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QUARK DIAGRAMS FOR BARYONS* the internal lines represent virtual hadrons, or reggeon-diagrams
Y. Eylon ' o . (dudl or not dual) in which the internal lines represent reggeon
Lawrence Beikeley Laboratory - exchanges.
University of California : : o
Berkeley, California 94720 . Our purpose is to define all the quark diagrams associated
“and with any given particle-diagram, to give a prescription for calculating
. J. Finkelstein ‘ : . ’ ' them, and the rules for calculating physical amplitudes in terms of
Departmeﬁt of Physics these quark-diagrams. Among other things, we shall define the con-
Columbia University
New York, N. Y. 10027 cept of a twist on a baryon propagator, and establish the fact that
April 29, 1977 - ) ’ each closed quark loop is associated with a factor of Nf (unlike
the meson case, the existence of the N " factor is not trivial).
Abstract i £

Once the quark diagrams have been defined, they can be useful for
Quark diagrams for baryons are defined. A

' determining necessary conditions (1like the pattern of exchange-
transformation from a complete set of hadronic amplitudes

A degeneracy for baryons) for physical reqﬁirements such as the absence
to a complete set of quark-diagram amplitudes is constructed. . :

" of certain exotic discontinuities. The reason for this is that a
The various twists on baryon propagators are related to. : .

. . : very convenient way to lmpose such requirements is to assume an
the permutation symmetry of baryons. A factor of Nf o

per quark 1 . tablished appropriate behavior of specific quark-diagrams. This is just a
T quark loop is established. : >

generalization of the situation in the meson sector: There we

I. INTRODUCTION
know that we can impose the restrictions of the planar theory, by

The purpose of this paper is to define quark diagrams for
assuming the right behavior for the quark-diagrams (e.g. no u-

baryons. We assume an underlying theory; in which all physical am- )
) channel discontinuity in the s-t quark diagram). Such an approach

plitudes are given in terms of particle diagrams. The lines of the L
. may help us in understanding the concept of "planar" theory for

particle diagrams represent hadrons, both baryons and mesons.
C baryons (if any). However, in this paper we shall deal only with

These diagrams could be, for example, Feynman-diagrams in which .
: ’ ’ ’ _ ‘the general framework, and give only results which are independent

. : of additional sical assumptions.
This research was supported in part by the U. S. Energy Resedrch .any PRy : P

L . o We believe that the present scheme can be useful for many
and Development Administration, under the auspices of the Division :

. 1
: Y applications of the "Dual-Unitarity" t for processes which involve
of Physical Research. PP i owRe P :

baryons. Many applications have already been discussed in the



-3-

1iterature? using the concept of quark diagrams for baryons, wiﬁhout

giving them a precise meaning. We hope that by giving an exact

definition to the baryon twists, giving the rules for avoiding
double—coﬁnting,and by establishing the existence of the Nf factors,
some of the controversial i1ssues could be resolved. For example, our
experience from the meson sector tells us that the relative 1mportance.
of a twist on a produced line in the unitarity equation is crucial

to the behavior of many physical quantities.3 Using our scheme, it

should be possible to understand the role of a twist on a produced

baryon line (which is crucial, for example, for estimating exotic
exchanges4).

Our approach is very general for the following reasons:

(a) We do not have to assume .anything about the details of
the underlying particle-diagrams. In particular they
could be ¢3 Feynman-diagrams, dual-model diagrams,
multi-Regge multiperipheral diagrams, reggeon-field
théory diaérams, etc.

(b) We can treat all partidle-diagrams on an equal footing
(incluiding diagrams with meson loops, baryon loops'and
nonplanar diagrams). -

(¢) Our method applies for any number, N, of flavors and
for any number, Nc’ of colors (or of quarks in the
baryon. ). We will expliéitly develop the rules for
defining quark diagrams for the physical value Nc =3,
but shall indicate how these rules cén be generalized

to arbitrary Nc'

(d)

(e)

I£ 1s easier to fpllow our rules, if one has in mind

a picture in which.the baryon is made in some general
sense out of three quarks. Therefore, we are using for
clarity a simple pilcture in vhiéh the baryoh is actually
a quantum-mechénical state of three quarks. However,
our rules are more general than this and they can be
constructed without mentioﬁing quarks.

We assume that all hadrops have the structure of qﬁ}
qQq or qgq. If. more complicated structures exist
(1like qqdq) it is straight-forward to generalize the

scheme.

On the other hand, we have to make the following assumptions:

(a)

(b)

Exact SU(Nf) symmetry. This is not a severe restric-
tion, because the modification of our scheme to a
realistic world with broken SU(Nf) symmetry, is on

an equal footing to the modification of the various

SU(3) relations between physical amplitudes, to

broken ‘SU(3).

2
Nf - degeneracy for mesons (e.g. nonet degeneracy for

Np = 3). This extra degeneracy, which is not required

by SU(Nf) symmetry is necessary in order to guarantee
the continuous flow of flavors in quark diagrams.5
This assumption restrictsbonly the spectrum of the

"bare" mesons (e.g. the planar mesons). For physical

mesons this degeneracy is broken due to higher order

contributions (of the pomeron typeé).
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(¢) We assume, for simplicity, only three-point vertices,

MMM and BBM. . /
(d) We assume the OZI7 rule for the MMM vertex, and its

anélogue for the BBM vertex.

Note that a}l these assumptions had to be introduced already

on the meson level. The generalization of the scheme of Ref. 5

to baryons does not involve any extra assumption. In fact, unlike

the mesons, we do not have to assume any extra degeneracy for
baryons beyond SU(Nf). Only when we use the scheme in order to
impose further requirements on the particle-diagrams (such as thé
absence of discontinuities in exotic'channels) we may discover that

extra degeneracy is required.

We shall construct a transformation from a complete set of

"particle-diagram amplitudes to a complete set of quark-diagram

amplitudes. We shall also find the inverse transformation which

might be very useful to translate any physical constraint on qugrk
diagrams into hadronic language. We can construct these transfqr—_
mations without ever mentioning quarks. We just have to assume that
_all baryon representations are containéd in the SU(Nf) representa-
tions of three quarks. The results we get for physical amplitudes,
are guaranteed to agree with those of the underlying theory just

by SU(Nf) invariance plus the O0ZI rule for both types of vertices.

In particular, our results are independent of any color considerations,

and our quark diagrams do not carry any color indices.

In our scheme, the twist on a baryon line is related to the

permutation symmetry of the baryons, which in turn is related to the

—-6-

SU(Nf) symmetry (A description of the relation between representétions

of SU(Né) and of permutation groups can be found in Ref. 8.).

_This should be contrasted with the meson sector in which the twist

is related to charge-conjJugation symmetry. This is not surprising,
since thebcharge—conjugation of a qq system 1s determined by its
permutation symmetry. The distinction between the permutation-twist
and the signature-twist is exactly the same as the distinction be-

tween the charge-conjugation-twist and the signature-twist in the

) 9 :
meson sector. ) ) ) (=4

In this paper we define quark diaérams; we [do not try to

L

classify them according to any topological properties, such as the

minimal surfaces on which they can be embedded.10

The organization of our paper is as follows:

1. Introduction 2§§S
2. Notation for Baryon States 8
3. The Permutation Twists 15
4. The Baryon-Baryon-Meson Vertex 21
5. Quark Diagrams
a. A Simple Example 28
b. The General Case 30
6. Some Further Developments
a. Summation over Multiplets v 37
- b. Representative and Untwisted Diagrams 44
c¢. Resolution of Nf—factor Paradox 47
d. What About Color, Duality and Exotiés 49
52

7. Summary
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page
Appendix: Charge-conjugation relations for baryons 54

The rules for computing quark diagrams are given at the end

of Section 5b.
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~II. NOTATION FOR BARYON STATES

We shall start with a simple quantum-mechanical description

of the baryon, as a system of 3 quarks (The‘generalization ~to

any Nc is straightforward but not .trivial.). The spin-location
(or alterantively, the sbin-momentum) sfgtes of a single quark will
be denoted by a,B8,¥...1indices (a, for example may describe a quark

with spin up at location A.). The flavor states will be denoted by

u,d,s,c..., and we assume an exact SU(Nf) flavor_symmetry. of
course the rules for quark diagrams we shall derive will not depend
on the flavor labelling of the quark lines, nor will they require

any knowlédge of, for example, the spatial distribution of the Quarks
within Q hadron. We introduce these iaﬁels.in order to keep track of

the permutation symmetry. Since we assume that all baryons are

color singlets, the baryon states will be fully symmetric in the
combined (spin—location)-flavqr labels.
It is useful to consider first only baryons which‘are made

of three dirferent flavors: s, u, and d; we shall call this the

s-u-d sector. Of course this device is not available if Nf < 3.
Since we know that our states will be fully symmetric, we can spécify

a state by assigning to each flavor a spin-location label; thus some

particular state might be denoted

i

where we have introduced lines with arrows into our notation ih an-
ticipation. of the labelling of the lines in a quark diagram. In this

notation, there is no "first",."second", or "third" quark; the

-92

state displayed above is completely identical to the state labelled
u B, >
—+—
This identity under a simultaneous permutation of the (spin-location)

and flavor labels demonstrates that the states are, indeed, fully

symmetric.

