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Abstract 

Quark diagrams for baryons are defined. A 

transformation from a complete set of hadronic amplitudes 

to a complete set of quark-diagram amplitudes is constructed. 

The various twists on baryon propagators are related to 

the permutation symmetry of baryons. A factor of Nf 

per quark loop is established. 

I. INTRODUCTION 

The purpose of this paper is to define quark diagrams for 

baryons. We assume an underlying theory, in which all physical am­

plitudes are given in terms of particle diagrams. The lines of the 

particle diagrams represent hadrons, both baryons and mesons. 

These diagrams could be, for example, Feynman-diagrams, in which 

* This research was supported in part by the U. S. Energy Research 

and Development Administration, under the auspices of the Division 

of Physical Research. 
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the internal lines represent virtual hadrons, or reggeon-diagrams 

(dual or not dual) in which the internal lines represent reggeon 

exchanges. 

Our purpose is to define all the quark diagrams associated 

with any given particle-diagram, to give a prescription for calculating 

them, and the rules for calculating physical amplitudes in terms of 

these quark-diagrams. Among other things, we shall define the con-

cept of a twist on a baryon propagator, and establish the fact that 

each closed quark loop is associated with a factor of Nf (unlike 

the meson case, the existence of the Nf factor is not trivial). 

Once the quark diagrams have been defined, they can be useful for 

determining necessary conditions (like the pattern of exchange­

degeneracy for baryons) for physical requirements such as the absence 

of certain exotic discontinuities. The reason for this is that a 

very convenient way to impose such requirements is to assume an 

appropriate behavior of specific quark-diagrams. This is just a 

generalization of the situation in the meson sector: There we 

know that we can impose the restrictions of the planar theory, by 

assuming the right behavior for the quark-diagrams (e.g. no u­

channel disgontinuity in the a-t quark diagram). Such an approach 

may help us in understanding the concept of "planar" theory for 

baryons (if any). However, in this paper we shall deal only with 

the general framework, and give only results which are independent 

of any additional physical assumptions. 

We believe that the present scheme can be useful for many 

applications of the "Dual-Unitarity" type1 for processes which involve 

baryons. Many applications have already been discussed in the 
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literature2 using the concept of quark diagrams for baryons, without 

giving them a precise meaning. We hope that by giving an exact 

definition to the baryon twists, giving the rules for avoiding 

double-counting, and by establishing the existence of the Nf factors, 

some of the controversial issues could be resolved. For example, our 

experience from the meson sector tells us that the relative importance 

of a twist on a produced line in the unitarity equation is crucial 

to the behavior of many physical quantities.3 Using our scheme, it 

should be possible to understand the role of a twist on a produced 

baryon line (which is crucial, for example, for estimating exotic 

exchanges4 ). 

Our approach is very general for the following reasons: 

(a) We do not have to assume anything about the details of 

the imderlying particle-diagrams. In particular they 

could be <P 
3 

Feynman-diagrams, dual-model diagrams, 

multi-Regge multiperipheral diagrams, reggeon-field 

theory diagrams, etc. 

(b) We can treat all particle-diagrams on an equal footing 

(including diagrams with meson loops, baryon loops and 

nonplanar diagrams). 

(c) Our method applies for any number, Nf, of flavors and 

for any number, N , of colors (or of quarks in the 
c . 

baryon. ). We will explicitly develop the rules for 

defining quark diagrams for the physical value Nc 

but· shall indicate how these rules can be generalized 

to arbitrary Nc. 

3, 
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(d) It is easier to follow our rules, if one has in mind 

a picture in which the baryon is made in some general 

sense out of three quarks. Therefore, we are using for 

clarity a simple picture in which the baryon is actually 

a quantum-mechanical state of three quarks. However, 

our rules are more general than this and they can be 

constructed without mentioning quarks. 

(e) We assume that all hadrons have the structure of qq, 

qqq or qqq. If. more complicated structures exist 

(like qqqq) it is straight-forward to generalize the 

scheme. 

On the other hand, we have to make the following assumptions: 

(a) Exact SU(Nf) symmetry. This is not a severe restric­

tion, because the modification of our scheme to a 

realistic world with broken SU(Nf) symmetry, is on 

an equal footing to the modification of the various 

SU(3) relations between physical amplitudes, to 

broken SU( 3 ) . 

(b) N:- degeneracy for mesons (e.g. nonet degeneracy for 

Nf 3). This extra degeneracy, which is not required 

by SU(Nf) symmetry is necessary in order to guarantee 

the continuous flow of flavors in quark diagrams. 5 

This assumption restricts only the spectrum of the 

''bare" mesons (e.g. the planar mesons ) . For physical 

mesons this degeneracy is broken due to higher order 

contributions (of the pomeron type6 ). 
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(c) We assume, for simplicity, only three-point vertices, 

MMM and BBM. 

(d) We assume the ozr7 rule for the MMM vertex, and its 

analogue for the BBM vertex. 

Note that all these assumptions had to be introduced already 

on the meson level. The generalization of the scheme of Ref. 5 

to baryons does not involve any extra assumption. In fact, unlike 

the mesons, we do not have to assume any extra degeneracy for 

baryons beyond SU(Nf). Only when we use the scheme in order to 

impose further requirements on the particle-diagrams (such as the 

absence of discontinuities in exotic channels) we may discover that 

extra degeneracy is required. 

We shall construct a transformation from a complete set of 

particle-diagram amplitudes to a complete set of quark-diagram 

amplitudes. We shall also find the inverse transformation which 

might be very useful to translate any physical constraint on quark 

diagrams into hadronic language. We can construct these transfor­

mations without ever mentioning quarks. We just have to assume that 

all baryon representations are contained in the SU(Nf) representa­

tions .of three quarks. The results we get for physical amplitudes, 

are guaranteed to agree with those of the underlying theory just 

by SU(Nf) invariance plus the OZI rule· for both types of vertices. 

In particular, our results are independent of any color considerations, 

and our quark diagrams do not carry any color indices. 

In our scheme, the twist on a baryon line is related to the 

permutation symmetry of the baryons, which in turn is related to the 
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SU(N ) symmetry (A description of the relation between representations 
f 

of SU( Nf) and of permutation groups can be found in Ref. 8.). 

This should be contrasted with the meson sector in which the twist 

is related to charge-conjugation symmetry. This is not surprising, 

since the charge-conjugation of a qq system is determined by its 

permutation symmetry. The distinction between the permutation-twist 

and the signature-twist is exactly the same as the distinction be-

tween the charge-conjugation-twist and the signature-twist in the 

9 meson sector. 0 

In this paper we define quark diagrams; we do not try to 

classify them according to any topological properties, such as the 

10 minimal surfaces on which they can be embedded. 
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Appendix: Charge-conjugation relations for baryons 

page 

54 

The rules for computing quark diagrams are given at the end 

of Section 5b. 

0 

• 
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II. NOTATION FOR BARYON STATES 

We shall start with a simple quantum-mechanical description 

of the baryon, as a system of J quarks (The generalization to 

any Nc is straightforward but not trivial.). The spin-location 

(or alterantively, the spin-momentum) states of a single quark will 

be denoted by a,B,~ ... indices (a, for example may describe a quark 

with spin up at location A.). The flavor states will be denoted by 

u,d,s,c ••. , and we assume an exact SU(Nf) flavor symmetry. Of 

course the rules for quark diagrams we shall derive will not depend 

on the flavor labelling of the quark lines, nor will they require 

any knowledge of, for example, the spatial distribution of the quarks 

within a hadron. We introduce these labels in order to keep track of 

the permutation symmetry. Since we assume that all baryons are 

color singlets, the baryon states will be fully symmetric in the 

combined (spin-location}-flavor labels. 

It is useful to consider first only baryons which are made 

of three different flavors: s, u, and d; we shall call this the 

s-u-d sector. Of course this device is not available if Nf < J. 

Since we know that our states will be fuliy symmetric, we can specify 

a state by assigning to each flavor a spin-location label; thus some 

particular state might be denoted 

s a 
u B 
d y 

where we have introduced lines with arrows into our notation in an-

ticipation of the labelling of the lines in a quark diagram. In.this 

notation, there is no "first", "second", or "third" quark; the 
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state displayed above is completely identical to the state labelled 

u B 
s a 
d y 

This identity under a simultaneous permutation of the (spin-location) 

and flavor labels demonstrates that the states are, indeed, fully 

symmetric. 

The most general state in the s-u-d sector 

s a ) 
is of the form L 

a,B,y 
c u B 
a,B,y d Y 

) The coefficient 

function, C, does not have to satisfy any symmetry condition, because 

each term by itself is fully symmetrized, as we have just mentioned. 

For a given set of three spin-location labels, say a,B,y, 

there are 6 terms in the sum, which correspond to the 6 permutations 

of a,S,y We assume for simplicity, that a, B, and y stand for 

three different spin-location states. Therefore, the 6 terms repre­

sent 6 different states. In addition, we have to su. over different 
1 I I f 

sets of three spin location states (say a , B , y or a, B, y ) • · Each 

set contains 6 terms. For simplicity we shall always consider only 

one set, a;S,y . The sum over.all sets is implied. 

