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,--------- LEGAL NOTICE ---------. 

This report was prepared as an account of work sponsored by the 
United States Government. Neither the United States nor the Depart­
ment of Energy, nor any of their employees, nor any of their con­
tractors, subcontractors, or their employees, makes any warranty, 
express or implied, or assumes any legal liability or responsibility for 
the accuracy, completeness or usefulness of any information, appa­
ratus, product or process disclosed, or represents that its use would 
not infringe privately owned rights. 
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INTRODUCTION 

Passage of the Toxic Substances Control Act (TSCA)l last year emphasized 

the urgent need for the formulation of viable criteria and interim standards 

limiting the exposure of increasingly large segments of the U.S. population to 

environmental chemical toxicants. Unfortunately, current methods of developing 

h dd bh · . d 2 t ese stan ar s are ot tIme-consumIng an costly. The resulting need for 

a priori predictive techniques to assess the inherent potential of chemicals, 

such as the halocarbons found in chlorinated waters, for inducing adverse biolog-

ical effects, has led to the use of a number of analytical methods designed 

primarily for screening large numbers of chemical compounds before they impose 

unacceptable environmental hazards, frequently of crisis proportions. 3- S 

Four of the techniques best adapted to dealing with the multifactorial 

environmental problems of chemical health effects will be briefly described: (1) 

quantitative structure/activity relationships (QSAR); (2) factor analysis (FA); (:;) 

pattern recognition/artificial intelligence (FR/!\I); and (4) molecular connectivity (MCl. 

Historical 

About 1870 Crum Brown and Fraser6 enunciated the basic relationship heh.ccn 

biological response (R) and drug structure (C), 

R fCC) (1) 

thus laying the groundwork for the subsequent structure-activity relationship 

* (SAR) investigations of Hansch and others. The quantitative foundations of SN~ 

have their origins in Hammett's studies of reaction rates and equilibrium constants 

for series of derivatives of benzoic aCids 8a ,b from which he deduced the well-

known relationship: 

log Ka = log Ku + ap (2) 

where a is a constant characteristic of the substituent and its location, P a 

(normalized) reaction constant, and K and K the corresponding rate or equilibrium a u 

constants for the substituted and unsuQstituted species, respectively. 

* See Ref. 7 for an excellent historical and state-of-the-art review of QSAR . 
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Hansch et al:a,b used an analogous substituent constant TI, where 

TI = log Px - log PH 

expressed in terms of the partition coefficients in octanol/water of parent 

(3) 

compounds (PH) and their substituted derivatives (Px)' With the TI function, 

linear regression analyses were developed for substituent effects on the biolog-

ical activities of benzoic acids on mosquito larvae; phenols on gram-positive and 

gram-negative bacteria; phenylethyl phosphate insecticides on houseflies; thyroxine 

derivatives on rodents; dimethylaminoethyl benzoates on guinea pigs; and carcino-

genic compounds on mice. Clearly, this was a predictive tool of considerable 

potential. 

SAR and the DDT Problem 

In the course of a systematic search for general contact poisons for insect 

pests, Paul Muller "rediscovered" Qichloro~iphenyl Trichloroethane (DDT, I) . 
CI 

~ CI 

CI--©-C-~-CI 
I I 
H CI 

(II DDT 

L 

I 
x-o-~ C~-y - I k/ 

"Z 

(:0: I DDT analog 

* 

The economic importance of DDT and the need for environmentally less-persistent 

. lOa b 
substi tutes, have resulted in many studies involving SAR and molecular modelIng, , 

d d · 11 d' l' 1· " 12a, b egra atl0n, an lmmuno oglca lnvestlgatl0ns. lOb Fahmy et al. used the 

generalized model of a DDT analog (II). 

It was assumed that DDT and its analogs fit into the receptor site CR) of 

a macromolecule (e.g., a protein or lipoprotein in a nerve membrane), as shown 

in structure III. For optimum interaction the integral size of the whole molecule 

* Synthesized at J.R. Geigy, A.G., Switzerland (September 25, 1939). 
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(ill) 

is important. This is illustrated in Structures IVa and IVb, where M is a sub-

stitute similar in size to chlorine; group S is smaller and L is larger than M. 

It is clear that the ,R-site can accommodate unsymmetrically substituted analogs, 

provided that the integral size of the molecule can fit within the flexible 

boundary of the site. Further, the model implies that as the sums of groups 

x, Y, L, and Z increase, interaction with R will increase to a maximum and there-

after decrease when the limit for optimum interaction (best fit) is exceeded. 