The most general state in the s-u-d sector
8 a ———d—

is of the form E ] Ca g,y U g >
2 ,Y d Y ,
a,B,Y

The coefficient

function, C; does not have to satiéfy any symmetry condition, because

-egch term by itself is fully symmetrized, as we have just mentioned.

For a given set of three spin-location labels, say a,B,Y,

~ there are 6 terms in the sum, which correspond to the 6 permutations

of a,B,Y . We assume for simplicity, that o, B, and Y stand for
three different spin—location_stétes. Therefore, the 6 terms repre-
sent 6 different states. In addition, we have to sum over different
sets of three spin location states.(say a', Bf, Y' or a,B,Y’).J Each
set contains 6 terms. 'For simplicity we shell always consider only
one set, a;B,f . The sum over all sets is implied.

To clarify the notation, let us make some remarks in the

Nc = 2 case. In the u-d secto;, and for the a,B8 set, there are

two states:

u g —— uf —r—

and

A 8 —>r—, da —3—r ()
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The states of definite isospin (and hence, if o and B are chosen

judiciously, of definite mass), are :

|I=1o>=1uu+sv'
' ’ 2 d\8 " a)-—>—
1 fY d;) o —>—
b4
a (:QA uw/ 8 —>r

The notation in the first line of - Eq. (2) emphasizes the permu-

(2)

tation symmetry of «,B with respect to u,d, while the equivalent

notation in the. second line makes more trénsparent the SU(Nr) struec-

ture.” A priori, there is no reason to assume that the states with

I =0 and' I =1 are degenerate in mass; if they are not, then
the states in Eq. (1) wili not have definite mass. It is true that
quark -diagrams becﬁme much simpiér if there is”thié extra degeneracy,
. for "then the states in Eq. (1) can propagate simply;

in faet, it can be shown that the requirement of absence of

exotics in BB + mésons will impoée extra degeneracies of>this type.
Nevertheless, we dd not-hdw a;sﬁme.éuch degeneraéy, and so we will
have to work with states in definite SU(Nf) mqitiplets, as in Edﬂ

(2). We remark parenthetically that for mesons the situation is

different.5 The states with 'Iz = 0 analogous to those in (1) are

u @ —>— ©d o« ;-—}f—-

and . ' | (3)

U B i 8 —4—

=-11-

In this case, unless the states with I =0 and I =1 do have the
same mass, a propagator can mix the states in (3), and so flavor
would not flow continuously along the lines of ahquark~diagiam. This

is why we require N2-degeneracy‘fof mesons at the bare level.

f
Consider again the s-u-d sector for N, = 3. For a given

set «,B,¥ there are six states, obtained by taking any one of the

six colums of the following bracket:

—r s fo & v B B .Y ,
-—r— u B, Y, a, Qa, Y 8 : . : ( 4 )
—>— 4 |y B B Y & o S

The states in definite SU(3) representations 10, 1, 8, 8,  are
linear conbinétions of these six; the coefficients for each colum

of (4) are

p>- 3 A (Lo onononoa)

|s=> —>—§ '}6' [1, -, 1, -1, 1, 1]

’ —>- 3
1 . 1) (5)
D et B I R
—>—d :
> ——u 3 [0 o 1, 1, -, 1)
_9—
—_——
el S N LR
=

el L R
—_—d . . .
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[D>(|s>) stands for the s-u-d state of the decuplet
(singlet). Each octet has two s-u-d staﬁes. We have chosen the two

eigenstates of isospin, z° and A. The I (A) states are

symmetric (antisymmetric) under u< d. We have defined the two

octets so that 8, 1is symmetric, and &, antisymmetric, under the

interchange Bery .
Let us label the six colums of spin-location indices in (4)
o a
as e, e, -.8; f,hus we define ey =<B) e, =<Y) , ete. We

Y B
can now leave the s-u-d sector; we might consider for example the

state
- u a —>— u —fé—- u
—>u B = ——u ey = =Dy e,
—>-d vy —-d . —>—d

Thw_second equality follows from the fact that there is no sig-

nificance to the order in which we label the lines. It is because -

we want to treat the six sets of labels €),---,€g 88 independent

objects that i1t is useful to consider the case where the threei

flavors are all different, as in the s-u-d sector.

Let us now denote the six linear combinations of 'el,...,eé

which appear in Eq. (5) (ignoring the flavor labels) by

s —p— 5
lz,> = =~ u e and IA> = —— u e (6a)
—p— d. a A .

Ea . ] ~>— 4 “a

-13-

furthermore
—— u - _ —>—u Y B B Y
—— u & = ——u 3 a + a -y - B
—— 4 a —>—d ] Y a a
(éb)

—— i u u d o

= > z d + u -2ul B8

—— u d ujoy

The last line we recognize as being proportional to the proton state

of the octet 8 . Since there is only one such state, the states

——u —>— u
written, for example, as —— u ey or ag =—>— g eA are
—>—d a —_—— U

also prbportional to this same state. Some other examples are:

1 3
—>— 5 e = -zfr> - 2D
—_——d 237 2 a 2 a.

—>— s
—>—d eA

- > (6c)
—>—u

—_—u
—>—u. ey
——>—— a

n
o

We emphasize that ez represents & spin-location state. To define
a ‘

a physical state we have to specify the flavors 9, 9 q3. Only

when we choose (ql, q2,'q3) =(s, u, d}) e Ia 8&ctually represents

the physical state |2a>.
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——q
All the 27 states ——gq, e; (qi = s, u, d) are either
—>; a
zero {(if &1l the flavors are the same) or in the octet 8&. The
states we get this way form an (over-complete)basis of the octet,
although we have used oniy eLa"
It is straightforward to show that a sum over a complete

get of states of the octet, can be performed as follows:

. —>q _ 9> -8
Z > ez><e2 g | = 3 Z |t><t| (7)
a a

where qy runs over s, u, d and t runs over the states of the

octet 8,. An identical equation holds for the octet 8b.
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III.. THE PERMUTATION TWISTS

We wish to conéider permutations of the three flaQor labels.
Suppose, for example, that in Eq. (4) we replaced the labels

5 u
u by 4 while leaving the spin-location lebels unchanged.

d - s
As far as the states are concerned, this would have the same effect

as if we left the flavor labels unchanged, but permute in the appro-
priate way the a, 8, Y labels of each one of the six ei's. This
permutation can be represented pictorially as follows: write the

indices a, B:.Y in the order appropriate for a given ei' Just to

the right of the twist denoted T3. invFig. 1, and then slide the

indices along the lines from right to the left. For example, if

we start with e,, we wind'up with e4, which can be written

©
S
n
< R ™
n’
<

B
u ‘8
This relation corresponds to the equation d e, = u eA.
. -8 d .

At this point we may ignore any specific assignment of flavors,
aﬁd say tﬁat we have represenied a particular permutation of three
9bjects, ;nbpur eiample, T3 ‘as & transformation on the six<dimensional
vector space spanned by the basis veétors ’el,.,;,e6t.'The other.
permutations of three objects may likewise be represented, according
to the pictures éf Fig.»l (the convention. we used in Fig. .1l for -
labelling thé Ti is tﬁat Ti,“el > ei); _Iﬁ the basis €1reres€yy
“the operators Ti are represénted by 6 x 6 matrices (this is called

the regular matrix representation ,Of_thefpermutation_group P3)§

16~

for example:
01 00 0 o0 [0 0 0 0 1 0]
1 0 0 0 0 O 0 0 0 0 0 1
o 0 0 0 0 1 1 0 0 0.0 O
T, = T, = T, = 1.
2 o o o o 1 of 3 o 1.0 0 o of !t
o 0 0 1 0 o0 o 0o 1 0 o of (&
0 0 1 0o o o] 0 0 0o 1.0 of,

-1

-~ Each T; 1s an orthogonal matrix, 80 that T, = TiT; also,'Tl, Ty

T4, and T6 ‘are symmetric, while Ts = TBT. The product qf two

twists is again a twist; for examble, T2T4 = T5 as‘depicted in

Fig..2. .
‘ Let v Dbe an& vector in our éix-dimensional space. We

ha?e assdciated the 6perat§r Ti 'acting'on v withvthe picturé
obtained by placing v to the right of the twist labélled Ti' in

Fig. 1, and then letting the spin-location indices slide along the
lines. The resulting vector is Tyv. Consider now the operafion
which can be pictured by placing . v to the left of the twist Ti

iﬁ Fig. 1, and then 1etting‘the spin—loéation indiées slide along

the lines from left to right; Thig'clearly cofresponds to the operator
T;l' acting on v ( e. g., the permutation defingdvby using T, .
in Fig. 1 from left to right, 1is identical to using T3 = T;l from
”right to left). Since T;l = Tg, and. since Tgv =V (on the

r.h.s. V is understood to be & row vector), we conclude that.the

picture of v 1o the left of twist Ti in Fig. 1 1is described

algebraically as v Ti’ Just as the picture of v +to the right
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of twist Ti is described as 'Tiv.
" The Ti operators are related to flavor pgrmutations, The
e
operator T,, for example (el o ey, ey e, e, es).does'not
interchange B and . In_fact,'there is no permutation of the 3

spin-location labels a, 8, y, which correspond to T2. However,.if

>—q
we consider the baryon state —)—-qé ey T2 corresponds to the flavor
—>=—q .
permutation q, & q3. Since each 3 Ti corresponds to a flavor

permutation, it is clear that the twist operators are closely related

to the SU(Nf) operators.