To clarify the notation, let us make some remarks in the 

Nc = 2 case. In the u-d sector, and for the a,B set, there are 

two states: 

u a --r- u B ) 

and 
d B ~~ d a ) (1) 
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The states of definite isospin (and hence, if a and a are chosen 

judiciously, of definite mass), are 

1 u (a :) ~ II 1,0)' ± ll d a ~ 

(2) 

1 (:_± :) 
a ~ 

ll a ---T-

The notation in the first line of Eq. ( 2) emphasizes the permu-:­

tation symmetry of a,8 with respect to u,d, while the equivalent 

notation in the second line inakes more transparent the SU(Nf) struc­

ture. A priori, there is no reason to assume that the states with 

I= 0 and I= 1 are degenerate· in mass; if they are not, then 

the states in Eq. (1) will not have definite mass. It is true that 

quark diagrams become much simpl~ if there is .. thi~ extra degeneracy, 

for·then the states in Eq. (1) can propagate simply; 

in fact, i~ can be shown that the requirement of absence of 

exotics in BB +mesons will impose extra degeneracies of this type. 

Nevertheless, we do not now assume such degeneracy, and so we will 

have to work with states in definite SU(Nf) multiplets, as in Eq. 

(2). We remark parenthetically that for mesQns the situation is 

different. 5 The states with I = 0 analogous to those in (1} 
z 

are 

u a~ d a --7:-
and. ( 3) 

u a~. 
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In this case, unless the states with I = 0 and I = 1 do have the 

same mass, a propagator can mix the states in ( 3), and so flavor 

would not flow continuously along the lines of a .. quark· diagralli. This 

is why we require N:-degeneracy for mesons at the bare level. 

Consider again the s-u-d sector for Nc = 3. For a given 

set a,a,y there are six states, obtained by taking any -one of the 

six columns of the following bracket: 

a y 

y, a, 

The states in definite SU( 3) 

a, 

y 

B 
.y, 

a U· 
representations 

(4) 

10, 1, Sa:, !Jb are 

linear conbinations of these six; the coefficients for each column 

of (4) are 

ID> 
~s 1 [ 1, 1, 1, 1, 1, 1] = -r-u 7b --:r-d·,· 

IS> 
-+-s 1 [ 1, -1, 1, 1] ~u 76 -1, 1, 
~d 

~s 1 [-2, 1] (5) p:> ~u 712 -2, 1, 1, 1,_' 
a ~d 

lA > = 
-rs 1 [o, 0, 1, 1, -1, -1] -.:r-u 2 ·a -:r-d 

~s 1 [ 0, -1, 1, 1, -1] I~> ~u 2 o, 
-?I- d 

I~> 
--7-s 1 [-2, -1, 1, -1] ~u 712 2, 1, 
~d. 

. . .. 
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jD>( IS>) stands for the s-u-d state of the decuplet 

(singlet). Each octet has two s-u-d states. We have chosen the two 

eigenstates of isospin, E0 and A. TheE (A) states are 

symmetric ( antisyinmetric) under u ~ d. We have defined the two 

octe1B so that Ba is symmetric, and Bb antisyinmetric, under the 

interchange Sflo y 

Let us label the six columns of spin-location indices in 

as thus we define el =(~) e2 =(i) , etc. We 

can now leave the s-u-d sector; we might consider for example the 

state 

-+- u Cl 

~uS 

--7--d y 

---+-- u 

--t-u 
--7- d 

Thw.second equality follows from the fact that there is no sig-

nificance to the order in which we label the lines. It is because 

(4) 

we want to treat the six sets of labels e
1

, ... ,e6 as independent 

objects that it is useful to ·consider the case where the three 

flavors are all different, aa in the a~u-d sector. 

Let us now denote the six linear combinations of 

which appear in Eq. (5) (ignoring the flavor labels) by 

eE ' eA ' 
a a 

Thus, for example, the third and fourth lines in Eq. (5), read 

and 

furthermore 

~u -+-u 
1 [i s B n -+- u eA - -4--u 2 + Cl - y -

-r- d a ~d y Cl 

( 6b) 

-+- 1 n u 
- 2 ;] 

Cl 

--+- 2 
+ u B 

---+- d y 

The last line we recognize as being proportional to the proton state 

of the octet 8a. Since 

written, for example, as 

there is only one 
~u 

~ u eE or 
~d a 

such state, the states 
--r- u 

as --:)1-- d e A are 
~u a 

also proportional to this same state. Some other examples are: 

~u 
~seE 
~d a· 

- lA ) a 

0. 

- 131A > 2 a 

( 6c) 

We emphasize that eE represents a spin-location state. To define 
a 

a physical state we have to specify the flavors q
1

, q2 , q
3

. Only 

when we choose ( q1, q2, qJ) = ( s, u, d) e E a actually represents 

the physical state IE ). a· 
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----r-ql 
27 states ---?-q2 er (qi = s, u, d) 

---r-<IJ a 
All the are either 

zero (if all the flavors are the same) or in the octet 8a. The 

states we get this way form an (over-complete)basis of the octet, 

although we have used only eEa· 

It is straightforward to show that a sum over a complete 

set of states of the octet, can be performed as follows: 

8 

3 L- ( 7) 
t=l 

where qi runs over s, u, d and t runs over the states of the 

octet 8a. An identical equation holds for the octet ~· 
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III. THE PERMUTATION TWISTS 

We wish to consider permutations of the three flavor labels. 

Suppose, for example, that in Eq. (4) we replaced the labels 
s u 
u by d while leaving the spin-location labels unchanged. 
d s 

As far as the states are concerned, this would have the same effect 

as if we .left the flavor labels unchanged, but permute in the appro­

priate way the a, S, y labels of each one of the six ei's. This 

permutation can be represented pictorially as follows: write the 

indices a, S, y in the order appropriate for a given ei just to 

the right of the twist denoted T
3

. in Fig. 1, and then slide the 

indices along the lines from right to the left. For example, if 

we start with e2 , we wind up with e
4

, which can be. written 

This relation corresponds to the equation 
s 

e4. 

At this point we may ignore any specific assignment of flavors, 

and say that we have represented a particular permutation of three 

objects, in our example, T3 ·as a transformation on the six~dimensional 

vector space spanned by the basis vectors e
1

, .• •, e6 .. ·The other. 

permutations of three obje~ts may likewise be represented, according 

to the pictures of Fig. 1 (the convention we used ·in Fig. 1 for 

labelling the Ti In the basis 

the operators Ti are represented by· 6 x 6 matrices (tpis is called 

the regular matrix representation .of the'perniutation group P3 ); 

-16-

for example: 

o 1 o· o o o 

1 0 0 0 0 0 

0 0 0 0 0 1 

0 0 0 0 1 0 

0 0 0 1 0 0 

0 0 1 0 0 0 

0 0 0 0 1 ol 
0 0 0 0 0 1 

1 0 0 0 0 0 

0 1 0 0 0 0 

0 0 1 0 0 0 

0 0 0 1 0 0 

·· Each T. 
l 

is an orthogonal matrix, so that 

T
4

, and T6 are symmetric, while T
5 

= T
3
T. The product of two 

twists is again a twist; for example, T2T
4 

= T
5 

as depicted in 

Fig. 2. 

(8) 

Let v be any vector in our six-dimensional space. We 

have associated the operator Ti acting on v with the picture 

obtained by placing v to the right of the twist labelled Ti in 

Fig. 1, and then· letting the spin-location indices slide along the 

lines. The resulting vector is Tiv. Consider now the operation 

which can be pictured by placing v to the left of.the twist Ti 

in Fig. 1, and then letting the spin-location indices slide along 

the lines from left to right. This clearly corresponds to the operator 

-1 Ti acting on v ( e. g.,. the permutation defined by using T5 

in Fig. 1 from left to right, is identical to using TJ = T;1 from 

right to left). Since and since 

r.h.s. v is understood to be a row vector)·, we conclude that. the 

picture of v to the left of twist Ti in Fig. 1 is described 

algebraically as v Ti' just as the picture of v to the right 
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of twist Ti is described as Tiv. 

The Ti operators are related to flavor permutations. The 

operator T2 , for example ( e1 4>- e2 , e
3 

.... e6 , e 
4 

f+ e 5 ) does ~ 

interchange 6 and y. In fact, there is no permutation of the 3 

spin-location labels a, 6, y, which correspond to T • However, if 
+-ql 2 

we consider the baryon state ~ q2 e
1

, T
2 

corresponds to the flavor 
~q 

Since each 3 Ti corresponds to a flavor 

permutation, it is clear that the twist operator~ are closely related 

to the SU(_Nf) operators. 