Because it was likely that steric effects would be a dominant determinant in fit 

at the R-site, the Taft steric substituent parameter (E )13 was selected for 
s 

estimating substituent size. The model implied a parabolic relationship of E s 

and toxicity. Thus, for a single substituent X, the equation was of the form: 

= ct + (4) 

where ct, S, and yare constants. This model appears to offer a reasonable 

explanation for the toxic behavior of DDT analogs with one smaller and one larger 

substituent than chlorine in the X and Y positions as illustrated in Fig. 1 with 

a plot of synergized log LDSO for houseflies against Es for different substituents 

in position X while Y is held constant (Y = Me). Except for the identity case 

(X = Y = Me), the plot is remarkably similar to a potential energy diagram for 

diatomic molecules. It indicates an optimum E region where maximum interaction 
s 

between chemical compound and the R-site takes place. 

The concept of molecular size and fit has been used extensively by Metcalf 

and others in their design of DDT-like insecticides with more polar, less 

environmentally persistent characteristics. Similar studies are needed relating 

Es and other parameters to the toxicities of those halo-organics produced during 
water chlorinat,ion. 
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Figure 1. Relationship between toxicity and 
Es for 1,1,1-trich1oro-p-methy1-p'-x-dipheny1ethanes. 
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FACTOR ANALYSIS (FA) 

Factor analysis (FA) is one of a number of statistical methods which can 

cope with large quantities of data of the kind encountered in dealing with inter-

actions in chemical and biological systems. Originally applied largely in the 

social sCiences,14 FA has in recent years found increasing application to chem­

ical15 ,16a-c and biological l7a,b problems. 

Some Basic Assumptions of FA 

A detailed formulation of the technique of FA is clearly beyond the scope 

of this paper. However, a summary of the basic principles applied to simple 

chemical systems follows. 

For a two-dimensional data matrix, two mathematical requirements must be 

satisfied by the property measured. First, each data point (D) is expressed as 

a linear sum of terms: 

D = d1 + d
2 

+ .... + d 
n 

Second, each data point D is also a sum of row and column product terms, 

D = r 1 c2 + r 1 c2 + .... + r c n n 

(6) 

(7) 

where r k and ck represent mutually independent row and column factors. Thus, 

in matrix notation the data matrix may be expressed as the product of a row and 

a column-related matrix: 

[D] = [R]· [C] (8) 

The procedure used in FA may be analyzed stepwise as shown in Fig. 2 and 

outlined below: 

1. Correlation: an experimental data matrix is used to construct a 

correlation matrix. 

2. Decomposition: the correlation matrix is decomposed into a number of 

linear factors (abstract eigenvectors) capable of reproducing the data 

points within experimental error (reproduction). 

3. Rotation: relates physically signficant parameters to the abstract 

factors generated in the preceding operation. 
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Factor analysis. 
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Figure 2. Factor analysis. 
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4. Combination: the ultimate goal of FA is to find sets of real factors 

(vectors) that can be combined to reproduce a data matrix within the 

required precision (best solution). 

5. Prediction: once one has obtained good solutions, it is possible to 

predict new data by applying the free-floating technique for obtaining 

. . d . t 15,17 . k dId' b' d f m1ss1ng ata p01n s, uS1ng ey vectors an oa 1ngs 0 ta1ne .rom 

combinations developed. 

16b c This technique has been used in a large number of chemical systems 'and jn inter-

active studies of mOlecule-biological test pairs. 17a ,b 

PATTERN RECOGNITION (PR) 

The third predictive technique selected, pattern recognition (PR), is 

an expanding branch of artificial intelligence CAl) long familiar to engineers, 

18 
biologists, and psychologists. More recently, complex chemical problems involving 

analyses of 
. 19a b 

large quantities of data are being examined with PR techn1ques. ' 

Pattern Recognition: Methodology* 

Operationally, the methods of PR fall into two classes -parametric or 

nonparametric (Fig. 3). Since parametric methods of PR assume access to probability 

density functions not usually available in practical chemical-biological interaction 

problems, I will confine my remarks to the nonparametric branch of PRo 

First, we may consider each experimental data point in a collection as an 

object in n-dimensional space whose measurements are, in fact, its coordinates. 