Our six-dimensional basis epr-er€q ‘corresponds to a reducible

representation of the permutétion group PB; We now want to brea# it
into its iriqducible representationé. It turns out that the six
vectors of Eq. (5) (where we ignore the flayof indices) form a new
basis that achieves the desired éecomposiiidn. There are two one-
dimensional representationsg ey ié thé'basisvfor the symmetric

one, and eS  for the antisymmetfic one. The Ti,_wheh reduced

to these representations, become the following 1 x1 matrices:

ep (Pecuplet for N, = 3) : Ty = *1 (9)
. ) ) .
eg (Singlet for Ng = 3) Ti = =(-1) .
e; and e, are the basis of a (mixed symmetry) two dimen-
a a )
sional representation. When the Ti act on ez or »eA , the re-
' a a

sulting vector is a linear combihatiqn of them. Therefore, we now

define e. = [1,0] and e = [0,1] and the T, become the fol-
za N Aa i )

lowing 2 x 2 matricesz

=18~

1 0 1 0 1 73
T, = T, = T, =
1 olo 2 2 o a 3 35 a4
Y i T5=%-1 " T '%—1
4 5 1 3 - 31
, | (10)
The matrix T2 is diagonal, since our basis states are chosen

to be of definite symmetry under a,e 1 (namely, if we choose

(ql,qz,qj) = (s,u,d) we get eigenstates of isospin).

ezb and eAb ‘are phe basis of a two_dimengional representa-
tion. The matrix representation of the 'I‘i in this basis is identical
to that of Eq. (10). This means‘thaﬁ (gz =Y ) and (e » gﬂs)

a a b
are actually in the same irreducible representation of the permutation
group. _

Originally, we have used the 6 vectors of Eé. (5) to.write
down states which are in (the s-u-d ‘sector of ) the SU(Nf) irreducible
representations We now obserye that there is a one to bne cofrespon-
denceibetween these states and the %tates of the ifreducible represen-
tatims of the permutation group. The fact that we got two_cépies of
the same repreéentation of the permutation group,'corresponds to
the fact that both (Iza)_ ,ma) ) and (]zb ),lAb) )} are in the
same (octet) represehtation of SU(3).

Any arbitrary octet is characterizedvin principle by two spin-
location states ey and e whicﬁ transfdrm under the 6 permutation
operators as in Eq. (10).. This guarantees that Eqs. (6a,b,c) still
hold. . Since the behavior under the permutation operators is all the

information we need, we do not have to know anything about the details

~
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of the spin;location states, and the'indices a and b (in ey
for example) can be suppressed. 2

We have used as a convenlent example the case Nf = 3. But
the same spin-location states (as in Eg. (j)), the same operators >Ti
and the same irreducible :epresentations [as in Egs. (9,10)] can

be used for arbitrary Nf.

For Nf > 3, the baryon SU(Nf) multiplets become larger

{and hence are no longer called singlet, octet and decuplet) but they

" remain the same in numbér, and -they still correspond to the irreducibie

representations of P3 in the same way; For examplé, for Nf = 4

we get an (over-complete) description of the mix symmetry multiplet
(which contains the SU(3) octe@) by lgtting ql,qz;q3 rﬁhv(indepén-
dently ) over u,d,s. and ¢ in f&%ntpf the spin-location étates ez
and e, (This'multiplet is now 20-dimensional, because there are two

states for each of the 4 sectors of the s-u-d type and one state

' for each of the 12 sectors.of theu-u-d type ). W2 get all the 20 states

of the symmetric representétion, and the 4 states of the antisymmetric

by using as above eD( es). _

For Nf = 2, we use the same SPin-location states, and let
ql',qz,q3 run over u and d. The mix-symmetry representation con-
tains two statés (I = %) ‘and the symmetric representation contains
four states (I = %J. Al]l the states of the éntisymmetric repiesen—
tgtion, vanish. '

To generalizeé our scheme to any arbitrary value of Nc,'we

start with the Nc! different spin-location states, el,..., eN’l

which correspond to all the permutations of the Nc! labels

Qreeesly o We define the N ! twist operators, and construct a
c ¢ ‘ .

-20-

new basis of the ei'(similar to eb,...,eAb) which corresponds to
the irreducible representatiorsof the permutation group for Nc

run over all Nf flavors in

objects. - By letting ql,...,qN
c

front of the new spin-location states, we get all the SU(Nf) repre-

sentations of Nc quarks.



-2-

IV. THE BARYON-BARYON-MESON VERTEX

We wish to calculate the baryon-baryon-meson ventexlwith
specific twists on the. baryons; some examples are shown in Fig.. 3.
Our method will be to observe that although in general there may be

more . than one way to. attach the meson quark lines to the baryon quark-

lines (see Flgs 3& and b), if both baryons have the flavors s-u-d

therecwill be only one way to hook in the meson (as in F1g 3c). This

means that the vertex of  Fig. 3c can be dlrectly related to a phy81cal

. coupling. (This coupling may of course be off shell; we use the term

physical coupling to mean one which is defined on the particle- diagram
level.) We can now use SU(N ) symmetry’to define all of the vertices;
fon example, the vertexein Fig. 3a will be equal.-to that in Fig. 3c.

For N, < 3 this procedure does not work; in this. case, we can still

f

jdefinevduark-diaérams; but the definition is not unique (whereas: for

> 3 it is unique). However, when we sum over all quark-diagrams
to obtain physical amplitudes{ we get a unique result for any value
of Nf.

. Consider the baryon-baryon-meson (BBM) vertex of Fig 4a.

Baryons (mesons) are indicated'.by solitl { dashed) ‘lines. " We first
‘specify the multiplets of the three hadrons. :lhe letter‘ A specifies
the SU(Nf) multiplet of the baryon on the left (1,8, or 10 for Ny
= 3), and if this baryon is, for example, an octet, A tells us which
specific octet it is (e.g. the nucleon octet, the _N{1470) octet,
etc. ), but not which specific member‘of'the‘octet“(e{‘g.'ﬁhe -Z+, A,
or p). In order to give this latter information,'we represent the
baryon b& three»qudrk lines and spedify both the three flavors and a

two dimensional spin-location vector which we call [ L] (which
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can be a linear combination of ez and €ps and which distinguishes
between'a L-and a A in the s-u~-d sector according to Eq. (6a)
[whene the index a isvsuppressec] ).

The meson is always in a nonet, and the letter F speciiies
‘the nonet (for example: the “w-p-¢ nonet). ‘F -does not specify the
member of the nonet; this is done by representing the neson by euark-

antiquark lines, and specifying their flavors

Let us consider first the case in which both baryons are

'octets. To simplify the notation, we denote the members of the octet,

by the name of the particles in the nucleon octet (Z means ° ).
Obviously, the two octets in the vertex can be gifferent_ The members
of the meson nonet are denoted by the names of_the particles in the
p—nonet. We start with the s-u-d sector for both baryons. -In the
standard order, 181: , [L]”-= [1,0] is the - £ and [O,l] ‘

. Code—- s ' _
“the A» for the left baryon. We describe the baryon B on the right
with a similar spin-location vecton; which we call &q. If the meson
is of the ¢ type (s8), then the vertex is described by Fig. 4b. We ‘
represent this vertex by the quark diagram of Fig. 4c. We define VZZ
0 e [)] =[5}

Note that this Quantity 1s defined in terms of a physical coupling,

to be this vertex function for [L7 =

‘the "IX¢ coupling of multiplets A,B and F. In principle we
should write Vgéf » but we shall suppress the multiplet indices for

the time being. In the same way, VAA is defined to be the vertex
of Fig. 4b for (L7} = E) l] -and ' ﬁl] = E] and it is just the
' M¢  coupling for the A,B,F multiplets. For [L] = [l 0] and

-~ (o N ; » ‘ _
[h] =‘[l] ‘we gét VZA =0 = VAE by isospin conservation,
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We now define the 2 x 2 vertex matrix for A,B and F
(where A and B are still octets’) as follows:
iz O _
(octet-octet) vV = | : : . ‘ . “(11)
o] VAA

For any arbitrary states in the s-u-d sector of A and B,

[L] end Eﬂ (these are linear combinations of I and A ) we get:

Vertex of Fig. 4 = [ L]V Fq . (12)

Suppose we now take states labelled u-s-d, as in Fig. 5, rather
then in- the standard order s-u-d. That 1s, the baryon on the right
. : ) ——u ‘ o
is in the state —»s- [R] . To get to the standard order, we twist

) : ——d
the top two quarks; that is, we use

—— u - - s . )
—— s lﬁ] = =u T lﬂ] : ’ (13)
7= d d. '
where T, 1is given in Eq. (10). Similarly, the state on the left,
s

T —
L L3 .8 =» ', can be rewritten as [ L J T, u—> . Having written
4> A g P o

the flavors in the standard order, we can.apply Eq. 12 to conclude

JVertex of Fig. 5a = [LJIT, VT, [R] (14)

The correspopding diagram is Fig. 5b. The meson i8 emitted
from'the upper quark line, and the appropriate twists are introduced

in the propagators. By SU(Nf) symmetry it is clear that the vertex

-24-

- we have just discussed (Fig. 5b) is equal to the vertex of Fig. 5c

in which thg flavors of the baryons are in the standard order, but
the meson is of the uu type : 1//2 (0° + w).