Our six-dimensional basis e1, ... ,e6 -corresponds to a reducible 

representation of the permutation group P
3

. We now want to break it 

into its irre~ucible representations. It turns out that the six 

vectors of Eq. (5) (where we ignore the flavor indices) form a new 

basis .that achieves the desired decomposition. There are two one-

dimensional representations: eD, is the basis for the symmetric 

one, and es for the antisymmetric one. The Ti, when reduced 

to these representations, become the following 1 x 1 matrices: 

sianal 

sulting 

define 

e0 ( Decuplet for Nf = 3) 

eS (Singlet for Nf = 3) 

er and eA are the basis 
a a 

representation. When the Ti 

of a 

act 

vector is a linear combination of 

i 
T = -( -1) i 

(mixed symmetry) 

on er or eA , 
a a 

them. Therefore, 

(9) 

two dimen-

the re-

we now 

and e = [O,lJ and the 
A a 

T become the fol­i -

lowing 2 x 2 matrices: 
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Tl [: :] T2 . [: _:] TJ = f;l :] 
f -13] t' -llJ lr 1 T4 T5 = ~ /j T •-

-6 1 -1 6 2 IJ 

(10) 
The matrix T2 is diagonal, since our basis states are chosen 

to be of definite symmetry under q
2 

f+ q
3 

(namely, if we choose 

(q1,q2,q
3

) = (s,u,d) we get eigenstates of isospin)-. 

e.. and eA_ 
.!.b ""b 

are the basis of a two dimensional representa-

tian. The matrix representation of the Ti in this basis is identical 

to that of Eq. (10). This means_ that C;: , ~ ) and (~ , eA) 
a a b -b 

are actually in the same irreducible representation of the permutation 

group. 

Originally, we have used the 6 vectors of Eq. (5) to write 

down states which are in (the s-u-d sector of ) the SU(Nf) irreducible 

representations We now observe that there is a one to one correspon-

dence between these states and the states of the irreducible represen-

tati<ns ofthe permutation group. The fact that we got two copies of 

the same representation of the permutation group, corresponds to 

the fact that both (lEa) ,lA-) ) and <lrb ),lAb)) are in the 

same (octet) representation of SU(J). 

Any arbitrary octet is characterized in principle by two spin-

location states er and which transform under the 6 permutation 

operators as in Eq. (10). This guarantees that Eqs. (6a,b,c) still 

hold. _ Since the behavior under the permutation operators is all the 

information we need, we do not have to know anything about the details 
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of the spin-location states, and the indices a and b (in er , 
a 

for example) can be suppressed. 

We have used as a convenient example the case Nf = 3. But 

the same spin-location states (as in Eq. (5)), the same operators Ti 

and the same irreducible representations (as in Eqs. (9,10)) can 

be used for arbitrary Nf. 

For Nf > 3, the baryon SU( Nf) mul tiplets become larger 

(and hence are no longer called singlet, octet and decuplet) but they 

remain the same in number, and they still correspond to the irreducible 

representations of P 
3 

in the same way. For example, for N.f = 4 

we get an (over-complete) description of the mix syllllll€try multiplet 

(which contains the SU(J) octet) by letting q
1

,q
2

,q
3 

run (indepen­

dently) over u,d,s and c in frcntof the spin-location states er 

and e A (This multiplet is now 20-dimensional, because there are two 

states for each of the 4 sectors of the s-u-d type and one state 

for each of the 12 sectors of the u-u-d type). We get all the 20 states 

of the symmetric representation, and the 4 states of the antisymmetric 

by using as above eD(e
5

). 

For Nf = 2, we use the same spin-location states, and let 

q1 ,q2,q3 run over u and d. The mix-symmetry representation con-

1 tains two states (I = 2 ) and the symmetric representation contains 

four states (I = i). All the states of the antisymmetric represen­

tation, vanish. 

To generalize our scheme to any arbitrary value of Nc' we 

start with the Nc! different spin-location states, e
1

, ... , eN 
1 c 

which correspond to all the permutations of the Nc! labels 

~·····~cl" We define the Nc! twist operators, and construct a 

-20-

new basis of the ei (similar to eD, ... ,e~) which co~responds to 

the irreducible representatior~of the permutation group for Nc 

objects. By letting q1 , ••• ,qN run over all Nf flavors in 
c 

front of the new spin-location states, we get all the SU(Nf) repre-

sentations of N quarks. c . 
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IV. THE BARYON-BARYON-~ffiSON VERTEX 

We wish to calculate the.baryon-baryon-meson vertex with 

specific twists on the baryons; some examples are. shown in Fig ... 3. 

Our method will be to observe that, although in general there may be 

more than one way to.attach the meson quark-lines to the baryon quark­

lines (see Figs. 3a ·and. b), if both baryons have the flavors s-u-d 

there will be oniy one way tp hook in the meson (as in Fig. 3c). This 

means that the vertex of. Fig. 3c can be directly related.to a physical 

coupling. (This coupling may of course be off shell; we use the term 

physical coupling to mean one which is defined on the particle-diagram 

level. ) We can now use SU( Nf) symmetry to define all of the vertices; 

for example, the vertex in Fig. 3a will be equal to that in Fig. 3c. 

For Nf < 3 this procedure does not work; in this. case, we can still 

define quark-diagrams, but the definition is not unique {whereas for 

Nf ~ 3 it is unique). However, when we sum over all quark-diagrams 

to obtain physical amplitudes, we get a unique result for any value 

of Nf. 

Consider the baryon-baryon-meson (BBM) vertex of Fig 4a. 

Baryons (mesons) are indicated by solid (dashed) lines. We first 

specify the multiplets of the three hadrons. The letter A specifies 

the SU(Nf) multiplet of the baryon on the left (1, s·, or 10 for Nf 

= 3), ~ if this baryon is, for ex.ample, an octet, A tells us which 

specific octet it is (e.g. the nucleon octet, the N(l470) octet, 

etc. ) , but not which specific member of the octet ·(e. g. the + 
E , A, 

or P). In order to give this latter information, ·we represent the 

baryon by three quark lines and specify both the three flavors and a 

two dimensional spin-location vector which we call [ L ] (which 
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can be a linear combination of eE and and which distinguishes 

between a E ·and a A in the s-u-d sector according .to Eq. ( 6a) 

[ where the index a is suppres.se.d] ) . 

The meson is always in a ncinet, and the letter F specifies 

the nonet (for example: the w-p-~ nonet). ·F ·does not specify the 

member of the nonet; this is done by representing the meson by quark­

antiquark lines, and specifying their flavors. 

Let us consider fir~t. the ca.se in .which both baryons are 

·octets. To simplify the notation, we denote the members of the octet, 

by the name of the particles in the nucleon octet (E means r0
). 

Obviously, the two octets in the vertex can .be ~ifferen~ The members 

of the meson nonet are denoted by the names of the particles in the 

p-nonet. We start with the s-u-d sector ,for both baryons. In. the 
s~ 

standard order, u-+- , [ L] = [1,0] is the E and. [0,1] is 
d-+-

the A for the left baryon. We. describe the baryon B on the right 

with a similar spin-location vecto~, which we call. ~J. If the meson 

is of the ~ type (ss), then the vertex is described by Fig. 4b. We 

represent this vertex by the quark diagram of Fig. 4c. We define VEE 

to be this vertex function for ( L') = Q. OJ. and [R] = ~J 
Note that this quantity ~s defined in terms of a physical coupling, 

the EEq, coupling of multiplets A,B and F. In principle we 

should write ~ , but we shall suppress the multiplet indices for 

the. time being. In the same way, is defined to be the vertex 

of Fig. 4b for [ L) [o 1] . and ~] and it is just the 

Mq, coupling for the A, B, F mul tiplets. For [ L J = [1 0] and 

[RJ' =[~] ·we get VEA = 0 = VAr .bY isospin conservation. 
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We now define the 2 x 2 vertex matrix for A,B and F 

(where A and B are still octets ) as follows: 

(octet-octet) v . ( ll) 

For any arbitrary states in the s-u-d sector of A and B, 

[. L J and [a] (these are linear combinations of I: and A ) we get: 

Vertex of Fig. 4 [ L] v [a] ( 12) 

Suppose we now take states labelled u-s-d, as in Fig. 5, rather 

than in the standard order s-u-d. That is, the baryon on the right 

-+-u ] is in the state _,..... s · [a 
-ro-d 

To get to the standard order, we twist 

the top two quarks; that is, we use 

~ u 
~] 

-+ s 
T4 [a] ~ S· ~u (13) 

~ d ~d 

where T4 is given in Eq. ( 10). Similarly., the state on the left, 
u--r s-7-

( L] . s-r ·, can be rewritten as ( L J T
4 
u~. Having written 

d~ d~ 

the flavors in the standard order, we can apply Eq. 12 to conclude 

Vertex of Fig. 5a ( 14) 

The corresponding diagram is Fig. 5b. The meson :il3 emitted 

from the upper quark line, and the appropriate twists are introduced 

in the propagators. By SU(Nf) symmetry it is clear that the vertex 
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we have j.ust discussed (Fig. 5b) is equal to the vertex of Fig. 5c 

in which the flavors of the baryons are in the standard order, but 

'the meson is of the uu type : 1/12 ( p 0 
+ w). 