Thus, the distance between any two points may be construed as a measure of their 

similari ty. Mathematically, this similarity between objects X. and X. is expressed as 
1 J 

(9) 

and since similarity increases as d .. approaches zero, a new si~ilarity function 
1J 

*See Refs. 19a,b for a more complete treatment of the subject. 
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Figure 3. Fllllctional analysis of pattern recognition techniques. 
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is defined, such that similarity decreases with interpoint distance: 

s.. = 1 - d .. /D .. 
1J 1J 1J 

(10) 

where D .. represents the maximum distance between X. and x .. Next, the classifi-
1J 1 J 

cation and learning processes operate on the n-space in one of two learning modes: 

supervised or unsupervised. In the former mode some of the points are identified 

(classified) and function as a "training set," which can then be used to classify 

unknown points, using a classification rule derived from the training set. In 

unsupervised learning there is no training set. Instead, the objective is to 

locate clusters of points in n-space which serve as clues to possibly significant 

relationships. 

The preprocessing step shown in Fig. 3 entails changing the actual structure 

of points in n-space and will not be described here. For unsupervised learning, 

preprocessing is minimal, generally being confined to autoscaling of measurements 

with different units to obtain equal weighting, regardless of the units employed. 

~apping and Display of Data 

If the parameters of a system have been judiciously selected with regard 

to the property being studied, like objects will be identified by their similar 

measurements, hence their proximity in n-space. However, for n > 3, computer 

techniques can be used to reduce the data to a more manageable two- or three-

dimensional space. Here the technique of nonlinear mapping (n~m), which attempts 

to preserve interpoint distances in the ordered space, is useful. Figure 4 illus-

trates the acid-base separation achieved in a data set abstracted from the periodic 

table and using six properties to describe each element (n = 6), none of which, 

us ed alone, is capable of achieving this separation. 

The pattern recognition techniques described above have been applied by 

20 Kowalski and Bender to the screening of anti-cancer drugs. They should also 

prove useful in addressing the complex, multivariate toxicity problems encountered 

in chlorinated industrial effluents. 
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MOLECULAR CONNECTIVITY (MC) 

Of the four techniques selected for their predictive potential, molecular 

connectivity, which is based on topological principles, is perhaps the least 

familiar. The organic chemist has long used topology, since a structural formula 

is in reality a topological graph containing structural information related to 

molecular bonding (connectivity), branching, size, and shape. Chemists have also 

long known that even minor structural variations in molecules, such as ortho 

versus meta substitution in a benzene ring, can have profound effects on physical 

properties (melting point, boiling point), on chemical reactivity, and on biolog-

ical toxicity. The question then arises: is it possible to differentiate molec-

ular structures to such an extent, by some abstract numerical means, that 

correlations with physical, chemical, and biological properties become feasible? 

Molecular connectivity constitutes just such an attempt to evaluate molecular 

. . 1 21 structure quantItatIve y. It is defined by Kier as a "non-empirical derivation 

of numerical values that encode within them sufficient information to relate to 

h . h' db' 1 . . ,,21 many p YSICOC emIcal an 10 ogIcal propertIes. 

Some Definitions and Simple Graph Theory 

A graph is a set of points (vertices) connected by lines (edges) (Fig. Sa). 

Graphical representations of some organic compounds are shown in Fig. 5. The 

chemical graph is a topological matrix. In its H-suppressed form, the graph, 

numbered in any order, may be converted to a matrix array in which vertex numbers 

correspond to row and column entries (T .. ) of 0 or 1, denoting the absence or 
IJ 

presence of an edge between vertices i and j: 

n 

<\ = L: 
j=l 

T .. 
IJ 

(11) 

This topological matrix lends itself to mathematical operations from which numbers 

characteristic of the graph may be abstracted and a topological index developed.* 

* See Chapter 2 of Ref. 21 for an excellent review of this subject. 
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Figure 5. Graph representations of chemical structures. 
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TIle Molecular Connectivity Method 

The Molecular Connectivity (MC) method assumes that information essential 

to a quantitative correlation of the organic molecular structure with the properties 

in question is inherent in a valence-weighted graph (G). Secondly, a relationship 
v 

between the connectivity characteristics of the graph and the specified molecular 

properties is postulated. This relationship is expressed as a sum of terms, 

each linearly dependent on the graph characteristics. 

The connectivity function C(X) for a given graph may be written as 

C(X) = bo + L b
t 

(m)mXt 
m, t 

(12) 

Here bt(m) depends on the property in question and may be calculated from a model 

or from theory, or can be obtained by multiple regression using experimental data. 

In the latter case, the experimental values are regressed against C(X). The 

number of edges in G determines the highest order of the X term. Each connectivity 
v 

index term mXt is defined by its sub graph type C:~) of m connected edges with 

subgraph order m. Subgraphs are of the four types listed in Table 1. 

TABLE 1. Sub graph types. 