We now leave the s-u-d sector and take a uuq state as in
Fig. 6a. The vertex-amplitude has two components, because the

top quark can now go either to the meson or to the other baryon.

"(Note that the concept of a top quark is well defined because the fla-

vor configuration of vFig. 6a is associated with a state, (L] . When
we look, for example at the term (S) , the top quark is just the
quark which 1s in the state q.). YEach one of these two components
is‘qual to a corresponding physical vértéx, in which the baryons.

are in the s-u-d sector,'as shown in Fig. 6 (as long as we use the

‘same [ L ] and [R) vectors). The expression for Fig. 6a is there-

fore
coamvn ] ¢ cugn v [f

The rule for any arbitrary flavor assignment for the quark

lines, and for any two states [ L ] and [R] is

' ‘ :
Vertex = Z CLom vy [}t] (15)
) Co1,5 )

The prime indicates two things:
' (a) The sum is on1y over pairs of twists which are consistent
with the fiavor assignment. This means that out of the
36 pdssible-pairs; we take only those whose diagrammatic

representation is such that each quark line connects two



)
“alig

-25-

identical flﬁvors. In other words: Flavor flows contin-
uvously in the vertex. For example{ the term T2 Ti»

does not contribute to Fig. 5a. If the vertex is forbidden
by some additlve quantum number of SU(Nf), we cannot
draw any quark diagram for the vertex, and no term
contributes to the sum.

(b) Since each allowed diagram appears twice in the sum in
(15), take only half the terms. For any (i,j) term in
the sum, consider the term (i:j'), where Ti'v= T;T, and ij=
= T2Tj. These'are indeed different terms, since T{ = TiT2
implies i # 1 ). These two terms represent the same
diagram; for example, Fig. 7a shows the TlTl term
and Fig. ™ the .T2T2 term, and it is clear that these
are the same diagram erWn_in two different ways. In
fact, we have already related the diggr&m in Fig. 7a to
physical couplings. Of course the pair of terms (1,3)

1 .
and (il,j ) related as above have the same value; for-

mally, this is guaranteed by the fact that

V= T,VT, ' ' (16)

Therefore we take either member of the pair in the sum

in (15). Alternatively, we could take all terms allowed

by the flavor assignment, and then multiply the sum by 1/2.

The reader will observe that we have succeeded in describing

"the coupling of two baryon octets to a meson nonet in terms of two

parameters (VZZ and -VAA), while SU(3) invariance by itself would

allow three independent eouplings (888F, 888D,881). The reason is.
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that we have not included an& vertex diagram in which the quark and
antiquark from thé meson annihilate each other, in order that the
theory respect the baryon anaiogué of the OZI rule at the tree level.
It is straightforward to generalize Eq. (15) to any other
kind of multiplet. Consider the case where A and B are both
‘decuplets. The s-u-d éector contains only one state (denoted by D),
and fherefofe the [ L J and [ﬁ] -Qectors are in fact thé one di-
mensiénal vector [1) . The vertex function VDD is defined in

ferms of Fig. 4 and is equal to the‘physical verfex DD¢ . The vertex

matrix V is a 1 x1 matrix, whose single element is VDD' The

. twist operators, T;, are 1x1 matrices, and T, =1 (See Eq. (9)).

Eq. (15) still holds, and thé prime has the same meaning.
If A and B are both siné}eté, we define _Véé in the same
way, and V and Ti are 1 x 1 matrices. The Ti “are given in
Eq. (9). If A 1is a singlet and B is a decuplet;,:then V= o0.
v If A is an oétet, and B is a decuplet, we use again Fig.

4 to define V D in terms of the physical vertex ID¢. VAD = 0

X
because of isospin conservation. We construct a 2 x 1 matrix
: Vip
(octet-decuplet) V = ]

0.

The rules of Eq. (15) are unchanged. The T, on the left qf' v
in Eq. (15) is now a 2'x 2 matrix and Lt ] is a 2-vector, whereas
the - Tj on-the right, and the [#]g vector are one-dimensional. If

A is.a decuplet, and B 1is an octet, V 1is-the 1 x 2 matrix

(decuplgt—ogtet) \'s z‘[VDZ" O}
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In a similar way we get

(octet-singlet) V = (singlet-octet) V = [O, VSA] .

Vas

In conclusion, for any two baryon muitiplefs A and B
we construct an ﬁ xn matrix V, where m{n) is the number of j
states in the s-u-d sector of A(B). In Eq. (15) the T >matrix and
the vector to the ieft (right) of V is of dimehsion m(n). Our
choice of states in the s-u-d .sector 1svsuch that all of them are
eithef symmetric in the middle and bottom lines (I =1 : I,D) or
antisymmetric (I = O : A,S). The matrix elements of V which
éonnect states of different symretry, vanish.

' The approach of this paper is to proceed as if the dynamics,
on the particle level, were fully known. We thus assume that the
spin end mass of the hadrons (and_therefore their propagators) and
their couplings are given. The complete dynamical informatiéﬁ is
contained in the particle-diagrams. Our purpose 1n this paper is
to define all quark—diagrams in terms of these particle-diagrams.

" In this section.we have aqcbmplished the first step towards this
goal:_ we have constructed vertex matrices in terms of physical
couplings, which are measurable in pfinciple, and used them to de-
fine all the quark-diagram components of the vertex (the various
terms of Eq. (15)). The vertex matrices are uniquely defined only

for N, 2 Nc’ For Nf < Nc’ the definition of quark-diagrams is

f
therefore not unique. However, when we sum them according to Eq.
(15) to get the physical amplitude, all the ambiguities disappear

and we get the right answer.
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V. QUARK DIAGRAMS

a, A Simple Bxample

Let us start with a simple example.  Consider the particle-
diagram of Fig. éa. The baryon and mesén multiplets are specified
as before. External and internal particles are specified in the same

way. Let A, X and B be octets (the generalization to decuplets

or singlets is trivial; the only change -is in the dimensions of the
appropriate V and T matrices, and of the state vectors). We now
have to specify which member of the multiplet each external particle

is. This is done in Fig. 8b. Note that this specification for a

baryon octet is not unique; the same state of A could be described,
' u=—r— '

T
for example, as [ L ) s=»-where [ L ] = [ L JT,. Obviously,

the results of any calculation are indépendent of the way we specify -

the external baryons.

We are now interested in the contribution of a single multiplet,
X, to the amplitude (In Sec. VIa we shall sum over all possible mul-

tiplets in the internal particle lines.). Obviously, we have to

sum over all possible states of -the multiplet X. In the present
example, only the s-u-d sector contributes, namely theA'E and A

states of the multiplet X. Therefore, we have to insert for the X

propagator the following expression:

IS Py<I| ¢ |'A>PX<A| (17)

PX is the propagator of X. Due to SU(Nf) invariance, the propa-

gators of all the members of the same multiplet are equal.
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. A {non-unique) way to represent the completeness -sum of Eq.

(17) is

—s s —=9—| |o—s s~
—u [3J><1 03 u—-)—,* I—)—u [?]><[o, 11 u>|3P,.
I a==1 lo—a 7] a4

(18)

The contrihution of the first term is described in Fig. 9ec.
Now we have in the internal line a single state (the I member of
the X octet in a given spianomentum state), and therefore the
“emplitude factorizes, and we are left with the problem of computing

the two vertices. According to our rules, the amplitude is

. » 1] 02
Fig. 8c (the |I» 2| term) = CLIT, VX T4[O] T, VOPT, [R] P,

(19)
folo 11
The |AY <A| term will be the same, except for a [1 term.
Using
1ltr o] foleo 13 _f1 of _ (20)
o} 01
. 1 :
AXB
we get for the full amplitude, A" "7, of Fig. 8a
AXB _ GB
A =CLIT, vAFX T, 1, v Té[R}Px (21)
= T. . Instead of having two twists on the

We now use T4 Te = Ts

propagator, we now have only one, and the final result, which is

represented in Fig, 8d is

=CL3T4VA#XT;VXGBT6[R}PX_ (22)
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b. The General Case

We wish to obtain an expression for an arbitrarily compli-
cated quark diagram. Oui strategy shall be to start with an arbitrary
particle diagram, and decompose 1t into a sum of terms, each of which
will correspond to a quark diagram. We will thus aéhieve both an ex-
pression for an arbitrary quafk diagram and also a determination of
precisely‘how and with what weighting factors to add together the var-
ious quark diagrams to campute physical amplitudes.

We consider then a particle diagram of arbitrary complexity,
which may be planar or non—planaf; we do, however, restrict ourselves
to diagrams all of whose verticés are of the type BBM and MMM.

We first fix the multiplets of all the hadrons in the particle
 diagram. The sum over all the multiplets that can be exchanged in
internal lines will be carried out in Sec. 6a. Each external particle
is designated to be a specific member of the corresponding multiplet,
whereas for each internal particle we have to sum over all members.

We assume that all mesons are in Nfz-multiplets. The charge-conju-
gation of (the neutral members of ) each meson multiplet is specified.

Any baryon line either donnectstwo external particles (in

which case we call it an open baryon line) or forms a béryon loop
(which we call a closed baryon line). Each baryon line, open or closed,
carries an arTow that indicates the direction of flow of'bar&on num-
ber; that is, the.line carries baryon number +1 in the direction

of the arrow, so that, for example, an external particle whose baryon-
number arrow poinfs into the diagram is an incoming baryon if E > 0,

and an outgoing anti-baryon if E < O .