We now leave the s-u-d sector and take a uud state as in 

Fig. 6a. The vertex-amplitude has two components, because the 

top quark can now go either to the meson or to the other baryon. 

(Note that the concept of a top quark is well defined because the ·fla­

vor configuration of Fig. 6a is associated with a state, C LJ • When 

we look, for example at the term(~) , the top quark is just the 

quark which is in the state a.). Each one of these two components 

is equal to a corresponding physical vertex, in which the baryons 

are in the s-u-d sector, as shown in Fig. 6 (as long as we use the 

same [ L ] and [a] vectors). The expression for Fig. 6a is there­

fore 

The rule for any arbitrary flavor assignment for the quark 

lines, and for any two states. [ L ] and [a] is 

Vertex ( 15) . 

The prime indicates two things: 

(a) The sum is only over pairs of twists which are consistent 

with the flavor assignment. This means that out of the 

36 possible pairs, we take only those whose diagrammatic 

representation is such that each quark line connects two 
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identical flavors. In other words: Flavor flows contin-

uously in the vertex. For example, the term T2 T1 

does not contribute to Fig; 5a. If the vertex is forbidden 

by some additive quantum number of SU( Nf), we cannot 

draw any quark diagram for the vertex, and no term 

contributes to the sum. 

(b) Since each allowed diagram appears twice in the sum in 

(15), take only half the terms. For any (i,j) term in 
I I 

the sum, consider the term (i,j ), where T.' = T.T and T.'·= 
1 1 2 J 

= T2Tj. 

implies 

These are indeed different terms, since Ti = TiT2 
I 

i ~ i ). These two terms represent the same 

diagram; for example, Fig. 7a shows the T1T1 term 

and Fig. 7b the T
2
T2 term, and it is clear that these 

are the same diagram drawn in two different ways. In 

fact, we have already related the diagram in Fig. 7a to 

physical couplings. Of course the pair of terms (i,j) 
I I 

and ( i , j ) related as above have the same value; for-

mally, this is guaranteed by the fact that 

v ( 16) 

Therefore we take either member of the pair in the sum 

in (15). Alternatively, we could take all terms allowed 

by. the flavor assignment, and then multiply the sum by 1/2. 

The reader wili observe that we have succeeded in describing 

the coupling of two baryon octets to a meson nonet in terms of two 

parameters (VEE and VAA), while SU(J) invariance by itself woUld 

allow three independent couplings (888F, 888D,881). The reason is 
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that we have not included any vertex diagram in which·the quark and 

antiquark from the meson annihilate each other, in order that the 

theory respect the baryon analogue of the OZI rule at the tree level. 

It is straightforward to generalize Eq. (15) to any other 

kind of multiplet. Consider the case where A and B are both 

decuplets. The s-u-d sector contains only one state (denoted by D), 

and therefore the [ L J and [RJ vectors are in fact the one di­

mensional vector [1] . The vertex function VDD is defined in 

terms of Fig. 4 and is equal to the physical vertex DD~ • The vertex 

matrix V is a 1 x 1 matrix, whose single element is VDD' The 

twist operators, Ti, are 1 x 1 matrices, and Ti = 1 (See Eq. (9)). 

Eq. (15) still holds, and the prime has the same meaning. 

If A and B are both singlets, we define VSS in the same 

way, and V and Ti are 1 x 1 matrices. The Ti are given in 

Eq. {9). If A is a singlet and B is a decuplet , then v = o. 

If A is an octet, and B ·is a decuplet, i Fi we use aga n g. 

4 to define VED in terms of the physical vertex E~. VAD = o 

because of isospin conservation. We construct a 2 x 1 matrix 

( octet-decuplet ). V 

The rules of.Eq. (15) are unchanged. The Ti on the left of v 

in Eq. ( 15) is now a 2 x 2 matrix and [ L ] is a 2-vector, whereas 

the T j on· the right, and the [RJ vector are one-dimensional. If 

A is a decuplet, and B is an octet, V is the 1 x 2 matrix 

.. ( dec~plet-octet ) 
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In a similar way we get 

(octet-singlet) V [:.S J ( dnglet-ootet ) v [ o, V 5J . 

In conclusion, for any two bar,yon multiplets A and B 

we construct an m x n matrix V, where m( n) is the number of 

states in the s-u-d sector of A( B). In Eq. ( 15) the T matrix and 

the vector to the left (right) of V is of dimension m(n ) • Our 

choice of states in the s-u-d sector is such that all of them are 

either symmetric in the middle and bottom lines (I = 1 E,D) or 

antisymmetric (I = 0 : A,S). The matrix elements of V which 

connect states of different symmetr,y, vanish. 

The approach of this paper is to proceed as if the dynamics, 

on the particle level, were fully known. We thus assume that the 

spin and mass of the hadrons (and therefore their propagators) and 

their couplings are given. The complete dynamical information is 

contained in the particle-diagrams. Our purpose in this :Paper is 

to define all quark-diagrams in terms of these particle-diagrams. 

In this section we have accomplished the first step towards this 

goal: we have constructed vertex matrices in terms of physical 

couplings, which are measurable in principle, and used them to de­

fine all the quark-diagram components of the vertex (the various 

terms of Eq. (15)). The vertex matrices are uniquely defined only 

for Nf ~ Nc. For Nf < Nc' the definition of quark-diagrams is 

therefore not unique. However, when we sum them according to Eq. 

(15) to get the physical amplitude, all the ambiguities disappear 

and we get the right answer. 
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V. QUARK DIAGRAMS 

a. A Simple Example 

Let us start with a simple example.· Consider the particle-

diagram of Fig. 8a. The baryon and meson multiplets are specified 

as before. External and internal particles are specified in the same 

way. Let A, X and B be octets (the generalization to decuplets 

or singlets is trivial; the only change is in the dimensions of the 

appropriate V and T matrices, and of the state vectors). We now 

have to specify which member of the multiplet each external particle 

is. This is done in Fig. Bb. Note that this specification for a 

baryon octet is not unique; the same state of A could be described, 
1 U-T- I 

for example, as [ L J s -?- where ( L ·] C L ] T 
4

. Obviously, 
d~ 

the resW. ts of any calculation are independent of the way we specify ·· 

the external baryons. 

We are now interested in the contribution of a single multiplet, 

X, to the amplitude (In Sec. VIa we shall sum over all possible mul-

tiplets in the internal particle lines.). Obviously, we have to 

sum over all possible states of the multiplet X. In the present 

example, only the s-u-d sector contributes, namely the E and A 

states of the multiplet X. Therefore, we have to insert for the X 

propagator the following expression: 

( 17) 

PX is the propagator of X. Due to SU(Nf) invariance, the propa­

gators of all the members of the aame multiplet are equal. 
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A (non-unique) way to represent the completeness sum of Eq. 

( 17) is 

( 18) 

The contribution of the first term is described in Fig. 9c. 

Now we have in the internal line a single state (the E member of 

the X octet in a given spin-momentum state), and therefore the 

amplitude factorizes, and we are left with the problem of computing 

the two vertices. According to our rules, the amplitude is 

_ _AFX [1JC1 OJ . .XGB f.] 
Fig. 8c (the IE)< El term) = ( L JT

4 
v--·· T4 0 

T6 v-- T6 LR PX. 

( 19) 

·[ol19 1] 
The lA) (AI term will be the same, except for a lj term. 

Using 

I (20) 

we get for the full amplitude, AAX~ of Fig. 8a 

(21) 

We now use T
4 

T6 = T5 • Instead of having two twists on the 

propagator, we now have only one, and the final result, which is 

represented in Fig. 8d is 

(22) 
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b. The General Case 

We wish to obtain an expression for an arbitrarily compli-

cated quark diagram. Our strategy shall be to start with an arbitrary 

particle diagram, and decompose it into a sum of terms, each of which 

will correspond to a quark diagram. We will thus achieve both an ex-

pression for an arbitrary quark diagram and also a determination of 

precisely how and with what weighting factors to add together the var-

ious quark diagrams to compute physical amplitudes. 

We consider then a particle diagram of arbitrary complexity, 

which may be planar or non-planar; we do, however, restrict ourselves 

to diagrams all of whose vertices are of the type BBM and MMM. 

We first fix the multiplets af all the hadrons in the particle 

diagram. The sum over all the multiplets that can be exchanged in 

internal lines will be carried out in Sec. 6a. · Each external particle 

is designated to be a specific member of the corresponding multiplet, 

whereas for each internal particle we have to sum over all members. 

We assume that all mesons are in Nf2-multiplets. The charge-conju­

gation of (the neutral members of) each meson multiplet is specified. 

Any baryon line either connectstwo external particles (in 

which case we call it an open baryon line) or forms a baryon loop 

(which we call a ~ baryon line). Each baryon line, open or closed, 

carries an arrow that indicates the direction of flow of baryon num-

ber; that is, the line carries baryon number +l in the direction 

of the arrow, so that, for example, an external particle whose baryon-

number arrow points into the diagram is an incoming baryon if E > 0, 

and an outgoing anti-baryon if E < 0 . 
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We now sum over all members of the multiplets in the internal 

lines. In the example discussed above (Fig. 8), we knew the octet 

particle X had the flavors s-u-d, so we used Eq. 18. In the 

general case, we use, for any baryon octet, analternative form of Eq. 