Type Notation Valency Descriptor 

1 t P ~ 2 Path 

2 t = C 3 = v = ~ 4 Cluster (star 
special case) 

3 t = PC 2 + 3/4 Path/cluster 

4 t = CH Ch ain / ci rcui t (at 
least one cycle) 

Connectivity indices ~t are obtained by summing terms over all distinct subgraphs. 

nm 

~t = L 
j=l 

where TIm is the number of type ! subgraphs of order !!:; 

(13) 

mS. terms are calculated 
J 

for each subgraph, as reciprocal square root functions of valency: 
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= 
m+1 
IT 
i=1 

-~ (0.) . 
1 J 

(14) 

where j refers to a particular set of edges. The number of valences involved 

depends on subgraph type. Summation terms Ox through 4X are shown in Table 2. 

TABLE 2. mX 
t 

indices. 

Term order, m Vertex number, n Path types· Equation 

Ox n 1 

0 1 P }; 0~'2 
i=1 1 

lx Ne 1 

1 2 P :£ (0.0. ) -'2 
s=1 1 J 

2X 
nm -~ 2 3 P = ~ (o.o.ok) 
s=1 1 J s 

3
X 

nm -~ 3 4 P, C, CH = ~ (0. O. Ok 0 R,) t s=1 1 J s 

4X 
nm 1 

4 P, c, PiC, CH = }; (o.o.ok0R,0 )-'2 
5 t s=1 1 J P s 

From these it may be seen that the zero order sub graph consists of a single vertex 

(no edges); lX . 1S summed over all edges, appropriately weighted by reciprocal 

square root valencies. Here we have only one type of graph edge. Second order 

subgraphs have pairs of adjacent edges of single path type P. Thus, each term 

will contain the reciprocal square root product of three vertex valencies. 

In the third order connectivity index (3 X), path cluster and chain terms 

may occur. Finally, in 4X all four subgraph types are possible for the first time. 

Here nm in the summation term shown refers to the number of type.!. subgraphs having 

four edges. ~t terms of higher order are calculated in a similar manner. 

Figure 6 illustrates steps in the calculation of the first order connectivity 

index lX for two isomeric branched aliphatic hydrocarbons (n = 7): 2,2, 3-trimethyl-

butane and 2,4-dimethylpentane. By way of illustration, the topological matrices 

and algorithm for dimethylcyclohexane and subgraphs are shown in Fig. 7. 
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Figure 6. Procedure for calculating connectivity index IX 
(Ref. 21 ). 
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Fig.? Subgraph evaluation and algorithm for dimethylcyclohexane(Ref. 21). 
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Connectedness values were determined from edge counts E : 
s 

E s = 

where A is the adj acency matrix. 

n n 

~ L L 
i=l j =1 

Some General Observations on the MC Method 

A .. 
1J 

(15) 

Using the techniques described, Kier and others have successfully correlated 

. 22a-c 23a b MC with phys1cal and biological' , properties. The method has the advantage 

of relative simplicity and flexibility. It can be used to represent molecular 

structure quantitatively at a number of levels of complexity. Each level 

provides some information uniquely related to the structure (graph, subgraph) 

and through it to physical, chemical, and biological characteristics. 

The C(X) function is essentially a weighted count of substructures of the 

molecule, each described numerically with reference to adjacencies within them. 

Not discussed in this paper is the manner in which HC incorporates hetero atoms 

and valence differences between them. IX takes account only of adjacent influences 

on a specific atom. These are modified in the higher order subgraph terms. 

Also basic to the X calculation is 0.0. - the atom product - and use of the 
1 J 

reciprocal square roots of this product. 

Preliminary attempts to develop an atomic chi value c(IX.) in which each 
1 

bond term (c .. ) is divided equally between the two vertices and the half-bond 
1J 

terms summed, have further fine-tuned the method. Other structural aspects 

which require further refinement are: cis-trans isomerism, nonbonded steric 

interactions and conformational structure, all of which have either three-dimen-

sional or directional features, or both, that are not included in the original 

treatment. The fact that excellent correlations have already been achievod for 

fairly complex systems largely within the limits of an elementary graphical 

approach, bodes well for the future of MC as a still maturing technique for 

coping with the multifactorial problems of chemical-biological interactions. 
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SUMMARY AND CONCLUSIONS 

Four techniques for assessing the multifactorial problems of toxicity and 

carcinogenicity have been briefly described: structure/activity relationships (SAR), 

factor analysis (FA), pattern recognition (PR), and molecular connectivity (MC). 

While it is clear that none provides easy answers, it would appear that the more 

recent areas of PR and MC both merit more intensive investigation as predictive 

tools. In particular, the relative simplicity of the MC approach and the possibility 

of substantially reducing the empirical component are attractive incentives for pur­

suing further work in this area. 
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