" the factors of 1/6), and will contain No

-

We now sum over all members of the mltiplets in the internal
lines. In the example discussed above (Fig. 8), we knew the octet
particle X had the flavors s-u-d, 8o we used Eq. 18. In the

general case, we use, for any baryon octet, analternative form of Eq.

7:
8- ' 0@ ag ~>—
1 1
Z l><t| =g 132“> QG- +
q
' +q2 [ ]> < oy (23)
Q3+
It is easy to check that for the decuplet
3% > <t| L ' -—9—q1 e' <e :
t = q -)—-
3 —q? ” <% 2-—)— (24)
t=1 qlq2q3 3 3
and that for the baryon singiet
- q q —>—
[t><t| = % ->-q2 eg><eg G —— | (25)
~9—q3 q3 ——

e, and ey are defined just before Eq. (6a). Eqs. (23),(24), and

(25) are written for the case N. = 3; for any other value of Ne
the right hand sides of these equations would be unchanged (including

3 terms while on the left

the sum would be over the appropriate number of states.

For meson propagators, we use!
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N | v o _

t:><:t = 2{: — q q -_6_- q . . !
Lo ) | TS i
=1 ;-9 o ‘ -
where the r. h. s. contains N}Z férms.

We 1o 3\.b, 2.m

.We now have (Nr ) (Nf )" terms; where b(m) is the number of

baryon (meson) propagators. For eaéh term, the quark labelling for -
each qua?k line of the diagram is specified. For the external par-
ticles it was specified at the beginning, and for the internal particles
it is specified by the choice of term in the sums (23) - (26). The
contribution of each term can be now writtén in the usual way és a
product of propagators and vertex functions.

We have seen in Sec. IVhow to:calculate the the BBM vertices
and shall deal with them below. In case of an MMM vertex, the
situation is exactly as it was in the meson sector (see Ref. 5). ‘If
all the six flavors are the same (e. g. all the three mesons are of
the ﬁﬁ type) the vertex has two components as is shown in Fig. 9.

We dehote the three mesons by F, G, and H, and éssoci&te with them
an arbitrary cyclic order, say F, G, H. The term . in which the

quark lines flow in this order (the incoming arrow of F goes to

G) is called Vl. The second term'is V2. The'relation5 between these

two components of the MMM vertex is

V2 = QFCGCHV1 . (27)

where CF’ for ‘example, is the charge-conjugation of thevqiﬁi members
of the multiplet F. 1In case that all flavors are the same, the

#ertex is gilven by V = Vl + V2 (which is zero if the vertex is for-
bidden by c.c. Nevertheless,.we have to take into account such con-

tributions, because the V., and V2 components contribute to

1
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different quark diagrams. ). The general rule is that a vertex com-
ponent will centribute only if it is consistent with the flavor as-
signmént of the three mesons. Once 1t conpributes, it always has the
same value'(Vl.of V2), independently vatﬁe flavor assignment, as is
required by SU(Nf) symmetry. It should be emphasized that by an
appropriate choice of»the flavor assignment, both V1 and V2 can

be defined in terms of physical vertices. Vl, for example is just

the vertex of F(ud) G{su) H(ds) ‘where q is the line with the out-
going arrow. '

To calculate the BBM vertices, it 1s useful to draw the
bar&on 1ines in a standard way. This can be done as follows: draw
first all the baryon lines (open and clﬁsed) on a plane, such that
they will not cross each other; For any given baryon line. let all
mesons which are comnected to that baryon line approach it from the.
same side (e. g. if an open line is drawn as a straight horizontalv
line, this means all mesons are attached to the top or all are attached
to the bottom; for a closed baryon line it.means all to the inside
or all to the outside). It does not matter how badly we have to twist
the meson lines in the diagram to do this. When we represent the
baryon by quark lines, let us call the quark on the meson side the
t-quark, the quark on the other side the b-quark, and the quark in
the middle the m-quark (in the -example discussed above [see Fig 8] ,
the t-quark'waé onvfop, and the b-quark on the bottom). - We can now
.apply the rules of Sec. IV, with the understanding that, for example,
T2 interchanges the m and b }ines}gnd that a I can be represented
- as §_e2 , meaging that ,S goes with the t-quark, u with the m-quark,
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and d with the b-quark, and ey is given in terms of S ERRRELA
exactly as on the third line of Eq.(5), where e represents a on

the t-quark, B8 on the m-quark and y on thé b-quark, ete. If

we define the back and the front of the vertex so that the baryon-
number arrow points from the back to the front, and - denote by .

C LX Ei]) the baryon state-vector at the back (front) of‘ the vertex,

then for each BBM vertex we get.a sum exactly as‘in Eq. (15). 1t

is useful at this point to include all pairs of twists consistent

with the flavor assignment, so we must also include a factor of 1/2

for each BBM vertex.

We have now written the amplitude as a multidimensional.sum:
there is a sum over flavors, from Egs. (23) - (26); for each assign-
ment of flavors each MMM vertex is the sum of two terms; Vl and V2
(one or both of which may vénish for particular flavor assignments),
and each BBM vertex is the sum of 36 +terms, as in Eq. (15) (some
of which may vanish for particﬁlar flavor assignments). Let us .
now interchange the order of sﬁmmation. We first choose a term
characterized By the coice.of VV or V, for each MMM vertex and

1 2

of Ti and Tj for each BBM vertex. This choice is represented

by a qQuark diagram in an obvious way. We then sum over the flavor
terms in the propagators (the flavor assignment for external particles

t
1 2 and of the. T's,

only those terms in the flavor sum will contribute in which flavor

is fixed). For a fixed choice of each V. or V

flows continuously in every quark line of the diagram.r For anyvquark
line which connects to an external particle, the flavor is fixed by
the specification of the external flavors. For any closed quark loop,

the flavor can take any of Nf values, but it must be the same all
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afound the loop. Thus for each loop, we have to sum Nf terms; ac-
cording to our rules, all these Nf -terms have an identical ampli-
tude. Therefore each quark loop contributes a factor of Nf.

This factor of Nf, which is familiar from the meson sector,
is actually quite surprising here. Consider for example the diagram
in Fig. 10a; suppose the internal baryon has been specified to be an
SU(3) singlet. Since the only state of the singlet is the s-u-d sector,
it wouid'seem that the quark line going around the loop gggl'have the
flavor s, so that we should not sum over the u and 4 flavors
for this line, and so not obtain a factor of Nf. The resolution to
this apparent paradox is discussed in Section VIec.

We now further simplify our expression for the quark diagram.
For each BBM vertex, we have an expression of the form[ L ]Ti v ijﬂ,
where each matrix and vector is of -the appropriate dimension. We
caﬁ multiply these expregsions along any given baryon line, using Eq.
(20) for octets. We then obtain, for any open baryon line, the

expression

l:L]TiVTJ TkVTJL"'TmVTn[HJ (28)
where the T's and V's are written in the order they appear
along the baryon line, going from back to front; the vectors[ L ]

and [ﬁ] now. refer to external states. For a closed baryon line, the

expression is

Trace [Ti VI, T VT, T VTn] - (29)
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In its present form, the amplitude contains two twist matrices

per baryon propagator, for example Tj Tk' We now replace them,

“both’ algebralcally and diagrammatlically by a single twist T(J k)

= Tj Tk' For each propagator there are exactly six different pairs
of Tj' Tk' whose product is T(j,k) (namely (TJT:[ )(TiTk)’

i =1,...,6). If one of them is allowed, they are all allowed,

since the quark topology is only determined by‘the product twist.

Since they all have the same contribution we add these six diagrams

per propagator and so the 1/6 factor per propasgator from Egs. (23)—(25)
disappears. A quark diagram is now completely characterized by speci-
fying the. V#
baryon propagator and of each (external) baryon 1ine (i = 1,...,6);

of each MMM vertex (k = 1,2), and the Ti of each

The amplitude for each diagram contains the following factors:
(a) Px for each propagator

(b) V, for each MMM vertex
(e)C L ]'I‘i v TJ VT...Vq [] for each open baryon ‘line
(d) ‘I‘r(Ti v TJ...V) for each closed baryon line

(e) N, per closed loop

f
The rule for summing quark diagramé is as follows: Make

an assignment of external flavors appropriate.for a given physiéal

process, and then calculate (using the rules given above) every quark

diagram consistent with this flavor assignment. .Add the diagrams,

with weight (?) , where n is the number of BBM vertices. Of

- course, many of the terms in this sum will be equivalent, because

of Eq. (16). A systematic way of taking this fact into account is

presented in Sec. VIb.
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VI. SOME FURTHER DEVELOPMENTS

a. Summation over Multiplets

It is convenient to adopt a notation in which all of our
matrices are of the same dimension. We can use the four-dimensional
. basis consisting of the vectors ep ez, e and eg; that is,
for a multiplet A, { L*7J=1[1,0,0,0] means A is a decuplet;
C LA:]= {0,0,1,0] means the octet state which, if labelled.s-u-d,
is a A etc. (We could have gaone back to the original six-di;ensional
space, but we do not need here two copies of the octet.) The twist
operators Ti become 4 x 4 matrices; for example, T4 is shown
in this basis in Fig. ilb. A1l of the possible matrix elements of
V are shown in Fig. 1la; for specific multiplets A and B, most
of the entries in VAFB‘ vanish; for example, for A a decuplet
and B an octet, ngg = Vgga ’ all other V??B = 0.