7: 

8 L lt><tl 
t=l 

(23) 

It is easy to check that for the decuplet 

10 

L lt><tl (24) 
t=l 

and that for the baryon singlet 

lt><tl ( 25) 

eD and e
5 

are defined just before Eq. (6a). Eqs. (23),(24), and 

(25) are written for the case Nf = 3; for any other value of Nf, 

the right hand sides of these equations would be unchanged (including 

the factors of 1/6), and will contain N/ terms while on the left 

the sum would be over the appropriate number of states. 

For meson propagators, we use: 
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-2 
where the r. h. s. contains Nf terms. 

( 26) 

We now have (Nf3 )b(Nf2 )m terms; where b(m) is the number of 

baryon (meson) propagators. For each term, the quark labelling for 

each quark line of. the diagram is specified. For .the external par-

ticles it was specified at the beginning, and for the internal particles 

it is SJ?ecified by the choice of term in the sums ( 23) - ( 26). The 

contribution of each term can be now written in the usual way as a 

product of propagators and vertex functions. 

We have seen in Sec. IVhow to calculate the the BBM vertices 

and shall deal with them below. In case of an MMM vertex, the 

situation is exactly as it was in the meson sector (see Ref. 5). If 

all the six flavors are the same (e. g. all the three mesons are of 

the uu type) the vertex has two components as is shown in Fig. 9. 

We denote the three mesons by F, G, and H, and associate with them 

an arbitrary cyclic order, say F, G, H. The term in which the 

quark lines flow in this order (the incoming arrow of F goes to 

G) is called v1 . The second term is v2. The relation5 between these 

two components of the MMM vertex is 

( 27) 

where CF, for example, is the charge-conjugation of the qiqi members 

of the multiplet F. In case that all flavors are the same, the 

vertex is given by V = v1 + v
2 

(which is zero if the vertex is for­

bidden by c.c. Nevertheless, we have to take into account such con-

tributions, because the v
1 

and v2 components contribute to 

-33-

different quark diagrams.). The general rule is that a vertex com­

ponent will contribute only if it is consistent with the flavor as­

signment of the three mesons. Once it contributes, it always has the 

same value (v
1 

or v
2

), independently of the flavor assignment, as is 

required by. SU( Nf) symmetry. It should be emphasized that by an 

appropriate choice of the flavor assignment, both V1 and V2 
can 

be defined in terms of physical vertices. v1 , for example is just 

the vertex of F( ud ) G( su) H( ds ) where q is the line with the out-

going arrow. 

To calculate the BBM vertices, it is useful to draw the 

draw baryon lines in a standard way. This can be done as follows: 

first all the baryon lines (open and closed) on a plane, such that 

they will not cross each other. For any given baryon line. let all 

mesons which are connected to that baryon line approach it from the 

same side (e. g. if an open line is drawn as a straight horizontal 

line, this means all mesons are attached to the top or all are attached 

to the bottom; for a closed baryon line it means all to the inside 

or all to the outside). It does not matter how badly we have to twist 

the meson lines in the diagram to do this. When we represent the 

baryon by quark lines, let us call the quark on the meson side the 

t-quark, the quark on the other side the b-quark, and the quark in 

the middle them-quark (in the example discussed above [see Fig a] 
the t-quark was on top, and the b-quark on the bottom). We can now 

apply the rules of Sec. IV, with the understanding that, for example, 

T
2 

interchanges the m and b lines and that a E can be represented 

s 
as ~ eE , . meaning that s goes with the t-quark, u with the m-quark, 
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and d with the b-quark, and eE is given in terms of e1 , ... ,e6 

exactly as on the third line of Eq.(5), where e1 represents a on 

the t-quark, B on the m-quark and y on the b-quark, etc. If 

we define the back and the front ot the vertex so that the baryon-

number arrow points from the back to the front, and denote by 

C L J( ~] ) the baryon state-vector at the back (front) of the vertex, 

then for each BBM vertex we get a sum exactly as in Eq. ( 15 ). It 

is useful at this point to include all pa~rs of twists consistent 

with the flavor assignment, so we must also include a factor of 1/2 

for each BBM vertex. 

We have now written the amplitude as a multidimensional sum: 

there is a sum over flavors, from Eqs. (23) (26); for each assign-

ment of flavors each MMM vertex is the sum of two terms, v1 and v2 

(one or both of which may vanish for particular flavor.assignments), 

and each BBM vertex is the sum of 36 terms, as in Eq. (15) (some 

of which may vanish for particular flavor assignments). Let us 

now interchange the order of summation. We first choose a term 

characterized by the coice. of· v1 or v
2 

for each MMM vertex and 

and for each BBM vertex. This choice is represented 

by a quark diagram in an obvious way. We then sum over the flavor 

terms_ in the propagators (the flavor assignment for external particles 

is fixed). For a fixed choice of each v1 or v2 and of the T's, 

only those terms in the flavor sum will contribute in which flavor 

flows continuously in every quark line of the diagram. For any quark 

line which connects to an external particle, the flavor is fixed by 

the speCification of the external flavors. For any closed quark loop, 

the flavor can take any of Nf values, but it must be the same all 
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around the loop. Thus for each loop, we have to sum Nf terms; ac­

cording to our rules, all these Nf terms have an identical ampli­

tude. Therefore each quark loop contributes a factor of Nf. 

This factor of Nf, which is familiar from the meson sector, 

is actually quite surprising here. Consider for example the diagram 

in Fig. lOa; suppose the internal baryon has been specified to be an 

SU(3) singlet. Since the only state of the singlet is the s-u-d sector, 

it would seem that the quark line going around the loop~ have the 

flavor s, so that we should not sum over the u and d flavors 

for this line, and so not obtain a factor of Nf. The resolution to 

this apparent paradox is discussed in Section VIc. 

We now further simplify our expression for the quark diagram. 

For each BBM vertex, we have an expression of the form [ L ]T i V T j [ RJ. 

where each matrix and vector is of·the appropriate dimension. We 

can multiply these expressions along any given baryon line, using Eq. 

(20) for octets. We then obtain, for any open baryon line, the 

expression 

( 28) 

where the T's and V's are written in the order they appear 

along the baryon line, going from back to front; the vectors C L J 

and [RJ now refer to external states. For a closed baryon line, the 

expression is 

( 29) 

,. 
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In its present form, the amplitude contains two twist matrices 

per baryon propagator, for example Tj Tk. We now replace them, 

both algebraically and diagrammatically by a single twist T(j ,k) 

= Tj Tk. For each propagator there are exactly six different pairs 

of Tj' Tk' whose product is T(j,k) (namely (TjTi-l) (TiTk), 

i ~ 1, ••. ,6). If one of them is allowed, they are all allowed, 

since the quark topology is only determined by the product twist. 

Since they all have the same contribution we add these six diagrams 

per propagator and so the l/6 factor per propagator from Eqs. (23)-(25) 

disappears. A quark diagram is now completely characterized by speci-

rying the Vk of each MMM vertex (k = 1,2), and the Ti of each 

baryon propagator and of each (external) baryon line ( i = 1, .•• ,6). 

The amplitude for each diagram contains the following factors: 

(a) Px for each propagator 

(b) vk for each MMM vertex 

(c) C L JTi V Tj V Tk ... V 'r. [RJ for each open baryon line 

(d) Tr(Ti V Tj ••• V) for each closed baryon line 

(e) Nf per closed loop 

The rule for summing quark diagrams is as follows: Make 

an assignment of external flavors appropriate for a given physical 

process, and then calculate (using the rules given above) every quark 

diagram consistent with this flavor assignment. Add the diagrams, 

with weight (~)n, where n is the number of BBM vertices. Of 

course, many of the terms in th'is sum will be equivalent, because 

of Eq. (16). A systematic way of taking this fact into account is 

presented in Sec. VIb. 

• 
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VI. SOME FURTHER DEVELOPMENTS 

a. Summation over MUltiplets 

It is convenient to adopt a notation in which all of our 

matrices are of the same dimension. We can use the four-dimensional 

basis consisting of the vectors e0 , e!, eA, and es; that is, 

A for a multiplet A, ( L ] = [1,0,0,0] means A is a decuplet; 

[ LA]= [0,0,1,0] means the octet state which, if labelled s-u-d, 

is a A etc. (We could have gone back to the original six-dimensional 

space, but we do not need here two copies of the octet.) The twist 

operators Ti become 4 x 4 matrices; for example, r
4 

is shown 

in this basis in Fig. llb. All of the possible matrix elements of 

V are shown in Fig. lla; for specific multiplets A and B, most 

of the entries in yArn, vanish; for example, for A a decuplet 

and B an octet, ~ = ~ all other ~ = 0. 

