-
tial displacements is based simply ogﬁgne absence of more
detailed information. The methods we introduce here for ana-
lysing S could in principle be applied to other averaging

procedures, with different results generally obtaining.

Using Eq. 9, to evaluate <S-1> , we obtain from

Eq. 8: _
P T cochy ‘i?
7N jz:1 j=1 Zl '2‘:1(.;_1_)::%_ (10)
i=1j=1 =1 B= Aa +>\B.xi
Consider, first, the case in which the community matrix is
diagonal:
TN N
2 o
{ !
A= )
2
\QO )
n
Letting
A= 30 (12)
N 4&4 "¢ -
0
we write |
A=A+ E ' (13)
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where

x> o,iea = 0 and €,>- . (14)

It is then straightforward to show that

1, 1 1 o
<g7> - ol Ly
S T W NI ey (15)
a a
whether or not any degeneracies occur among the Aa . This

=

result follows from the fact that for this case,

¢ -5 .5 .
ji oj ai .

. -1
Eqs. 14, 15 lead directly to the result that <S ">
is minimum (corresponding to maximum stability) when all ¢ = 0.
a
Moreover, for fixed values of the ¢ , < S_1> decreases as the
a
mean negative eigenvalue, ), increases. Thus stability is
enharced when the mean eigenvalue is most negative and when the
eigenvalues are most nearly equal in value, as suggested by the
qualitative arguments given above. It is natural to inquire at
this point as to what happens if the mean eigenvalue dimishes
. _ . . 2
in absolute value and the dispersion, §:€q/N , also
a
decreases. It is easy to see from Eq. 15 that for small
€ 2,042 .
values of 4% , it is the ratio, I:EQ/NA which deter-
: o

mines the index, S.
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In order to analyze the case of an arbitrary (not

necessarily diagonal) community matrix, we will

the relations given in Eqs. 6, 7 to simplify Eq.

component system will illustrate the techniques

non-diagonal A. We denote the two eigenvalues

-A

2 and set

where

A>0 AT <

Substituting Eq. 16 into 10 we obtain

1.1 1.2
€;3Cy;  2654C

jirji N

need to use
10. A two
we use for

by -Al and -

(16)

(17)

2 .2
C..C..
)i J1

¢ . 2 2
SIS >5>
i=1j=1

2x + 2)' 2\

(18)
21 - 2)\'

(19)
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Using Eq. 6, we can simplify the first term on the

right hand side of the above expression:

[ 2 EJ‘? 2 c‘j?‘ic?i L& 2 ’x"f 5% 1% 1
PPN ND e =—2—Z_:Z;—2—» e sl ooy (0
i=1j=1 xS o=1 B=1 i=1j=1 X{ i

Then, after a little algebraic rearrangement of the remaining

terms, Eq. 19 becomes

i=1] N
(21)
) ( 1 \2 2\
A'Z 2 2 x} ij>“ le ~
M ZZZ e ot ;
417 i=1j=1 ; A+ A A=A

The second term on the right hand side of Eq. 21 can be shown

to vanish. This follows directly from Eqs. 6, 7:
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Moreover, from Eq. 17, it fbllows that the last term in Eq. 21
is non-negative, and thus <s7l> - 1/2) + terms which are non-
negative and do not vanish if X + 0.

This result generalizes to an arbitrary community

matrix. Let

_ Aa = A+ €, (23)
where
A:>O,2;€a = 0, and €a> - (24)
Then following the same procedures as in Egs. 19, 20,
11 s ;i C?ic?i(% * £g)
S =X fiﬁ'lfz: 352:2: 2\ + €+ € (2%)
i) X B8 a B8

In the appendix to this chapter it is shown that even in this

general case, <s7!

>31/2x.

It should be pointed out that often in the limit of degener-
ate eigenvalues, Eq. 3 is no longer a correct form for AXi and
the ,C?i develop singularities behaving like, for example, l/eu
as the o approach zero. In such a degenerate limit, our proofs

1>_11/2X even in

1

fail. By continuity, we still expect that <S~

such a case. What we do not expect is that <S "> = 1/2X in the
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limit €, 7 0, should such singularities develop. If the community
matrix has all zero matrix elements either above or below the
diagonal, then such singularitiés do not arise, C?i = Sjasai’
Eq. 15 is exact, and s 1 o 1/21 as the € > 0. In general,
the more sparse the off-diagonal terms of the community matrix the
more.likely that C?i is non-singular in the degenérate limit and
that Eq. 15 is exact.
From these results we draw the following conclusions:
i. <S_1> has a minimum value, 1/2)X , where -\ is the
eigenvalue mean. |
ii. This minimum can oniy be reached if the dispersion,
(1/N)(Z€§) of the eigenvalues vanishes (and thus each g==0).
iii. This minimum is reached if the dispersion vanishes
and the C?i develop no singularities in that limit.
Additionally, the following qualitative results are
suggested by the preceeding arguments:

i. For a fixed value of the eigenvalue mean and

dispersion, stability is enhanced by community matrices which

are either zero above or below the diagonal or are sparse with
respect to off-diagonal elements. In an energy representation,

the former is likely to be approximately valid because the
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retention coefficients characterizing the fatio of the energy
gained by a predator to the energy lost by a prey in a trophic
interaction are typically very small. No matter what represen-
tation is used, our results suggest pathway simplicity (sparse-
ness of off-diagonal community matrix) enhances stability, for
a fixed value of the eigenvalue mean, and small eigenvalue
dispersion. =

ii. The ratio of the eigenvalue dispersion to the
square of the eigenvalue mean, (I/Nkz)(252) provides a paré-
meter roughly characterizing the dependence of <S_1> on the
complete distribution of eigenvalues. Stability is enhanced as

this parameter decreases.