We now wish to separate our éxpression for quark diagrams into
two parts - one of which contains the information from particle dia-
grams, and the other of which displays the twists. Consider for
example the diagram (8d) - we can rewrite Eq. (22) for this diagram

as

A8 [_LA] T, vAFX T yXGB Té[RB] Py . (30)

4,5,6

Equation (22) was originally written for the case where A, X, and B
were octets, but Eq. (30) is valid for any multiplets since all of

its matrices and vectors are 4-dimensional.
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We can now rewrite Eq. (30) as

. A X o GB ﬂ
Ase T M3 T Ve Tk V;n T6,mn[RnPX
i,j,k, 2,m,n=1 ‘
4 .
= Z 7,15 75,10 Te,m Bijkim (31)

1,3,k %,m,n =1

where we have defined

AXB -CL]iV'AFx vXGB l}%npx (32)

Bijkhm

The amplitude in Eq. (31) represents the contribution of a
specific multiplet X; we can now sum over multiplets of all

different types (this is especially useful when there is degeneracy

" between different multipiets):

AXB - E AB
4 5 6 4,5,6 ) 4,iJ 5 ke 6 mn ijklmm
’ i,J,k,2,m,n=1
(33)
where

B pAXB

Bi jxam = 1jktm (34)
X

The sum over 'X may represent many multiplets of the same type
(e. g. many octets), as well as multiplets of different type (e. g.

octets, decuplets and singlets).
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We can also let our exiernal states be an -arbitrary superpo-

sition of multiplets, possibly of many types: let.L L]= ): a, E‘LAJ
: . v _ e

and El] = Z bB'[RBJ‘, where - &A' - and ‘b'B- ‘are arbitrary coefficients.
B v : .

~Then .
o . 4
A z Z ab. aMB_ - Z T, T, T, B
4)516 A,B - A'B 4;5:'6 /nij 5’k2' 61mn ijkm
? i, Jj,k,4,m,n=1 o
(35)
where )
Y
Bijwm ~ & % Pijiam - (36

We note that, although the flavor 1abels’do appear in Fig. 8d, they
are comﬁletg;y irrelevant to the definition of A4,5,6 in Eq. (35)..
The indices of B are displayed in Fig. 12a. Each baryorn
propagator-and exterﬁal line has two indices (which are contracted
with the COrreéponding T matrix in Eq. (35)); the-two indices
next to each vertex come ffom the corfesponding V matrix in Eq.
(32). B will be non-zero only if the two 1ndices of any propagator
belong to the same representation and if the two 1ndices of any ver-
tex correspond to the same symmetry in the middle and bottom lines.
Figs. 12b,c,d display respectively B112344, B122344, and 8113344
The latter two vanish, 122344 because a twist cannot couple indices
1 and 2, and 8113344 because a vertex cannot couple indices 1 and 3.
In fact, for »i 1 and n =4 (where i andl_n are the first

and last indices) B is the only non-zero entry.

112344

'As another example, consider the baryon loop diagram in Fig 13.
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We write
o e g YGX
S (@, vV 1, vV, B
where
Z YGX .
e k - Vy o Py By
'

CQmparing Egs. (35) with (37) we observe that the final °
expression for constructing the A amplitudes in terms of the B's,
in the case of a closed baryon 1line, 1s_identica1-to the expression
for.an open baryon line, provided the number of (intgrnal and exter-
nal) baryon propagators are the same.

For the most general diagram, we make a specific choice of.
Vk (x = 1,2) for the MMM vertices and fix all meson multiplets. Then
we sum over all possible baryon multiplets to define the Bij'}'
amplitudes. These B amplitudes represent all the information we
need from particle diagrams; the A amplitudes represent the quark
diagrams. |

Becausé of Eq. 16 (whicﬁ is still valid in the 4~dimensional

notation), many of the A amplitudes, labelled by different twist in-

_ dices, are identical; for examp}e, A4,5,6’ A3,4,6’ A4,6,3’4 and

.1\3’3’3 are identicﬁl. It can be shown that, once the meson ver-

tices are alljspecified, the number of ‘different A amplitudes is
the product of 6 x 3 for each open baryon line and 3n+ 1 for
each closed baryon line, where n 1is the number of BBM vertices

along that line. (Of course with a particular choicé of external



flavors not all of these must contribute) Furthermore, for Nf >3

the number of non zerc B amplitudes is equal to the number of A
amplitudes. Therefore, Eq. (35), for example, is a transformation
from one complete set of amplitudes (the B's) to another (the A's).
As an illustration, we shall display the transformation be-
 tween the A- and B- amplitudes for the simplest baryon diagram,

the baryon propagator. There are six B amplitudes: Bll’ 822,

, and B which for this discussion_we re-label as

B30 By Bag 32’
D £
(D for decuplet, S for singlet) BDD’ B Z’ Byps Bggo Bypr By

(BZA # 0 does not imply that a I can propagate to a A; the spin-

B

location state ez, for example, describes a I state only if it is
accompanied by the standard’ flavor 1abelling u .). There are six A

_ amplitudes, Al"' 6’ which_are displayed in Fig. 1. We have
4 o

s,t=1

We now have the following. transformation from the B _to the

A -
[ 4 2 1 2 1 o. o [5,,]
A, 1 -1 1 4. o o By
A = - - E -

3 11 -2 12 A2 -2 Bys
4, 1 -1 a2 12 B2 032 By,
A 1 1 -2 -1/2 -/3/2 32 By
4 | (1 1 -2 172 vz /32 By

:E: TLst By - ' "VV (38)

R -

This paper was mainly devoted to constructing transformations
of this type, fnmnparticle;diagram amplitudes to quark-diagram ampli-
tudes. We hope to get some physical insight into the baryon amplitudes,

using the inverse transformations: Inveriing the matrix in Eq.. 39

we get

EN 1 1 1 1 1 1] PAIT

Beg 1 -1 1 -1 1 ) |,

e I T B I
By, 2 -2 -1 1 1 1 | 4,

Byy o o /3 -4 -5 A Ag

Pz L0 . o -3 ‘ -3 3 B A

At thie stage, one can impose physical constraints on the
quark diagrams (the A amplitudes). Using the inverse transformatione
this enables us to study the properties of the B amplitudes. This
information is important for studying relations (such as exchange
degeneracy) between the different baryon representatiens.

‘ In omder te construct the most genera; inverse transformation,
We use

T,o¢ T (41)

i,st i,uv 6

>

su 6tv dst

[y
n
i)

where d_, =0 1if s and t belong to different representations,

and d_, = 6/d 1if they are in the same representation, whose dimension

st

is 4 (e.g: di2 = 0, dll = d44 = 6, d22 = d23 = 3). This gives

for the propagator (where we define Cst =1/d,, if s ‘and t are
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in the same representation, andl CSt = 0 otherwise)

(42)

This can be easily verified by substituting Eq. (38). Note that Eq.
(42) is just a different form of Eq. (40). In the general case the

transformation from the B .amplitudes to the A .amplitudes is

ir.Jp. “, ; virsﬁl'” Tb o'p ) 1t “.sfp
| ‘ ' BN )
per each baryon line, closed or open. Each pair of indices s and t
belongs to one (internal or external) baryon propagator. The
baryon. line contains P sueh propagators. .
The inverse transformation i36

B = C_, ...C T, T -
st ...s_ 1t t A
N T T T L e M 1 S

(44)

We conclude this subsection by the following remark. If some
specific quark diaéram' A 1is such that by an appropriate choice of

the flavors of all external hadrons, A 1is the only allowed quark

'diagram, it can be directly defined to be the amplltude of the cor—»

responding particle diagram for the chosen physical process This
is the case for any tree diagram with only one baryon line, provided
2 3. The loop diagrams of Fig. 10 cannot be defined this way, o

because it is impossible to separate Fig 10a from Flg lOb

aeq

—dh

b. Representative and Untwisted Disgrams

: According to the rules developea in Sec. 5b, for each open
baryonrvline_ in a specific quark diagram we have a factor
Lrde vy vV Ty [] . To obtain the full amplitude, we have to
sum all terms of this form that are consistent w1th the external
flayers. However, many of the terms in this sum are equivalent -
because of Eq. (16), we could replace, for example, the first V
in the expression above by T v T this means we could replace Ti
by TiTZ and TJ. by’ T2Tj. This gives us another term in the sum,
which has exactly the same numerical value, and which always contri-
butea to'the same physieal processes as the original term. _Although
their diagrammatic representation.is different (sincei Ti 7 TiTZ)’
we eonsider them to be equivalent. The replaeement'of a single v
by T, v T, .defines a transformation on the termsvin the‘sum. .If
the number of vertices on a‘certain open baryon line is n, "we hsve
a total of 2" such transformations, since we have the option at each
vertex of replacing V by TéVT2 or not. Thus we can generate a
class of terms in the sum,. sall of_which are equivalent and any two of
which are related by a transformation of’this type. ’Furthermore, .
each of the P terms we get in this'way are counted separately in
the sum; this is aecause, for each suen transformation except the
identity one, there is at. least one Ti which is multiplied by
exactly one T2, and T T 7 T T T2 b4 T ,. for all 1. Thus, for

each open baryon line with n vertlces, the sum contalns P

coples of the same diagram.
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For a closed baryon line, the expression is Tr[Ii.V TJ V...V

If the line contains n vertices, we can again define 2" transfor-
mations; however, this time not every term so generated 1s counted
separately in the sum. This 18 because there is one transformation
'besides the identity one forrwhiéh no T1 is muliiplied by exactly
one T2, namely the one in which 2222 V 1s replaced by T2 v T2;
tﬁis transformation replaces each T; by T2T1T2. Now if there is at
least one T; around the loop with the property T,T;T, Ty (this
property is true for T3,T4,T5, and T6), then this transformation

- connects different terms in fhe'sum and we again have in the sum
2 copies of the éame diagrdm. vHoﬁever, if for each’ Ti around the
loop T,I,T, = Ty (which would meanvthat efery T, is either T,

or T2), this last transformation does nqt produce a new term,

and so the sum contains %-29 copies (sinée the 2" would-be dif-
ferent terms are identical in paifs)>of'£he same diaéram.