We now wish to separate our expression for quark diagrams into 

two parts - one of which contains the information from particle dia-

grams, and the,other of which displays the twists. Consider for 

example the diagram (8d) -we can rewrite Eq. (22) for this diagram 

as 

AXB A 4,5,6 ( 30) 

Equation (22) was originally written for the case where A, X, and B 

were octets, but Eq. (30) is valid for .any multiplets since all of 

its matrices and vectors are 4-dimensional. 
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We .can now rewrite Eq. (30) as 

A A~ 
4,5,6 

t 
i,j ,k, R.,m,n =1 

where we have defined 

T T T ~; 
4;ij 5,kt 6,mn ijkR.mn ( 31) 

( 32) 

The amplitude in Eq. (31) represents the contribution of a 

specific multiplet X; we can now sum over multiplets of all 

different types (this is espec'ially useful when there is degeneracy 

between different multiplets): 

where 

. AAJ.B 
4,5,6 

X 

* E 
i,j ,k, R.,m,n=l 

BAXB 
ijkR.mn 

T T T BAB 
4,ij 5,kR. 6,mn ijklmn 

( 33) 

(34) 

The sum over ·x may represent many multiplets of the same type 

(e. g. many octets), as well as multiplets of different type (e. g. 

octets, decuplets and singlets). 

... 
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We can also let o_ur external s:t!'ltes be an arbitrary superpo­

sition of mul tiplets, possibly of many types: let..( L J = [ a A ( LA J 
A 

and [R] = ~ bB[R~ , where aA and · bB are· arbitrary coefficients. 

Then 

A 4,5,6 

where 

[ 
A,B 

t 
i,j,k,R.,m,n=l 

( 35) 

(36) 

We note that, although the flavor labels·do appear in Fig. 8d, they 

are completely irrelevant to the definition of A
4

, 5, 6 in Eq. (35). 

The indices of B are displayed in Fig. 12~. Each baryon 

propagator-and external line has two indices (which are contracted 

with the corresponding T matrix in Eq. (35)); the two indices 

next to each vertex come from the corresponding V matrix .in Eq. 

(32). B will be non-zero only if the two indices of any propagator 

belong to the same representation and if the two indices of any ver­

tex correspond to the same symmetry in the middle and bottom lines. 

Figs. 12b,c,d display respectively Bll2344 , B122344 , and B113344· 

The latter two vanish, B
122344 

because a twist cannot couple indices 

1 and 2, and B
113344 

because a vertex cannot couple indices l,and 3. 

In fact, for i = 1 and n 4 (where i and .. n are the first 

and last indices) Bll
2344 

is the only non-zero entry. 

As another example, consider the baryon loop diagram in Fig. 13. 
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We write 

( 37) 

where 

comparing Eqs. ( 35) with ( 37) we observe that the final 

expression for constructing the A amplitudes in terms of the B's, 

in the case of a closed-baryon line, is identical· to the expression 

for an open baryon line, provided the number of (internal and exter-

nal) baryon propagators are the same. 

For the most general diagram, we make a specific choice of 

Vk (k = 1,2) for the MMM vertices and fix all meson multiplets. Then 

we sum over all possible baryon multiplets to define the Bij"."" 

amplitudes. These B amplitudes represent all the information we 

need from particle diagrams; the A amplitudes represent the qua~k 

diagrams. 

Because of Eq. 16 (which is still valid in the 4-dimensional 

notation), many of the A amplitudes, labelled by different twist in-

dices, are· identical; for example, A4, 5, 6, A3, 4, 6 , A4,6, 3' and 

A are identical. It can be shoWn that, once the meson ver-3,3,3 
tices are all .specified, the number of' different A amplitudes is 

the product of 6 x ~ for each open baryon line and ~+ 1 for 

each closed baryon line, where n is the number of BBM vertices 

along that line. (Of course with a particular choice of external 
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flavors not all of these must contribute). Furthermore, for Nf ~ 3 

the number of non zero B amplitudes is equal to the number of A 

amplitudes. Therefore, Eq. (35), for example, is a transformation 

from one complete set of amplitudes (the B's) to another (the A's). 

As an illustration, we shall display the transformation be-

tween the A- and B- amplitudes for the simplest baryon diagram, 

the baryon propagator. There are- six B amplitudes: B
11

, B
22

, 

B33 , B44 , B23 , and B32 , which for this discussion we re-label as 

(D for decuplet, S for singlet) B00, BI:I:' BAA' Bss, BI:A' BAI: 

( BI:A I 0 does not imply that a I: can propagate to a A; the spin­

location state e~ for example, describes a I: state only if it is 
·s 

accompanied by the standard flavor labelling u.). There are six A 
d 

amplitudes, ~ ••• A6 , which are displayed in Fig. 1. We have 

4 

Ai L T:l,st Bst ( 38) 
s,t=l 

We now have the following transformation from the B to the 

A 

~ 1 1 1 1 0 0 BDD 

A2 1 -1 1 -1 0 0 Bss 

A3 1 1 -1/2 -1/2 ./3/2 -./3/2 BI:I: 

A4 1 -1 -1/2 1/2 -./3/2 -./3/2 BAA 

A5 1 1 -1/2 -1/2 -./3/2 ./3/2 BI:A 

A6 1 -1 -1/2 1/2 ./3/2 ./J/2 BJ\I: 

-t;.-

This paper was mainly devoted to constructing transformations 

of this type, from~icle-diagram amplitudes to quark-diagram ampli­

tudes. We hope to get some physical insight into the baryon amplitudes, 

using.the inverse transformations: Inverting the matrix in Eq •. 39 

we get 

BDD 1 1 1 1 1 1 

~1 Bss 1 -1 1 -1 1 -1 

BI:I: 2 2 -1 -1 -1 -1 A3 1 (40) 
BAA 

b 2 -2 -1 1 -1 1 
A41 

BI:A 0 0 lj 
_.., _., 

I'J 
A5 j 

BJ\I: 0 0 -lj -l.r 13 13 A6 

At this stage, one can impose physical constraints on the 

quark diagrams (the A amplitudes). Using the inverse transformations 

this enables us to study the properties of the B amplitudes. This 

information is important for studying relations (such as exchange 

degeneracy) between the different baryon representations. 

In order to construct the most general inverse transformation, 

we use 

Ti,st T i,uv (41) 

where dst = 0 if s and t belong to different representations, 

and dst = 6/d 

is d (e.g. 

if they are in the same representation, whose dimension 

This gives 

for the propagator.(where we define est= 1/dst if s and t are 
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in the same representation, and est 0 otherwise) 

6 

est . I Ti,st Ai 
i=l 

( 42) 

This can be easily verified b~ substituting Eq. (38). Note that Eq. 

(42) is just a different form of Eq. (40). In the general case the 

transformation from the B amplitudes to the A _amplitudes is 
4 

Ai . 1• •• ~ p L 
s

1
t
1 
... s t =1 pp 

per each baryon line, closed or open. Each pair of indices s and t 

belongs to one (internal or external) baryon propagator. The 

baryon line contains p such propagators. 

The inverse transformation is 

c, t .•• c, t t. 
1 1 p p 

il •.• ip=l 
Ti s t ••• Ti s t A. ···i • 

1, 1 1 p' p p ~1 p 

( 44) 

We conclude this subsection by the following remark. If s9me 

specific quark diagram A is such that by an appropriate choice of 

the flavors of all external hadrons, A is the only allowed quark 

diagram, it can be directly defined to be the amplitude of the cor-

responding particle diagram for the chosen physical process. This 

is the case for any tree diagram with only one -baryon iine, provided 

Nf ~ 3. The loop diagrams of Fig. 10 cannot be defined this way, 

because it is impossible to separate Fig. lOa from Fig. lOb. 
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b. Representative and Untwisted Diagrams 

~ 

According to the rules developed in Sec. 5b, for each open 

baryon line in a specific quark diagram we have a factor 

[ L] Ti V T j V ••• V Tk [R] . To obtain the full amplitude, we have to 

sum all terms of this form that are consistent with the external 

flav~rs. However, many of the terms in this sum are equivalent -

because of Eq. (16), we could replace, for example, the first V 

in the expression above by T2 V T2; this means we could replace Ti 

by TiT2 and Tj by T2Tj. This gives us another term in the sum, 

which has exactly the same numerical value, and which always contri-

butes to the same physical processes as the original term. Although 

their diagrammatic representation is different (since Ti I TiT2 ), 

we consider them to be equivalent. The replacement of a single V 

by T2 V T2 defines a transformation on the terms in the sum. If 

the number of vertices on a certain open baryon line is n, we have 

a total of 2n such transformations, since we have the option at each 

vertex of replacing V by T2VT2 or not. Thus we can generate a 

class of terms in the sum, all of which are equivalent and any two of 

which are related by a transformation of this type. Furthermore, 

each of the 2n terms we get in this. way are counted separately in 

the sum; this is because, for each such transformation except the 

identity one, there is at. least one Ti which is multiplied by 

exactly .one T2 , and T2Ti t Ti, Ti'r2 I Ti, for all i. Thus, for 

each open baryon line with n vertices, the sum contains 2n 

copies of the same diagram. 
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For a closed baryon line, the expression is Tr(Ti.V Tj V ••• V). 