IV. Discussion

Our results follow from relatively model-independent
arguments. Neverthéless, it is useful to review the assumptions
we have made in deriving Eq. 10 from Eq. 1. They are:

i. The Axi/§£ are small so that a linear differential
equation for Axi holds.

ii. The xi are constants.
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iii. All the eigenvalues of A are negative and real.
iv. The ni and p(t) in Eq. 1 are equal to unity.
v. The initial conditions are as specified in Eq. 9.
If these aésumptions are relaxed, methods may still

r:

exist for analyzing”fge implications of Eq. 1. For example,
complex eigenvalues are easy to accomodate by our methods.

If p(t) 1is not constant, but some function of time weighing
the future unevenly, then the A -dependence of the time
integrals in Eq. 1 will no longer look like 1/(Aa + XB).
Whatever dependence on the MA's emerges from the integrals,
the constraints of Eqs. 6, 7 will still hold and our methods
will give some result. Determination of the consequences of
various forms for p(t) and analysis of what happens when
other assumptions in the above list are relaxed will be
explored in future -tudies. It would also be of interest

to determine how our results depend upon the specific functional
dependence of the integrand in Eq. 1 upon the |Axi|. All our
assumptions wére chosen, in part, to simplify the mathematics,
but only assumption i above appears impossible to relax, if

analytical methods rather than numerical simulation are to be

used to explore all these issues.
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We cdnclude with a discussion of the question of
measurement of an approximate eigenvalue distribution. Clearly,
measurement of all the ihdividual Aa is impossible. 1In'a
previous report (Harte and Morowitz, 1975) we have described a
tracer experiment which measures the transit-time distribution

14C or 15N to make a round

for a trace substance such as
trip through-an ecosystem. This transit-time distribution
provides a measure of the spread of the time constants charac-
terizing the pathways for nutrient flow in the system. For a
system in which there are only a small number of pathways
with rapid flow rates, the distribution would be narrow and
peaked at early times. For a system with many pathways, with
greatly differing flow rates, the distribution would be
spread out in time. |

From a given distribution, we pointed out that a
measure of pathway transit-time diversity can be constructed.
This is obtained by forming the quantity -J{;Qn(g/go)dt where
g is the probability distribution for cyclic flow (i.e.,
g(t)dt measures the probability that a signal which starts

out at some point in the system at time t=0, will return to

that point in the time interval (t, t + dt). This diversity
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measure has a dependence upon the mean and the dispersion of the
transit-time distribution which is qualitatively the same as

the dependence of <S_1> upon the eigenvalue distribution.
Increased transit-time diveristy tends to increase <S—1> or
diminish stability. Development of tracer or other techniques
for measurement of transit-time distributions for field systems
(as distinct_from the microcosm experiments proposed in our

earlier report) would be of great value in verifying the ideas

described here.
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Appendix
In this appendix we prove that

2 +€)

ZZ Z,Z' Jl Jl(g >0 A-1

A x 2\ o+ e + EB

subject to the constraints:

A-C
Ye =0, g, > - A
o

Using Eq. 25, this will then establish that <S_1>_Z 1/2Xx in the

most general case.

We first use the identity:

€ + £
a B

(O3]

z[ do- 9 2y 02 + gy * €g) A-
o do

2N+ Ea + EB

and the fact that:
Z Z X X,z (z X )2 A-d
e Yl ’

for arbitrary X, to rewrite J in the form:

—2

d X, oA + €.) 2

(e o] o -

=j£ do (35 + 2”23231%[5 €556 B] A-5
1 3 Xi Q



24

The d/do  term easily simplifies, with the aid of Eq. A-2Z,

as follows:

-2
d j o -o(x + g )2
fdcaazzr%[ZLji u:l
(o} 1 )(1 Q
A-6
=2 =2 ‘
i al2 _ _ Jg72 - \
_ :f[zcji:]l 3k TS M
1 J Xj 1 J Xl 1 4

We now use the fact that the double sum over i and j is bounded

and the general inequality

below by the sum over i = j,

i=1 =1
to get
© 1 A 2
J S N+ 2§[’d0'—-2:§:C9.e°0(' + e A-8
o N T il
Using Eqs. A-2, A-4, this becomes
2\ -1
J2 “N+N—EZZA+8 + € A-9
o B o 8
We next show that
2
N A-10

]

_ 1
K= jE:Z:ZAA+ v e 2 3%
a B o B
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We begin by writing:
® a(2
K=ZZfdoe 02X + £y * €p)
a B0

= fdoe'ZMEZe'O(Ea * _EB)
o a B
But,

and so,

P 20
K > -/(:doe 2&'23(1 - o, - 088)
1

2x

Thus, J > 0, and <1

> > 1/2X .

A-11
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