It is éonvenient to choose, in a standard way, a single cdpy
of each diagram, whidh we call a representative diagr;m. We can do.
this as followsf For an open baryon liné we start from the back end,
and at each vertex apply Eq. (16) or not in such a way that the
twisf in the prece@ing propagator will be T,, T4, or T6‘ The twist
on the last propagator is uhresfricted. »

In a baryon loop, we arbitrarily choose one vertex to be the

first one. The propagators are 1,2,..n where tie order is in the

arrow direction. If among the first n - 1 propagators there is one

1 2
first propagator of this type to T

whose twist is not T, or T,, we have the freedom to transform the

4. Then we have the ffeedom to

twists Tl, T

-4f-

transform all the propagators, except the last one, to the "standard"

, or T6. The last one 1s unrestricted. If all the first

4
n-1 propagators are T1 or Té, we transform all of them to Tl'
The last propagator can be any of Tl"TZ’ TB’ or T4.

We may now replace the rule stated at the end of Section Vb,

which says to sum over all twists on each propagator consistent iith

the external flavor assignment, by the following equivalent rule:
..(1) take only one copy of each diagram (e.g. the iepresentative dia-

: n
gram); (2) add the diagrams with equal weight (rather than the (%)

weight of Seq.(VB));(B) multiply by % for each clésed baryon loop
which has no twist other thaﬁ Tl or T2. . -

In order to define the quark diasgrams for baryohs, we drew the
vertiges in the standard form of Fig. 4c, and twisted the baryon
propagators. For some applications it 1s more convenient to adopt a
new way for drawing the same diagrams, in which most of the baryon
propagatoré are untwisted, and the vertex is not in a standard fofm.
Instead Qf drawing an open baryon line as in Fig. l4a, we shall draw
it as in Fig. 14b. We fix the quark—liﬁes at the two ends of the
baryon line at the same position they had in Fig. 14a, and untwist all
tﬁe baryon propagators and the-external baryoﬁ at the back en@. We
do not ﬁave ;ny.more the freedom to untwist the external baryon at the
front end, and it may carry any twisé (not necesSarily,the same as
the oné it carried before). These untwisted quark—diaérams are in
an obvious one-to¥one correspon&ence with our representative diagrams.
Using them, it is easier to see which mesons are emitted from the

same line, This information is probably important for deiermining

the analytic structure of the diagrams.
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For a closed baryon line, we can also draw untwisted quark-
diegrams using a similar procedure. . We etart with the meson which
was arbitrarily chosen to be the first, and go 1n the arrow directlon
The quark -line which has Just emitted the first meson, is flxed to be
on the outside. Out of the other two lines, we choose the one which
will first emit a meson, to be in the middle. In the resulting dia-
gram, all the propagators are untwisted, except for the last one whose
twist is unrestricted (if all the other n ~ 1 mesons are emitted from
the .outside line, we Just use our representative diagram) The_
untwisted dlagrams constructed in this way are again in one-to-one
correspondence with our representative diagrams.

We remark also that it is sometimes useful to classify quark
dlagrams by their external quark connections For a diagram with B
external baryons and M external mesons, there are (3B + M)! p0531b1e
connections (We have to connect each of the entering (3B + M)
quark»lines to one of the outgoing lines. ). Homever, knonledge of
the qnark connectionS'is not sufficient to enable us to determine the
associatedbﬁarticle diagrams; in particular, it may not be sufficient
to determine which external -baryons are connected through a baryon

line in the particle diagram.

c¢. Resolution of Nf-factor Paradox

The Nf factor for a quark loop that goes through a baryon pro-
pagator is not as trivial as in the meeonvsector, sincevthe beryon is
made of three identical obJects. Consider the.contribution of a baryon
propagator, which is in a (flavor) singiet.representation:to diagram
(10a). Since the singlet is totally antisymmetricbin flavor, it can-

not have two identical flavors, and its only state is the s-<u=d state.

-

_Therefore it seems that we nre not allowed to sum over the flavor

3.of the -loop, qi, since only qy =.g contributes. Similar dif-

ficulties occur for the octet contribution If so,_how did we get a

factor of Nf per quark loop?

Consider the vertex of Fig. 6 where A is a singlet

If we describe the singlet as

—— s a a Y B 8
,singlet:> = -=>—u 1/J3 B -y +a - a + Y - gl »
—>—d Y B 8 Y a a
——u
it is clear that the —=—u state is zero. Nevertheless, we
—p—d

calculate the coupling of this zero state to the vertex of Fig é
using our rules. For any flavor assignment for particles B and F,
we have to sum over all possible pairs of twists Ti and TJ,' where
Ty is the twist on A and Tj on B. If the pair T; and TJ
contributee, so does the pair (T4 Ti) and Tj’ since T4 Jjust

interchanges the two u quarks. However, T4 = -1 for a singlet

{Eq. (9) ], and therefore all diegrams cancel in pairs. The

coupling_of the zero state is indeed zero. The reason for not ne-
glecting this zero state to begin with, is that its zero coupling is
due to the-sum of two different quark topologies. Ite contribution.
to a,single quark_diagram 15 non zero. In Fig. 10 with the internal
baryon a singlet the contribution of the g Tu to diagram a is
non-zerc, However,? his contribution is exactly minus diagram b,
in which the uud  term in the propagator is the only term

In general,,such zero states will never contribute to any

hysical amplltude, but they do contribute to individual quark
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P

diagrams. This contribution is essential for'getting the Nf factor
for quark loops.

A somewhat analogous situation exists in the meson sector
as we have already mentioned in Sec. (Vb) : diagrams of a given topo-
logy do not cbey charge-conjugation selection rules, although the

sum of all diagrams does.

d. What about Color, Duaiity and-Exotics
We have not formulated 8 dynamical theory of quark diagrams.

However, our results are very general, and they apply to any dynamical

theory which can be formulated in terms of particle diagrams and which

has the properties we have assumed (such as SU(Nf) symmetry and
the OZI rule). We have shown that these properties by themselves,

independently of the rest of the dyhamice, are sufficient

to define the quark diagrams and to determine some of their properties.

We could have carried through the whole program without ever
mentioning quarks. For example, for Nf = 3, we would impose on each
vertex the requirement that the ¢ meson is not.coupled to the non-
stranée baryons, Our expression for the full amplitude obtained by
sdmming all quark diagrams coincides with‘what we could have obtained
with this requirement by using SU(B) Clebsh-Gordon coefficients;
thus the correctness of our expression for this suﬁ is guaranteed
by SU(3) invariance. Each individual quarkvdiagram would have
the interpretation of depicting a particular way of contracting
SU(3) indices, when baryons are represented b&_a three—raﬁk SU(3)
tensory(which is possible if the baryons are in the 1, 8, or 10

representations) and mesons by a second-rank tensor with one upper
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and one lower index. Of course were we to state our pfogram this
way, the motivation wquld be completely obscured. Nevertheless,
the_fect that we égglg_have proceeded without mentioning quarks, and
obtained equivalent results, demonstrates that nothing we have done
depends on.any property of "actual” quarks. In particular, for the’
purpose of this paper, it is not important whether or not quarks are
colored; for us, Nc is merely the number of quarks in the baryon.
We do not have to censtruct the color wave-function of hadrons,

or to worry about the flow of color indices through the quark lines
of our diagrams.