If the line contains n vertices, we can again define 2n transfor-

mations; however, this time not ever,r term so generated is counted 

separately in the sum. This is because there is one transformation 

besides the identity one for which no Ti is multiplied by exactly 

one T
2

, namely the one in which each V is replaced by r2 V r2; 

this transformation replaces each Ti by r 2rir2 • Now if there is at 

least one Ti around the loop with the property r 2rir2 t Ti (this 

property is true for r
3
,r

4
,r5, and r6 ), then this transformation 

connects different terms in the sum and we again have in the sum 

2n copies of the same diagram. H if f h. owever, or eac Ti around the 

loop T2TiT2 = Ti (which would mean that every Ti is either r 1 

or T
2

), this last transformation does not produce a new term, 

and so the sum contains ~ ~ copies (since the 2n would-be dif­

ferent .terms are identical in pairs) .of the same diagram. 

It is convenient to choose, in a standard way, a single copy 

of each diagram, which we· call a representative diagram. We can do. 

.this as follows: For an open baryon line we start from the back end, 

and at each vertex apply Eq. (16) or not in such a way that the 

twist in the preceding propagator will be r1 , r
4

, or r 6 • The twist 

on the last propagator is unrestricted. 

In a baryon loop, we arbitrarily-choose one vertex to be the 

first one. The propagators are 1,2, •• n where the order is in the. 

arrow direction. If among the first n - 1 propagators there is one 

whose twist is not T1 or T2, we have the freedom to transform the 

first propagator of this type to r
4

• Then we have the freedom to 

-'i>-

transform all the propagators, except the last one, to the "standard" 

·twists T1 , T
4

, or T6 • The last one is unrestricted. If all the first 

n - 1 propagators are T1 or T2, we transform all of them to r1 . 

The last propagator can be anv. of r 1 , T T T --.. 2' 3' or 4. 

We may now replace the rule stated at the end· of Section Vb, 

which says to sum over all twists on each propagator consistent with 

the external flavor assignment, by the following equivalent rule: 

( 1) take only one copy of each diagram (e.g. the ~epresentati ve dia­

gram); (2) add the diagrams with equal weight (rather than the (~ r 
weight of Sec. (Vb)); ( 3) multiply by ~ for each cl~ed baryon loop 

which has no twist other than r
1 

or r 2• 

In order to define the quark diagrams for baryons, we drew the 

vertices in the standard form of Fig. 4c, and twisted the baryon 

propagators. For some applications it is more convenient to adopt a 

new way for drawing the same diagrams, in which most of the baryon 

propagators are untwisted, and the vertex is not in a standard form. 

Instead of drawing an open baryon line as in Fig. 14a, we shall draw 

it as in Fig. 14b. We fix the quark-lines at the two ends of the 

baryon line at the same position they had in Fig. 14a, and untwist all 

the baryon propagators and the external baryon at the back end. We 

do not have any more the freedom to untwist the external baryon at the 

front end, and it may carry any twist (not necessarily .the same as 

the one it carried before). These untwisted quark-diagrams are in 

an obvious one-to-one correspondence with our representative diagrams. 

Using them, it is easier to see which mesons a~ emitted from the 

same line. This information is probably important for determining 

the analytic structure of the diagrams. 
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For a closed baryon line, we can also draw untwisted quark­

diagrams using a similar procedure. We start with the meson which 

was arbitrarily chosen to be the first, and go in-the arrow direction. 

The quark-line which has just emitted the first meson, is fixed to be 

on the outside. Out of the other two lines, we choose the one which 

will first emit a meson, to be in the middle. In the resulting dia­

gram, all the propagators are untwisted, except for the last one whose 

twist is unrestricted (if all the other n- 1 mesons are emitted from 

the.outside line, we just use our representative diagram). The 

untwisted diagrams constructed in this way are again in one-to-one 

correspondence with our representative diagrams. 

We remark also that· it is sometimes useful to classify quark 

diagrams by their external quark connections. For a diagram with B 

external baryons and M external mesons, there are (JB + M)l possible 

connections (We have to connect each of the entering (JB + M) 

quark lines to one of the outgoing lines.). However, knowledge of 

the quark connections is not sufficient to enable us to determine the 

associated particle diagrams; in particular, it may not be sufficient 

to determine which external baryons are connected through a baryon 

line in the particle diagram. 

c. Resolution of Nf-factor Paradox 

The Nf factor for a quark loop that goes through a baryon pro­

pagator is not as trivial as in the meson se·ctor, since the baryon is 

made of three identical objects. Consider the contribution of a baryon 

propagator, which is in a (flavor) singlet. representation to diagram 

(lOa). Since the singlet is totally antisymmetric in flavor, it· can­

not have two identical flavors, and its only state is the s--u-d state. 

-$-

Therefore it seems that we are not allowed to sum over the flavor 

of the loop, qi, since only qi = s contributes. Similar dif­

ficulties occur for the.octet contribution. If so, how did we get a 

factor of Nf per quark loop? 

Consider the vertex of Fig. 6, where A is a singlet. 

If we describe the_singlet as 

jsinglet> 
~s [a -+- u l/.j6 B 
~d y 

~u 

a y 
Y + a 
B B 

B B 
a + Y 
Y a !] 

it is clear that the ~u state is zero. Nevertheless, we 
~d 

calculate the coupling of this zero state to the vertex of Fig 6 

using our rules. For any flavor assignment f~r particles B and F, 

we h_ave to sum over all possible pairs of twists Ti and Tj, where 

Ti is the twist on A and Tj on B. If the pair Ti and Tj 

contributes, so does the pair ( T 4 Ti) and TJ, since T4 just 

interchanges the two u quarks. However, T4 -1 for a singlet 

l Eq. ( 9 ) L and therefore all diagrams cancel in pairs. The 

coupling of the zero state is indeed zero. The reason for not ne-

glecting this zero state to begin with, is that its zero coupling is 

due to the sum of two different quark topologies. Its contribution 

to a single quark diagram is non zero. In Fig. 10 with the internal 

ba~on .a singlet the contribution of the ~ = u to diagram a is 

non-zero. Howeyer, this contribution is exactly min!J-s diagram b, 

in whi .. ch the uud term _in the propagator is the only term. 

. In general,. such zero states will never contribute to any 

phys_ical amplitude, .but they do contribute .to individual quark 
• 1 ~ 
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diagrams. This contribution is essential for getting the Nf factor 

for quark loops. 

A somewhat analogous situation exists in the meson sector 

as we have already mentioned in Sec. (Vb): diagrams of a given topo­

logy do not obey charge-conjugation selection rules, although the 

sum of all diagrams does. 

d. What about Color, Duality and Exotics 

We have not formulated a dynamical theory of quark diagrams. 

However, our results are very general, and they apply to any dynamical 

theory which can be formulated in terms of particle diagrams and which 

has the properties we have assumed (such as SU(Nf) symmetry and 

the OZI rule). We have shown that these properties by themselves, 

independently of the rest ~f the dynamics, are sufficient 

to define the quark diagrams and to determine some of their properties. 

We could have carried through the whole program without ever 

mentioning quarks. For example, for Nf = 3, we would impose on each 

vertex the requirement that the ~ meson is not.coupled to the non­

strange baryons. Our expression for the full amplitude obtained by 

summing all quark diagrams coincides with what we could have obtained 

with this requirement by using SU(J) Clebsh-Gordon coefficients; 

thus the correctness of our expression for this sum is guaranteed 

by SU(J) invariance. Each individual quark diagram would have 

the interpretation of depicting a particular way of contracting 

SU(J) indices, when baryons are represented by a three-rank SU(J) 

tensor (which is possible if the baryons are in the 1, 8, or 10 

representations) and mesons by a second-rank tensor with one upper 
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and one lower index. Of course were we to state our program this 

way, the motivation would be completely obscured. Nevertheless, 

the fact that we could have proceeded without mentioning quarks, and 

obtained equivalent results, demonstrates that nothing we have done 

depends on any property of "actual" quarks. In particular, for the 

purpose of this paper, it is not important whether or not quarks are 

colored; for us, Nc is merely the nWii>er of quarks in the baryon. 

We do not have to construct the color wave-function of hadrons, 

or to worry about the flow of color indices through the quark lines 

of our diagrams • 

In a dual theory of mesons, a given quark diagram is not 

associated with a unique particle diagram. still, our program 

could be carried out in this case. For a given quark diagram, one 

would merely pick any particle diagram associated with it (our defini­

tion of a particle diagram includes the possibility that each line 

represents an infinite sum of particles), and then calculate the 

quark diagram according to our rules. Duality implies that one could 

have picked other particle diagrams, and would have gotten the same 

. answer for the quark diagram; this is a constraint on the B ampli-

tudes which we have :·ne:i ther violated nor imposed. Because of the 

many degeneracies of dual theories of mesons, it might not be ~­

~ to associate with each line a particular multiplet with a given 

charge-conjugation and then to sum over all multiplets, but it could 

be done in this way as in Ref. 5. The duality properties of baryons 

are at the present time unclear, which is another reason why it may 

be useful to see how much information about quark diagrams can be 

obtained which is independent of anY particular duality assumptions. 