In a dual theory of mesons, a given quark diagram is not
associated with a unique particle diagram. still, our program
could be.carried out in this case. For a given quark diagram, one
would merely pdck any particle diagram associated with it (our defini-
tion of a particle diagram includes the possibility that each line

represents an infinite sum of particles), and then calculate the

quark diagram according to our rules. Duality implies that one could'

have picked other pafticle diagrams, and would have gotten the same

-answer for the quark diagram; this is a constraint on the B ampli-

tudes which we have ‘neither violated nor imposed. Because of the
many degeneracies of dual theorles of mesons, 1t might not be neces-
sary to associate with each line a particular multiplet with a given
charge-conjugation and then to sum ovef alllmultiplets, but it could

be done in this way as in Ref. 5. The:duaiity properties of baryons

"' are at the present time unclear, which is anbther reason why it may

be useful to see how much information about quark diagrams can be

obtained which is independent of any particular duality assumptions.
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We have assumed that all hadrons which appear in the particle
diagrams are either qq states or ‘qaq states.. What-happens t6 our
rules if there are more complicated states in the underlying theory?:
Obviously, as long as we restrict ourselves ﬁo particle diagrams
in which the new hgdrons do not appear, our rules are unchanged
(yhether or not thesé,diagrams are dual to other diagrams which con--
tain exotics). In case we are interested in the contribution of the’
exotic statgs, the generalization of our rules is étraight-forward.
Consider an exotic state of the t&pe Qqqq . Twisting the two.quarks
(6r the two antiquarks) is related to their permutation'symmetry,
Exchangiﬁg the roles of thértwo,quarks with the two antiqqarks is
related to the charge-conjugation eigenvalue of the neutral member

of the SU(Nf) multiplet.
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VII. SUMMARY

We have defined quark diagrams for baryons, assuming that all
the dynamical information can be expressed on the hadronic level in
terms of particle diagrams (The "particles" in the diagram may be real
or virtual hadrons, reggeons, dual resonances, etc. ). We have con-
structed a transformation from a complete set of particle-diagram am-
plitudes (the B ampiitudes) to a complete set of quark-diagram ampli-
tudes {the A amplitudes), and derived the rules for constructing
physical amplitudes using these quark diagrams. For Nf > 3 (in
general Nf 2> Nc) the quark diagrams can be uniquely defined using
measurable quantities. Although for Nf < 3 our procedure is not
unique, there are no ambiguities when we sum the various quark diagrams
to obtain physical amplitudes.

Our method is model independent and is appropriate for any

theory (with or without quarks ) which can be formulated on the hadronic

level and satisfies SU(Nf) symmetry and the 0ZI rule. In particular
it is independent of any color considerations and-duality constraints.
It does not answer questions like "what afe the constraints imposed

on the quark diagrams due to the baryon analogue (if any) of duality

or planarity?" Instead, it provides us with a framework for discussing
such questions. Moreover, onée we understand (of guess) the properties
of the quark diagrams (such as their analytical structure), we can

use the inverse transformation (Eq. (44)) to study the implication

of these properties for the hadronic level (such as exghange—degeneracy

for baryons ).
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We have seen that thelvarious twists on the baryon propagators
are related to the permutation symmetry of the SU(Nf) muitiplets
much in the same way as the meson twist is'related to charge-conjuga-
tion. We have shown that a factor of Nf' is associatea with each
closed loop,'in spite of the fact that in certain'cases the permutation
symmetry would seem.to forbid us to sum over the flavors of the quarks
flowing'around the 106p.

The fules‘for célculating any given quark diagram with specified
multiplets are presetned at the end of Sec. {Vb)-The summation over

-

multiplets is done in Sec. (VIa).). The rule for summing all quark

‘diagrams with the (%)n weight factor (where n 1s the number of BBM

vertices) is also presented at the end of Sec (Vb). In Section (VIb)
we presented an alternative form of this rule: sum over the topologi-
cally distinct diagrams (e.g. the representative diagrams) compatible
with the e#ternal flavor assignment, and include a factor of % for

each baryon loop which has no twists other than T. and T2.

1

Acknowledgements

We would like to thank. G. F. Chew, H. Garland, P. Hoyer and
J. Koplik for discussions and Dessa Bucksbaum for typing the manuscript.
One of us (J. F.) thanks the Lawrence Berkeley Laboratory, and both

of us the Aspen Center for Physics, for their hospitality.



8 U

&

‘%
ad

-54-

" APPENDIX: - CHARGE-CONJUGATION RELATIONS FOR BARYONS

When we change the direction of the arrow_of'one baryon line -
in a particle diagram, we‘get a different diagiam. The contripﬁtion )
of A given set of multiplets to the first diagram is related to the
contribution of a different set (in which the mulﬁiplets in the
baryon line are replaced by their anti-multiplets) to the second
diagram. If the baryon line is open, the two diagrams contribute
to different processes. If it is closed, they both contribute to
the same process.

We adopt the notation
|9 a> = clqga> (A1)

where C 1is the charge-conjugation operator (In this notation the
(d,u) and the (u,-d) are the SU(2) multiplets with the conventional

phases.)., The diagrammatic representation of Eq. (Al) is
|<—qa>= C|=>qa> (A2)

Let us now compare the vertex of Fig. (4a) with the vertex
of Fig. (15a). The baryon multiplets are replaced by their charge-
conjugated multiplets. The quark diagram representation for the
s-u-d sector is shown in Figs. (4b;c) and (15b,c). According to
our cohvention, the B multiplet is in the back side of the bafyon
line of Fig. 15. The top direction is unchanged. We are still using
the symbol B (rather than B) since the direction of the arrow in-
dicates that this is just the charge-conjugatgd state of the B

state in Fig. 4 (Note that the arrow indicates the flow of the barydn

8 )
"“The B state of Fig. 15 is then 23 e’ with the same spin-
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nﬁmber. It has abthing to do with "incoming” or "ouigoing". If B
in Fig. 4 is, for exémple} an outgoing baryon, B 1in Fig. 15 is an

outgoing antibaryon in éxactly the same spin-location state. If B

. : —
in Fig. 4 is the A state of an octet, it is described by —p— ue
. _ =

location vector e, and therefore it is defined to be the Y =1 =0

state of the antibaryon multiplet. These two states transform in an

exactly the same way under pérmutations (Note that we do not use the

symbols 5-u-d.). The only difference between Fig. 4 and Fig. 15

is the direction of the arrow. Therefore, in one case we have to de~
fine the vertex ﬁatrix VAFB ahd in the other, VBFA, where the
meson multiplet F is fixed. By charge-conjugation symmetry, the
(EAAB¢F) coupling of Fig. 4 is equal to thg (ABZA¢F) coupling of
Fig. 15 multiplied by Cp (where CI¢F>'= CF|¢F) ). Therefore,

VB of Fig. 4 is equal to Vigt of Fig. 15 multiplied by Cp. We

ZA
thus see that

VB o (vBFA)T (43)

where the 1.h.s. refers to Fig. 4 and the r.h.s. to Fig. 15.
Notice that the meson propagator in Fig. 15¢ is twisted com-
pared to Fig. 4c. We may think of this twist as responsible for the

C, factor in Eq. (A3). This is very similar to the meson sector,

F
where a CF factor is associated with every twist on the propagator
of. the meson F. An MMM vertex which is attached to the F propagator

contributes one twist (and a Cp factor) if it is of the Vé type. A

_BBM contributes in the samy way if the Baryon line 1is reversed.



-56-

~Letbus reverse the arrows in Fig. 8a. Suppose we want to cal-
culate diagram 8d (with reversed arrows, and with a twist on each

meson line). This diagram, which we denoted by before rever-

AXB
85,6
sing the baryon arrows, is now denoted by Agxg 4 since the twists

X - 27
operate in the opposite direction. Instead of Eq. (22) for Aix? 6
. ., . . L 27
we now get

BB o _ X A o
85,34 ° [rIT, VO TBVXF .T4.[L] Py S (Ad)

where thé colum vector [h} .of Eq. (22) becomes a fow vector, since
now the right side is in the'bagk. The propagator PX is unchanged
by charge-conjugation symmetry. Taking the transpose of Eq. (44),

v using (A3) for the two vertex matrices and using T T. T5, we finally

3
get
BxA - AXB : co
A =
6,34 = a6 | (4)
.Let us choose a flavor assignment for the external particles
X
of Fig. 8a such that diagram: Aﬁ'? 6 .18 allowed. We now reverse the
273

direction of the afrow in Fig. 8a and choose exactly the same flavor
assignment. The new external bafyon states are the cha:ge-conjugates
of the old ones, whereas the e;ternﬁl mesons are.the same. Diagram
'A6?§?4 ‘(which léoks like Aﬁ%?,é except for the méson twists and

the reQersed arrows) will contribute to the new.procesé, only if all
the mesons which are emitted from the baryon line are neutral (éiai ). ‘
In such a case, the meson channel (FG in our example) is an eigenstate
of c.c., and Eq. (A5) follows from c.c. symmetry.

When we reverse the direction of a closed baryon line of any

particle diagram, the new diagram contributes to the same process.
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Consider fwa quarkrdiééréés,.wﬁich'look the same,‘except for the
direction of the arrows along the baiwon’loop,'ahd for an additional
twist for each meson emitted from it. .These two diagrams areé the
same,.except for a factor CMi' Cméi..éuh-, where Ml""’Mn are

the n mesohs emltted from the loop. They will contribute to the same
process, only if all the n mesons are neutral. In that case, their

sum will vanish if the above mentioned factor is '-l. We see that in

order to guarantee c¢.c. conservation in the n-meson channel, we must

~ sum over both directions of the baryon loop. - Consider, for example,

the'éoupling of mesons F and G through the baryon loop of Fig. 13.
If we want this coupling to vanish when F and G have opposite

¢.c., we must add the antibaryon loop.
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FIGURE CAPTIONS

The peimutation t?ists.
Twist Aultipliéatfon.

The BBM vertex; h
A quark diagram.

The two componen£ vertei;

Loops.

' (a) The vertex matrix. (b) A twist matrix.

The indices‘of a Bfampiitﬁdé. (c) and (d) are
forbidden.

A baryon loop.

(a) A (representative) quark diagram.

(b) The untwisted version of (a).

Reversing the baryon arrow in Fig. 4.
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