.. 

... 
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We have_ assumed that all hadrons which appear in the particle 

diagrams are either qq states or qqq states. What happens to our 

rules if there are more complicated states in the underlying theory? 

Obviously, as long as we restrict ourselves to particle diagrams 

in which the new hadrons do not appear, our rules are unchanged 

(whether or not these diagrams are dual to other diagrams which con-

tain exotics). In case we are interested in the contribution of the· 

exotic states, the generalization of our rules is straight-forward. 

Consider an exotic state of the type qqqq • Twisting the two quarks 

(or the two antiquarks) is related to their permutation symmetry .• 

Exchanging the roles of the two quarks with the two antiq~arks is 

related to the charge~conjugation eigenvalue of the neutral member 

of the SU(Nf) multiplet. 
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VII. SUMMARY 

We have defined quark diagrams for baryons, assuming that ail 

the dynamical information can be expressed on the hadronic level in 

terms of particle diagrams (The "particles" in the diagram may be real 

or virtual hadrons, reggeons, dual resonances, etc.). We have con-

structed a transformation from a complete set of particle-diagram am­

plitudes (the B amplitudes) to a complete set of quark-diagram ampli­

tudes (the A amplitudes), and derived the rules for constructing 

physical amplitudes using these quark diagrams. For Nf ~ 3 (in 

general Nf ~ Nc) the quark diagrams can be uniquely defined using 

measurable quantities. Although for Nf < 3 our procedure is not 

unique, there are no ambiguities when we sum the various quark diagrams 

to obtain physical amplitudes. 

Our method is model independent and is appropriate for any 

theory (with or without quarks) which can be formulated on the hadronic 

level and satisfies SU(Nf) symmetry and the OZI rule. In particular 

it is independent of any color considerations and duality constraints. 

It does not answer questions like "what are the constraints imposed 

on the quark diagrams due to the baryon analogue (if any) of dual! ty 

or planarity?" Instead, it provides us with a framework for discussing 

such questions. MOreover, once we understand (or guess) the properties 

of the quark diagrams (such as their analytical structure), we can 

use the inverse transformation (Eq. (44)) to study the implication 

of these properties for the hadronic level (such as exchange-degeneracy 

for baryons). 
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are 

We have seen that the various twists on the baryon propagators 

related to the permutation symmetry of the SU( Nf) mu1 tiplets 

much in the same way as the meson twist is related to charge-conjuga­

tion. We have shown that a factor of Nf is associated with each 

closed loop, in spite of the fact that in certain cases the permutation 

symmetry would seem to forbid us to sum over the flavors of the quarks 

flowing around the loop. 

The rules for calculating any given quark diagram with specified 

multiplets are presetned at the end of Sec. {Vb)·The summation over 

multiplets is done in Sec. (VIa).). The rule for summing all quark 

diagrams with the (.!l n we· ight f ( ~ actor where n is the number of BBM 

vertices) is also presented at the end of Sec (Vb). In Section (Vlb) 

we presented an alternative form of this rule: sum over the topologi­

cally distinct diagrams (e.g. the representative diagrams) compatible 

with the external flavor assignment, and include a factor of ~ for 

each baryon loop which has no twists other than 
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APPENDIX: CHARGE-CONJUGATION RELATIONS FOR BARYONS 

When we change the direction of the arrow of one baryon line 

in a particle diagram, we get a different diagram. The contribution 

of a given set of multiplets to the first diagram is related to the 

contribution of a different set (in which the multiplets in the 

baryon line are replaced by their anti-multiplets) to the second 

diagram. If .the baryon line is open, the two diagrams contribute 

to different processes. If it is closed, they both contribute to 

the same process. 

We adopt the notation 

Iii a> = Clq a> (Al) 

where Q is the charge-conjugation operator (In this notation the 

(d,u) and the (u,-d) are the SU(2) multiplets with the conventional 

phases.). The diagrammatic representation of Eq. (Al) is 

1-+-qa>= cl--rqa> (A2) 

Let us now compare the vertex of Fig. ( 4a) with the vertex 

of Fig. (15a). The baryon multiplets are replaced by their charge-

conjugated multiplets. The quark diagram representation for the 

s-u-d sector is shown in Figs. (4b,c) and (15b,c). According to 

our convention, the B multiplet is in the back side of the baryon 

line of Fig. 15. The top direction is unchanged. We are still using 

the symbol B (rather than B) since the direction of the arrow in­

dicates that this is just the charge-conjugated state of the B 

state in Fig. 4 (Note that the arrCM· indicates the flow of the baryon 
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~ ,_ 

number. It has nothing to do with "incoming" or "outgoing". If B 

in Fig. 4 is, for example, an outgoing baryon, B in Fig. 15 is an 

outgoing antibaryon in exactly the same spin-location state. If B 
-r- S 

:::·~.:,:·0;~,.~ ,:·;:·:'" i;'::~ :::r::·.: .:t ~··· 
location vector eA and therefore it is defined to be the y = I = 0 

state of the antibaryon multiplet. These two states transform in an 

exactly the same way under permutations {Note that we do not use the 

symbols s-u~d.). The only difference between Fig. 4 and Fig. 15 

is the direction of the arrow. Therefore, in one case we have to de­

fine the vertex matrix vAfB and in the other, yBFA, where the 

meson multiplet F is fixed. By charge-conjugation symmetry, the 

(EA~'F) coupling of Fig. 4 is equal to the (~EA'F) coupling of 

Fig. 15 multiplied by CF (where C I~)' = CFI ~) ) • Therefore, 

~ of Fig. 4 is equal to ~~A of Fig. 15 multiplied by CF. We 

thus see that 

(A3) 

where the l.h.s. refers to Fig. 4 and the r.h.s. to Fig. 15. 

Notice that the meson propagator in Fig. 15c is twisted com-

pared to Fig. 4c. We may think of this twist as .responsible for the 

CF factor in Eq. (AJ). This is very similar to the meson sector, 

where a CF factor is associated with every twist on the propagator 

of. the meson F. An MMM vertex which is attached to the F propagator 

contributes one twist (and a CF factor) if it is of the v2 type. A 

BBM contributes in the samy way if the baryon line is reversed. 
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Let us reverse the.arr9ws in Fig. 8a. Suppose we want to cal­

culate diagram 8d (with reversed arrows, and with a twist on each 

meson line). This diagram, which we denoted by A~,6 before rever­

sing the baryon arrows, is now denoted by A~~,4 , since the twists 

operate in the opposite direction. 

we now get 

Instead of Eq. (22) for AAXB 4,5,6 

;(A4) 

where the column vector {R] of Eq~ (22) becomes a row vector, since 

now the right side is in the back. The propagator PX is unchanged 

by charge-conjugation symmetry. Taking the transpose of Eq. (A4), 

using (A3) for the two vertex matrices and using T
3
T = T5, we finally 

get 

ABX.A 
6,3,4 (A5) 

Let us choose a flavor assignment for the external particles 

AXB 
of Fig. Sa such that diagram· A

4
, 5,6 is allowed. We now reverse the 

direction of the arrow in Fig. Sa and choose exactly the same fl.avor 

assignment. The new external baryon states are the charge-conjugates 

of the old ones, whereas the external mesons are the same. Diagram 

·A BXA ·(which looks like 
6,3;4 except for the meson twists and 

the reversed arrows) will contribute to the new .process, only if. all 

the mesons which are emitted from the baryon line are neutral (qiqi). 

In such a case, the meson channel (FG in our example) is an eigenstate 

of c.c., and Eq. (A5) follows from c.c. symmetry. 

When we reverse the direction of a closed baryon line of any 

particle diagram, the new diagram contributes to the same process. 
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Consider two quark.diagr~, which look the same, except for the 

direction of the arrows along the baryon·· loop, ·and for an additional 

twist for each meson· emitted from lt •. These two.diagrams are the 

same, except for a factor C., • ~ · ~ .. ~ · , where 1-\, ... , M are 
"'1 2 n n 

the n mesons emitted from the loop. They will contribute to the same 

process, only if all the n mesons are neutrai. In that case, their 

sum will vanish if the above mentioned factor is -1. We see that in 

order to guarantee c.c. conservation in then-meson channel, we must 

sum over both directions of the baryon loop. Consider, for example, 

the coupling of mesons F and G through the baryon loop of Fig. 13. 

If we want this coupling to vanish when F and G have opposite 

c.c., we must add the antibaryon loop. 

! 
I 

' 

~ 

i 
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FIGURE CAPTIONS 

The permutation twists. 

Twist multiplication. 

The BBM vertex. 

A quark diagram. 

The two component vertex. 

Loops. 

{a) The vertex matrix. (b) A twist matrix. 

The indices of a B amplitude. (c) and (d) are 

forbidden. 

A baryon loop. 

(a) A (representative) quark diagram. 

(b) The untwisted version of (a). 

Reversing the baryon arrow in Fig. 4. 
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